1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  *
20  */
21 
22 /*****************************\
23   Reset functions and helpers
24 \*****************************/
25 
26 #include <asm/unaligned.h>
27 
28 #include <linux/pci.h>		/* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include <linux/platform_device.h>
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "base.h"
34 #include "debug.h"
35 
36 
37 /******************\
38 * Helper functions *
39 \******************/
40 
41 /*
42  * Check if a register write has been completed
43  */
44 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
45 			      bool is_set)
46 {
47 	int i;
48 	u32 data;
49 
50 	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
51 		data = ath5k_hw_reg_read(ah, reg);
52 		if (is_set && (data & flag))
53 			break;
54 		else if ((data & flag) == val)
55 			break;
56 		udelay(15);
57 	}
58 
59 	return (i <= 0) ? -EAGAIN : 0;
60 }
61 
62 
63 /*************************\
64 * Clock related functions *
65 \*************************/
66 
67 /**
68  * ath5k_hw_htoclock - Translate usec to hw clock units
69  *
70  * @ah: The &struct ath5k_hw
71  * @usec: value in microseconds
72  */
73 unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
74 {
75 	struct ath_common *common = ath5k_hw_common(ah);
76 	return usec * common->clockrate;
77 }
78 
79 /**
80  * ath5k_hw_clocktoh - Translate hw clock units to usec
81  * @clock: value in hw clock units
82  */
83 unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
84 {
85 	struct ath_common *common = ath5k_hw_common(ah);
86 	return clock / common->clockrate;
87 }
88 
89 /**
90  * ath5k_hw_init_core_clock - Initialize core clock
91  *
92  * @ah The &struct ath5k_hw
93  *
94  * Initialize core clock parameters (usec, usec32, latencies etc).
95  */
96 static void ath5k_hw_init_core_clock(struct ath5k_hw *ah)
97 {
98 	struct ieee80211_channel *channel = ah->ah_current_channel;
99 	struct ath_common *common = ath5k_hw_common(ah);
100 	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
101 
102 	/*
103 	 * Set core clock frequency
104 	 */
105 	if (channel->hw_value & CHANNEL_5GHZ)
106 		clock = 40; /* 802.11a */
107 	else if (channel->hw_value & CHANNEL_CCK)
108 		clock = 22; /* 802.11b */
109 	else
110 		clock = 44; /* 802.11g */
111 
112 	/* Use clock multiplier for non-default
113 	 * bwmode */
114 	switch (ah->ah_bwmode) {
115 	case AR5K_BWMODE_40MHZ:
116 		clock *= 2;
117 		break;
118 	case AR5K_BWMODE_10MHZ:
119 		clock /= 2;
120 		break;
121 	case AR5K_BWMODE_5MHZ:
122 		clock /= 4;
123 		break;
124 	default:
125 		break;
126 	}
127 
128 	common->clockrate = clock;
129 
130 	/*
131 	 * Set USEC parameters
132 	 */
133 	/* Set USEC counter on PCU*/
134 	usec = clock - 1;
135 	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
136 
137 	/* Set usec duration on DCU */
138 	if (ah->ah_version != AR5K_AR5210)
139 		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
140 					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
141 					clock);
142 
143 	/* Set 32MHz USEC counter */
144 	if ((ah->ah_radio == AR5K_RF5112) ||
145 	    (ah->ah_radio == AR5K_RF2413) ||
146 	    (ah->ah_radio == AR5K_RF5413) ||
147 	    (ah->ah_radio == AR5K_RF2316) ||
148 	    (ah->ah_radio == AR5K_RF2317))
149 		/* Remain on 40MHz clock ? */
150 		sclock = 40 - 1;
151 	else
152 		sclock = 32 - 1;
153 	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
154 
155 	/*
156 	 * Set tx/rx latencies
157 	 */
158 	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
159 	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
160 	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
161 
162 	/*
163 	 * Set default Tx frame to Tx data start delay
164 	 */
165 	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
166 
167 	/*
168 	 * 5210 initvals don't include usec settings
169 	 * so we need to use magic values here for
170 	 * tx/rx latencies
171 	 */
172 	if (ah->ah_version == AR5K_AR5210) {
173 		/* same for turbo */
174 		txlat = AR5K_INIT_TX_LATENCY_5210;
175 		rxlat = AR5K_INIT_RX_LATENCY_5210;
176 	}
177 
178 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
179 		/* 5311 has different tx/rx latency masks
180 		 * from 5211, since we deal 5311 the same
181 		 * as 5211 when setting initvals, shift
182 		 * values here to their proper locations
183 		 *
184 		 * Note: Initvals indicate tx/rx/ latencies
185 		 * are the same for turbo mode */
186 		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
187 		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
188 	} else
189 	switch (ah->ah_bwmode) {
190 	case AR5K_BWMODE_10MHZ:
191 		txlat = AR5K_REG_SM(txlat * 2,
192 				AR5K_USEC_TX_LATENCY_5211);
193 		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
194 				AR5K_USEC_RX_LATENCY_5211);
195 		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
196 		break;
197 	case AR5K_BWMODE_5MHZ:
198 		txlat = AR5K_REG_SM(txlat * 4,
199 				AR5K_USEC_TX_LATENCY_5211);
200 		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
201 				AR5K_USEC_RX_LATENCY_5211);
202 		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
203 		break;
204 	case AR5K_BWMODE_40MHZ:
205 		txlat = AR5K_INIT_TX_LAT_MIN;
206 		rxlat = AR5K_REG_SM(rxlat / 2,
207 				AR5K_USEC_RX_LATENCY_5211);
208 		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
209 		break;
210 	default:
211 		break;
212 	}
213 
214 	usec_reg = (usec | sclock | txlat | rxlat);
215 	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
216 
217 	/* On 5112 set tx frame to tx data start delay */
218 	if (ah->ah_radio == AR5K_RF5112) {
219 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
220 					AR5K_PHY_RF_CTL2_TXF2TXD_START,
221 					txf2txs);
222 	}
223 }
224 
225 /*
226  * If there is an external 32KHz crystal available, use it
227  * as ref. clock instead of 32/40MHz clock and baseband clocks
228  * to save power during sleep or restore normal 32/40MHz
229  * operation.
