1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  *
20  */
21 
22 #define _ATH5K_RESET
23 
24 /*****************************\
25   Reset functions and helpers
26 \*****************************/
27 
28 #include <linux/pci.h> 		/* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include "ath5k.h"
31 #include "reg.h"
32 #include "base.h"
33 #include "debug.h"
34 
35 /**
36  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
37  *
38  * @ah: the &struct ath5k_hw
39  * @channel: the currently set channel upon reset
40  *
41  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
43  *
44  * Since delta slope is floating point we split it on its exponent and
45  * mantissa and provide these values on hw.
46  *
47  * For more infos i think this patent is related
48  * http://www.freepatentsonline.com/7184495.html
49  */
50 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
51 	struct ieee80211_channel *channel)
52 {
53 	/* Get exponent and mantissa and set it */
54 	u32 coef_scaled, coef_exp, coef_man,
55 		ds_coef_exp, ds_coef_man, clock;
56 
57 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
58 		!(channel->hw_value & CHANNEL_OFDM));
59 
60 	/* Get coefficient
61 	 * ALGO: coef = (5 * clock * carrier_freq) / 2)
62 	 * we scale coef by shifting clock value by 24 for
63 	 * better precision since we use integers */
64 	/* TODO: Half/quarter rate */
65 	clock =  ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
66 
67 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
68 
69 	/* Get exponent
70 	 * ALGO: coef_exp = 14 - highest set bit position */
71 	coef_exp = ilog2(coef_scaled);
72 
73 	/* Doesn't make sense if it's zero*/
74 	if (!coef_scaled || !coef_exp)
75 		return -EINVAL;
76 
77 	/* Note: we've shifted coef_scaled by 24 */
78 	coef_exp = 14 - (coef_exp - 24);
79 
80 
81 	/* Get mantissa (significant digits)
82 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
83 	coef_man = coef_scaled +
84 		(1 << (24 - coef_exp - 1));
85 
86 	/* Calculate delta slope coefficient exponent
87 	 * and mantissa (remove scaling) and set them on hw */
88 	ds_coef_man = coef_man >> (24 - coef_exp);
89 	ds_coef_exp = coef_exp - 16;
90 
91 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
92 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
93 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
94 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
95 
96 	return 0;
97 }
98 
99 
100 /*
101  * index into rates for control rates, we can set it up like this because
102  * this is only used for AR5212 and we know it supports G mode
103  */
104 static const unsigned int control_rates[] =
105 	{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
106 
107 /**
108  * ath5k_hw_write_rate_duration - fill rate code to duration table
109  *
110  * @ah: the &struct ath5k_hw
111  * @mode: one of enum ath5k_driver_mode
112  *
113  * Write the rate code to duration table upon hw reset. This is a helper for
114  * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
115  * the hardware, based on current mode, for each rate. The rates which are
116  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
117  * different rate code so we write their value twice (one for long preample
118  * and one for short).
119  *
120  * Note: Band doesn't matter here, if we set the values for OFDM it works
121  * on both a and g modes. So all we have to do is set values for all g rates
122  * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
123  * quarter rate mode, we need to use another set of bitrates (that's why we
124  * need the mode parameter) but we don't handle these proprietary modes yet.
125  */
126 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
127        unsigned int mode)
128 {
129 	struct ath5k_softc *sc = ah->ah_sc;
130 	struct ieee80211_rate *rate;
131 	unsigned int i;
132 
133 	/* Write rate duration table */
134 	for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
135 		u32 reg;
136 		u16 tx_time;
137 
138 		rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
139 
140 		/* Set ACK timeout */
141 		reg = AR5K_RATE_DUR(rate->hw_value);
142 
143 		/* An ACK frame consists of 10 bytes. If you add the FCS,
144 		 * which ieee80211_generic_frame_duration() adds,
145 		 * its 14 bytes. Note we use the control rate and not the
146 		 * actual rate for this rate. See mac80211 tx.c
147 		 * ieee80211_duration() for a brief description of
148 		 * what rate we should choose to TX ACKs. */
149 		tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
150 							sc->vif, 10, rate));
151 
152 		ath5k_hw_reg_write(ah, tx_time, reg);
153 
154 		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
155 			continue;
156 
157 		/*
158 		 * We're not distinguishing short preamble here,
159 		 * This is true, all we'll get is a longer value here
160 		 * which is not necessarilly bad. We could use
161 		 * export ieee80211_frame_duration() but that needs to be
162 		 * fixed first to be properly used by mac802111 drivers:
163 		 *
164 		 *  - remove erp stuff and let the routine figure ofdm
165 		 *    erp rates
166 		 *  - remove passing argument ieee80211_local as
167 		 *    drivers don't have access to it
168 		 *  - move drivers using ieee80211_generic_frame_duration()
169 		 *    to this
170 		 */
171 		ath5k_hw_reg_write(ah, tx_time,
172 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
173 	}
174 }
175 
176 /*
177  * Reset chipset
178  */
179 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
180 {
181 	int ret;
182 	u32 mask = val ? val : ~0U;
183 
184 	ATH5K_TRACE(ah->ah_sc);
185 
186 	/* Read-and-clear RX Descriptor Pointer*/
187 	ath5k_hw_reg_read(ah, AR5K_RXDP);
188 
189 	/*
190 	 * Reset the device and wait until success
191 	 */
192 	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
193 
194 	/* Wait at least 128 PCI clocks */
195 	udelay(15);
196 
197 	if (ah->ah_version == AR5K_AR5210) {
198 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
199 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
200 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
201 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
202 	} else {
203 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
204 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
205 	}
206 
207 	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
208 
209 	/*
210 	 * Reset configuration register (for hw byte-swap). Note that this
211 	 * is only set for big endian. We do the necessary magic in
212 	 * AR5K_INIT_CFG.
