xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision fd589a8f)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #define _ATH5K_PHY
24 
25 #include <linux/delay.h>
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32 
33 /*
34  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35  */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 					const struct ath5k_rf_reg *rf_regs,
38 					u32 val, u8 reg_id, bool set)
39 {
40 	const struct ath5k_rf_reg *rfreg = NULL;
41 	u8 offset, bank, num_bits, col, position;
42 	u16 entry;
43 	u32 mask, data, last_bit, bits_shifted, first_bit;
44 	u32 *rfb;
45 	s32 bits_left;
46 	int i;
47 
48 	data = 0;
49 	rfb = ah->ah_rf_banks;
50 
51 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 		if (rf_regs[i].index == reg_id) {
53 			rfreg = &rf_regs[i];
54 			break;
55 		}
56 	}
57 
58 	if (rfb == NULL || rfreg == NULL) {
59 		ATH5K_PRINTF("Rf register not found!\n");
60 		/* should not happen */
61 		return 0;
62 	}
63 
64 	bank = rfreg->bank;
65 	num_bits = rfreg->field.len;
66 	first_bit = rfreg->field.pos;
67 	col = rfreg->field.col;
68 
69 	/* first_bit is an offset from bank's
70 	 * start. Since we have all banks on
71 	 * the same array, we use this offset
72 	 * to mark each bank's start */
73 	offset = ah->ah_offset[bank];
74 
75 	/* Boundary check */
76 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
78 		return 0;
79 	}
80 
81 	entry = ((first_bit - 1) / 8) + offset;
82 	position = (first_bit - 1) % 8;
83 
84 	if (set)
85 		data = ath5k_hw_bitswap(val, num_bits);
86 
87 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 	position = 0, entry++) {
89 
90 		last_bit = (position + bits_left > 8) ? 8 :
91 					position + bits_left;
92 
93 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94 								(col * 8);
95 
96 		if (set) {
97 			rfb[entry] &= ~mask;
98 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 			data >>= (8 - position);
100 		} else {
101 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102 				<< bits_shifted;
103 			bits_shifted += last_bit - position;
104 		}
105 
106 		bits_left -= 8 - position;
107 	}
108 
109 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110 
111 	return data;
112 }
113 
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117 
118 /*
119  * This code is used to optimize rf gain on different environments
120  * (temprature mostly) based on feedback from a power detector.
121  *
122  * It's only used on RF5111 and RF5112, later RF chips seem to have
123  * auto adjustment on hw -notice they have a much smaller BANK 7 and
124  * no gain optimization ladder-.
125  *
126  * For more infos check out this patent doc
127  * http://www.freepatentsonline.com/7400691.html
128  *
129  * This paper describes power drops as seen on the receiver due to
130  * probe packets
131  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132  * %20of%20Power%20Control.pdf
133  *
134  * And this is the MadWiFi bug entry related to the above
135  * http://madwifi-project.org/ticket/1659
136  * with various measurements and diagrams
137  *
138  * TODO: Deal with power drops due to probes by setting an apropriate
139  * tx power on the probe packets ! Make this part of the calibration process.
140  */
141 
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145 	/* Initialize the gain optimization values */
146 	switch (ah->ah_radio) {
147 	case AR5K_RF5111:
148 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 		ah->ah_gain.g_low = 20;
150 		ah->ah_gain.g_high = 35;
151 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152 		break;
153 	case AR5K_RF5112:
154 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 		ah->ah_gain.g_low = 20;
156 		ah->ah_gain.g_high = 85;
157 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158 		break;
159 	default:
160 		return -EINVAL;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Schedule a gain probe check on the next transmited packet.
167  * That means our next packet is going to be sent with lower
168  * tx power and a Peak to Average Power Detector (PAPD) will try
169  * to measure the gain.
170  *
171  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
172  * just after we enable the probe so that we don't mess with
173  * standard traffic ? Maybe it's time to use sw interrupts and
174  * a probe tasklet !!!
175  */
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177 {
178 
179 	/* Skip if gain calibration is inactive or
180 	 * we already handle a probe request */
181 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182 		return;
183 
184 	/* Send the packet with 2dB below max power as
185 	 * patent doc suggest */
186 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189 
190 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191 
192 }
193 
194 /* Calculate gain_F measurement correction
195  * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 {
198 	u32 mix, step;
199 	u32 *rf;
200 	const struct ath5k_gain_opt *go;
201 	const struct ath5k_gain_opt_step *g_step;
202 	const struct ath5k_rf_reg *rf_regs;
203 
204 	/* Only RF5112 Rev. 2 supports it */
205 	if ((ah->ah_radio != AR5K_RF5112) ||
206 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207 		return 0;
208 
209 	go = &rfgain_opt_5112;
210 	rf_regs = rf_regs_5112a;
211 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212 
213 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
214 
215 	if (ah->ah_rf_banks == NULL)
216 		return 0;
217 
218 	rf = ah->ah_rf_banks;
219 	ah->ah_gain.g_f_corr = 0;
220 
221 	/* No VGA (Variable Gain Amplifier) override, skip */
222 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223 		return 0;
224 
225 	/* Mix gain stepping */
226 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227 
228 	/* Mix gain override */
229 	mix = g_step->gos_param[0];
230 
231 	switch (mix) {
232 	case 3:
233 		ah->ah_gain.g_f_corr = step * 2;
234 		break;
235 	case 2:
236 		ah->ah_gain.g_f_corr = (step - 5) * 2;
237 		break;
238 	case 1:
239 		ah->ah_gain.g_f_corr = step;
240 		break;
241 	default:
242 		ah->ah_gain.g_f_corr = 0;
243 		break;
244 	}
245 
246 	return ah->ah_gain.g_f_corr;
247 }
248 
249 /* Check if current gain_F measurement is in the range of our
250  * power detector windows. If we get a measurement outside range
251  * we know it's not accurate (detectors can't measure anything outside
252  * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254 {
255 	const struct ath5k_rf_reg *rf_regs;
256 	u32 step, mix_ovr, level[4];
257 	u32 *rf;
258 
259 	if (ah->ah_rf_banks == NULL)
260 		return false;
261 
262 	rf = ah->ah_rf_banks;
263 
264 	if (ah->ah_radio == AR5K_RF5111) {
265 
266 		rf_regs = rf_regs_5111;
267 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268 
269 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270 			false);
271 
272 		level[0] = 0;
273 		level[1] = (step == 63) ? 50 : step + 4;
274 		level[2] = (step != 63) ? 64 : level[0];
275 		level[3] = level[2] + 50 ;
276 
277 		ah->ah_gain.g_high = level[3] -
278 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279 		ah->ah_gain.g_low = level[0] +
280 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281 	} else {
282 
283 		rf_regs = rf_regs_5112;
284 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285 
286 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287 			false);
288 
289 		level[0] = level[2] = 0;
290 
291 		if (mix_ovr == 1) {
292 			level[1] = level[3] = 83;
293 		} else {
294 			level[1] = level[3] = 107;
295 			ah->ah_gain.g_high = 55;
296 		}
297 	}
298 
299 	return (ah->ah_gain.g_current >= level[0] &&
300 			ah->ah_gain.g_current <= level[1]) ||
301 		(ah->ah_gain.g_current >= level[2] &&
302 			ah->ah_gain.g_current <= level[3]);
303 }
304 
305 /* Perform gain_F adjustment by choosing the right set
306  * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 {
309 	const struct ath5k_gain_opt *go;
310 	const struct ath5k_gain_opt_step *g_step;
311 	int ret = 0;
312 
313 	switch (ah->ah_radio) {
314 	case AR5K_RF5111:
315 		go = &rfgain_opt_5111;
316 		break;
317 	case AR5K_RF5112:
318 		go = &rfgain_opt_5112;
319 		break;
320 	default:
321 		return 0;
322 	}
323 
324 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
325 
326 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327 
328 		/* Reached maximum */
329 		if (ah->ah_gain.g_step_idx == 0)
330 			return -1;
331 
332 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
334 				ah->ah_gain.g_step_idx > 0;
335 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 			ah->ah_gain.g_target -= 2 *
337 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338 			    g_step->gos_gain);
339 
340 		ret = 1;
341 		goto done;
342 	}
343 
344 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345 
346 		/* Reached minimum */
347 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348 			return -2;
349 
350 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
353 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 			ah->ah_gain.g_target -= 2 *
355 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356 			    g_step->gos_gain);
357 
358 		ret = 2;
359 		goto done;
360 	}
361 
362 done:
363 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364 		"ret %d, gain step %u, current gain %u, target gain %u\n",
365 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366 		ah->ah_gain.g_target);
367 
368 	return ret;
369 }
370 
371 /* Main callback for thermal rf gain calibration engine
372  * Check for a new gain reading and schedule an adjustment
373  * if needed.
