xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31 
32 
33 /******************\
34 * Helper functions *
35 \******************/
36 
37 /*
38  * Get the PHY Chip revision
39  */
40 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41 {
42 	unsigned int i;
43 	u32 srev;
44 	u16 ret;
45 
46 	/*
47 	 * Set the radio chip access register
48 	 */
49 	switch (chan) {
50 	case CHANNEL_2GHZ:
51 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 		break;
53 	case CHANNEL_5GHZ:
54 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 		break;
56 	default:
57 		return 0;
58 	}
59 
60 	mdelay(2);
61 
62 	/* ...wait until PHY is ready and read the selected radio revision */
63 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64 
65 	for (i = 0; i < 8; i++)
66 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67 
68 	if (ah->ah_version == AR5K_AR5210) {
69 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 	} else {
72 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 				((srev & 0x0f) << 4), 8);
75 	}
76 
77 	/* Reset to the 5GHz mode */
78 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79 
80 	return ret;
81 }
82 
83 /*
84  * Check if a channel is supported
85  */
86 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87 {
88 	/* Check if the channel is in our supported range */
89 	if (flags & CHANNEL_2GHZ) {
90 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 			return true;
93 	} else if (flags & CHANNEL_5GHZ)
94 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 			return true;
97 
98 	return false;
99 }
100 
101 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 				struct ieee80211_channel *channel)
103 {
104 	u8 refclk_freq;
105 
106 	if ((ah->ah_radio == AR5K_RF5112) ||
107 	(ah->ah_radio == AR5K_RF5413) ||
108 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 		refclk_freq = 40;
110 	else
111 		refclk_freq = 32;
112 
113 	if ((channel->center_freq % refclk_freq != 0) &&
114 	((channel->center_freq % refclk_freq < 10) ||
115 	(channel->center_freq % refclk_freq > 22)))
116 		return true;
117 	else
118 		return false;
119 }
120 
121 /*
122  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123  */
124 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 					const struct ath5k_rf_reg *rf_regs,
126 					u32 val, u8 reg_id, bool set)
127 {
128 	const struct ath5k_rf_reg *rfreg = NULL;
129 	u8 offset, bank, num_bits, col, position;
130 	u16 entry;
131 	u32 mask, data, last_bit, bits_shifted, first_bit;
132 	u32 *rfb;
133 	s32 bits_left;
134 	int i;
135 
136 	data = 0;
137 	rfb = ah->ah_rf_banks;
138 
139 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 		if (rf_regs[i].index == reg_id) {
141 			rfreg = &rf_regs[i];
142 			break;
143 		}
144 	}
145 
146 	if (rfb == NULL || rfreg == NULL) {
147 		ATH5K_PRINTF("Rf register not found!\n");
148 		/* should not happen */
149 		return 0;
150 	}
151 
152 	bank = rfreg->bank;
153 	num_bits = rfreg->field.len;
154 	first_bit = rfreg->field.pos;
155 	col = rfreg->field.col;
156 
157 	/* first_bit is an offset from bank's
158 	 * start. Since we have all banks on
159 	 * the same array, we use this offset
160 	 * to mark each bank's start */
161 	offset = ah->ah_offset[bank];
162 
163 	/* Boundary check */
164 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 		return 0;
167 	}
168 
169 	entry = ((first_bit - 1) / 8) + offset;
170 	position = (first_bit - 1) % 8;
171 
172 	if (set)
173 		data = ath5k_hw_bitswap(val, num_bits);
174 
175 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 	position = 0, entry++) {
177 
178 		last_bit = (position + bits_left > 8) ? 8 :
179 					position + bits_left;
180 
181 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 								(col * 8);
183 
184 		if (set) {
185 			rfb[entry] &= ~mask;
186 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187 			data >>= (8 - position);
188 		} else {
189 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 				<< bits_shifted;
191 			bits_shifted += last_bit - position;
192 		}
193 
194 		bits_left -= 8 - position;
195 	}
196 
197 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198 
199 	return data;
200 }
201 
202 /**
203  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204  *
205  * @ah: the &struct ath5k_hw
206  * @channel: the currently set channel upon reset
207  *
208  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210  *
211  * Since delta slope is floating point we split it on its exponent and
212  * mantissa and provide these values on hw.