213 	 */
214 	if ((val & AR5K_RESET_CTL_PCU) == 0)
215 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
216 
217 	return ret;
218 }
219 
220 /*
221  * Sleep control
222  */
223 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
224 		bool set_chip, u16 sleep_duration)
225 {
226 	unsigned int i;
227 	u32 staid, data;
228 
229 	ATH5K_TRACE(ah->ah_sc);
230 	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
231 
232 	switch (mode) {
233 	case AR5K_PM_AUTO:
234 		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
235 		/* fallthrough */
236 	case AR5K_PM_NETWORK_SLEEP:
237 		if (set_chip)
238 			ath5k_hw_reg_write(ah,
239 				AR5K_SLEEP_CTL_SLE_ALLOW |
240 				sleep_duration,
241 				AR5K_SLEEP_CTL);
242 
243 		staid |= AR5K_STA_ID1_PWR_SV;
244 		break;
245 
246 	case AR5K_PM_FULL_SLEEP:
247 		if (set_chip)
248 			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
249 				AR5K_SLEEP_CTL);
250 
251 		staid |= AR5K_STA_ID1_PWR_SV;
252 		break;
253 
254 	case AR5K_PM_AWAKE:
255 
256 		staid &= ~AR5K_STA_ID1_PWR_SV;
257 
258 		if (!set_chip)
259 			goto commit;
260 
261 		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
262 
263 		/* If card is down we 'll get 0xffff... so we
264 		 * need to clean this up before we write the register
265 		 */
266 		if (data & 0xffc00000)
267 			data = 0;
268 		else
269 			/* Preserve sleep duration etc */
270 			data = data & ~AR5K_SLEEP_CTL_SLE;
271 
272 		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
273 							AR5K_SLEEP_CTL);
274 		udelay(15);
275 
276 		for (i = 200; i > 0; i--) {
277 			/* Check if the chip did wake up */
278 			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
279 					AR5K_PCICFG_SPWR_DN) == 0)
280 				break;
281 
282 			/* Wait a bit and retry */
283 			udelay(50);
284 			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
285 							AR5K_SLEEP_CTL);
286 		}
287 
288 		/* Fail if the chip didn't wake up */
289 		if (i == 0)
290 			return -EIO;
291 
292 		break;
293 
294 	default:
295 		return -EINVAL;
296 	}
297 
298 commit:
299 	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
300 
301 	return 0;
302 }
303 
304 /*
305  * Put device on hold
306  *
307  * Put MAC and Baseband on warm reset and
308  * keep that state (don't clean sleep control
309  * register). After this MAC and Baseband are
310  * disabled and a full reset is needed to come
311  * back. This way we save as much power as possible
312  * without puting the card on full sleep.
313  */
314 int ath5k_hw_on_hold(struct ath5k_hw *ah)
315 {
316 	struct pci_dev *pdev = ah->ah_sc->pdev;
317 	u32 bus_flags;
318 	int ret;
319 
320 	/* Make sure device is awake */
321 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
322 	if (ret) {
323 		ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
324 		return ret;
325 	}
326 
327 	/*
328 	 * Put chipset on warm reset...
329 	 *
330 	 * Note: puting PCI core on warm reset on PCI-E cards
331 	 * results card to hang and always return 0xffff... so
332 	 * we ingore that flag for PCI-E cards. On PCI cards
333 	 * this flag gets cleared after 64 PCI clocks.
334 	 */
335 	bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
336 
337 	if (ah->ah_version == AR5K_AR5210) {
338 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
339 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
340 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
341 			mdelay(2);
342 	} else {
343 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
344 			AR5K_RESET_CTL_BASEBAND | bus_flags);
345 	}
346 
347 	if (ret) {
348 		ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
349 		return -EIO;
350 	}
351 
352 	/* ...wakeup again!*/
353 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
354 	if (ret) {
355 		ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
356 		return ret;
357 	}
358 
359 	return ret;
360 }
361 
362 /*
363  * Bring up MAC + PHY Chips and program PLL
364  * TODO: Half/Quarter rate support
365  */
366 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
367 {
368 	struct pci_dev *pdev = ah->ah_sc->pdev;
369 	u32 turbo, mode, clock, bus_flags;
370 	int ret;
371 
372 	turbo = 0;
373 	mode = 0;
374 	clock = 0;
375 
376 	ATH5K_TRACE(ah->ah_sc);
377 
378 	/* Wakeup the device */
379 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
380 	if (ret) {
381 		ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
382 		return ret;
383 	}
384 
385 	/*
386 	 * Put chipset on warm reset...
387 	 *
388 	 * Note: puting PCI core on warm reset on PCI-E cards
389 	 * results card to hang and always return 0xffff... so
390 	 * we ingore that flag for PCI-E cards. On PCI cards
391 	 * this flag gets cleared after 64 PCI clocks.