230  *
231  * XXX: When operating on 32KHz certain PHY registers (27 - 31,
232  *	123 - 127) require delay on access.
233  */
234 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
235 {
236 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
237 	u32 scal, spending, sclock;
238 
239 	/* Only set 32KHz settings if we have an external
240 	 * 32KHz crystal present */
241 	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
242 	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
243 	enable) {
244 
245 		/* 1 usec/cycle */
246 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
247 		/* Set up tsf increment on each cycle */
248 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
249 
250 		/* Set baseband sleep control registers
251 		 * and sleep control rate */
252 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
253 
254 		if ((ah->ah_radio == AR5K_RF5112) ||
255 		(ah->ah_radio == AR5K_RF5413) ||
256 		(ah->ah_radio == AR5K_RF2316) ||
257 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
258 			spending = 0x14;
259 		else
260 			spending = 0x18;
261 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
262 
263 		if ((ah->ah_radio == AR5K_RF5112) ||
264 		(ah->ah_radio == AR5K_RF5413) ||
265 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
266 			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
267 			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
268 			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
269 			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
270 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
271 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
272 		} else {
273 			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
274 			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
275 			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
276 			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
277 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
278 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
279 		}
280 
281 		/* Enable sleep clock operation */
282 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
283 				AR5K_PCICFG_SLEEP_CLOCK_EN);
284 
285 	} else {
286 
287 		/* Disable sleep clock operation and
288 		 * restore default parameters */
289 		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
290 				AR5K_PCICFG_SLEEP_CLOCK_EN);
291 
292 		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
293 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
294 
295 		/* Set DAC/ADC delays */
296 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
297 		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
298 
299 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
300 			scal = AR5K_PHY_SCAL_32MHZ_2417;
301 		else if (ee->ee_is_hb63)
302 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
303 		else
304 			scal = AR5K_PHY_SCAL_32MHZ;
305 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
306 
307 		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
308 		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
309 
310 		if ((ah->ah_radio == AR5K_RF5112) ||
311 		(ah->ah_radio == AR5K_RF5413) ||
312 		(ah->ah_radio == AR5K_RF2316) ||
313 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
314 			spending = 0x14;
315 		else
316 			spending = 0x18;
317 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
318 
319 		/* Set up tsf increment on each cycle */
320 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
321 
322 		if ((ah->ah_radio == AR5K_RF5112) ||
323 			(ah->ah_radio == AR5K_RF5413) ||
324 			(ah->ah_radio == AR5K_RF2316) ||
325 			(ah->ah_radio == AR5K_RF2317))
326 			sclock = 40 - 1;
327 		else
328 			sclock = 32 - 1;
329 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
330 	}
331 }
332 
333 
334 /*********************\
335 * Reset/Sleep control *
336 \*********************/
337 
338 /*
339  * Reset chipset
340  */
341 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
342 {
343 	int ret;
344 	u32 mask = val ? val : ~0U;
345 
346 	/* Read-and-clear RX Descriptor Pointer*/
347 	ath5k_hw_reg_read(ah, AR5K_RXDP);
348 
349 	/*
350 	 * Reset the device and wait until success
351 	 */
352 	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
353 
354 	/* Wait at least 128 PCI clocks */
355 	udelay(15);
356 
357 	if (ah->ah_version == AR5K_AR5210) {
358 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
359 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
360 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
361 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
362 	} else {
363 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
364 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
365 	}
366 
367 	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
368 
369 	/*
370 	 * Reset configuration register (for hw byte-swap). Note that this
371 	 * is only set for big endian. We do the necessary magic in
372 	 * AR5K_INIT_CFG.