213  *
214  * For more infos i think this patent is related
215  * http://www.freepatentsonline.com/7184495.html
216  */
217 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 	struct ieee80211_channel *channel)
219 {
220 	/* Get exponent and mantissa and set it */
221 	u32 coef_scaled, coef_exp, coef_man,
222 		ds_coef_exp, ds_coef_man, clock;
223 
224 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 		!(channel->hw_value & CHANNEL_OFDM));
226 
227 	/* Get coefficient
228 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 	 * we scale coef by shifting clock value by 24 for
230 	 * better precision since we use integers */
231 	switch (ah->ah_bwmode) {
232 	case AR5K_BWMODE_40MHZ:
233 		clock = 40 * 2;
234 		break;
235 	case AR5K_BWMODE_10MHZ:
236 		clock = 40 / 2;
237 		break;
238 	case AR5K_BWMODE_5MHZ:
239 		clock = 40 / 4;
240 		break;
241 	default:
242 		clock = 40;
243 		break;
244 	}
245 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246 
247 	/* Get exponent
248 	 * ALGO: coef_exp = 14 - highest set bit position */
249 	coef_exp = ilog2(coef_scaled);
250 
251 	/* Doesn't make sense if it's zero*/
252 	if (!coef_scaled || !coef_exp)
253 		return -EINVAL;
254 
255 	/* Note: we've shifted coef_scaled by 24 */
256 	coef_exp = 14 - (coef_exp - 24);
257 
258 
259 	/* Get mantissa (significant digits)
260 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 	coef_man = coef_scaled +
262 		(1 << (24 - coef_exp - 1));
263 
264 	/* Calculate delta slope coefficient exponent
265 	 * and mantissa (remove scaling) and set them on hw */
266 	ds_coef_man = coef_man >> (24 - coef_exp);
267 	ds_coef_exp = coef_exp - 16;
268 
269 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273 
274 	return 0;
275 }
276 
277 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278 {
279 	/*Just a try M.F.*/
280 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281 
282 	return 0;
283 }
284 
285 
286 /**********************\
287 * RF Gain optimization *
288 \**********************/
289 
290 /*
291  * This code is used to optimize RF gain on different environments
292  * (temperature mostly) based on feedback from a power detector.
293  *
294  * It's only used on RF5111 and RF5112, later RF chips seem to have
295  * auto adjustment on hw -notice they have a much smaller BANK 7 and
296  * no gain optimization ladder-.
297  *
298  * For more infos check out this patent doc
299  * http://www.freepatentsonline.com/7400691.html
300  *
301  * This paper describes power drops as seen on the receiver due to
302  * probe packets
303  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304  * %20of%20Power%20Control.pdf
305  *
306  * And this is the MadWiFi bug entry related to the above
307  * http://madwifi-project.org/ticket/1659
308  * with various measurements and diagrams
309  *
310  * TODO: Deal with power drops due to probes by setting an apropriate
311  * tx power on the probe packets ! Make this part of the calibration process.
312  */
313 
314 /* Initialize ah_gain durring attach */
315 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316 {
317 	/* Initialize the gain optimization values */
318 	switch (ah->ah_radio) {
319 	case AR5K_RF5111:
320 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321 		ah->ah_gain.g_low = 20;
322 		ah->ah_gain.g_high = 35;
323 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324 		break;
325 	case AR5K_RF5112:
326 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327 		ah->ah_gain.g_low = 20;
328 		ah->ah_gain.g_high = 85;
329 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330 		break;
331 	default:
332 		return -EINVAL;
333 	}
334 
335 	return 0;
336 }
337 
338 /* Schedule a gain probe check on the next transmited packet.
339  * That means our next packet is going to be sent with lower
340  * tx power and a Peak to Average Power Detector (PAPD) will try
341  * to measure the gain.
342  *
343  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
344  * just after we enable the probe so that we don't mess with
345  * standard traffic ? Maybe it's time to use sw interrupts and
346  * a probe tasklet !!!