374  *
375  * TODO: Use sw interrupt to schedule reset if gain_F needs
376  * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378 {
379 	u32 data, type;
380 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381 
382 	ATH5K_TRACE(ah->ah_sc);
383 
384 	if (ah->ah_rf_banks == NULL ||
385 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386 		return AR5K_RFGAIN_INACTIVE;
387 
388 	/* No check requested, either engine is inactive
389 	 * or an adjustment is already requested */
390 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391 		goto done;
392 
393 	/* Read the PAPD (Peak to Average Power Detector)
394 	 * register */
395 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396 
397 	/* No probe is scheduled, read gain_F measurement */
398 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401 
402 		/* If tx packet is CCK correct the gain_F measurement
403 		 * by cck ofdm gain delta */
404 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406 				ah->ah_gain.g_current +=
407 					ee->ee_cck_ofdm_gain_delta;
408 			else
409 				ah->ah_gain.g_current +=
410 					AR5K_GAIN_CCK_PROBE_CORR;
411 		}
412 
413 		/* Further correct gain_F measurement for
414 		 * RF5112A radios */
415 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416 			ath5k_hw_rf_gainf_corr(ah);
417 			ah->ah_gain.g_current =
418 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420 				0;
421 		}
422 
423 		/* Check if measurement is ok and if we need
424 		 * to adjust gain, schedule a gain adjustment,
425 		 * else switch back to the acive state */
426 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
427 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428 		ath5k_hw_rf_gainf_adjust(ah)) {
429 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430 		} else {
431 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432 		}
433 	}
434 
435 done:
436 	return ah->ah_gain.g_state;
437 }
438 
439 /* Write initial rf gain table to set the RF sensitivity
440  * this one works on all RF chips and has nothing to do
441  * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443 {
444 	const struct ath5k_ini_rfgain *ath5k_rfg;
445 	unsigned int i, size;
446 
447 	switch (ah->ah_radio) {
448 	case AR5K_RF5111:
449 		ath5k_rfg = rfgain_5111;
450 		size = ARRAY_SIZE(rfgain_5111);
451 		break;
452 	case AR5K_RF5112:
453 		ath5k_rfg = rfgain_5112;
454 		size = ARRAY_SIZE(rfgain_5112);
455 		break;
456 	case AR5K_RF2413:
457 		ath5k_rfg = rfgain_2413;
458 		size = ARRAY_SIZE(rfgain_2413);
459 		break;
460 	case AR5K_RF2316:
461 		ath5k_rfg = rfgain_2316;
462 		size = ARRAY_SIZE(rfgain_2316);
463 		break;
464 	case AR5K_RF5413:
465 		ath5k_rfg = rfgain_5413;
466 		size = ARRAY_SIZE(rfgain_5413);
467 		break;
468 	case AR5K_RF2317:
469 	case AR5K_RF2425:
470 		ath5k_rfg = rfgain_2425;
471 		size = ARRAY_SIZE(rfgain_2425);
472 		break;
473 	default:
474 		return -EINVAL;
475 	}
476 
477 	switch (freq) {
478 	case AR5K_INI_RFGAIN_2GHZ:
479 	case AR5K_INI_RFGAIN_5GHZ:
480 		break;
481 	default:
482 		return -EINVAL;
483 	}
484 
485 	for (i = 0; i < size; i++) {
486 		AR5K_REG_WAIT(i);
487 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488 			(u32)ath5k_rfg[i].rfg_register);
489 	}
490 
491 	return 0;
492 }
493 
494 
495 
496 /********************\
497 * RF Registers setup *
498 \********************/
499 
500 
501 /*
502  * Setup RF registers by writing rf buffer on hw
503  */
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505 		unsigned int mode)
506 {
507 	const struct ath5k_rf_reg *rf_regs;
508 	const struct ath5k_ini_rfbuffer *ini_rfb;
509 	const struct ath5k_gain_opt *go = NULL;
510 	const struct ath5k_gain_opt_step *g_step;
511 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 	u8 ee_mode = 0;
513 	u32 *rfb;
514 	int i, obdb = -1, bank = -1;
515 
516 	switch (ah->ah_radio) {
517 	case AR5K_RF5111:
518 		rf_regs = rf_regs_5111;
519 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520 		ini_rfb = rfb_5111;
521 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522 		go = &rfgain_opt_5111;
523 		break;
524 	case AR5K_RF5112:
525 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526 			rf_regs = rf_regs_5112a;
527 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528 			ini_rfb = rfb_5112a;
529 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530 		} else {
531 			rf_regs = rf_regs_5112;
532 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533 			ini_rfb = rfb_5112;
534 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535 		}
536 		go = &rfgain_opt_5112;
537 		break;
538 	case AR5K_RF2413:
539 		rf_regs = rf_regs_2413;
540 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541 		ini_rfb = rfb_2413;
542 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543 		break;
544 	case AR5K_RF2316:
545 		rf_regs = rf_regs_2316;
546 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547 		ini_rfb = rfb_2316;
548 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549 		break;
550 	case AR5K_RF5413:
551 		rf_regs = rf_regs_5413;
552 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553 		ini_rfb = rfb_5413;
554 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555 		break;
556 	case AR5K_RF2317:
557 		rf_regs = rf_regs_2425;
558 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559 		ini_rfb = rfb_2317;
560 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561 		break;
562 	case AR5K_RF2425:
563 		rf_regs = rf_regs_2425;
564 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566 			ini_rfb = rfb_2425;
567 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568 		} else {
569 			ini_rfb = rfb_2417;
570 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571 		}
572 		break;
573 	default:
574 		return -EINVAL;
575 	}
576 
577 	/* If it's the first time we set rf buffer, allocate
578 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
579 	 * we set above */
580 	if (ah->ah_rf_banks == NULL) {
581 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582 								GFP_KERNEL);
583 		if (ah->ah_rf_banks == NULL) {
584 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
585 			return -ENOMEM;
586 		}
587 	}
588 
589 	/* Copy values to modify them */
590 	rfb = ah->ah_rf_banks;
591 
592 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
593 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595 			return -EINVAL;
596 		}
597 
598 		/* Bank changed, write down the offset */
599 		if (bank != ini_rfb[i].rfb_bank) {
600 			bank = ini_rfb[i].rfb_bank;
601 			ah->ah_offset[bank] = i;
602 		}
603 
604 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605 	}
606 
607 	/* Set Output and Driver bias current (OB/DB) */
608 	if (channel->hw_value & CHANNEL_2GHZ) {
609 
610 		if (channel->hw_value & CHANNEL_CCK)
611 			ee_mode = AR5K_EEPROM_MODE_11B;
612 		else
613 			ee_mode = AR5K_EEPROM_MODE_11G;
614 
615 		/* For RF511X/RF211X combination we
616 		 * use b_OB and b_DB parameters stored
617 		 * in eeprom on ee->ee_ob[ee_mode][0]
618 		 *
619 		 * For all other chips we use OB/DB for 2Ghz
620 		 * stored in the b/g modal section just like
621 		 * 802.11a on ee->ee_ob[ee_mode][1] */
622 		if ((ah->ah_radio == AR5K_RF5111) ||
623 		(ah->ah_radio == AR5K_RF5112))
624 			obdb = 0;
625 		else
626 			obdb = 1;
627 
628 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629 						AR5K_RF_OB_2GHZ, true);
630 
631 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632 						AR5K_RF_DB_2GHZ, true);
633 
634 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
636 			(ah->ah_radio == AR5K_RF5111)) {
637 
638 		/* For 11a, Turbo and XR we need to choose
639 		 * OB/DB based on frequency range */
640 		ee_mode = AR5K_EEPROM_MODE_11A;
641 		obdb =	 channel->center_freq >= 5725 ? 3 :
642 			(channel->center_freq >= 5500 ? 2 :
643 			(channel->center_freq >= 5260 ? 1 :
644 			 (channel->center_freq > 4000 ? 0 : -1)));
645 
646 		if (obdb < 0)
647 			return -EINVAL;
648 
649 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650 						AR5K_RF_OB_5GHZ, true);
651 
652 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653 						AR5K_RF_DB_5GHZ, true);
654 	}
655 
656 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
657 
658 	/* Bank Modifications (chip-specific) */
659 	if (ah->ah_radio == AR5K_RF5111) {
660 
661 		/* Set gain_F settings according to current step */
662 		if (channel->hw_value & CHANNEL_OFDM) {
663 
664 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665 					AR5K_PHY_FRAME_CTL_TX_CLIP,
666 					g_step->gos_param[0]);
667 
668 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669 							AR5K_RF_PWD_90, true);
670 
671 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672 							AR5K_RF_PWD_84, true);
673 
674 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675 						AR5K_RF_RFGAIN_SEL, true);
676 
677 			/* We programmed gain_F parameters, switch back
678 			 * to active state */
679 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680 
681 		}
682 
683 		/* Bank 6/7 setup */
684 
685 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686 						AR5K_RF_PWD_XPD, true);
687 
688 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689 						AR5K_RF_XPD_GAIN, true);
690 
691 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692 						AR5K_RF_GAIN_I, true);
693 
694 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695 						AR5K_RF_PLO_SEL, true);
696 
697 		/* TODO: Half/quarter channel support */
698 	}
699 
700 	if (ah->ah_radio == AR5K_RF5112) {
701 
702 		/* Set gain_F settings according to current step */
703 		if (channel->hw_value & CHANNEL_OFDM) {
704 
705 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706 						AR5K_RF_MIXGAIN_OVR, true);
707 
708 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709 						AR5K_RF_PWD_138, true);
710 
711 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712 						AR5K_RF_PWD_137, true);
713 
714 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715 						AR5K_RF_PWD_136, true);
716 
717 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718 						AR5K_RF_PWD_132, true);
719 
720 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721 						AR5K_RF_PWD_131, true);
722 
723 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724 						AR5K_RF_PWD_130, true);
725 
726 			/* We programmed gain_F parameters, switch back
727 			 * to active state */
728 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729 		}
730 
731 		/* Bank 6/7 setup */
732 
733 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734 						AR5K_RF_XPD_SEL, true);
735 
736 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737 			/* Rev. 1 supports only one xpd */
738 			ath5k_hw_rfb_op(ah, rf_regs,
739 						ee->ee_x_gain[ee_mode],
740 						AR5K_RF_XPD_GAIN, true);
741 
742 		} else {
743 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
744 			if (ee->ee_pd_gains[ee_mode] > 1) {
745 				ath5k_hw_rfb_op(ah, rf_regs,
746 						pdg_curve_to_idx[0],
747 						AR5K_RF_PD_GAIN_LO, true);
748 				ath5k_hw_rfb_op(ah, rf_regs,
749 						pdg_curve_to_idx[1],
750 						AR5K_RF_PD_GAIN_HI, true);
751 			} else {
752 				ath5k_hw_rfb_op(ah, rf_regs,
753 						pdg_curve_to_idx[0],
754 						AR5K_RF_PD_GAIN_LO, true);
755 				ath5k_hw_rfb_op(ah, rf_regs,
756 						pdg_curve_to_idx[0],
757 						AR5K_RF_PD_GAIN_HI, true);
758 			}
759 
760 			/* Lower synth voltage on Rev 2 */
761 			ath5k_hw_rfb_op(ah, rf_regs, 2,
762 					AR5K_RF_HIGH_VC_CP, true);
763 
764 			ath5k_hw_rfb_op(ah, rf_regs, 2,
765 					AR5K_RF_MID_VC_CP, true);
766 
767 			ath5k_hw_rfb_op(ah, rf_regs, 2,
768 					AR5K_RF_LOW_VC_CP, true);
769 
770 			ath5k_hw_rfb_op(ah, rf_regs, 2,
771 					AR5K_RF_PUSH_UP, true);
772 
773 			/* Decrease power consumption on 5213+ BaseBand */
774 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775 				ath5k_hw_rfb_op(ah, rf_regs, 1,
776 						AR5K_RF_PAD2GND, true);
777 
778 				ath5k_hw_rfb_op(ah, rf_regs, 1,
779 						AR5K_RF_XB2_LVL, true);
780 
781 				ath5k_hw_rfb_op(ah, rf_regs, 1,
782 						AR5K_RF_XB5_LVL, true);
783 
784 				ath5k_hw_rfb_op(ah, rf_regs, 1,
785 						AR5K_RF_PWD_167, true);
786 
787 				ath5k_hw_rfb_op(ah, rf_regs, 1,
788 						AR5K_RF_PWD_166, true);
789 			}
790 		}
791 
792 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793 						AR5K_RF_GAIN_I, true);
794 
795 		/* TODO: Half/quarter channel support */
796 
797 	}
798 
799 	if (ah->ah_radio == AR5K_RF5413 &&
800 	channel->hw_value & CHANNEL_2GHZ) {
801 
802 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803 									true);
804 
805 		/* Set optimum value for early revisions (on pci-e chips) */
806 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807 		ah->ah_mac_srev < AR5K_SREV_AR5413)
808 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809 						AR5K_RF_PWD_ICLOBUF_2G, true);
810 
811 	}
812 
813 	/* Write RF banks on hw */
814 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
815 		AR5K_REG_WAIT(i);
816 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817 	}
818 
819 	return 0;
820 }
821 
822 
823 /**************************\
824   PHY/RF channel functions
825 \**************************/
826 
827 /*
828  * Check if a channel is supported
829  */
830 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832 	/* Check if the channel is in our supported range */
833 	if (flags & CHANNEL_2GHZ) {
834 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836 			return true;
837 	} else if (flags & CHANNEL_5GHZ)
838 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840 			return true;
841 
842 	return false;
843 }
844 
845 /*
846  * Convertion needed for RF5110
847  */
848 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
849 {
850 	u32 athchan;
851 
852 	/*
853 	 * Convert IEEE channel/MHz to an internal channel value used
854 	 * by the AR5210 chipset. This has not been verified with
855 	 * newer chipsets like the AR5212A who have a completely
856 	 * different RF/PHY part.