373 	 */
374 	if ((val & AR5K_RESET_CTL_PCU) == 0)
375 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
376 
377 	return ret;
378 }
379 
380 /*
381  * Reset AHB chipset
382  * AR5K_RESET_CTL_PCU flag resets WMAC
383  * AR5K_RESET_CTL_BASEBAND flag resets WBB
384  */
385 static int ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
386 {
387 	u32 mask = flags ? flags : ~0U;
388 	u32 __iomem *reg;
389 	u32 regval;
390 	u32 val = 0;
391 
392 	/* ah->ah_mac_srev is not available at this point yet */
393 	if (ah->ah_sc->devid >= AR5K_SREV_AR2315_R6) {
394 		reg = (u32 __iomem *) AR5K_AR2315_RESET;
395 		if (mask & AR5K_RESET_CTL_PCU)
396 			val |= AR5K_AR2315_RESET_WMAC;
397 		if (mask & AR5K_RESET_CTL_BASEBAND)
398 			val |= AR5K_AR2315_RESET_BB_WARM;
399 	} else {
400 		reg = (u32 __iomem *) AR5K_AR5312_RESET;
401 		if (to_platform_device(ah->ah_sc->dev)->id == 0) {
402 			if (mask & AR5K_RESET_CTL_PCU)
403 				val |= AR5K_AR5312_RESET_WMAC0;
404 			if (mask & AR5K_RESET_CTL_BASEBAND)
405 				val |= AR5K_AR5312_RESET_BB0_COLD |
406 				       AR5K_AR5312_RESET_BB0_WARM;
407 		} else {
408 			if (mask & AR5K_RESET_CTL_PCU)
409 				val |= AR5K_AR5312_RESET_WMAC1;
410 			if (mask & AR5K_RESET_CTL_BASEBAND)
411 				val |= AR5K_AR5312_RESET_BB1_COLD |
412 				       AR5K_AR5312_RESET_BB1_WARM;
413 		}
414 	}
415 
416 	/* Put BB/MAC into reset */
417 	regval = __raw_readl(reg);
418 	__raw_writel(regval | val, reg);
419 	regval = __raw_readl(reg);
420 	udelay(100);
421 
422 	/* Bring BB/MAC out of reset */
423 	__raw_writel(regval & ~val, reg);
424 	regval = __raw_readl(reg);
425 
426 	/*
427 	 * Reset configuration register (for hw byte-swap). Note that this
428 	 * is only set for big endian. We do the necessary magic in
429 	 * AR5K_INIT_CFG.
430 	 */
431 	if ((flags & AR5K_RESET_CTL_PCU) == 0)
432 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
433 
434 	return 0;
435 }
436 
437 
438 /*
439  * Sleep control
440  */
441 static int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
442 			      bool set_chip, u16 sleep_duration)
443 {
444 	unsigned int i;
445 	u32 staid, data;
446 
447 	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
448 
449 	switch (mode) {
450 	case AR5K_PM_AUTO:
451 		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
452 		/* fallthrough */
453 	case AR5K_PM_NETWORK_SLEEP:
454 		if (set_chip)
455 			ath5k_hw_reg_write(ah,
456 				AR5K_SLEEP_CTL_SLE_ALLOW |
457 				sleep_duration,
458 				AR5K_SLEEP_CTL);
459 
460 		staid |= AR5K_STA_ID1_PWR_SV;
461 		break;
462 
463 	case AR5K_PM_FULL_SLEEP:
464 		if (set_chip)
465 			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
466 				AR5K_SLEEP_CTL);
467 
468 		staid |= AR5K_STA_ID1_PWR_SV;
469 		break;
470 
471 	case AR5K_PM_AWAKE:
472 
473 		staid &= ~AR5K_STA_ID1_PWR_SV;
474 
475 		if (!set_chip)
476 			goto commit;
477 
478 		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
479 
480 		/* If card is down we 'll get 0xffff... so we
481 		 * need to clean this up before we write the register
482 		 */
483 		if (data & 0xffc00000)
484 			data = 0;
485 		else
486 			/* Preserve sleep duration etc */
487 			data = data & ~AR5K_SLEEP_CTL_SLE;
488 
489 		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
490 							AR5K_SLEEP_CTL);
491 		udelay(15);
492 
493 		for (i = 200; i > 0; i--) {
494 			/* Check if the chip did wake up */
495 			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
496 					AR5K_PCICFG_SPWR_DN) == 0)
497 				break;
498 
499 			/* Wait a bit and retry */
500 			udelay(50);
501 			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
502 							AR5K_SLEEP_CTL);
503 		}
504 
505 		/* Fail if the chip didn't wake up */
506 		if (i == 0)
507 			return -EIO;
508 
509 		break;
510 
511 	default:
512 		return -EINVAL;
513 	}
514 
515 commit:
516 	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
517 
518 	return 0;
519 }
520 
521 /*
522  * Put device on hold
523  *
524  * Put MAC and Baseband on warm reset and
525  * keep that state (don't clean sleep control
526  * register). After this MAC and Baseband are
527  * disabled and a full reset is needed to come
528  * back. This way we save as much power as possible
529  * without putting the card on full sleep.