347  */
348 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349 {
350 
351 	/* Skip if gain calibration is inactive or
352 	 * we already handle a probe request */
353 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354 		return;
355 
356 	/* Send the packet with 2dB below max power as
357 	 * patent doc suggest */
358 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
359 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
360 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361 
362 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363 
364 }
365 
366 /* Calculate gain_F measurement correction
367  * based on the current step for RF5112 rev. 2 */
368 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
369 {
370 	u32 mix, step;
371 	u32 *rf;
372 	const struct ath5k_gain_opt *go;
373 	const struct ath5k_gain_opt_step *g_step;
374 	const struct ath5k_rf_reg *rf_regs;
375 
376 	/* Only RF5112 Rev. 2 supports it */
377 	if ((ah->ah_radio != AR5K_RF5112) ||
378 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379 		return 0;
380 
381 	go = &rfgain_opt_5112;
382 	rf_regs = rf_regs_5112a;
383 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
384 
385 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
386 
387 	if (ah->ah_rf_banks == NULL)
388 		return 0;
389 
390 	rf = ah->ah_rf_banks;
391 	ah->ah_gain.g_f_corr = 0;
392 
393 	/* No VGA (Variable Gain Amplifier) override, skip */
394 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
395 		return 0;
396 
397 	/* Mix gain stepping */
398 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
399 
400 	/* Mix gain override */
401 	mix = g_step->gos_param[0];
402 
403 	switch (mix) {
404 	case 3:
405 		ah->ah_gain.g_f_corr = step * 2;
406 		break;
407 	case 2:
408 		ah->ah_gain.g_f_corr = (step - 5) * 2;
409 		break;
410 	case 1:
411 		ah->ah_gain.g_f_corr = step;
412 		break;
413 	default:
414 		ah->ah_gain.g_f_corr = 0;
415 		break;
416 	}
417 
418 	return ah->ah_gain.g_f_corr;
419 }
420 
421 /* Check if current gain_F measurement is in the range of our
422  * power detector windows. If we get a measurement outside range
423  * we know it's not accurate (detectors can't measure anything outside
424  * their detection window) so we must ignore it */
425 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
426 {
427 	const struct ath5k_rf_reg *rf_regs;
428 	u32 step, mix_ovr, level[4];
429 	u32 *rf;
430 
431 	if (ah->ah_rf_banks == NULL)
432 		return false;
433 
434 	rf = ah->ah_rf_banks;
435 
436 	if (ah->ah_radio == AR5K_RF5111) {
437 
438 		rf_regs = rf_regs_5111;
439 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440 
441 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442 			false);
443 
444 		level[0] = 0;
445 		level[1] = (step == 63) ? 50 : step + 4;
446 		level[2] = (step != 63) ? 64 : level[0];
447 		level[3] = level[2] + 50 ;
448 
449 		ah->ah_gain.g_high = level[3] -
450 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
451 		ah->ah_gain.g_low = level[0] +
452 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
453 	} else {
454 
455 		rf_regs = rf_regs_5112;
456 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457 
458 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459 			false);
460 
461 		level[0] = level[2] = 0;
462 
463 		if (mix_ovr == 1) {
464 			level[1] = level[3] = 83;
465 		} else {
466 			level[1] = level[3] = 107;
467 			ah->ah_gain.g_high = 55;
468 		}
469 	}
470 
471 	return (ah->ah_gain.g_current >= level[0] &&
472 			ah->ah_gain.g_current <= level[1]) ||
473 		(ah->ah_gain.g_current >= level[2] &&
474 			ah->ah_gain.g_current <= level[3]);
475 }
476 
477 /* Perform gain_F adjustment by choosing the right set
478  * of parameters from RF gain optimization ladder */
479 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
480 {
481 	const struct ath5k_gain_opt *go;
482 	const struct ath5k_gain_opt_step *g_step;
483 	int ret = 0;
484 
485 	switch (ah->ah_radio) {
486 	case AR5K_RF5111:
487 		go = &rfgain_opt_5111;
488 		break;
489 	case AR5K_RF5112:
490 		go = &rfgain_opt_5112;
491 		break;
492 	default:
493 		return 0;
494 	}
495 
496 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
497 
498 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
499 
500 		/* Reached maximum */
501 		if (ah->ah_gain.g_step_idx == 0)
502 			return -1;
503 
504 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
506 				ah->ah_gain.g_step_idx > 0;
507 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
508 			ah->ah_gain.g_target -= 2 *
509 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
510 			    g_step->gos_gain);
511 
512 		ret = 1;
513 		goto done;
514 	}
515 
516 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
517 
518 		/* Reached minimum */
519 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520 			return -2;
521 
522 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
525 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
526 			ah->ah_gain.g_target -= 2 *
527 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
528 			    g_step->gos_gain);
529 
530 		ret = 2;
531 		goto done;
532 	}
533 
534 done:
535 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536 		"ret %d, gain step %u, current gain %u, target gain %u\n",
537 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538 		ah->ah_gain.g_target);
539 
540 	return ret;
541 }
542 
543 /* Main callback for thermal RF gain calibration engine
544  * Check for a new gain reading and schedule an adjustment
545  * if needed.