857 	 */
858 	athchan = (ath5k_hw_bitswap(
859 			(ieee80211_frequency_to_channel(
860 				channel->center_freq) - 24) / 2, 5)
861 				<< 1) | (1 << 6) | 0x1;
862 	return athchan;
863 }
864 
865 /*
866  * Set channel on RF5110
867  */
868 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
869 		struct ieee80211_channel *channel)
870 {
871 	u32 data;
872 
873 	/*
874 	 * Set the channel and wait
875 	 */
876 	data = ath5k_hw_rf5110_chan2athchan(channel);
877 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
878 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
879 	mdelay(1);
880 
881 	return 0;
882 }
883 
884 /*
885  * Convertion needed for 5111
886  */
887 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888 		struct ath5k_athchan_2ghz *athchan)
889 {
890 	int channel;
891 
892 	/* Cast this value to catch negative channel numbers (>= -19) */
893 	channel = (int)ieee;
894 
895 	/*
896 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
897 	 */
898 	if (channel <= 13) {
899 		athchan->a2_athchan = 115 + channel;
900 		athchan->a2_flags = 0x46;
901 	} else if (channel == 14) {
902 		athchan->a2_athchan = 124;
903 		athchan->a2_flags = 0x44;
904 	} else if (channel >= 15 && channel <= 26) {
905 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
906 		athchan->a2_flags = 0x46;
907 	} else
908 		return -EINVAL;
909 
910 	return 0;
911 }
912 
913 /*
914  * Set channel on 5111
915  */
916 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
917 		struct ieee80211_channel *channel)
918 {
919 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 	unsigned int ath5k_channel =
921 		ieee80211_frequency_to_channel(channel->center_freq);
922 	u32 data0, data1, clock;
923 	int ret;
924 
925 	/*
926 	 * Set the channel on the RF5111 radio
927 	 */
928 	data0 = data1 = 0;
929 
930 	if (channel->hw_value & CHANNEL_2GHZ) {
931 		/* Map 2GHz channel to 5GHz Atheros channel ID */
932 		ret = ath5k_hw_rf5111_chan2athchan(
933 			ieee80211_frequency_to_channel(channel->center_freq),
934 			&ath5k_channel_2ghz);
935 		if (ret)
936 			return ret;
937 
938 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
939 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
940 		    << 5) | (1 << 4);
941 	}
942 
943 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
944 		clock = 1;
945 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
946 			(clock << 1) | (1 << 10) | 1;
947 	} else {
948 		clock = 0;
949 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
950 			<< 2) | (clock << 1) | (1 << 10) | 1;
951 	}
952 
953 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
954 			AR5K_RF_BUFFER);
955 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
956 			AR5K_RF_BUFFER_CONTROL_3);
957 
958 	return 0;
959 }
960 
961 /*
962  * Set channel on 5112 and newer
963  */
964 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
965 		struct ieee80211_channel *channel)
966 {
967 	u32 data, data0, data1, data2;
968 	u16 c;
969 
970 	data = data0 = data1 = data2 = 0;
971 	c = channel->center_freq;
972 
973 	if (c < 4800) {
974 		if (!((c - 2224) % 5)) {
975 			data0 = ((2 * (c - 704)) - 3040) / 10;
976 			data1 = 1;
977 		} else if (!((c - 2192) % 5)) {
978 			data0 = ((2 * (c - 672)) - 3040) / 10;
979 			data1 = 0;
980 		} else
981 			return -EINVAL;
982 
983 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984 	} else if ((c - (c % 5)) != 2 || c > 5435) {
985 		if (!(c % 20) && c >= 5120) {
986 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
987 			data2 = ath5k_hw_bitswap(3, 2);
988 		} else if (!(c % 10)) {
989 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
990 			data2 = ath5k_hw_bitswap(2, 2);
991 		} else if (!(c % 5)) {
992 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
993 			data2 = ath5k_hw_bitswap(1, 2);
994 		} else
995 			return -EINVAL;
996 	} else {
997 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
998 		data2 = ath5k_hw_bitswap(0, 2);
999 	}
1000 
1001 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1002 
1003 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Set the channel on the RF2425
1011  */
1012 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013 		struct ieee80211_channel *channel)
1014 {
1015 	u32 data, data0, data2;
1016 	u16 c;
1017 
1018 	data = data0 = data2 = 0;
1019 	c = channel->center_freq;
1020 
1021 	if (c < 4800) {
1022 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1023 		data2 = 0;
1024 	/* ? 5GHz ? */
1025 	} else if ((c - (c % 5)) != 2 || c > 5435) {
1026 		if (!(c % 20) && c < 5120)
1027 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028 		else if (!(c % 10))
1029 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030 		else if (!(c % 5))
1031 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032 		else
1033 			return -EINVAL;
1034 		data2 = ath5k_hw_bitswap(1, 2);
1035 	} else {
1036 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037 		data2 = ath5k_hw_bitswap(0, 2);
1038 	}
1039 
1040 	data = (data0 << 4) | data2 << 2 | 0x1001;
1041 
1042 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * Set a channel on the radio chip
1050  */
1051 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1052 {
1053 	int ret;
1054 	/*
1055 	 * Check bounds supported by the PHY (we don't care about regultory
1056 	 * restrictions at this point). Note: hw_value already has the band
1057 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058 	 * of the band by that */
1059 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060 		ATH5K_ERR(ah->ah_sc,
1061 			"channel frequency (%u MHz) out of supported "
1062 			"band range\n",
1063 			channel->center_freq);
1064 			return -EINVAL;
1065 	}
1066 
1067 	/*
1068 	 * Set the channel and wait
1069 	 */
1070 	switch (ah->ah_radio) {
1071 	case AR5K_RF5110:
1072 		ret = ath5k_hw_rf5110_channel(ah, channel);
1073 		break;
1074 	case AR5K_RF5111:
1075 		ret = ath5k_hw_rf5111_channel(ah, channel);
1076 		break;
1077 	case AR5K_RF2425:
1078 		ret = ath5k_hw_rf2425_channel(ah, channel);
1079 		break;
1080 	default:
1081 		ret = ath5k_hw_rf5112_channel(ah, channel);
1082 		break;
1083 	}
1084 
1085 	if (ret)
1086 		return ret;
1087 
1088 	/* Set JAPAN setting for channel 14 */
1089 	if (channel->center_freq == 2484) {
1090 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 				AR5K_PHY_CCKTXCTL_JAPAN);
1092 	} else {
1093 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094 				AR5K_PHY_CCKTXCTL_WORLD);
1095 	}
1096 
1097 	ah->ah_current_channel = channel;
1098 	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099 
1100 	return 0;
1101 }
1102 
1103 /*****************\
1104   PHY calibration
1105 \*****************/
1106 
1107 void
1108 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1109 {
1110 	/* Calibration interval in jiffies */
1111 	unsigned long cal_intval;
1112 
1113 	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1114 
1115 	/* Initialize timestamp if needed */
1116 	if (!ah->ah_cal_tstamp)
1117 		ah->ah_cal_tstamp = jiffies;
1118 
1119 	/* For now we always do full calibration
1120 	 * Mark software interrupt mask and fire software
1121 	 * interrupt (bit gets auto-cleared) */
1122 	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123 		ah->ah_cal_tstamp = jiffies;
1124 		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125 		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1126 	}
1127 
1128 }
1129 
1130 /**
1131  * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1132  *
1133  * @ah: struct ath5k_hw pointer we are operating on
1134  * @freq: the channel frequency, just used for error logging
1135  *
1136  * This function performs a noise floor calibration of the PHY and waits for
1137  * it to complete. Then the noise floor value is compared to some maximum
1138  * noise floor we consider valid.
1139  *
1140  * Note that this is different from what the madwifi HAL does: it reads the
1141  * noise floor and afterwards initiates the calibration. Since the noise floor
1142  * calibration can take some time to finish, depending on the current channel
1143  * use, that avoids the occasional timeout warnings we are seeing now.
1144  *
1145  * See the following link for an Atheros patent on noise floor calibration:
1146  * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1147  * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1148  *
1149  * XXX: Since during noise floor calibration antennas are detached according to
1150  * the patent, we should stop tx queues here.