530  */
531 int ath5k_hw_on_hold(struct ath5k_hw *ah)
532 {
533 	struct pci_dev *pdev = ah->ah_sc->pdev;
534 	u32 bus_flags;
535 	int ret;
536 
537 	if (ath5k_get_bus_type(ah) == ATH_AHB)
538 		return 0;
539 
540 	/* Make sure device is awake */
541 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
542 	if (ret) {
543 		ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
544 		return ret;
545 	}
546 
547 	/*
548 	 * Put chipset on warm reset...
549 	 *
550 	 * Note: putting PCI core on warm reset on PCI-E cards
551 	 * results card to hang and always return 0xffff... so
552 	 * we ignore that flag for PCI-E cards. On PCI cards
553 	 * this flag gets cleared after 64 PCI clocks.
554 	 */
555 	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
556 
557 	if (ah->ah_version == AR5K_AR5210) {
558 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
559 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
560 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
561 			mdelay(2);
562 	} else {
563 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
564 			AR5K_RESET_CTL_BASEBAND | bus_flags);
565 	}
566 
567 	if (ret) {
568 		ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
569 		return -EIO;
570 	}
571 
572 	/* ...wakeup again!*/
573 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
574 	if (ret) {
575 		ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
576 		return ret;
577 	}
578 
579 	return ret;
580 }
581 
582 /*
583  * Bring up MAC + PHY Chips and program PLL
584  */
585 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
586 {
587 	struct pci_dev *pdev = ah->ah_sc->pdev;
588 	u32 turbo, mode, clock, bus_flags;
589 	int ret;
590 
591 	turbo = 0;
592 	mode = 0;
593 	clock = 0;
594 
595 	if ((ath5k_get_bus_type(ah) != ATH_AHB) || !initial) {
596 		/* Wakeup the device */
597 		ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
598 		if (ret) {
599 			ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
600 			return ret;
601 		}
602 	}
603 
604 	/*
605 	 * Put chipset on warm reset...
606 	 *
607 	 * Note: putting PCI core on warm reset on PCI-E cards
608 	 * results card to hang and always return 0xffff... so
609 	 * we ignore that flag for PCI-E cards. On PCI cards
610 	 * this flag gets cleared after 64 PCI clocks.
611 	 */
612 	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
613 
614 	if (ah->ah_version == AR5K_AR5210) {
615 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
616 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
617 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
618 			mdelay(2);
619 	} else {
620 		if (ath5k_get_bus_type(ah) == ATH_AHB)
621 			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
622 				AR5K_RESET_CTL_BASEBAND);
623 		else
624 			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
625 				AR5K_RESET_CTL_BASEBAND | bus_flags);
626 	}
627 
628 	if (ret) {
629 		ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
630 		return -EIO;
631 	}
632 
633 	/* ...wakeup again!...*/
634 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
635 	if (ret) {
636 		ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
637 		return ret;
638 	}
639 
640 	/* ...reset configuration register on Wisoc ...
641 	 * ...clear reset control register and pull device out of
642 	 * warm reset on others */
643 	if (ath5k_get_bus_type(ah) == ATH_AHB)
644 		ret = ath5k_hw_wisoc_reset(ah, 0);
645 	else
646 		ret = ath5k_hw_nic_reset(ah, 0);
647 
648 	if (ret) {
649 		ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
650 		return -EIO;
651 	}
652 
653 	/* On initialization skip PLL programming since we don't have
654 	 * a channel / mode set yet */
655 	if (initial)
656 		return 0;
657 
658 	if (ah->ah_version != AR5K_AR5210) {
659 		/*
660 		 * Get channel mode flags
661 		 */
662 
663 		if (ah->ah_radio >= AR5K_RF5112) {
664 			mode = AR5K_PHY_MODE_RAD_RF5112;
665 			clock = AR5K_PHY_PLL_RF5112;
666 		} else {
667 			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
668 			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
669 		}
670 
671 		if (flags & CHANNEL_2GHZ) {
672 			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
673 			clock |= AR5K_PHY_PLL_44MHZ;
674 
675 			if (flags & CHANNEL_CCK) {
676 				mode |= AR5K_PHY_MODE_MOD_CCK;
677 			} else if (flags & CHANNEL_OFDM) {
678 				/* XXX Dynamic OFDM/CCK is not supported by the
679 				 * AR5211 so we set MOD_OFDM for plain g (no
680 				 * CCK headers) operation. We need to test
681 				 * this, 5211 might support ofdm-only g after
682 				 * all, there are also initial register values
683 				 * in the code for g mode (see initvals.c).