392 	 */
393 	bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
394 
395 	if (ah->ah_version == AR5K_AR5210) {
396 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
397 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
398 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
399 			mdelay(2);
400 	} else {
401 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
402 			AR5K_RESET_CTL_BASEBAND | bus_flags);
403 	}
404 
405 	if (ret) {
406 		ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
407 		return -EIO;
408 	}
409 
410 	/* ...wakeup again!...*/
411 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
412 	if (ret) {
413 		ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
414 		return ret;
415 	}
416 
417 	/* ...clear reset control register and pull device out of
418 	 * warm reset */
419 	if (ath5k_hw_nic_reset(ah, 0)) {
420 		ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
421 		return -EIO;
422 	}
423 
424 	/* On initialization skip PLL programming since we don't have
425 	 * a channel / mode set yet */
426 	if (initial)
427 		return 0;
428 
429 	if (ah->ah_version != AR5K_AR5210) {
430 		/*
431 		 * Get channel mode flags
432 		 */
433 
434 		if (ah->ah_radio >= AR5K_RF5112) {
435 			mode = AR5K_PHY_MODE_RAD_RF5112;
436 			clock = AR5K_PHY_PLL_RF5112;
437 		} else {
438 			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
439 			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
440 		}
441 
442 		if (flags & CHANNEL_2GHZ) {
443 			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
444 			clock |= AR5K_PHY_PLL_44MHZ;
445 
446 			if (flags & CHANNEL_CCK) {
447 				mode |= AR5K_PHY_MODE_MOD_CCK;
448 			} else if (flags & CHANNEL_OFDM) {
449 				/* XXX Dynamic OFDM/CCK is not supported by the
450 				 * AR5211 so we set MOD_OFDM for plain g (no
451 				 * CCK headers) operation. We need to test
452 				 * this, 5211 might support ofdm-only g after
453 				 * all, there are also initial register values
454 				 * in the code for g mode (see initvals.c). */
455 				if (ah->ah_version == AR5K_AR5211)
456 					mode |= AR5K_PHY_MODE_MOD_OFDM;
457 				else
458 					mode |= AR5K_PHY_MODE_MOD_DYN;
459 			} else {
460 				ATH5K_ERR(ah->ah_sc,
461 					"invalid radio modulation mode\n");
462 				return -EINVAL;
463 			}
464 		} else if (flags & CHANNEL_5GHZ) {
465 			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
466 
467 			if (ah->ah_radio == AR5K_RF5413)
468 				clock = AR5K_PHY_PLL_40MHZ_5413;
469 			else
470 				clock |= AR5K_PHY_PLL_40MHZ;
471 
472 			if (flags & CHANNEL_OFDM)
473 				mode |= AR5K_PHY_MODE_MOD_OFDM;
474 			else {
475 				ATH5K_ERR(ah->ah_sc,
476 					"invalid radio modulation mode\n");
477 				return -EINVAL;
478 			}
479 		} else {
480 			ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
481 			return -EINVAL;
482 		}
483 
484 		if (flags & CHANNEL_TURBO)
485 			turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
486 	} else { /* Reset the device */
487 
488 		/* ...enable Atheros turbo mode if requested */
489 		if (flags & CHANNEL_TURBO)
490 			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
491 					AR5K_PHY_TURBO);
492 	}
493 
494 	if (ah->ah_version != AR5K_AR5210) {
495 
496 		/* ...update PLL if needed */
497 		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
498 			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
499 			udelay(300);
500 		}
501 
502 		/* ...set the PHY operating mode */
503 		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
504 		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
505 	}
506 
507 	return 0;
508 }
509 
510 /*
511  * If there is an external 32KHz crystal available, use it
512  * as ref. clock instead of 32/40MHz clock and baseband clocks
513  * to save power during sleep or restore normal 32/40MHz
514  * operation.
515  *
516  * XXX: When operating on 32KHz certain PHY registers (27 - 31,
517  * 	123 - 127) require delay on access.