1151  */
1152 int
1153 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1154 {
1155 	int ret;
1156 	unsigned int i;
1157 	s32 noise_floor;
1158 
1159 	/*
1160 	 * Enable noise floor calibration
1161 	 */
1162 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1163 				AR5K_PHY_AGCCTL_NF);
1164 
1165 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1166 			AR5K_PHY_AGCCTL_NF, 0, false);
1167 	if (ret) {
1168 		ATH5K_ERR(ah->ah_sc,
1169 			"noise floor calibration timeout (%uMHz)\n", freq);
1170 		return -EAGAIN;
1171 	}
1172 
1173 	/* Wait until the noise floor is calibrated and read the value */
1174 	for (i = 20; i > 0; i--) {
1175 		mdelay(1);
1176 		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1177 		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1178 		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1179 			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1180 
1181 			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1182 				break;
1183 		}
1184 	}
1185 
1186 	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1187 		"noise floor %d\n", noise_floor);
1188 
1189 	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1190 		ATH5K_ERR(ah->ah_sc,
1191 			"noise floor calibration failed (%uMHz)\n", freq);
1192 		return -EAGAIN;
1193 	}
1194 
1195 	ah->ah_noise_floor = noise_floor;
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Perform a PHY calibration on RF5110
1202  * -Fix BPSK/QAM Constellation (I/Q correction)
1203  * -Calculate Noise Floor
1204  */
1205 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1206 		struct ieee80211_channel *channel)
1207 {
1208 	u32 phy_sig, phy_agc, phy_sat, beacon;
1209 	int ret;
1210 
1211 	/*
1212 	 * Disable beacons and RX/TX queues, wait
1213 	 */
1214 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1215 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1216 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1217 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1218 
1219 	mdelay(2);
1220 
1221 	/*
1222 	 * Set the channel (with AGC turned off)
1223 	 */
1224 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1225 	udelay(10);
1226 	ret = ath5k_hw_channel(ah, channel);
1227 
1228 	/*
1229 	 * Activate PHY and wait
1230 	 */
1231 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1232 	mdelay(1);
1233 
1234 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1235 
1236 	if (ret)
1237 		return ret;
1238 
1239 	/*
1240 	 * Calibrate the radio chip
1241 	 */
1242 
1243 	/* Remember normal state */
1244 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1245 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1246 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1247 
1248 	/* Update radio registers */
1249 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1250 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1251 
1252 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1253 			AR5K_PHY_AGCCOARSE_LO)) |
1254 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1255 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1256 
1257 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1258 			AR5K_PHY_ADCSAT_THR)) |
1259 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1260 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1261 
1262 	udelay(20);
1263 
1264 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1265 	udelay(10);
1266 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1267 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1268 
1269 	mdelay(1);
1270 
1271 	/*
1272 	 * Enable calibration and wait until completion
1273 	 */
1274 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1275 
1276 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1277 			AR5K_PHY_AGCCTL_CAL, 0, false);
1278 
1279 	/* Reset to normal state */
1280 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1281 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1282 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1283 
1284 	if (ret) {
1285 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1286 				channel->center_freq);
1287 		return ret;
1288 	}
1289 
1290 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1291 
1292 	/*
1293 	 * Re-enable RX/TX and beacons
1294 	 */
1295 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1296 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1297 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1298 
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Perform a PHY calibration on RF5111/5112 and newer chips
1304  */
1305 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1306 		struct ieee80211_channel *channel)
1307 {
1308 	u32 i_pwr, q_pwr;
1309 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1310 	int i;
1311 	ATH5K_TRACE(ah->ah_sc);
1312 
1313 	if (!ah->ah_calibration ||
1314 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1315 		goto done;
1316 
1317 	/* Calibration has finished, get the results and re-run */
1318 	for (i = 0; i <= 10; i++) {
1319 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1320 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1321 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1322 	}
1323 
1324 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1325 	q_coffd = q_pwr >> 7;
1326 
1327 	/* No correction */
1328 	if (i_coffd == 0 || q_coffd == 0)
1329 		goto done;
1330 
1331 	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1332 
1333 	/* Boundary check */
1334 	if (i_coff > 31)
1335 		i_coff = 31;
1336 	if (i_coff < -32)
1337 		i_coff = -32;
1338 
1339 	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1340 
1341 	/* Boundary check */
1342 	if (q_coff > 15)
1343 		q_coff = 15;
1344 	if (q_coff < -16)
1345 		q_coff = -16;
1346 
1347 	/* Commit new I/Q value */
1348 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1349 		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1350 
1351 	/* Re-enable calibration -if we don't we'll commit
1352 	 * the same values again and again */
1353 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1354 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1355 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1356 
1357 done:
1358 
1359 	/* TODO: Separate noise floor calibration from I/Q calibration
1360 	 * since noise floor calibration interrupts rx path while I/Q
1361 	 * calibration doesn't. We don't need to run noise floor calibration
1362 	 * as often as I/Q calibration.*/
1363 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1364 
1365 	/* Initiate a gain_F calibration */
1366 	ath5k_hw_request_rfgain_probe(ah);
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Perform a PHY calibration
1373  */
1374 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1375 		struct ieee80211_channel *channel)
1376 {
1377 	int ret;
1378 
1379 	if (ah->ah_radio == AR5K_RF5110)
1380 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1381 	else
1382 		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1383 
1384 	return ret;
1385 }
1386 
1387 /***************************\
1388 * Spur mitigation functions *
1389 \***************************/
1390 
1391 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1392 				struct ieee80211_channel *channel)
1393 {
1394 	u8 refclk_freq;
1395 
1396 	if ((ah->ah_radio == AR5K_RF5112) ||
1397 	(ah->ah_radio == AR5K_RF5413) ||
1398 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1399 		refclk_freq = 40;
1400 	else
1401 		refclk_freq = 32;
1402 
1403 	if ((channel->center_freq % refclk_freq != 0) &&
1404 	((channel->center_freq % refclk_freq < 10) ||
1405 	(channel->center_freq % refclk_freq > 22)))
1406 		return true;
1407 	else
1408 		return false;
1409 }
1410 
1411 void
1412 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1413 				struct ieee80211_channel *channel)
1414 {
1415 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1416 	u32 mag_mask[4] = {0, 0, 0, 0};
1417 	u32 pilot_mask[2] = {0, 0};
1418 	/* Note: fbin values are scaled up by 2 */
1419 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1420 	s32 spur_delta_phase, spur_freq_sigma_delta;
1421 	s32 spur_offset, num_symbols_x16;
1422 	u8 num_symbol_offsets, i, freq_band;
1423 
1424 	/* Convert current frequency to fbin value (the same way channels
1425 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1426 	 * up by 2 so we can compare it later */
1427 	if (channel->hw_value & CHANNEL_2GHZ) {
1428 		chan_fbin = (channel->center_freq - 2300) * 10;
1429 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1430 	} else {
1431 		chan_fbin = (channel->center_freq - 4900) * 10;
1432 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1433 	}
1434 
1435 	/* Check if any spur_chan_fbin from EEPROM is
1436 	 * within our current channel's spur detection range */
1437 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1438 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1439 	/* XXX: Half/Quarter channels ?*/
1440 	if (channel->hw_value & CHANNEL_TURBO)
1441 		spur_detection_window *= 2;
1442 
1443 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1444 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1445 
1446 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1447 		 * so it's zero if we got nothing from EEPROM */
1448 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1449 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1450 			break;
1451 		}
1452 
1453 		if ((chan_fbin - spur_detection_window <=
1454 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1455 		(chan_fbin + spur_detection_window >=
1456 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1457 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1458 			break;
1459 		}
1460 	}
1461 
1462 	/* We need to enable spur filter for this channel */
1463 	if (spur_chan_fbin) {
1464 		spur_offset = spur_chan_fbin - chan_fbin;
1465 		/*
1466 		 * Calculate deltas:
1467 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1468 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1469 		 * Note: Both values have 100KHz resolution
1470 		 */
1471 		/* XXX: Half/Quarter rate channels ? */
1472 		switch (channel->hw_value) {
1473 		case CHANNEL_A:
1474 			/* Both sample_freq and chip_freq are 40MHz */
1475 			spur_delta_phase = (spur_offset << 17) / 25;
1476 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1477 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1478 			break;
1479 		case CHANNEL_G:
1480 			/* sample_freq -> 40MHz chip_freq -> 44MHz
1481 			 * (for b compatibility) */
1482 			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1483 			spur_delta_phase = (spur_offset << 17) / 25;
1484 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1485 			break;
1486 		case CHANNEL_T:
1487 		case CHANNEL_TG:
1488 			/* Both sample_freq and chip_freq are 80MHz */
1489 			spur_delta_phase = (spur_offset << 16) / 25;
1490 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1491 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1492 			break;
1493 		default:
1494 			return;
1495 		}
1496 
1497 		/* Calculate pilot and magnitude masks */
1498 
1499 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1500 		 * and divide by symbol_width to find how many symbols we have
1501 		 * Note: number of symbols is scaled up by 16 */
1502 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1503 
1504 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1505 		if (!(num_symbols_x16 & 0xF))
1506 			/* _X_ */
1507 			num_symbol_offsets = 3;
1508 		else
1509 			/* _xx_ */
1510 			num_symbol_offsets = 4;
1511 
1512 		for (i = 0; i < num_symbol_offsets; i++) {
1513 
1514 			/* Calculate pilot mask */
1515 			s32 curr_sym_off =
1516 				(num_symbols_x16 / 16) + i + 25;
1517 
1518 			/* Pilot magnitude mask seems to be a way to
1519 			 * declare the boundaries for our detection
1520 			 * window or something, it's 2 for the middle
1521 			 * value(s) where the symbol is expected to be
1522 			 * and 1 on the boundary values */
1523 			u8 plt_mag_map =
1524 				(i == 0 || i == (num_symbol_offsets - 1))
1525 								? 1 : 2;
1526 
1527 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1528 				if (curr_sym_off <= 25)
1529 					pilot_mask[0] |= 1 << curr_sym_off;
1530 				else if (curr_sym_off >= 27)
1531 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1532 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1533 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1534 
1535 			/* Calculate magnitude mask (for viterbi decoder) */
1536 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1537 				mag_mask[0] |=
1538 					plt_mag_map << (curr_sym_off + 1) * 2;
1539 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1540 				mag_mask[1] |=
1541 					plt_mag_map << (curr_sym_off - 15) * 2;
1542 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1543 				mag_mask[2] |=
1544 					plt_mag_map << (curr_sym_off - 31) * 2;
1545 			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1546 				mag_mask[3] |=
1547 					plt_mag_map << (curr_sym_off - 47) * 2;
1548 
1549 		}
1550 
1551 		/* Write settings on hw to enable spur filter */
1552 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1553 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1554 		/* XXX: Self correlator also ? */
1555 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1556 					AR5K_PHY_IQ_PILOT_MASK_EN |
1557 					AR5K_PHY_IQ_CHAN_MASK_EN |
1558 					AR5K_PHY_IQ_SPUR_FILT_EN);
1559 
1560 		/* Set delta phase and freq sigma delta */
1561 		ath5k_hw_reg_write(ah,
1562 				AR5K_REG_SM(spur_delta_phase,
1563 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1564 				AR5K_REG_SM(spur_freq_sigma_delta,
1565 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1566 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1567 				AR5K_PHY_TIMING_11);
1568 
1569 		/* Write pilot masks */