684 				 */
685 				if (ah->ah_version == AR5K_AR5211)
686 					mode |= AR5K_PHY_MODE_MOD_OFDM;
687 				else
688 					mode |= AR5K_PHY_MODE_MOD_DYN;
689 			} else {
690 				ATH5K_ERR(ah->ah_sc,
691 					"invalid radio modulation mode\n");
692 				return -EINVAL;
693 			}
694 		} else if (flags & CHANNEL_5GHZ) {
695 			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
696 
697 			/* Different PLL setting for 5413 */
698 			if (ah->ah_radio == AR5K_RF5413)
699 				clock = AR5K_PHY_PLL_40MHZ_5413;
700 			else
701 				clock |= AR5K_PHY_PLL_40MHZ;
702 
703 			if (flags & CHANNEL_OFDM)
704 				mode |= AR5K_PHY_MODE_MOD_OFDM;
705 			else {
706 				ATH5K_ERR(ah->ah_sc,
707 					"invalid radio modulation mode\n");
708 				return -EINVAL;
709 			}
710 		} else {
711 			ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
712 			return -EINVAL;
713 		}
714 
715 		/*XXX: Can bwmode be used with dynamic mode ?
716 		 * (I don't think it supports 44MHz) */
717 		/* On 2425 initvals TURBO_SHORT is not present */
718 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
719 			turbo = AR5K_PHY_TURBO_MODE |
720 				(ah->ah_radio == AR5K_RF2425) ? 0 :
721 				AR5K_PHY_TURBO_SHORT;
722 		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
723 			if (ah->ah_radio == AR5K_RF5413) {
724 				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
725 					AR5K_PHY_MODE_HALF_RATE :
726 					AR5K_PHY_MODE_QUARTER_RATE;
727 			} else if (ah->ah_version == AR5K_AR5212) {
728 				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
729 					AR5K_PHY_PLL_HALF_RATE :
730 					AR5K_PHY_PLL_QUARTER_RATE;
731 			}
732 		}
733 
734 	} else { /* Reset the device */
735 
736 		/* ...enable Atheros turbo mode if requested */
737 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
738 			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
739 					AR5K_PHY_TURBO);
740 	}
741 
742 	if (ah->ah_version != AR5K_AR5210) {
743 
744 		/* ...update PLL if needed */
745 		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
746 			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
747 			udelay(300);
748 		}
749 
750 		/* ...set the PHY operating mode */
751 		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
752 		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
753 	}
754 
755 	return 0;
756 }
757 
758 
759 /**************************************\
760 * Post-initvals register modifications *
761 \**************************************/
762 
763 /* TODO: Half/Quarter rate */
764 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
765 				struct ieee80211_channel *channel)
766 {
767 	if (ah->ah_version == AR5K_AR5212 &&
768 	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
769 
770 		/* Setup ADC control */
771 		ath5k_hw_reg_write(ah,
772 				(AR5K_REG_SM(2,
773 				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
774 				AR5K_REG_SM(2,
775 				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
776 				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
777 				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
778 				AR5K_PHY_ADC_CTL);
779 
780 
781 
782 		/* Disable barker RSSI threshold */
783 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
784 				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
785 
786 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
787 			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
788 
789 		/* Set the mute mask */
790 		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
791 	}
792 
793 	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
794 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
795 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
796 
797 	/* Enable DCU double buffering */
798 	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
799 		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
800 				AR5K_TXCFG_DCU_DBL_BUF_DIS);
801 
802 	/* Set fast ADC */
803 	if ((ah->ah_radio == AR5K_RF5413) ||
804 		(ah->ah_radio == AR5K_RF2317) ||
805 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
806 		u32 fast_adc = true;
807 
808 		if (channel->center_freq == 2462 ||
809 		channel->center_freq == 2467)
810 			fast_adc = 0;
811 
812 		/* Only update if needed */
813 		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
814 				ath5k_hw_reg_write(ah, fast_adc,
815 						AR5K_PHY_FAST_ADC);
816 	}
817 
818 	/* Fix for first revision of the RF5112 RF chipset */
819 	if (ah->ah_radio == AR5K_RF5112 &&
820 			ah->ah_radio_5ghz_revision <
821 			AR5K_SREV_RAD_5112A) {
822 		u32 data;
823 		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
824 				AR5K_PHY_CCKTXCTL);
825 		if (channel->hw_value & CHANNEL_5GHZ)
826 			data = 0xffb81020;
827 		else
828 			data = 0xffb80d20;
829 		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
830 	}
831 
832 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
833 		/* Clear QCU/DCU clock gating register */
834 		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