546  *
547  * TODO: Use sw interrupt to schedule reset if gain_F needs
548  * adjustment */
549 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550 {
551 	u32 data, type;
552 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553 
554 	if (ah->ah_rf_banks == NULL ||
555 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556 		return AR5K_RFGAIN_INACTIVE;
557 
558 	/* No check requested, either engine is inactive
559 	 * or an adjustment is already requested */
560 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561 		goto done;
562 
563 	/* Read the PAPD (Peak to Average Power Detector)
564 	 * register */
565 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566 
567 	/* No probe is scheduled, read gain_F measurement */
568 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571 
572 		/* If tx packet is CCK correct the gain_F measurement
573 		 * by cck ofdm gain delta */
574 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576 				ah->ah_gain.g_current +=
577 					ee->ee_cck_ofdm_gain_delta;
578 			else
579 				ah->ah_gain.g_current +=
580 					AR5K_GAIN_CCK_PROBE_CORR;
581 		}
582 
583 		/* Further correct gain_F measurement for
584 		 * RF5112A radios */
585 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586 			ath5k_hw_rf_gainf_corr(ah);
587 			ah->ah_gain.g_current =
588 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590 				0;
591 		}
592 
593 		/* Check if measurement is ok and if we need
594 		 * to adjust gain, schedule a gain adjustment,
595 		 * else switch back to the acive state */
596 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
597 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598 		ath5k_hw_rf_gainf_adjust(ah)) {
599 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600 		} else {
601 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602 		}
603 	}
604 
605 done:
606 	return ah->ah_gain.g_state;
607 }
608 
609 /* Write initial RF gain table to set the RF sensitivity
610  * this one works on all RF chips and has nothing to do
611  * with gain_F calibration */
612 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
613 {
614 	const struct ath5k_ini_rfgain *ath5k_rfg;
615 	unsigned int i, size, index;
616 
617 	switch (ah->ah_radio) {
618 	case AR5K_RF5111:
619 		ath5k_rfg = rfgain_5111;
620 		size = ARRAY_SIZE(rfgain_5111);
621 		break;
622 	case AR5K_RF5112:
623 		ath5k_rfg = rfgain_5112;
624 		size = ARRAY_SIZE(rfgain_5112);
625 		break;
626 	case AR5K_RF2413:
627 		ath5k_rfg = rfgain_2413;
628 		size = ARRAY_SIZE(rfgain_2413);
629 		break;
630 	case AR5K_RF2316:
631 		ath5k_rfg = rfgain_2316;
632 		size = ARRAY_SIZE(rfgain_2316);
633 		break;
634 	case AR5K_RF5413:
635 		ath5k_rfg = rfgain_5413;
636 		size = ARRAY_SIZE(rfgain_5413);
637 		break;
638 	case AR5K_RF2317:
639 	case AR5K_RF2425:
640 		ath5k_rfg = rfgain_2425;
641 		size = ARRAY_SIZE(rfgain_2425);
642 		break;
643 	default:
644 		return -EINVAL;
645 	}
646 
647 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
648 
649 	for (i = 0; i < size; i++) {
650 		AR5K_REG_WAIT(i);
651 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
652 			(u32)ath5k_rfg[i].rfg_register);
653 	}
654 
655 	return 0;
656 }
657 
658 
659 
660 /********************\
661 * RF Registers setup *
662 \********************/
663 
664 /*
665  * Setup RF registers by writing RF buffer on hw
666  */
667 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
668 	struct ieee80211_channel *channel, unsigned int mode)
669 {
670 	const struct ath5k_rf_reg *rf_regs;
671 	const struct ath5k_ini_rfbuffer *ini_rfb;
672 	const struct ath5k_gain_opt *go = NULL;
673 	const struct ath5k_gain_opt_step *g_step;
674 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
675 	u8 ee_mode = 0;
676 	u32 *rfb;
677 	int i, obdb = -1, bank = -1;
678 
679 	switch (ah->ah_radio) {
680 	case AR5K_RF5111:
681 		rf_regs = rf_regs_5111;
682 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
683 		ini_rfb = rfb_5111;
684 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
685 		go = &rfgain_opt_5111;
686 		break;
687 	case AR5K_RF5112:
688 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
689 			rf_regs = rf_regs_5112a;
690 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
691 			ini_rfb = rfb_5112a;
692 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
693 		} else {
694 			rf_regs = rf_regs_5112;
695 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
696 			ini_rfb = rfb_5112;
697 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
698 		}
699 		go = &rfgain_opt_5112;
700 		break;
701 	case AR5K_RF2413:
702 		rf_regs = rf_regs_2413;
703 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
704 		ini_rfb = rfb_2413;
705 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
706 		break;
707 	case AR5K_RF2316:
708 		rf_regs = rf_regs_2316;
709 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
710 		ini_rfb = rfb_2316;