518  */
519 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
520 {
521 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
522 	u32 scal, spending, usec32;
523 
524 	/* Only set 32KHz settings if we have an external
525 	 * 32KHz crystal present */
526 	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
527 	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
528 	enable) {
529 
530 		/* 1 usec/cycle */
531 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
532 		/* Set up tsf increment on each cycle */
533 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
534 
535 		/* Set baseband sleep control registers
536 		 * and sleep control rate */
537 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
538 
539 		if ((ah->ah_radio == AR5K_RF5112) ||
540 		(ah->ah_radio == AR5K_RF5413) ||
541 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
542 			spending = 0x14;
543 		else
544 			spending = 0x18;
545 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
546 
547 		if ((ah->ah_radio == AR5K_RF5112) ||
548 		(ah->ah_radio == AR5K_RF5413) ||
549 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
550 			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
551 			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
552 			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
553 			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
554 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
555 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
556 		} else {
557 			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
558 			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
559 			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
560 			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
561 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
562 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
563 		}
564 
565 		/* Enable sleep clock operation */
566 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
567 				AR5K_PCICFG_SLEEP_CLOCK_EN);
568 
569 	} else {
570 
571 		/* Disable sleep clock operation and
572 		 * restore default parameters */
573 		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
574 				AR5K_PCICFG_SLEEP_CLOCK_EN);
575 
576 		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
577 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
578 
579 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
580 		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
581 
582 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
583 			scal = AR5K_PHY_SCAL_32MHZ_2417;
584 		else if (ee->ee_is_hb63)
585 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
586 		else
587 			scal = AR5K_PHY_SCAL_32MHZ;
588 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
589 
590 		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
591 		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
592 
593 		if ((ah->ah_radio == AR5K_RF5112) ||
594 		(ah->ah_radio == AR5K_RF5413) ||
595 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
596 			spending = 0x14;
597 		else
598 			spending = 0x18;
599 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
600 
601 		if ((ah->ah_radio == AR5K_RF5112) ||
602 		(ah->ah_radio == AR5K_RF5413))
603 			usec32 = 39;
604 		else
605 			usec32 = 31;
606 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
607 
608 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
609 	}
610 	return;
611 }
612 
613 /* TODO: Half/Quarter rate */
614 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
615 				struct ieee80211_channel *channel)
616 {
617 	if (ah->ah_version == AR5K_AR5212 &&
618 	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
619 
620 		/* Setup ADC control */
621 		ath5k_hw_reg_write(ah,
622 				(AR5K_REG_SM(2,
623 				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
624 				AR5K_REG_SM(2,
625 				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
626 				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
627 				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
628 				AR5K_PHY_ADC_CTL);
629 
630 
631 
632 		/* Disable barker RSSI threshold */
633 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
634 				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
635 
636 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
637 			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
638 
639 		/* Set the mute mask */
640 		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
641 	}
642 
643 	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
644 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
645 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
646 
647 	/* Enable DCU double buffering */
648 	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
649 		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
650 				AR5K_TXCFG_DCU_DBL_BUF_DIS);
651 
652 	/* Set DAC/ADC delays */
653 	if (ah->ah_version == AR5K_AR5212) {
654 		u32 scal;
655 		struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
656 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
657 			scal = AR5K_PHY_SCAL_32MHZ_2417;
658 		else if (ee->ee_is_hb63)
659 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
660 		else
661 			scal = AR5K_PHY_SCAL_32MHZ;
662 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
663 	}
664 
665 	/* Set fast ADC */
666 	if ((ah->ah_radio == AR5K_RF5413) ||
667 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
668 		u32 fast_adc = true;
669 
670 		if (channel->center_freq == 2462 ||
671 		channel->center_freq == 2467)
672 			fast_adc = 0;
673 
674 		/* Only update if needed */
675 		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
676 				ath5k_hw_reg_write(ah, fast_adc,
677 						AR5K_PHY_FAST_ADC);
678 	}
679 
680 	/* Fix for first revision of the RF5112 RF chipset */
681 	if (ah->ah_radio == AR5K_RF5112 &&
682 			ah->ah_radio_5ghz_revision <
683 			AR5K_SREV_RAD_5112A) {
684 		u32 data;
685 		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
686 				AR5K_PHY_CCKTXCTL);
687 		if (channel->hw_value & CHANNEL_5GHZ)
688 			data = 0xffb81020;
689 		else
690 			data = 0xffb80d20;
691 		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
692 	}
693 
694 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
695 		u32 usec_reg;
696 		/* 5311 has different tx/rx latency masks
697 		 * from 5211, since we deal 5311 the same
698 		 * as 5211 when setting initvals, shift
699 		 * values here to their proper locations */
700 		usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
701 		ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
702 				AR5K_USEC_32 |
703 				AR5K_USEC_TX_LATENCY_5211 |
704 				AR5K_REG_SM(29,
705 				AR5K_USEC_RX_LATENCY_5210)),
706 				AR5K_USEC_5211);
707 		/* Clear QCU/DCU clock gating register */
708 		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
709 		/* Set DAC/ADC delays */
710 		ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
711 		/* Enable PCU FIFO corruption ECO */
712 		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
713 					AR5K_DIAG_SW_ECO_ENABLE);
714 	}
715 }
716 
717 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
718 		struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
719 {
720 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
721 	s16 cck_ofdm_pwr_delta;
722 
723 	/* Adjust power delta for channel 14 */
724 	if (channel->center_freq == 2484)
725 		cck_ofdm_pwr_delta =
726 			((ee->ee_cck_ofdm_power_delta -
727 			ee->ee_scaled_cck_delta) * 2) / 10;
728 	else
729 		cck_ofdm_pwr_delta =
730 			(ee->ee_cck_ofdm_power_delta * 2) / 10;
731 
732 	/* Set CCK to OFDM power delta on tx power