1570 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1571 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1572 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1573 					pilot_mask[1]);
1574 
1575 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1576 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1577 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1578 					pilot_mask[1]);
1579 
1580 		/* Write magnitude masks */
1581 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1582 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1583 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1584 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1585 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1586 					mag_mask[3]);
1587 
1588 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1589 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1590 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1591 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1592 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1593 					mag_mask[3]);
1594 
1595 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1596 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1597 		/* Clean up spur mitigation settings and disable fliter */
1598 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1599 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1600 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1601 					AR5K_PHY_IQ_PILOT_MASK_EN |
1602 					AR5K_PHY_IQ_CHAN_MASK_EN |
1603 					AR5K_PHY_IQ_SPUR_FILT_EN);
1604 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1605 
1606 		/* Clear pilot masks */
1607 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1608 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1609 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1610 					0);
1611 
1612 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1613 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1614 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1615 					0);
1616 
1617 		/* Clear magnitude masks */
1618 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1619 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1620 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1621 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1623 					0);
1624 
1625 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1626 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1627 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1628 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1629 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1630 					0);
1631 	}
1632 }
1633 
1634 /********************\
1635   Misc PHY functions
1636 \********************/
1637 
1638 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1639 {
1640 	ATH5K_TRACE(ah->ah_sc);
1641 	/*Just a try M.F.*/
1642 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1643 
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Get the PHY Chip revision
1649  */
1650 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1651 {
1652 	unsigned int i;
1653 	u32 srev;
1654 	u16 ret;
1655 
1656 	ATH5K_TRACE(ah->ah_sc);
1657 
1658 	/*
1659 	 * Set the radio chip access register
1660 	 */
1661 	switch (chan) {
1662 	case CHANNEL_2GHZ:
1663 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1664 		break;
1665 	case CHANNEL_5GHZ:
1666 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1667 		break;
1668 	default:
1669 		return 0;
1670 	}
1671 
1672 	mdelay(2);
1673 
1674 	/* ...wait until PHY is ready and read the selected radio revision */
1675 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1676 
1677 	for (i = 0; i < 8; i++)
1678 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1679 
1680 	if (ah->ah_version == AR5K_AR5210) {
1681 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1682 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1683 	} else {
1684 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1685 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1686 				((srev & 0x0f) << 4), 8);
1687 	}
1688 
1689 	/* Reset to the 5GHz mode */
1690 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1691 
1692 	return ret;
1693 }
1694 
1695 /*****************\
1696 * Antenna control *
1697 \*****************/
1698 
1699 void /*TODO:Boundary check*/
1700 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1701 {
1702 	ATH5K_TRACE(ah->ah_sc);
1703 
1704 	if (ah->ah_version != AR5K_AR5210)
1705 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1706 }
1707 
1708 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1709 {
1710 	ATH5K_TRACE(ah->ah_sc);
1711 
1712 	if (ah->ah_version != AR5K_AR5210)
1713 		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1714 
1715 	return false; /*XXX: What do we return for 5210 ?*/
1716 }
1717 
1718 /*
1719  * Enable/disable fast rx antenna diversity
1720  */
1721 static void
1722 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1723 {
1724 	switch (ee_mode) {
1725 	case AR5K_EEPROM_MODE_11G:
1726 		/* XXX: This is set to
1727 		 * disabled on initvals !!! */
1728 	case AR5K_EEPROM_MODE_11A:
1729 		if (enable)
1730 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1731 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1732 		else
1733 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1734 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1735 		break;
1736 	case AR5K_EEPROM_MODE_11B:
1737 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1738 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1739 		break;
1740 	default:
1741 		return;
1742 	}
1743 
1744 	if (enable) {
1745 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1746 				AR5K_PHY_RESTART_DIV_GC, 0xc);
1747 
1748 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1749 					AR5K_PHY_FAST_ANT_DIV_EN);
1750 	} else {
1751 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1752 				AR5K_PHY_RESTART_DIV_GC, 0x8);
1753 
1754 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1755 					AR5K_PHY_FAST_ANT_DIV_EN);
1756 	}
1757 }
1758 
1759 /*
1760  * Set antenna operating mode
1761  */
1762 void
1763 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1764 {
1765 	struct ieee80211_channel *channel = ah->ah_current_channel;
1766 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1767 	bool use_def_for_sg;
1768 	u8 def_ant, tx_ant, ee_mode;
1769 	u32 sta_id1 = 0;
1770 
1771 	def_ant = ah->ah_def_ant;
1772 
1773 	ATH5K_TRACE(ah->ah_sc);
1774 
1775 	switch (channel->hw_value & CHANNEL_MODES) {
1776 	case CHANNEL_A:
1777 	case CHANNEL_T:
1778 	case CHANNEL_XR:
1779 		ee_mode = AR5K_EEPROM_MODE_11A;
1780 		break;
1781 	case CHANNEL_G:
1782 	case CHANNEL_TG:
1783 		ee_mode = AR5K_EEPROM_MODE_11G;
1784 		break;
1785 	case CHANNEL_B:
1786 		ee_mode = AR5K_EEPROM_MODE_11B;
1787 		break;
1788 	default:
1789 		ATH5K_ERR(ah->ah_sc,
1790 			"invalid channel: %d\n", channel->center_freq);
1791 		return;
1792 	}
1793 
1794 	switch (ant_mode) {
1795 	case AR5K_ANTMODE_DEFAULT:
1796 		tx_ant = 0;
1797 		use_def_for_tx = false;
1798 		update_def_on_tx = false;
1799 		use_def_for_rts = false;
1800 		use_def_for_sg = false;
1801 		fast_div = true;
1802 		break;
1803 	case AR5K_ANTMODE_FIXED_A:
1804 		def_ant = 1;
1805 		tx_ant = 0;
1806 		use_def_for_tx = true;
1807 		update_def_on_tx = false;
1808 		use_def_for_rts = true;
1809 		use_def_for_sg = true;
1810 		fast_div = false;
1811 		break;
1812 	case AR5K_ANTMODE_FIXED_B:
1813 		def_ant = 2;
1814 		tx_ant = 0;
1815 		use_def_for_tx = true;
1816 		update_def_on_tx = false;
1817 		use_def_for_rts = true;
1818 		use_def_for_sg = true;
1819 		fast_div = false;
1820 		break;
1821 	case AR5K_ANTMODE_SINGLE_AP:
1822 		def_ant = 1;	/* updated on tx */
1823 		tx_ant = 0;
1824 		use_def_for_tx = true;
1825 		update_def_on_tx = true;
1826 		use_def_for_rts = true;
1827 		use_def_for_sg = true;
1828 		fast_div = true;
1829 		break;
1830 	case AR5K_ANTMODE_SECTOR_AP:
1831 		tx_ant = 1;	/* variable */
1832 		use_def_for_tx = false;
1833 		update_def_on_tx = false;
1834 		use_def_for_rts = true;
1835 		use_def_for_sg = false;
1836 		fast_div = false;
1837 		break;
1838 	case AR5K_ANTMODE_SECTOR_STA:
1839 		tx_ant = 1;	/* variable */
1840 		use_def_for_tx = true;
1841 		update_def_on_tx = false;
1842 		use_def_for_rts = true;
1843 		use_def_for_sg = false;
1844 		fast_div = true;
1845 		break;
1846 	case AR5K_ANTMODE_DEBUG:
1847 		def_ant = 1;
1848 		tx_ant = 2;
1849 		use_def_for_tx = false;
1850 		update_def_on_tx = false;
1851 		use_def_for_rts = false;
1852 		use_def_for_sg = false;
1853 		fast_div = false;
1854 		break;
1855 	default:
1856 		return;
1857 	}
1858 
1859 	ah->ah_tx_ant = tx_ant;
1860 	ah->ah_ant_mode = ant_mode;
1861 
1862 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1863 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1864 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1865 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1866 
1867 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1868 
1869 	if (sta_id1)
1870 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1871 
1872 	/* Note: set diversity before default antenna
1873 	 * because it won't work correctly */
1874 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1875 	ath5k_hw_set_def_antenna(ah, def_ant);
1876 }
1877 
1878 
1879 /****************\
1880 * TX power setup *
1881 \****************/
1882 
1883 /*
1884  * Helper functions
1885  */
1886 
1887 /*
1888  * Do linear interpolation between two given (x, y) points
1889  */
1890 static s16
1891 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1892 					s16 y_left, s16 y_right)
1893 {
1894 	s16 ratio, result;
1895 
1896 	/* Avoid divide by zero and skip interpolation
1897 	 * if we have the same point */
1898 	if ((x_left == x_right) || (y_left == y_right))
1899 		return y_left;
1900 
1901 	/*
1902 	 * Since we use ints and not fps, we need to scale up in
1903 	 * order to get a sane ratio value (or else we 'll eg. get
1904 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1905 	 * to have some accuracy both for 0.5 and 0.25 steps.
1906 	 */
1907 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1908 
1909 	/* Now scale down to be in range */
1910 	result = y_left + (ratio * (target - x_left) / 100);
1911 
1912 	return result;
1913 }
1914 
1915 /*
1916  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1917  *
1918  * Since we have the top of the curve and we draw the line below
1919  * until we reach 1 (1 pcdac step) we need to know which point
1920  * (x value) that is so that we don't go below y axis and have negative
1921  * pcdac values when creating the curve, or fill the table with zeroes.
1922  */
1923 static s16
1924 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1925 				const s16 *pwrL, const s16 *pwrR)
1926 {
1927 	s8 tmp;
1928 	s16 min_pwrL, min_pwrR;
1929 	s16 pwr_i;
1930 
1931 	/* Some vendors write the same pcdac value twice !!! */
1932 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1933 		return max(pwrL[0], pwrR[0]);
1934 
1935 	if (pwrL[0] == pwrL[1])
1936 		min_pwrL = pwrL[0];
1937 	else {
1938 		pwr_i = pwrL[0];
1939 		do {
1940 			pwr_i--;
1941 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1942 							pwrL[0], pwrL[1],
1943 							stepL[0], stepL[1]);
1944 		} while (tmp > 1);
1945 
1946 		min_pwrL = pwr_i;
1947 	}
1948 
1949 	if (pwrR[0] == pwrR[1])
1950 		min_pwrR = pwrR[0];
1951 	else {
1952 		pwr_i = pwrR[0];
1953 		do {
1954 			pwr_i--;
1955 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1956 							pwrR[0], pwrR[1],
1957 							stepR[0], stepR[1]);
1958 		} while (tmp > 1);
1959 
1960 		min_pwrR = pwr_i;
1961 	}
1962 
1963 	/* Keep the right boundary so that it works for both curves */
1964 	return max(min_pwrL, min_pwrR);
1965 }
1966 
1967 /*
1968  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1969  * Power to PCDAC curve.
1970  *
1971  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1972  * steps (offsets) on y axis. Power can go up to 31.5dB and max
1973  * PCDAC/PDADC step for each curve is 64 but we can write more than
1974  * one curves on hw so we can go up to 128 (which is the max step we
1975  * can write on the final table).
1976  *
1977  * We write y values (PCDAC/PDADC steps) on hw.
1978  */
1979 static void
1980 ath5k_create_power_curve(s16 pmin, s16 pmax,
1981 			const s16 *pwr, const u8 *vpd,
1982 			u8 num_points,
1983 			u8 *vpd_table, u8 type)
1984 {
1985 	u8 idx[2] = { 0, 1 };
1986 	s16 pwr_i = 2*pmin;
1987 	int i;
1988 
1989 	if (num_points < 2)
1990 		return;
1991 
1992 	/* We want the whole line, so adjust boundaries
1993 	 * to cover the entire power range. Note that
1994 	 * power values are already 0.25dB so no need
1995 	 * to multiply pwr_i by 2 */
1996 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1997 		pwr_i = pmin;
1998 		pmin = 0;
1999 		pmax = 63;
2000 	}
2001 
2002 	/* Find surrounding turning points (TPs)
2003 	 * and interpolate between them */
2004 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2005 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2006 
2007 		/* We passed the right TP, move to the next set of TPs
2008 		 * if we pass the last TP, extrapolate above using the last
2009 		 * two TPs for ratio */
2010 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2011 			idx[0]++;
2012 			idx[1]++;
2013 		}
2014 
2015 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2016 						pwr[idx[0]], pwr[idx[1]],
2017 						vpd[idx[0]], vpd[idx[1]]);
2018 
2019 		/* Increase by 0.5dB
2020 		 * (0.25 dB units) */
2021 		pwr_i += 2;
2022 	}
2023 }
2024 
2025 /*
2026  * Get the surrounding per-channel power calibration piers
2027  * for a given frequency so that we can interpolate between
2028  * them and come up with an apropriate dataset for our current
2029  * channel.