711 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
712 		break;
713 	case AR5K_RF5413:
714 		rf_regs = rf_regs_5413;
715 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
716 		ini_rfb = rfb_5413;
717 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
718 		break;
719 	case AR5K_RF2317:
720 		rf_regs = rf_regs_2425;
721 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722 		ini_rfb = rfb_2317;
723 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
724 		break;
725 	case AR5K_RF2425:
726 		rf_regs = rf_regs_2425;
727 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
729 			ini_rfb = rfb_2425;
730 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
731 		} else {
732 			ini_rfb = rfb_2417;
733 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
734 		}
735 		break;
736 	default:
737 		return -EINVAL;
738 	}
739 
740 	/* If it's the first time we set RF buffer, allocate
741 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
742 	 * we set above */
743 	if (ah->ah_rf_banks == NULL) {
744 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
745 								GFP_KERNEL);
746 		if (ah->ah_rf_banks == NULL) {
747 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
748 			return -ENOMEM;
749 		}
750 	}
751 
752 	/* Copy values to modify them */
753 	rfb = ah->ah_rf_banks;
754 
755 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
756 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
757 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
758 			return -EINVAL;
759 		}
760 
761 		/* Bank changed, write down the offset */
762 		if (bank != ini_rfb[i].rfb_bank) {
763 			bank = ini_rfb[i].rfb_bank;
764 			ah->ah_offset[bank] = i;
765 		}
766 
767 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
768 	}
769 
770 	/* Set Output and Driver bias current (OB/DB) */
771 	if (channel->hw_value & CHANNEL_2GHZ) {
772 
773 		if (channel->hw_value & CHANNEL_CCK)
774 			ee_mode = AR5K_EEPROM_MODE_11B;
775 		else
776 			ee_mode = AR5K_EEPROM_MODE_11G;
777 
778 		/* For RF511X/RF211X combination we
779 		 * use b_OB and b_DB parameters stored
780 		 * in eeprom on ee->ee_ob[ee_mode][0]
781 		 *
782 		 * For all other chips we use OB/DB for 2Ghz
783 		 * stored in the b/g modal section just like
784 		 * 802.11a on ee->ee_ob[ee_mode][1] */
785 		if ((ah->ah_radio == AR5K_RF5111) ||
786 		(ah->ah_radio == AR5K_RF5112))
787 			obdb = 0;
788 		else
789 			obdb = 1;
790 
791 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
792 						AR5K_RF_OB_2GHZ, true);
793 
794 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
795 						AR5K_RF_DB_2GHZ, true);
796 
797 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
798 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
799 			(ah->ah_radio == AR5K_RF5111)) {
800 
801 		/* For 11a, Turbo and XR we need to choose
802 		 * OB/DB based on frequency range */
803 		ee_mode = AR5K_EEPROM_MODE_11A;
804 		obdb =	 channel->center_freq >= 5725 ? 3 :
805 			(channel->center_freq >= 5500 ? 2 :
806 			(channel->center_freq >= 5260 ? 1 :
807 			 (channel->center_freq > 4000 ? 0 : -1)));
808 
809 		if (obdb < 0)
810 			return -EINVAL;
811 
812 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
813 						AR5K_RF_OB_5GHZ, true);
814 
815 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
816 						AR5K_RF_DB_5GHZ, true);
817 	}
818 
819 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
820 
821 	/* Set turbo mode (N/A on RF5413) */
822 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
823 	(ah->ah_radio != AR5K_RF5413))
824 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
825 
826 	/* Bank Modifications (chip-specific) */
827 	if (ah->ah_radio == AR5K_RF5111) {
828 
829 		/* Set gain_F settings according to current step */
830 		if (channel->hw_value & CHANNEL_OFDM) {
831 
832 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
833 					AR5K_PHY_FRAME_CTL_TX_CLIP,
834 					g_step->gos_param[0]);
835 
836 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
837 							AR5K_RF_PWD_90, true);
838 
839 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
840 							AR5K_RF_PWD_84, true);
841 
842 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
843 						AR5K_RF_RFGAIN_SEL, true);
844 
845 			/* We programmed gain_F parameters, switch back
846 			 * to active state */
847 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
848 
849 		}
850 
851 		/* Bank 6/7 setup */
852 
853 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
854 						AR5K_RF_PWD_XPD, true);
855 
856 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
857 						AR5K_RF_XPD_GAIN, true);
858 
859 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
860 						AR5K_RF_GAIN_I, true);
861 
862 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
863 						AR5K_RF_PLO_SEL, true);
864 
865 		/* Tweak power detectors for half/quarter rate support */
866 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