733 	 * adjustment register */
734 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
735 		if (channel->hw_value == CHANNEL_G)
736 			ath5k_hw_reg_write(ah,
737 			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
738 				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
739 			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
740 				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
741 				AR5K_PHY_TX_PWR_ADJ);
742 		else
743 			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
744 	} else {
745 		/* For older revs we scale power on sw during tx power
746 		 * setup */
747 		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
748 		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
749 						ee->ee_cck_ofdm_gain_delta;
750 	}
751 
752 	/* Set antenna idle switch table */
753 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
754 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
755 			(ah->ah_ant_ctl[ee_mode][0] |
756 			AR5K_PHY_ANT_CTL_TXRX_EN));
757 
758 	/* Set antenna switch tables */
759 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
760 		AR5K_PHY_ANT_SWITCH_TABLE_0);
761 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
762 		AR5K_PHY_ANT_SWITCH_TABLE_1);
763 
764 	/* Noise floor threshold */
765 	ath5k_hw_reg_write(ah,
766 		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
767 		AR5K_PHY_NFTHRES);
768 
769 	if ((channel->hw_value & CHANNEL_TURBO) &&
770 	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
771 		/* Switch settling time (Turbo) */
772 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
773 				AR5K_PHY_SETTLING_SWITCH,
774 				ee->ee_switch_settling_turbo[ee_mode]);
775 
776 		/* Tx/Rx attenuation (Turbo) */
777 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
778 				AR5K_PHY_GAIN_TXRX_ATTEN,
779 				ee->ee_atn_tx_rx_turbo[ee_mode]);
780 
781 		/* ADC/PGA desired size (Turbo) */
782 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
783 				AR5K_PHY_DESIRED_SIZE_ADC,
784 				ee->ee_adc_desired_size_turbo[ee_mode]);
785 
786 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
787 				AR5K_PHY_DESIRED_SIZE_PGA,
788 				ee->ee_pga_desired_size_turbo[ee_mode]);
789 
790 		/* Tx/Rx margin (Turbo) */
791 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
792 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
793 				ee->ee_margin_tx_rx_turbo[ee_mode]);
794 
795 	} else {
796 		/* Switch settling time */
797 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
798 				AR5K_PHY_SETTLING_SWITCH,
799 				ee->ee_switch_settling[ee_mode]);
800 
801 		/* Tx/Rx attenuation */
802 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
803 				AR5K_PHY_GAIN_TXRX_ATTEN,
804 				ee->ee_atn_tx_rx[ee_mode]);
805 
806 		/* ADC/PGA desired size */
807 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
808 				AR5K_PHY_DESIRED_SIZE_ADC,
809 				ee->ee_adc_desired_size[ee_mode]);
810 
811 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
812 				AR5K_PHY_DESIRED_SIZE_PGA,
813 				ee->ee_pga_desired_size[ee_mode]);
814 
815 		/* Tx/Rx margin */
816 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
817 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
818 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
819 				ee->ee_margin_tx_rx[ee_mode]);
820 	}
821 
822 	/* XPA delays */
823 	ath5k_hw_reg_write(ah,
824 		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
825 		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
826 		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
827 		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
828 
829 	/* XLNA delay */
830 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
831 			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
832 			ee->ee_tx_end2xlna_enable[ee_mode]);
833 
834 	/* Thresh64 (ANI) */
835 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
836 			AR5K_PHY_NF_THRESH62,
837 			ee->ee_thr_62[ee_mode]);
838 
839 
840 	/* False detect backoff for channels
841 	 * that have spur noise. Write the new
842 	 * cyclic power RSSI threshold. */
843 	if (ath5k_hw_chan_has_spur_noise(ah, channel))
844 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
845 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
846 				AR5K_INIT_CYCRSSI_THR1 +
847 				ee->ee_false_detect[ee_mode]);
848 	else
849 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
850 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
851 				AR5K_INIT_CYCRSSI_THR1);
852 
853 	/* I/Q correction
854 	 * TODO: Per channel i/q infos ? */
855 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
856 		AR5K_PHY_IQ_CORR_ENABLE |
857 		(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
858 		ee->ee_q_cal[ee_mode]);
859 
860 	/* Heavy clipping -disable for now */
861 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
862 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
863 
864 	return;
865 }
866 
867 /*
868  * Main reset function
869  */
870 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
871 	struct ieee80211_channel *channel, bool change_channel)
872 {
873 	u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
874 	u32 phy_tst1;
875 	u8 mode, freq, ee_mode, ant[2];
876 	int i, ret;
877 
878 	ATH5K_TRACE(ah->ah_sc);
879 
880 	s_ant = 0;
881 	ee_mode = 0;
882 	staid1_flags = 0;
883 	tsf_up = 0;
884 	tsf_lo = 0;
885 	freq = 0;
886 	mode = 0;
887 
888 	/*
889 	 * Save some registers before a reset
890 	 */
891 	/*DCU/Antenna selection not available on 5210*/
892 	if (ah->ah_version != AR5K_AR5210) {
893 
894 		switch (channel->hw_value & CHANNEL_MODES) {
895 		case CHANNEL_A:
896 			mode = AR5K_MODE_11A;
897 			freq = AR5K_INI_RFGAIN_5GHZ;
898 			ee_mode = AR5K_EEPROM_MODE_11A;
899 			break;
900 		case CHANNEL_G:
901 			mode = AR5K_MODE_11G;
902 			freq = AR5K_INI_RFGAIN_2GHZ;
903 			ee_mode = AR5K_EEPROM_MODE_11G;
904 			break;
905 		case CHANNEL_B:
906 			mode = AR5K_MODE_11B;
907 			freq = AR5K_INI_RFGAIN_2GHZ;
908 			ee_mode = AR5K_EEPROM_MODE_11B;
909 			break;
910 		case CHANNEL_T:
911 			mode = AR5K_MODE_11A_TURBO;
912 			freq = AR5K_INI_RFGAIN_5GHZ;
913 			ee_mode = AR5K_EEPROM_MODE_11A;
914 			break;
915 		case CHANNEL_TG:
916 			if (ah->ah_version == AR5K_AR5211) {
917 				ATH5K_ERR(ah->ah_sc,
918 					"TurboG mode not available on 5211");
919 				return -EINVAL;
920 			}
921 			mode = AR5K_MODE_11G_TURBO;
922 			freq = AR5K_INI_RFGAIN_2GHZ;
923 			ee_mode = AR5K_EEPROM_MODE_11G;
924 			break;
925 		case CHANNEL_XR:
926 			if (ah->ah_version == AR5K_AR5211) {
927 				ATH5K_ERR(ah->ah_sc,
928 					"XR mode not available on 5211");
929 				return -EINVAL;
930 			}
931 			mode = AR5K_MODE_XR;
932 			freq = AR5K_INI_RFGAIN_5GHZ;
933 			ee_mode = AR5K_EEPROM_MODE_11A;
934 			break;
935 		default:
936 			ATH5K_ERR(ah->ah_sc,
937 				"invalid channel: %d\n", channel->center_freq);
938 			return -EINVAL;
939 		}
940 
941 		if (change_channel) {
942 			/*
943 			 * Save frame sequence count
944 			 * For revs. after Oahu, only save
945 			 * seq num for DCU 0 (Global seq num)
946 			 */
947 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
948 
949 				for (i = 0; i < 10; i++)
950 					s_seq[i] = ath5k_hw_reg_read(ah,
951 						AR5K_QUEUE_DCU_SEQNUM(i));
952 
953 			} else {
954 				s_seq[0] = ath5k_hw_reg_read(ah,
955 						AR5K_QUEUE_DCU_SEQNUM(0));
956 			}
957 
958 			/* TSF accelerates on AR5211 durring reset
959 			 * As a workaround save it here and restore
960 			 * it later so that it's back in time after
961 			 * reset. This way it'll get re-synced on the
962 			 * next beacon without breaking ad-hoc.