2030  */
2031 static void
2032 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2033 			struct ieee80211_channel *channel,
2034 			struct ath5k_chan_pcal_info **pcinfo_l,
2035 			struct ath5k_chan_pcal_info **pcinfo_r)
2036 {
2037 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2038 	struct ath5k_chan_pcal_info *pcinfo;
2039 	u8 idx_l, idx_r;
2040 	u8 mode, max, i;
2041 	u32 target = channel->center_freq;
2042 
2043 	idx_l = 0;
2044 	idx_r = 0;
2045 
2046 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2047 		pcinfo = ee->ee_pwr_cal_b;
2048 		mode = AR5K_EEPROM_MODE_11B;
2049 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2050 		pcinfo = ee->ee_pwr_cal_g;
2051 		mode = AR5K_EEPROM_MODE_11G;
2052 	} else {
2053 		pcinfo = ee->ee_pwr_cal_a;
2054 		mode = AR5K_EEPROM_MODE_11A;
2055 	}
2056 	max = ee->ee_n_piers[mode] - 1;
2057 
2058 	/* Frequency is below our calibrated
2059 	 * range. Use the lowest power curve
2060 	 * we have */
2061 	if (target < pcinfo[0].freq) {
2062 		idx_l = idx_r = 0;
2063 		goto done;
2064 	}
2065 
2066 	/* Frequency is above our calibrated
2067 	 * range. Use the highest power curve
2068 	 * we have */
2069 	if (target > pcinfo[max].freq) {
2070 		idx_l = idx_r = max;
2071 		goto done;
2072 	}
2073 
2074 	/* Frequency is inside our calibrated
2075 	 * channel range. Pick the surrounding
2076 	 * calibration piers so that we can
2077 	 * interpolate */
2078 	for (i = 0; i <= max; i++) {
2079 
2080 		/* Frequency matches one of our calibration
2081 		 * piers, no need to interpolate, just use
2082 		 * that calibration pier */
2083 		if (pcinfo[i].freq == target) {
2084 			idx_l = idx_r = i;
2085 			goto done;
2086 		}
2087 
2088 		/* We found a calibration pier that's above
2089 		 * frequency, use this pier and the previous
2090 		 * one to interpolate */
2091 		if (target < pcinfo[i].freq) {
2092 			idx_r = i;
2093 			idx_l = idx_r - 1;
2094 			goto done;
2095 		}
2096 	}
2097 
2098 done:
2099 	*pcinfo_l = &pcinfo[idx_l];
2100 	*pcinfo_r = &pcinfo[idx_r];
2101 
2102 	return;
2103 }
2104 
2105 /*
2106  * Get the surrounding per-rate power calibration data
2107  * for a given frequency and interpolate between power
2108  * values to set max target power supported by hw for
2109  * each rate.
2110  */
2111 static void
2112 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2113 			struct ieee80211_channel *channel,
2114 			struct ath5k_rate_pcal_info *rates)
2115 {
2116 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2117 	struct ath5k_rate_pcal_info *rpinfo;
2118 	u8 idx_l, idx_r;
2119 	u8 mode, max, i;
2120 	u32 target = channel->center_freq;
2121 
2122 	idx_l = 0;
2123 	idx_r = 0;
2124 
2125 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2126 		rpinfo = ee->ee_rate_tpwr_b;
2127 		mode = AR5K_EEPROM_MODE_11B;
2128 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2129 		rpinfo = ee->ee_rate_tpwr_g;
2130 		mode = AR5K_EEPROM_MODE_11G;
2131 	} else {
2132 		rpinfo = ee->ee_rate_tpwr_a;
2133 		mode = AR5K_EEPROM_MODE_11A;
2134 	}
2135 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2136 
2137 	/* Get the surrounding calibration
2138 	 * piers - same as above */
2139 	if (target < rpinfo[0].freq) {
2140 		idx_l = idx_r = 0;
2141 		goto done;
2142 	}
2143 
2144 	if (target > rpinfo[max].freq) {
2145 		idx_l = idx_r = max;
2146 		goto done;
2147 	}
2148 
2149 	for (i = 0; i <= max; i++) {
2150 
2151 		if (rpinfo[i].freq == target) {
2152 			idx_l = idx_r = i;
2153 			goto done;
2154 		}
2155 
2156 		if (target < rpinfo[i].freq) {
2157 			idx_r = i;
2158 			idx_l = idx_r - 1;
2159 			goto done;
2160 		}
2161 	}
2162 
2163 done:
2164 	/* Now interpolate power value, based on the frequency */
2165 	rates->freq = target;
2166 
2167 	rates->target_power_6to24 =
2168 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2169 					rpinfo[idx_r].freq,
2170 					rpinfo[idx_l].target_power_6to24,
2171 					rpinfo[idx_r].target_power_6to24);
2172 
2173 	rates->target_power_36 =
2174 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2175 					rpinfo[idx_r].freq,
2176 					rpinfo[idx_l].target_power_36,
2177 					rpinfo[idx_r].target_power_36);
2178 
2179 	rates->target_power_48 =
2180 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2181 					rpinfo[idx_r].freq,
2182 					rpinfo[idx_l].target_power_48,
2183 					rpinfo[idx_r].target_power_48);
2184 
2185 	rates->target_power_54 =
2186 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2187 					rpinfo[idx_r].freq,
2188 					rpinfo[idx_l].target_power_54,
2189 					rpinfo[idx_r].target_power_54);
2190 }
2191 
2192 /*
2193  * Get the max edge power for this channel if
2194  * we have such data from EEPROM's Conformance Test
2195  * Limits (CTL), and limit max power if needed.
2196  */
2197 static void
2198 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2199 			struct ieee80211_channel *channel)
2200 {
2201 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2202 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2204 	u8 *ctl_val = ee->ee_ctl;
2205 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2206 	s16 edge_pwr = 0;
2207 	u8 rep_idx;
2208 	u8 i, ctl_mode;
2209 	u8 ctl_idx = 0xFF;
2210 	u32 target = channel->center_freq;
2211 
2212 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2213 
2214 	switch (channel->hw_value & CHANNEL_MODES) {
2215 	case CHANNEL_A:
2216 		ctl_mode |= AR5K_CTL_11A;
2217 		break;
2218 	case CHANNEL_G:
2219 		ctl_mode |= AR5K_CTL_11G;
2220 		break;
2221 	case CHANNEL_B:
2222 		ctl_mode |= AR5K_CTL_11B;
2223 		break;
2224 	case CHANNEL_T:
2225 		ctl_mode |= AR5K_CTL_TURBO;
2226 		break;
2227 	case CHANNEL_TG:
2228 		ctl_mode |= AR5K_CTL_TURBOG;
2229 		break;
2230 	case CHANNEL_XR:
2231 		/* Fall through */
2232 	default:
2233 		return;
2234 	}
2235 
2236 	for (i = 0; i < ee->ee_ctls; i++) {
2237 		if (ctl_val[i] == ctl_mode) {
2238 			ctl_idx = i;
2239 			break;
2240 		}
2241 	}
2242 
2243 	/* If we have a CTL dataset available grab it and find the
2244 	 * edge power for our frequency */
2245 	if (ctl_idx == 0xFF)
2246 		return;
2247 
2248 	/* Edge powers are sorted by frequency from lower
2249 	 * to higher. Each CTL corresponds to 8 edge power
2250 	 * measurements. */
2251 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2252 
2253 	/* Don't do boundaries check because we
2254 	 * might have more that one bands defined
2255 	 * for this mode */
2256 
2257 	/* Get the edge power that's closer to our
2258 	 * frequency */
2259 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2260 		rep_idx += i;
2261 		if (target <= rep[rep_idx].freq)
2262 			edge_pwr = (s16) rep[rep_idx].edge;
2263 	}
2264 
2265 	if (edge_pwr)
2266 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2267 }
2268 
2269 
2270 /*
2271  * Power to PCDAC table functions
2272  */
2273 
2274 /*
2275  * Fill Power to PCDAC table on RF5111
2276  *
2277  * No further processing is needed for RF5111, the only thing we have to
2278  * do is fill the values below and above calibration range since eeprom data
2279  * may not cover the entire PCDAC table.
2280  */
2281 static void
2282 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2283 							s16 *table_max)
2284 {
2285 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2286 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2287 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2288 	s16	min_pwr, max_pwr;
2289 
2290 	/* Get table boundaries */
2291 	min_pwr = table_min[0];
2292 	pcdac_0 = pcdac_tmp[0];
2293 
2294 	max_pwr = table_max[0];
2295 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2296 
2297 	/* Extrapolate below minimum using pcdac_0 */
2298 	pcdac_i = 0;
2299 	for (i = 0; i < min_pwr; i++)
2300 		pcdac_out[pcdac_i++] = pcdac_0;
2301 
2302 	/* Copy values from pcdac_tmp */
2303 	pwr_idx = min_pwr;
2304 	for (i = 0 ; pwr_idx <= max_pwr &&
2305 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2306 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2307 		pwr_idx++;
2308 	}
2309 
2310 	/* Extrapolate above maximum */
2311 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2312 		pcdac_out[pcdac_i++] = pcdac_n;
2313 
2314 }
2315 
2316 /*
2317  * Combine available XPD Curves and fill Linear Power to PCDAC table
2318  * on RF5112
2319  *
2320  * RFX112 can have up to 2 curves (one for low txpower range and one for
2321  * higher txpower range). We need to put them both on pcdac_out and place
2322  * them in the correct location. In case we only have one curve available
2323  * just fit it on pcdac_out (it's supposed to cover the entire range of
2324  * available pwr levels since it's always the higher power curve). Extrapolate
2325  * below and above final table if needed.
2326  */
2327 static void
2328 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2329 						s16 *table_max, u8 pdcurves)
2330 {
2331 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2332 	u8	*pcdac_low_pwr;
2333 	u8	*pcdac_high_pwr;
2334 	u8	*pcdac_tmp;
2335 	u8	pwr;
2336 	s16	max_pwr_idx;
2337 	s16	min_pwr_idx;
2338 	s16	mid_pwr_idx = 0;
2339 	/* Edge flag turs on the 7nth bit on the PCDAC
2340 	 * to delcare the higher power curve (force values
2341 	 * to be greater than 64). If we only have one curve
2342 	 * we don't need to set this, if we have 2 curves and
2343 	 * fill the table backwards this can also be used to
2344 	 * switch from higher power curve to lower power curve */
2345 	u8	edge_flag;
2346 	int	i;
2347 
2348 	/* When we have only one curve available
2349 	 * that's the higher power curve. If we have
2350 	 * two curves the first is the high power curve
2351 	 * and the next is the low power curve. */
2352 	if (pdcurves > 1) {
2353 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2354 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2355 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2356 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2357 
2358 		/* If table size goes beyond 31.5dB, keep the
2359 		 * upper 31.5dB range when setting tx power.