867 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
868 			u8 wait_i;
869 
870 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
871 						AR5K_RF_WAIT_S, true);
872 
873 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
874 							0x1f : 0x10;
875 
876 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
877 						AR5K_RF_WAIT_I, true);
878 			ath5k_hw_rfb_op(ah, rf_regs, 3,
879 						AR5K_RF_MAX_TIME, true);
880 
881 		}
882 	}
883 
884 	if (ah->ah_radio == AR5K_RF5112) {
885 
886 		/* Set gain_F settings according to current step */
887 		if (channel->hw_value & CHANNEL_OFDM) {
888 
889 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
890 						AR5K_RF_MIXGAIN_OVR, true);
891 
892 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
893 						AR5K_RF_PWD_138, true);
894 
895 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
896 						AR5K_RF_PWD_137, true);
897 
898 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
899 						AR5K_RF_PWD_136, true);
900 
901 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
902 						AR5K_RF_PWD_132, true);
903 
904 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
905 						AR5K_RF_PWD_131, true);
906 
907 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
908 						AR5K_RF_PWD_130, true);
909 
910 			/* We programmed gain_F parameters, switch back
911 			 * to active state */
912 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
913 		}
914 
915 		/* Bank 6/7 setup */
916 
917 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
918 						AR5K_RF_XPD_SEL, true);
919 
920 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
921 			/* Rev. 1 supports only one xpd */
922 			ath5k_hw_rfb_op(ah, rf_regs,
923 						ee->ee_x_gain[ee_mode],
924 						AR5K_RF_XPD_GAIN, true);
925 
926 		} else {
927 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
928 			if (ee->ee_pd_gains[ee_mode] > 1) {
929 				ath5k_hw_rfb_op(ah, rf_regs,
930 						pdg_curve_to_idx[0],
931 						AR5K_RF_PD_GAIN_LO, true);
932 				ath5k_hw_rfb_op(ah, rf_regs,
933 						pdg_curve_to_idx[1],
934 						AR5K_RF_PD_GAIN_HI, true);
935 			} else {
936 				ath5k_hw_rfb_op(ah, rf_regs,
937 						pdg_curve_to_idx[0],
938 						AR5K_RF_PD_GAIN_LO, true);
939 				ath5k_hw_rfb_op(ah, rf_regs,
940 						pdg_curve_to_idx[0],
941 						AR5K_RF_PD_GAIN_HI, true);
942 			}
943 
944 			/* Lower synth voltage on Rev 2 */
945 			ath5k_hw_rfb_op(ah, rf_regs, 2,
946 					AR5K_RF_HIGH_VC_CP, true);
947 
948 			ath5k_hw_rfb_op(ah, rf_regs, 2,
949 					AR5K_RF_MID_VC_CP, true);
950 
951 			ath5k_hw_rfb_op(ah, rf_regs, 2,
952 					AR5K_RF_LOW_VC_CP, true);
953 
954 			ath5k_hw_rfb_op(ah, rf_regs, 2,
955 					AR5K_RF_PUSH_UP, true);
956 
957 			/* Decrease power consumption on 5213+ BaseBand */
958 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
959 				ath5k_hw_rfb_op(ah, rf_regs, 1,
960 						AR5K_RF_PAD2GND, true);
961 
962 				ath5k_hw_rfb_op(ah, rf_regs, 1,
963 						AR5K_RF_XB2_LVL, true);
964 
965 				ath5k_hw_rfb_op(ah, rf_regs, 1,
966 						AR5K_RF_XB5_LVL, true);
967 
968 				ath5k_hw_rfb_op(ah, rf_regs, 1,
969 						AR5K_RF_PWD_167, true);
970 
971 				ath5k_hw_rfb_op(ah, rf_regs, 1,
972 						AR5K_RF_PWD_166, true);
973 			}
974 		}
975 
976 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
977 						AR5K_RF_GAIN_I, true);
978 
979 		/* Tweak power detector for half/quarter rates */
980 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
981 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
982 			u8 pd_delay;
983 
984 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
985 							0xf : 0x8;
986 
987 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
988 						AR5K_RF_PD_PERIOD_A, true);
989 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
990 						AR5K_RF_PD_DELAY_A, true);
991 
992 		}
993 	}
994 
995 	if (ah->ah_radio == AR5K_RF5413 &&
996 	channel->hw_value & CHANNEL_2GHZ) {
997 
998 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
999 									true);
1000 
1001 		/* Set optimum value for early revisions (on pci-e chips) */
1002 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1003 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1004 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1005 						AR5K_RF_PWD_ICLOBUF_2G, true);
1006 
1007 	}
1008 
1009 	/* Write RF banks on hw */
1010 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1011 		AR5K_REG_WAIT(i);
1012 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 
1019 /**************************\
1020   PHY/RF channel functions
1021 \**************************/
1022 
1023 /*
1024  * Convertion needed for RF5110
1025  */
1026 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1027 {
1028 	u32 athchan;
1029 
1030 	/*
1031 	 * Convert IEEE channel/MHz to an internal channel value used
1032 	 * by the AR5210 chipset. This has not been verified with
1033 	 * newer chipsets like the AR5212A who have a completely
1034 	 * different RF/PHY part.