963 			 *
964 			 * On AR5212 TSF is almost preserved across a
965 			 * reset so it stays back in time anyway and
966 			 * we don't have to save/restore it.
967 			 *
968 			 * XXX: Since this breaks power saving we have
969 			 * to disable power saving until we receive the
970 			 * next beacon, so we can resync beacon timers */
971 			if (ah->ah_version == AR5K_AR5211) {
972 				tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
973 				tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
974 			}
975 		}
976 
977 		/* Save default antenna */
978 		s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
979 
980 		if (ah->ah_version == AR5K_AR5212) {
981 			/* Restore normal 32/40MHz clock operation
982 			 * to avoid register access delay on certain
983 			 * PHY registers */
984 			ath5k_hw_set_sleep_clock(ah, false);
985 
986 			/* Since we are going to write rf buffer
987 			 * check if we have any pending gain_F
988 			 * optimization settings */
989 			if (change_channel && ah->ah_rf_banks != NULL)
990 				ath5k_hw_gainf_calibrate(ah);
991 		}
992 	}
993 
994 	/*GPIOs*/
995 	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
996 					AR5K_PCICFG_LEDSTATE;
997 	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
998 	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
999 
1000 	/* AR5K_STA_ID1 flags, only preserve antenna
1001 	 * settings and ack/cts rate mode */
1002 	staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
1003 			(AR5K_STA_ID1_DEFAULT_ANTENNA |
1004 			AR5K_STA_ID1_DESC_ANTENNA |
1005 			AR5K_STA_ID1_RTS_DEF_ANTENNA |
1006 			AR5K_STA_ID1_ACKCTS_6MB |
1007 			AR5K_STA_ID1_BASE_RATE_11B |
1008 			AR5K_STA_ID1_SELFGEN_DEF_ANT);
1009 
1010 	/* Wakeup the device */
1011 	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1012 	if (ret)
1013 		return ret;
1014 
1015 	/*
1016 	 * Initialize operating mode
1017 	 */
1018 	ah->ah_op_mode = op_mode;
1019 
1020 	/* PHY access enable */
1021 	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1022 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1023 	else
1024 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1025 							AR5K_PHY(0));
1026 
1027 	/* Write initial settings */
1028 	ret = ath5k_hw_write_initvals(ah, mode, change_channel);
1029 	if (ret)
1030 		return ret;
1031 
1032 	/*
1033 	 * 5211/5212 Specific
1034 	 */
1035 	if (ah->ah_version != AR5K_AR5210) {
1036 
1037 		/*
1038 		 * Write initial RF gain settings
1039 		 * This should work for both 5111/5112
1040 		 */
1041 		ret = ath5k_hw_rfgain_init(ah, freq);
1042 		if (ret)
1043 			return ret;
1044 
1045 		mdelay(1);
1046 
1047 		/*
1048 		 * Tweak initval settings for revised
1049 		 * chipsets and add some more config
1050 		 * bits
1051 		 */
1052 		ath5k_hw_tweak_initval_settings(ah, channel);
1053 
1054 		/*
1055 		 * Set TX power
1056 		 */
1057 		ret = ath5k_hw_txpower(ah, channel, ee_mode,
1058 					ah->ah_txpower.txp_max_pwr / 2);
1059 		if (ret)
1060 			return ret;
1061 
1062 		/* Write rate duration table only on AR5212 and if
1063 		 * virtual interface has already been brought up
1064 		 * XXX: rethink this after new mode changes to
1065 		 * mac80211 are integrated */
1066 		if (ah->ah_version == AR5K_AR5212 &&
1067 			ah->ah_sc->vif != NULL)
1068 			ath5k_hw_write_rate_duration(ah, mode);
1069 
1070 		/*
1071 		 * Write RF buffer
1072 		 */
1073 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
1074 		if (ret)
1075 			return ret;
1076 
1077 
1078 		/* Write OFDM timings on 5212*/
1079 		if (ah->ah_version == AR5K_AR5212 &&
1080 			channel->hw_value & CHANNEL_OFDM) {
1081 			struct ath5k_eeprom_info *ee =
1082 					&ah->ah_capabilities.cap_eeprom;
1083 
1084 			ret = ath5k_hw_write_ofdm_timings(ah, channel);
1085 			if (ret)
1086 				return ret;
1087 
1088 			/* Note: According to docs we can have a newer
1089 			 * EEPROM on old hardware, so we need to verify
1090 			 * that our hardware is new enough to have spur
1091 			 * mitigation registers (delta phase etc) */
1092 			if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
1093 			(ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1094 			ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
1095 				ath5k_hw_set_spur_mitigation_filter(ah,
1096 								channel);
1097 		}
1098 
1099 		/*Enable/disable 802.11b mode on 5111
1100 		(enable 2111 frequency converter + CCK)*/
1101 		if (ah->ah_radio == AR5K_RF5111) {
1102 			if (mode == AR5K_MODE_11B)
1103 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1104 				    AR5K_TXCFG_B_MODE);
1105 			else
1106 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1107 				    AR5K_TXCFG_B_MODE);
1108 		}
1109 
1110 		/*
1111 		 * In case a fixed antenna was set as default
1112 		 * use the same switch table twice.