2360 		 * Note: 126 = 31.5 dB in quarter dB steps */
2361 		if (table_max[0] - table_min[1] > 126)
2362 			min_pwr_idx = table_max[0] - 126;
2363 		else
2364 			min_pwr_idx = table_min[1];
2365 
2366 		/* Since we fill table backwards
2367 		 * start from high power curve */
2368 		pcdac_tmp = pcdac_high_pwr;
2369 
2370 		edge_flag = 0x40;
2371 #if 0
2372 		/* If both min and max power limits are in lower
2373 		 * power curve's range, only use the low power curve.
2374 		 * TODO: min/max levels are related to target
2375 		 * power values requested from driver/user
2376 		 * XXX: Is this really needed ? */
2377 		if (min_pwr < table_max[1] &&
2378 		max_pwr < table_max[1]) {
2379 			edge_flag = 0;
2380 			pcdac_tmp = pcdac_low_pwr;
2381 			max_pwr_idx = (table_max[1] - table_min[1])/2;
2382 		}
2383 #endif
2384 	} else {
2385 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2386 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2387 		min_pwr_idx = table_min[0];
2388 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2389 		pcdac_tmp = pcdac_high_pwr;
2390 		edge_flag = 0;
2391 	}
2392 
2393 	/* This is used when setting tx power*/
2394 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2395 
2396 	/* Fill Power to PCDAC table backwards */
2397 	pwr = max_pwr_idx;
2398 	for (i = 63; i >= 0; i--) {
2399 		/* Entering lower power range, reset
2400 		 * edge flag and set pcdac_tmp to lower
2401 		 * power curve.*/
2402 		if (edge_flag == 0x40 &&
2403 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2404 			edge_flag = 0x00;
2405 			pcdac_tmp = pcdac_low_pwr;
2406 			pwr = mid_pwr_idx/2;
2407 		}
2408 
2409 		/* Don't go below 1, extrapolate below if we have
2410 		 * already swithced to the lower power curve -or
2411 		 * we only have one curve and edge_flag is zero
2412 		 * anyway */
2413 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2414 			while (i >= 0) {
2415 				pcdac_out[i] = pcdac_out[i + 1];
2416 				i--;
2417 			}
2418 			break;
2419 		}
2420 
2421 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2422 
2423 		/* Extrapolate above if pcdac is greater than
2424 		 * 126 -this can happen because we OR pcdac_out
2425 		 * value with edge_flag on high power curve */
2426 		if (pcdac_out[i] > 126)
2427 			pcdac_out[i] = 126;
2428 
2429 		/* Decrease by a 0.5dB step */
2430 		pwr--;
2431 	}
2432 }
2433 
2434 /* Write PCDAC values on hw */
2435 static void
2436 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2437 {
2438 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2439 	int	i;
2440 
2441 	/*
2442 	 * Write TX power values
2443 	 */
2444 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2445 		ath5k_hw_reg_write(ah,
2446 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2447 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2448 			AR5K_PHY_PCDAC_TXPOWER(i));
2449 	}
2450 }
2451 
2452 
2453 /*
2454  * Power to PDADC table functions
2455  */
2456 
2457 /*
2458  * Set the gain boundaries and create final Power to PDADC table
2459  *
2460  * We can have up to 4 pd curves, we need to do a simmilar process
2461  * as we do for RF5112. This time we don't have an edge_flag but we
2462  * set the gain boundaries on a separate register.
2463  */
2464 static void
2465 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2466 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2467 {
2468 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2469 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2470 	u8 *pdadc_tmp;
2471 	s16 pdadc_0;
2472 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2473 	u8 pd_gain_overlap;
2474 
2475 	/* Note: Register value is initialized on initvals
2476 	 * there is no feedback from hw.
2477 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2478 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2479 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2480 
2481 	/* Create final PDADC table */
2482 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2483 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2484 
2485 		if (pdg == pdcurves - 1)
2486 			/* 2 dB boundary stretch for last
2487 			 * (higher power) curve */
2488 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2489 		else
2490 			/* Set gain boundary in the middle
2491 			 * between this curve and the next one */
2492 			gain_boundaries[pdg] =
2493 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2494 
2495 		/* Sanity check in case our 2 db stretch got out of
2496 		 * range. */
2497 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2498 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2499 
2500 		/* For the first curve (lower power)
2501 		 * start from 0 dB */
2502 		if (pdg == 0)
2503 			pdadc_0 = 0;
2504 		else
2505 			/* For the other curves use the gain overlap */
2506 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2507 							pd_gain_overlap;
2508 
2509 		/* Force each power step to be at least 0.5 dB */
2510 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2511 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2512 		else
2513 			pwr_step = 1;
2514 
2515 		/* If pdadc_0 is negative, we need to extrapolate
2516 		 * below this pdgain by a number of pwr_steps */
2517 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2518 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2519 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2520 			pdadc_0++;
2521 		}
2522 
2523 		/* Set last pwr level, using gain boundaries */
2524 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2525 		/* Limit it to be inside pwr range */
2526 		table_size = pwr_max[pdg] - pwr_min[pdg];
2527 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2528 
2529 		/* Fill pdadc_out table */
2530 		while (pdadc_0 < max_idx)
2531 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2532 
2533 		/* Need to extrapolate above this pdgain? */
2534 		if (pdadc_n <= max_idx)
2535 			continue;
2536 
2537 		/* Force each power step to be at least 0.5 dB */
2538 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2539 			pwr_step = pdadc_tmp[table_size - 1] -
2540 						pdadc_tmp[table_size - 2];
2541 		else
2542 			pwr_step = 1;
2543 
2544 		/* Extrapolate above */
2545 		while ((pdadc_0 < (s16) pdadc_n) &&
2546 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2547 			s16 tmp = pdadc_tmp[table_size - 1] +
2548 					(pdadc_0 - max_idx) * pwr_step;
2549 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2550 			pdadc_0++;
2551 		}
2552 	}
2553 
2554 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2555 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2556 		pdg++;
2557 	}
2558 
2559 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2560 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2561 		pdadc_i++;
2562 	}
2563 
2564 	/* Set gain boundaries */
2565 	ath5k_hw_reg_write(ah,
2566 		AR5K_REG_SM(pd_gain_overlap,
2567 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2568 		AR5K_REG_SM(gain_boundaries[0],
2569 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2570 		AR5K_REG_SM(gain_boundaries[1],
2571 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2572 		AR5K_REG_SM(gain_boundaries[2],
2573 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2574 		AR5K_REG_SM(gain_boundaries[3],
2575 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2576 		AR5K_PHY_TPC_RG5);
2577 
2578 	/* Used for setting rate power table */
2579 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2580 
2581 }
2582 
2583 /* Write PDADC values on hw */
2584 static void
2585 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2586 			u8 pdcurves, u8 *pdg_to_idx)
2587 {
2588 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2589 	u32 reg;
2590 	u8 i;
2591 
2592 	/* Select the right pdgain curves */
2593 
2594 	/* Clear current settings */
2595 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2596 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2597 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2598 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2599 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2600 
2601 	/*
2602 	 * Use pd_gains curve from eeprom
2603 	 *
2604 	 * This overrides the default setting from initvals
2605 	 * in case some vendors (e.g. Zcomax) don't use the default
2606 	 * curves. If we don't honor their settings we 'll get a
2607 	 * 5dB (1 * gain overlap ?) drop.
2608 	 */
2609 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2610 
2611 	switch (pdcurves) {
2612 	case 3:
2613 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2614 		/* Fall through */
2615 	case 2:
2616 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2617 		/* Fall through */
2618 	case 1:
2619 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2620 		break;
2621 	}
2622 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2623 
2624 	/*
2625 	 * Write TX power values
2626 	 */
2627 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2628 		ath5k_hw_reg_write(ah,
2629 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2630 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2631 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2632 			((pdadc_out[4*i + 3] & 0xff) << 24),
2633 			AR5K_PHY_PDADC_TXPOWER(i));
2634 	}
2635 }
2636 
2637 
2638 /*
2639  * Common code for PCDAC/PDADC tables
2640  */
2641 
2642 /*
2643  * This is the main function that uses all of the above
2644  * to set PCDAC/PDADC table on hw for the current channel.
2645  * This table is used for tx power calibration on the basband,
2646  * without it we get weird tx power levels and in some cases
2647  * distorted spectral mask
2648  */
2649 static int
2650 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2651 			struct ieee80211_channel *channel,
2652 			u8 ee_mode, u8 type)
2653 {
2654 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2655 	struct ath5k_chan_pcal_info *pcinfo_L;
2656 	struct ath5k_chan_pcal_info *pcinfo_R;
2657 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2658 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2659 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2660 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2661 	u8 *tmpL;
2662 	u8 *tmpR;
2663 	u32 target = channel->center_freq;
2664 	int pdg, i;
2665 
2666 	/* Get surounding freq piers for this channel */
2667 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2668 						&pcinfo_L,
2669 						&pcinfo_R);
2670 
2671 	/* Loop over pd gain curves on
2672 	 * surounding freq piers by index */
2673 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2674 
2675 		/* Fill curves in reverse order
2676 		 * from lower power (max gain)
2677 		 * to higher power. Use curve -> idx
2678 		 * backmaping we did on eeprom init */
2679 		u8 idx = pdg_curve_to_idx[pdg];
2680 
2681 		/* Grab the needed curves by index */
2682 		pdg_L = &pcinfo_L->pd_curves[idx];
2683 		pdg_R = &pcinfo_R->pd_curves[idx];
2684 
2685 		/* Initialize the temp tables */
2686 		tmpL = ah->ah_txpower.tmpL[pdg];
2687 		tmpR = ah->ah_txpower.tmpR[pdg];
2688 
2689 		/* Set curve's x boundaries and create
2690 		 * curves so that they cover the same
2691 		 * range (if we don't do that one table
2692 		 * will have values on some range and the
2693 		 * other one won't have any so interpolation
2694 		 * will fail) */
2695 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2696 					pdg_R->pd_pwr[0]) / 2;
2697 
2698 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2699 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2700 
2701 		/* Now create the curves on surrounding channels
2702 		 * and interpolate if needed to get the final
2703 		 * curve for this gain on this channel */
2704 		switch (type) {
2705 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2706 			/* Override min/max so that we don't loose
2707 			 * accuracy (don't divide by 2) */
2708 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2709 						pdg_R->pd_pwr[0]);
2710 
2711 			table_max[pdg] =
2712 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2713 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2714 
2715 			/* Override minimum so that we don't get
2716 			 * out of bounds while extrapolating
2717 			 * below. Don't do this when we have 2
2718 			 * curves and we are on the high power curve
2719 			 * because table_min is ok in this case */
2720 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2721 
2722 				table_min[pdg] =
2723 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2724 								pdg_R->pd_step,
2725 								pdg_L->pd_pwr,
2726 								pdg_R->pd_pwr);
2727 
2728 				/* Don't go too low because we will
2729 				 * miss the upper part of the curve.