1035 	 */
1036 	athchan = (ath5k_hw_bitswap(
1037 			(ieee80211_frequency_to_channel(
1038 				channel->center_freq) - 24) / 2, 5)
1039 				<< 1) | (1 << 6) | 0x1;
1040 	return athchan;
1041 }
1042 
1043 /*
1044  * Set channel on RF5110
1045  */
1046 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1047 		struct ieee80211_channel *channel)
1048 {
1049 	u32 data;
1050 
1051 	/*
1052 	 * Set the channel and wait
1053 	 */
1054 	data = ath5k_hw_rf5110_chan2athchan(channel);
1055 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1056 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1057 	mdelay(1);
1058 
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Convertion needed for 5111
1064  */
1065 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1066 		struct ath5k_athchan_2ghz *athchan)
1067 {
1068 	int channel;
1069 
1070 	/* Cast this value to catch negative channel numbers (>= -19) */
1071 	channel = (int)ieee;
1072 
1073 	/*
1074 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1075 	 */
1076 	if (channel <= 13) {
1077 		athchan->a2_athchan = 115 + channel;
1078 		athchan->a2_flags = 0x46;
1079 	} else if (channel == 14) {
1080 		athchan->a2_athchan = 124;
1081 		athchan->a2_flags = 0x44;
1082 	} else if (channel >= 15 && channel <= 26) {
1083 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1084 		athchan->a2_flags = 0x46;
1085 	} else
1086 		return -EINVAL;
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Set channel on 5111
1093  */
1094 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1095 		struct ieee80211_channel *channel)
1096 {
1097 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1098 	unsigned int ath5k_channel =
1099 		ieee80211_frequency_to_channel(channel->center_freq);
1100 	u32 data0, data1, clock;
1101 	int ret;
1102 
1103 	/*
1104 	 * Set the channel on the RF5111 radio
1105 	 */
1106 	data0 = data1 = 0;
1107 
1108 	if (channel->hw_value & CHANNEL_2GHZ) {
1109 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1110 		ret = ath5k_hw_rf5111_chan2athchan(
1111 			ieee80211_frequency_to_channel(channel->center_freq),
1112 			&ath5k_channel_2ghz);
1113 		if (ret)
1114 			return ret;
1115 
1116 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1117 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1118 		    << 5) | (1 << 4);
1119 	}
1120 
1121 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1122 		clock = 1;
1123 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1124 			(clock << 1) | (1 << 10) | 1;
1125 	} else {
1126 		clock = 0;
1127 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1128 			<< 2) | (clock << 1) | (1 << 10) | 1;
1129 	}
1130 
1131 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1132 			AR5K_RF_BUFFER);
1133 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1134 			AR5K_RF_BUFFER_CONTROL_3);
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Set channel on 5112 and newer
1141  */
1142 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1143 		struct ieee80211_channel *channel)
1144 {
1145 	u32 data, data0, data1, data2;
1146 	u16 c;
1147 
1148 	data = data0 = data1 = data2 = 0;
1149 	c = channel->center_freq;
1150 
1151 	if (c < 4800) {
1152 		if (!((c - 2224) % 5)) {
1153 			data0 = ((2 * (c - 704)) - 3040) / 10;
1154 			data1 = 1;
1155 		} else if (!((c - 2192) % 5)) {
1156 			data0 = ((2 * (c - 672)) - 3040) / 10;
1157 			data1 = 0;
1158 		} else
1159 			return -EINVAL;
1160 
1161 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1162 	} else if ((c % 5) != 2 || c > 5435) {
1163 		if (!(c % 20) && c >= 5120) {
1164 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1165 			data2 = ath5k_hw_bitswap(3, 2);
1166 		} else if (!(c % 10)) {
1167 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1168 			data2 = ath5k_hw_bitswap(2, 2);
1169 		} else if (!(c % 5)) {
1170 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1171 			data2 = ath5k_hw_bitswap(1, 2);
1172 		} else
1173 			return -EINVAL;
1174 	} else {
1175 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1176 		data2 = ath5k_hw_bitswap(0, 2);
1177 	}
1178 
1179 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1180 
1181 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1182 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Set the channel on the RF2425