1113 		 */
1114 		if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1115 				ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
1116 		else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1117 				ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
1118 		else {
1119 			ant[0] = AR5K_ANT_SWTABLE_A;
1120 			ant[1] = AR5K_ANT_SWTABLE_B;
1121 		}
1122 
1123 		/* Commit values from EEPROM */
1124 		ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1125 
1126 	} else {
1127 		/*
1128 		 * For 5210 we do all initialization using
1129 		 * initvals, so we don't have to modify
1130 		 * any settings (5210 also only supports
1131 		 * a/aturbo modes)
1132 		 */
1133 		mdelay(1);
1134 		/* Disable phy and wait */
1135 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1136 		mdelay(1);
1137 	}
1138 
1139 	/*
1140 	 * Restore saved values
1141 	 */
1142 
1143 	/*DCU/Antenna selection not available on 5210*/
1144 	if (ah->ah_version != AR5K_AR5210) {
1145 
1146 		if (change_channel) {
1147 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1148 				for (i = 0; i < 10; i++)
1149 					ath5k_hw_reg_write(ah, s_seq[i],
1150 						AR5K_QUEUE_DCU_SEQNUM(i));
1151 			} else {
1152 				ath5k_hw_reg_write(ah, s_seq[0],
1153 					AR5K_QUEUE_DCU_SEQNUM(0));
1154 			}
1155 
1156 
1157 			if (ah->ah_version == AR5K_AR5211) {
1158 				ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1159 				ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1160 			}
1161 		}
1162 
1163 		ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1164 	}
1165 
1166 	/* Ledstate */
1167 	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1168 
1169 	/* Gpio settings */
1170 	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1171 	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1172 
1173 	/* Restore sta_id flags and preserve our mac address*/
1174 	ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
1175 						AR5K_STA_ID0);
1176 	ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
1177 						AR5K_STA_ID1);
1178 
1179 
1180 	/*
1181 	 * Configure PCU
1182 	 */
1183 
1184 	/* Restore bssid and bssid mask */
1185 	/* XXX: add ah->aid once mac80211 gives this to us */
1186 	ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
1187 
1188 	/* Set PCU config */
1189 	ath5k_hw_set_opmode(ah);
1190 
1191 	/* Clear any pending interrupts
1192 	 * PISR/SISR Not available on 5210 */
1193 	if (ah->ah_version != AR5K_AR5210)
1194 		ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1195 
1196 	/* Set RSSI/BRSSI thresholds
1197 	 *
1198 	 * Note: If we decide to set this value
1199 	 * dynamicaly, have in mind that when AR5K_RSSI_THR
1200 	 * register is read it might return 0x40 if we haven't
1201 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1202 	 * So doing a save/restore procedure here isn't the right
1203 	 * choice. Instead store it on ath5k_hw */
1204 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1205 				AR5K_TUNE_BMISS_THRES <<
1206 				AR5K_RSSI_THR_BMISS_S),
1207 				AR5K_RSSI_THR);
1208 
1209 	/* MIC QoS support */
1210 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1211 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1212 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1213 	}
1214 
1215 	/* QoS NOACK Policy */
1216 	if (ah->ah_version == AR5K_AR5212) {
1217 		ath5k_hw_reg_write(ah,
1218 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1219 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
1220 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1221 			AR5K_QOS_NOACK);
1222 	}
1223 
1224 
1225 	/*
1226 	 * Configure PHY
1227 	 */
1228 
1229 	/* Set channel on PHY */
1230 	ret = ath5k_hw_channel(ah, channel);
1231 	if (ret)
1232 		return ret;
1233 
1234 	/*
1235 	 * Enable the PHY and wait until completion
1236 	 * This includes BaseBand and Synthesizer
1237 	 * activation.
1238 	 */
1239 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1240 
1241 	/*
1242 	 * On 5211+ read activation -> rx delay
1243 	 * and use it.