835 		/* Set DAC/ADC delays */
836 		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
837 						AR5K_PHY_SCAL);
838 		/* Enable PCU FIFO corruption ECO */
839 		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
840 					AR5K_DIAG_SW_ECO_ENABLE);
841 	}
842 
843 	if (ah->ah_bwmode) {
844 		/* Increase PHY switch and AGC settling time
845 		 * on turbo mode (ath5k_hw_commit_eeprom_settings
846 		 * will override settling time if available) */
847 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
848 
849 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
850 						AR5K_PHY_SETTLING_AGC,
851 						AR5K_AGC_SETTLING_TURBO);
852 
853 			/* XXX: Initvals indicate we only increase
854 			 * switch time on AR5212, 5211 and 5210
855 			 * only change agc time (bug?) */
856 			if (ah->ah_version == AR5K_AR5212)
857 				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
858 						AR5K_PHY_SETTLING_SWITCH,
859 						AR5K_SWITCH_SETTLING_TURBO);
860 
861 			if (ah->ah_version == AR5K_AR5210) {
862 				/* Set Frame Control Register */
863 				ath5k_hw_reg_write(ah,
864 					(AR5K_PHY_FRAME_CTL_INI |
865 					AR5K_PHY_TURBO_MODE |
866 					AR5K_PHY_TURBO_SHORT | 0x2020),
867 					AR5K_PHY_FRAME_CTL_5210);
868 			}
869 		/* On 5413 PHY force window length for half/quarter rate*/
870 		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
871 		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
872 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
873 						AR5K_PHY_FRAME_CTL_WIN_LEN,
874 						3);
875 		}
876 	} else if (ah->ah_version == AR5K_AR5210) {
877 		/* Set Frame Control Register for normal operation */
878 		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
879 						AR5K_PHY_FRAME_CTL_5210);
880 	}
881 }
882 
883 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
884 		struct ieee80211_channel *channel)
885 {
886 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
887 	s16 cck_ofdm_pwr_delta;
888 	u8 ee_mode;
889 
890 	/* TODO: Add support for AR5210 EEPROM */
891 	if (ah->ah_version == AR5K_AR5210)
892 		return;
893 
894 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
895 
896 	/* Adjust power delta for channel 14 */
897 	if (channel->center_freq == 2484)
898 		cck_ofdm_pwr_delta =
899 			((ee->ee_cck_ofdm_power_delta -
900 			ee->ee_scaled_cck_delta) * 2) / 10;
901 	else
902 		cck_ofdm_pwr_delta =
903 			(ee->ee_cck_ofdm_power_delta * 2) / 10;
904 
905 	/* Set CCK to OFDM power delta on tx power
906 	 * adjustment register */
907 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
908 		if (channel->hw_value == CHANNEL_G)
909 			ath5k_hw_reg_write(ah,
910 			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
911 				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
912 			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
913 				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
914 				AR5K_PHY_TX_PWR_ADJ);
915 		else
916 			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
917 	} else {
918 		/* For older revs we scale power on sw during tx power
919 		 * setup */
920 		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
921 		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
922 						ee->ee_cck_ofdm_gain_delta;
923 	}
924 
925 	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
926 	 * too */
927 	ath5k_hw_set_antenna_switch(ah, ee_mode);
928 
929 	/* Noise floor threshold */
930 	ath5k_hw_reg_write(ah,
931 		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
932 		AR5K_PHY_NFTHRES);
933 
934 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
935 	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
936 		/* Switch settling time (Turbo) */
937 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
938 				AR5K_PHY_SETTLING_SWITCH,
939 				ee->ee_switch_settling_turbo[ee_mode]);
940 
941 		/* Tx/Rx attenuation (Turbo) */
942 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
943 				AR5K_PHY_GAIN_TXRX_ATTEN,
944 				ee->ee_atn_tx_rx_turbo[ee_mode]);
945 
946 		/* ADC/PGA desired size (Turbo) */
947 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
948 				AR5K_PHY_DESIRED_SIZE_ADC,
949 				ee->ee_adc_desired_size_turbo[ee_mode]);
950 
951 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
952 				AR5K_PHY_DESIRED_SIZE_PGA,
953 				ee->ee_pga_desired_size_turbo[ee_mode]);
954 
955 		/* Tx/Rx margin (Turbo) */
956 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
957 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
958 				ee->ee_margin_tx_rx_turbo[ee_mode]);
959 
960 	} else {
961 		/* Switch settling time */
962 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
963 				AR5K_PHY_SETTLING_SWITCH,
964 				ee->ee_switch_settling[ee_mode]);
965 
966 		/* Tx/Rx attenuation */
967 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
968 				AR5K_PHY_GAIN_TXRX_ATTEN,
969 				ee->ee_atn_tx_rx[ee_mode]);
970 
971 		/* ADC/PGA desired size */
972 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