2730 				 * Note: 126 = 31.5dB (max power supported)
2731 				 * in 0.25dB units */
2732 				if (table_max[pdg] - table_min[pdg] > 126)
2733 					table_min[pdg] = table_max[pdg] - 126;
2734 			}
2735 
2736 			/* Fall through */
2737 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2738 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2739 
2740 			ath5k_create_power_curve(table_min[pdg],
2741 						table_max[pdg],
2742 						pdg_L->pd_pwr,
2743 						pdg_L->pd_step,
2744 						pdg_L->pd_points, tmpL, type);
2745 
2746 			/* We are in a calibration
2747 			 * pier, no need to interpolate
2748 			 * between freq piers */
2749 			if (pcinfo_L == pcinfo_R)
2750 				continue;
2751 
2752 			ath5k_create_power_curve(table_min[pdg],
2753 						table_max[pdg],
2754 						pdg_R->pd_pwr,
2755 						pdg_R->pd_step,
2756 						pdg_R->pd_points, tmpR, type);
2757 			break;
2758 		default:
2759 			return -EINVAL;
2760 		}
2761 
2762 		/* Interpolate between curves
2763 		 * of surounding freq piers to
2764 		 * get the final curve for this
2765 		 * pd gain. Re-use tmpL for interpolation
2766 		 * output */
2767 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2768 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2769 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2770 							(s16) pcinfo_L->freq,
2771 							(s16) pcinfo_R->freq,
2772 							(s16) tmpL[i],
2773 							(s16) tmpR[i]);
2774 		}
2775 	}
2776 
2777 	/* Now we have a set of curves for this
2778 	 * channel on tmpL (x range is table_max - table_min
2779 	 * and y values are tmpL[pdg][]) sorted in the same
2780 	 * order as EEPROM (because we've used the backmaping).
2781 	 * So for RF5112 it's from higher power to lower power
2782 	 * and for RF2413 it's from lower power to higher power.
2783 	 * For RF5111 we only have one curve. */
2784 
2785 	/* Fill min and max power levels for this
2786 	 * channel by interpolating the values on
2787 	 * surounding channels to complete the dataset */
2788 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2789 					(s16) pcinfo_L->freq,
2790 					(s16) pcinfo_R->freq,
2791 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2792 
2793 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2794 					(s16) pcinfo_L->freq,
2795 					(s16) pcinfo_R->freq,
2796 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2797 
2798 	/* We are ready to go, fill PCDAC/PDADC
2799 	 * table and write settings on hardware */
2800 	switch (type) {
2801 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2802 		/* For RF5112 we can have one or two curves
2803 		 * and each curve covers a certain power lvl
2804 		 * range so we need to do some more processing */
2805 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2806 						ee->ee_pd_gains[ee_mode]);
2807 
2808 		/* Set txp.offset so that we can
2809 		 * match max power value with max
2810 		 * table index */
2811 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2812 
2813 		/* Write settings on hw */
2814 		ath5k_setup_pcdac_table(ah);
2815 		break;
2816 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2817 		/* We are done for RF5111 since it has only
2818 		 * one curve, just fit the curve on the table */
2819 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2820 
2821 		/* No rate powertable adjustment for RF5111 */
2822 		ah->ah_txpower.txp_min_idx = 0;
2823 		ah->ah_txpower.txp_offset = 0;
2824 
2825 		/* Write settings on hw */
2826 		ath5k_setup_pcdac_table(ah);
2827 		break;
2828 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2829 		/* Set PDADC boundaries and fill
2830 		 * final PDADC table */
2831 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2832 						ee->ee_pd_gains[ee_mode]);
2833 
2834 		/* Write settings on hw */
2835 		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2836 
2837 		/* Set txp.offset, note that table_min
2838 		 * can be negative */
2839 		ah->ah_txpower.txp_offset = table_min[0];
2840 		break;
2841 	default:
2842 		return -EINVAL;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 
2849 /*
2850  * Per-rate tx power setting
2851  *
2852  * This is the code that sets the desired tx power (below
2853  * maximum) on hw for each rate (we also have TPC that sets
2854  * power per packet). We do that by providing an index on the
2855  * PCDAC/PDADC table we set up.
2856  */
2857 
2858 /*
2859  * Set rate power table
2860  *
2861  * For now we only limit txpower based on maximum tx power
2862  * supported by hw (what's inside rate_info). We need to limit
2863  * this even more, based on regulatory domain etc.
2864  *
2865  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2866  * and is indexed as follows:
2867  * rates[0] - rates[7] -> OFDM rates
2868  * rates[8] - rates[14] -> CCK rates
2869  * rates[15] -> XR rates (they all have the same power)
2870  */
2871 static void
2872 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2873 			struct ath5k_rate_pcal_info *rate_info,
2874 			u8 ee_mode)
2875 {
2876 	unsigned int i;
2877 	u16 *rates;
2878 
2879 	/* max_pwr is power level we got from driver/user in 0.5dB
2880 	 * units, switch to 0.25dB units so we can compare */
2881 	max_pwr *= 2;
2882 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2883 
2884 	/* apply rate limits */
2885 	rates = ah->ah_txpower.txp_rates_power_table;
2886 
2887 	/* OFDM rates 6 to 24Mb/s */
2888 	for (i = 0; i < 5; i++)
2889 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2890 
2891 	/* Rest OFDM rates */
2892 	rates[5] = min(rates[0], rate_info->target_power_36);
2893 	rates[6] = min(rates[0], rate_info->target_power_48);
2894 	rates[7] = min(rates[0], rate_info->target_power_54);
2895 
2896 	/* CCK rates */
2897 	/* 1L */
2898 	rates[8] = min(rates[0], rate_info->target_power_6to24);
2899 	/* 2L */
2900 	rates[9] = min(rates[0], rate_info->target_power_36);
2901 	/* 2S */
2902 	rates[10] = min(rates[0], rate_info->target_power_36);
2903 	/* 5L */
2904 	rates[11] = min(rates[0], rate_info->target_power_48);
2905 	/* 5S */
2906 	rates[12] = min(rates[0], rate_info->target_power_48);
2907 	/* 11L */
2908 	rates[13] = min(rates[0], rate_info->target_power_54);
2909 	/* 11S */
2910 	rates[14] = min(rates[0], rate_info->target_power_54);
2911 
2912 	/* XR rates */
2913 	rates[15] = min(rates[0], rate_info->target_power_6to24);
2914 
2915 	/* CCK rates have different peak to average ratio
2916 	 * so we have to tweak their power so that gainf
2917 	 * correction works ok. For this we use OFDM to
2918 	 * CCK delta from eeprom */
2919 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2920 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2921 		for (i = 8; i <= 15; i++)
2922 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2923 
2924 	/* Now that we have all rates setup use table offset to
2925 	 * match the power range set by user with the power indices
2926 	 * on PCDAC/PDADC table */
2927 	for (i = 0; i < 16; i++) {
2928 		rates[i] += ah->ah_txpower.txp_offset;
2929 		/* Don't get out of bounds */
2930 		if (rates[i] > 63)
2931 			rates[i] = 63;
2932 	}
2933 
2934 	/* Min/max in 0.25dB units */
2935 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2936 	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2937 	ah->ah_txpower.txp_ofdm = rates[7];
2938 }
2939 
2940 
2941 /*
2942  * Set transmition power
2943  */
2944 int
2945 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2946 		u8 ee_mode, u8 txpower)
2947 {
2948 	struct ath5k_rate_pcal_info rate_info;
2949 	u8 type;
2950 	int ret;
2951 
2952 	ATH5K_TRACE(ah->ah_sc);
2953 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2954 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2955 		return -EINVAL;
2956 	}
2957 	if (txpower == 0)
2958 		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2959 
2960 	/* Reset TX power values */
2961 	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2962 	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2963 	ah->ah_txpower.txp_min_pwr = 0;
2964 	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2965 
2966 	/* Initialize TX power table */
2967 	switch (ah->ah_radio) {
2968 	case AR5K_RF5111:
2969 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2970 		break;
2971 	case AR5K_RF5112:
2972 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2973 		break;
2974 	case AR5K_RF2413:
2975 	case AR5K_RF5413:
2976 	case AR5K_RF2316:
2977 	case AR5K_RF2317:
2978 	case AR5K_RF2425:
2979 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2980 		break;
2981 	default:
2982 		return -EINVAL;
2983 	}
2984 
2985 	/* FIXME: Only on channel/mode change */
2986 	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2987 	if (ret)
2988 		return ret;
2989 
2990 	/* Limit max power if we have a CTL available */
2991 	ath5k_get_max_ctl_power(ah, channel);
2992 
2993 	/* FIXME: Tx power limit for this regdomain
2994 	 * XXX: Mac80211/CRDA will do that anyway ? */
2995 
2996 	/* FIXME: Antenna reduction stuff */
2997 
2998 	/* FIXME: Limit power on turbo modes */
2999 
3000 	/* FIXME: TPC scale reduction */
3001 
3002 	/* Get surounding channels for per-rate power table
3003 	 * calibration */
3004 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3005 
3006 	/* Setup rate power table */
3007 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3008 
3009 	/* Write rate power table on hw */
3010 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3011 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3012 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3013 
3014 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3015 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3016 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3017 
3018 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3019 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3020 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3021 
3022 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3023 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3024 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3025 
3026 	/* FIXME: TPC support */
3027 	if (ah->ah_txpower.txp_tpc) {
3028 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3029 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3030 
3031 		ath5k_hw_reg_write(ah,
3032 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3033 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3034 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3035 			AR5K_TPC);
3036 	} else {
3037 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3038 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3045 {
3046 	/*Just a try M.F.*/
3047 	struct ieee80211_channel *channel = ah->ah_current_channel;
3048 	u8 ee_mode;
3049 
3050 	ATH5K_TRACE(ah->ah_sc);
3051 
3052 	switch (channel->hw_value & CHANNEL_MODES) {
3053 	case CHANNEL_A:
3054 	case CHANNEL_T:
3055 	case CHANNEL_XR:
3056 		ee_mode = AR5K_EEPROM_MODE_11A;
3057 		break;
3058 	case CHANNEL_G:
3059 	case CHANNEL_TG:
3060 		ee_mode = AR5K_EEPROM_MODE_11G;
3061 		break;
3062 	case CHANNEL_B:
3063 		ee_mode = AR5K_EEPROM_MODE_11B;
3064 		break;
3065 	default:
3066 		ATH5K_ERR(ah->ah_sc,
3067 			"invalid channel: %d\n", channel->center_freq);
3068 		return -EINVAL;
3069 	}
3070 
3071 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3072 		"changing txpower to %d\n", txpower);
3073 
3074 	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3075 }
3076 
3077 #undef _ATH5K_PHY
3078