1244 	 *
1245 	 * TODO: Half/quarter rate support
1246 	 */
1247 	if (ah->ah_version != AR5K_AR5210) {
1248 		u32 delay;
1249 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1250 			AR5K_PHY_RX_DELAY_M;
1251 		delay = (channel->hw_value & CHANNEL_CCK) ?
1252 			((delay << 2) / 22) : (delay / 10);
1253 
1254 		udelay(100 + (2 * delay));
1255 	} else {
1256 		mdelay(1);
1257 	}
1258 
1259 	/*
1260 	 * Perform ADC test to see if baseband is ready
1261 	 * Set tx hold and check adc test register
1262 	 */
1263 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1264 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1265 	for (i = 0; i <= 20; i++) {
1266 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1267 			break;
1268 		udelay(200);
1269 	}
1270 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1271 
1272 	/*
1273 	 * Start automatic gain control calibration
1274 	 *
1275 	 * During AGC calibration RX path is re-routed to
1276 	 * a power detector so we don't receive anything.
1277 	 *
1278 	 * This method is used to calibrate some static offsets
1279 	 * used together with on-the fly I/Q calibration (the
1280 	 * one performed via ath5k_hw_phy_calibrate), that doesn't
1281 	 * interrupt rx path.
1282 	 *
1283 	 * While rx path is re-routed to the power detector we also
1284 	 * start a noise floor calibration, to measure the
1285 	 * card's noise floor (the noise we measure when we are not
1286 	 * transmiting or receiving anything).
1287 	 *
1288 	 * If we are in a noisy environment AGC calibration may time
1289 	 * out and/or noise floor calibration might timeout.
1290 	 */
1291 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1292 				AR5K_PHY_AGCCTL_CAL);
1293 
1294 	/* At the same time start I/Q calibration for QAM constellation
1295 	 * -no need for CCK- */
1296 	ah->ah_calibration = false;
1297 	if (!(mode == AR5K_MODE_11B)) {
1298 		ah->ah_calibration = true;
1299 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1300 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1301 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1302 				AR5K_PHY_IQ_RUN);
1303 	}
1304 
1305 	/* Wait for gain calibration to finish (we check for I/Q calibration
1306 	 * during ath5k_phy_calibrate) */
1307 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1308 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
1309 		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1310 			channel->center_freq);
1311 	}
1312 
1313 	/*
1314 	 * If we run NF calibration before AGC, it always times out.
1315 	 * Binary HAL starts NF and AGC calibration at the same time
1316 	 * and only waits for AGC to finish. Also if AGC or NF cal.
1317 	 * times out, reset doesn't fail on binary HAL. I believe
1318 	 * that's wrong because since rx path is routed to a detector,
1319 	 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1320 	 * enables noise floor calibration after offset calibration and if noise
1321 	 * floor calibration fails, reset fails. I believe that's
1322 	 * a better approach, we just need to find a polling interval
1323 	 * that suits best, even if reset continues we need to make
1324 	 * sure that rx path is ready.
1325 	 */
1326 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1327 
1328 	/* Restore antenna mode */
1329 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1330 
1331 	/*
1332 	 * Configure QCUs/DCUs
1333 	 */
1334 
1335 	/* TODO: HW Compression support for data queues */
1336 	/* TODO: Burst prefetch for data queues */
1337 
1338 	/*
1339 	 * Reset queues and start beacon timers at the end of the reset routine
1340 	 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1341 	 * Note: If we want we can assign multiple qcus on one dcu.
1342 	 */
1343 	for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1344 		ret = ath5k_hw_reset_tx_queue(ah, i);
1345 		if (ret) {
1346 			ATH5K_ERR(ah->ah_sc,
1347 				"failed to reset TX queue #%d\n", i);
1348 			return ret;
1349 		}
1350 	}
1351 
1352 
1353 	/*
1354 	 * Configure DMA/Interrupts
1355 	 */
1356 
1357 	/*
1358 	 * Set Rx/Tx DMA Configuration
1359 	 *
1360 	 * Set standard DMA size (128). Note that
1361 	 * a DMA size of 512 causes rx overruns and tx errors
1362 	 * on pci-e cards (tested on 5424 but since rx overruns
1363 	 * also occur on 5416/5418 with madwifi we set 128
1364 	 * for all PCI-E cards to be safe).
1365 	 *
1366 	 * XXX: need to check 5210 for this
1367 	 * TODO: Check out tx triger level, it's always 64 on dumps but I
1368 	 * guess we can tweak it and see how it goes ;-)
1369 	 */
1370 	if (ah->ah_version != AR5K_AR5210) {
1371 		AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1372 			AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1373 		AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1374 			AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1375 	}
1376 
1377 	/* Pre-enable interrupts on 5211/5212*/
1378 	if (ah->ah_version != AR5K_AR5210)
1379 		ath5k_hw_set_imr(ah, ah->ah_imr);
1380 
1381 	/* Enable 32KHz clock function for AR5212+ chips
1382 	 * Set clocks to 32KHz operation and use an
1383 	 * external 32KHz crystal when sleeping if one
1384 	 * exists */
1385 	if (ah->ah_version == AR5K_AR5212)
1386 			ath5k_hw_set_sleep_clock(ah, true);
1387 
1388 	/*
1389 	 * Disable beacons and reset the register
1390 	 */
1391 	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1392 			AR5K_BEACON_RESET_TSF);
1393 
1394 	return 0;
1395 }
1396 
1397 #undef _ATH5K_RESET
1398