973 				AR5K_PHY_DESIRED_SIZE_ADC,
974 				ee->ee_adc_desired_size[ee_mode]);
975 
976 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
977 				AR5K_PHY_DESIRED_SIZE_PGA,
978 				ee->ee_pga_desired_size[ee_mode]);
979 
980 		/* Tx/Rx margin */
981 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
982 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
983 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
984 				ee->ee_margin_tx_rx[ee_mode]);
985 	}
986 
987 	/* XPA delays */
988 	ath5k_hw_reg_write(ah,
989 		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
990 		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
991 		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
992 		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
993 
994 	/* XLNA delay */
995 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
996 			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
997 			ee->ee_tx_end2xlna_enable[ee_mode]);
998 
999 	/* Thresh64 (ANI) */
1000 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1001 			AR5K_PHY_NF_THRESH62,
1002 			ee->ee_thr_62[ee_mode]);
1003 
1004 	/* False detect backoff for channels
1005 	 * that have spur noise. Write the new
1006 	 * cyclic power RSSI threshold. */
1007 	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1008 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1009 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1010 				AR5K_INIT_CYCRSSI_THR1 +
1011 				ee->ee_false_detect[ee_mode]);
1012 	else
1013 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1014 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1015 				AR5K_INIT_CYCRSSI_THR1);
1016 
1017 	/* I/Q correction (set enable bit last to match HAL sources) */
1018 	/* TODO: Per channel i/q infos ? */
1019 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1020 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1021 			    ee->ee_i_cal[ee_mode]);
1022 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1023 			    ee->ee_q_cal[ee_mode]);
1024 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1025 	}
1026 
1027 	/* Heavy clipping -disable for now */
1028 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1029 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1030 }
1031 
1032 
1033 /*********************\
1034 * Main reset function *
1035 \*********************/
1036 
1037 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1038 		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1039 {
1040 	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1041 	u8 mode;
1042 	int i, ret;
1043 
1044 	tsf_up = 0;
1045 	tsf_lo = 0;
1046 	mode = 0;
1047 
1048 	/*
1049 	 * Sanity check for fast flag
1050 	 * Fast channel change only available
1051 	 * on AR2413/AR5413.
1052 	 */
1053 	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1054 	(ah->ah_radio != AR5K_RF5413))
1055 		fast = 0;
1056 
1057 	/* Disable sleep clock operation
1058 	 * to avoid register access delay on certain
1059 	 * PHY registers */
1060 	if (ah->ah_version == AR5K_AR5212)
1061 		ath5k_hw_set_sleep_clock(ah, false);
1062 
1063 	/*
1064 	 * Stop PCU
1065 	 */
1066 	ath5k_hw_stop_rx_pcu(ah);
1067 
1068 	/*
1069 	 * Stop DMA
1070 	 *
1071 	 * Note: If DMA didn't stop continue
1072 	 * since only a reset will fix it.
1073 	 */
1074 	ret = ath5k_hw_dma_stop(ah);
1075 
1076 	/* RF Bus grant won't work if we have pending
1077 	 * frames */
1078 	if (ret && fast) {
1079 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1080 			"DMA didn't stop, falling back to normal reset\n");
1081 		fast = 0;
1082 		/* Non fatal, just continue with
1083 		 * normal reset */
1084 		ret = 0;
1085 	}
1086 
1087 	switch (channel->hw_value & CHANNEL_MODES) {
1088 	case CHANNEL_A:
1089 		mode = AR5K_MODE_11A;
1090 		break;
1091 	case CHANNEL_G:
1092 
1093 		if (ah->ah_version <= AR5K_AR5211) {
1094 			ATH5K_ERR(ah->ah_sc,
1095 				"G mode not available on 5210/5211");
1096 			return -EINVAL;
1097 		}
1098 
1099 		mode = AR5K_MODE_11G;
1100 		break;
1101 	case CHANNEL_B:
1102 
1103 		if (ah->ah_version < AR5K_AR5211) {
1104 			ATH5K_ERR(ah->ah_sc,
1105 				"B mode not available on 5210");
1106 			return -EINVAL;
1107 		}
1108 
1109 		mode = AR5K_MODE_11B;
1110 		break;
1111 	case CHANNEL_XR:
1112 		if (ah->ah_version == AR5K_AR5211) {
1113 			ATH5K_ERR(ah->ah_sc,
1114 				"XR mode not available on 5211");
1115 			return -EINVAL;
1116 		}
1117 		mode = AR5K_MODE_XR;
1118 		break;
1119 	default:
1120 		ATH5K_ERR(ah->ah_sc,
1121 			"invalid channel: %d\n", channel->center_freq);
1122 		return -EINVAL;
1123 	}
1124 
1125 	/*
1126 	 * If driver requested fast channel change and DMA has stopped
1127 	 * go on. If it fails continue with a normal reset.
1128 	 */
1129 	if (fast) {
1130 		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1131 		if (ret) {
1132 			ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1133 				"fast chan change failed, falling back to normal reset\n");
1134 			/* Non fatal, can happen eg.
1135 			 * on mode change */
1136 			ret = 0;
1137 		} else {
1138 			ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_RESET,
1139 				"fast chan change successful\n");
1140 			return 0;
1141 		}
1142 	}
1143 
1144 	/*
1145 	 * Save some registers before a reset
1146 	 */
1147 	if (ah->ah_version != AR5K_AR5210) {
1148 		/*
1149 		 * Save frame sequence count
1150 		 * For revs. after Oahu, only save
1151 		 * seq num for DCU 0 (Global seq num)
1152 		 */
1153 		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1154 
1155 			for (i = 0; i < 10; i++)
1156 				s_seq[i] = ath5k_hw_reg_read(ah,
1157 					AR5K_QUEUE_DCU_SEQNUM(i));
1158 
1159 		} else {
1160 			s_seq[0] = ath5k_hw_reg_read(ah,
1161 					AR5K_QUEUE_DCU_SEQNUM(0));
1162 		}
1163 
1164 		/* TSF accelerates on AR5211 during reset
1165 		 * As a workaround save it here and restore
1166 		 * it later so that it's back in time after
1167 		 * reset. This way it'll get re-synced on the
1168 		 * next beacon without breaking ad-hoc.
1169 		 *
1170 		 * On AR5212 TSF is almost preserved across a
1171 		 * reset so it stays back in time anyway and
1172 		 * we don't have to save/restore it.
1173 		 *
1174 		 * XXX: Since this breaks power saving we have
1175 		 * to disable power saving until we receive the
1176 		 * next beacon, so we can resync beacon timers */
1177 		if (ah->ah_version == AR5K_AR5211) {
1178 			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1179 			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1180 		}
1181 	}
1182 
1183 
1184 	/*GPIOs*/
1185 	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1186 					AR5K_PCICFG_LEDSTATE;
1187 	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1188 	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1189 
1190 
1191 	/*
1192 	 * Since we are going to write rf buffer
1193 	 * check if we have any pending gain_F
1194 	 * optimization settings
1195 	 */
1196 	if (ah->ah_version == AR5K_AR5212 &&
1197 	(ah->ah_radio <= AR5K_RF5112)) {
1198 		if (!fast && ah->ah_rf_banks != NULL)
1199 				ath5k_hw_gainf_calibrate(ah);
1200 	}
1201 
1202 	/* Wakeup the device */
1203 	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1204 	if (ret)
1205 		return ret;
1206 
1207 	/* PHY access enable */
1208 	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1209 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1210 	else
1211 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1212 							AR5K_PHY(0));
1213 
1214 	/* Write initial settings */
1215 	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1216 	if (ret)
1217 		return ret;
1218 
1219 	/* Initialize core clock settings */
1220 	ath5k_hw_init_core_clock(ah);
1221 
1222 	/*
1223 	 * Tweak initval settings for revised
1224 	 * chipsets and add some more config
1225 	 * bits
1226 	 */
1227 	ath5k_hw_tweak_initval_settings(ah, channel);
1228 
1229 	/* Commit values from EEPROM */
1230 	ath5k_hw_commit_eeprom_settings(ah, channel);
1231 
1232 
1233 	/*
1234 	 * Restore saved values
1235 	 */
1236 
1237 	/* Seqnum, TSF */
1238 	if (ah->ah_version != AR5K_AR5210) {
1239 		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1240 			for (i = 0; i < 10; i++)
1241 				ath5k_hw_reg_write(ah, s_seq[i],
1242 					AR5K_QUEUE_DCU_SEQNUM(i));
1243 		} else {
1244 			ath5k_hw_reg_write(ah, s_seq[0],
1245 				AR5K_QUEUE_DCU_SEQNUM(0));
1246 		}
1247 
1248 		if (ah->ah_version == AR5K_AR5211) {
1249 			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1250 			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1251 		}
1252 	}
1253 
1254 	/* Ledstate */
1255 	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1256 
1257 	/* Gpio settings */
1258 	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1259 	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1260 
1261 	/*
1262 	 * Initialize PCU
1263 	 */
1264 	ath5k_hw_pcu_init(ah, op_mode, mode);
1265 
1266 	/*
1267 	 * Initialize PHY
1268 	 */
1269 	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1270 	if (ret) {
1271 		ATH5K_ERR(ah->ah_sc,
1272 			"failed to initialize PHY (%i) !\n", ret);
1273 		return ret;
1274 	}
1275 
1276 	/*
1277 	 * Configure QCUs/DCUs
1278 	 */
1279 	ret = ath5k_hw_init_queues(ah);
1280 	if (ret)
1281 		return ret;
1282 
1283 
1284 	/*
1285 	 * Initialize DMA/Interrupts
1286 	 */
1287 	ath5k_hw_dma_init(ah);
1288 
1289 
1290 	/*
1291 	 * Enable 32KHz clock function for AR5212+ chips
1292 	 * Set clocks to 32KHz operation and use an
1293 	 * external 32KHz crystal when sleeping if one
1294 	 * exists.
1295 	 * Disabled by default because it is also disabled in
1296 	 * other drivers and it is known to cause stability
1297 	 * issues on some devices
1298 	 */
1299 	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1300 	    op_mode != NL80211_IFTYPE_AP)
1301 		ath5k_hw_set_sleep_clock(ah, true);
1302 
1303 	/*
1304 	 * Disable beacons and reset the TSF
1305 	 */
1306 	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1307 	ath5k_hw_reset_tsf(ah);
1308 	return 0;
1309 }
1310