1189  */
1190 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1191 		struct ieee80211_channel *channel)
1192 {
1193 	u32 data, data0, data2;
1194 	u16 c;
1195 
1196 	data = data0 = data2 = 0;
1197 	c = channel->center_freq;
1198 
1199 	if (c < 4800) {
1200 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1201 		data2 = 0;
1202 	/* ? 5GHz ? */
1203 	} else if ((c % 5) != 2 || c > 5435) {
1204 		if (!(c % 20) && c < 5120)
1205 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1206 		else if (!(c % 10))
1207 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1208 		else if (!(c % 5))
1209 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1210 		else
1211 			return -EINVAL;
1212 		data2 = ath5k_hw_bitswap(1, 2);
1213 	} else {
1214 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1215 		data2 = ath5k_hw_bitswap(0, 2);
1216 	}
1217 
1218 	data = (data0 << 4) | data2 << 2 | 0x1001;
1219 
1220 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1221 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Set a channel on the radio chip
1228  */
1229 static int ath5k_hw_channel(struct ath5k_hw *ah,
1230 		struct ieee80211_channel *channel)
1231 {
1232 	int ret;
1233 	/*
1234 	 * Check bounds supported by the PHY (we don't care about regultory
1235 	 * restrictions at this point). Note: hw_value already has the band
1236 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1237 	 * of the band by that */
1238 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1239 		ATH5K_ERR(ah->ah_sc,
1240 			"channel frequency (%u MHz) out of supported "
1241 			"band range\n",
1242 			channel->center_freq);
1243 			return -EINVAL;
1244 	}
1245 
1246 	/*
1247 	 * Set the channel and wait
1248 	 */
1249 	switch (ah->ah_radio) {
1250 	case AR5K_RF5110:
1251 		ret = ath5k_hw_rf5110_channel(ah, channel);
1252 		break;
1253 	case AR5K_RF5111:
1254 		ret = ath5k_hw_rf5111_channel(ah, channel);
1255 		break;
1256 	case AR5K_RF2425:
1257 		ret = ath5k_hw_rf2425_channel(ah, channel);
1258 		break;
1259 	default:
1260 		ret = ath5k_hw_rf5112_channel(ah, channel);
1261 		break;
1262 	}
1263 
1264 	if (ret)
1265 		return ret;
1266 
1267 	/* Set JAPAN setting for channel 14 */
1268 	if (channel->center_freq == 2484) {
1269 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1270 				AR5K_PHY_CCKTXCTL_JAPAN);
1271 	} else {
1272 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1273 				AR5K_PHY_CCKTXCTL_WORLD);
1274 	}
1275 
1276 	ah->ah_current_channel = channel;
1277 
1278 	return 0;
1279 }
1280 
1281 /*****************\
1282   PHY calibration
1283 \*****************/
1284 
1285 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1286 {
1287 	s32 val;
1288 
1289 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1290 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1291 }
1292 
1293 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1294 {
1295 	int i;
1296 
1297 	ah->ah_nfcal_hist.index = 0;
1298 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1299 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1300 }
1301 
1302 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1303 {
1304 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1305 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1306 	hist->nfval[hist->index] = noise_floor;
1307 }
1308 
1309 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1310 {
1311 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1312 	s16 tmp;
1313 	int i, j;
1314 
1315 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1316 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1317 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1318 			if (sort[j] > sort[j-1]) {
1319 				tmp = sort[j];
1320 				sort[j] = sort[j-1];
1321 				sort[j-1] = tmp;
1322 			}
1323 		}
1324 	}
1325 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1326 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1327 			"cal %d:%d\n", i, sort[i]);
1328 	}
1329 	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1330 }
1331 
1332 /*
1333  * When we tell the hardware to perform a noise floor calibration
1334  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1335  * sample-and-hold the minimum noise level seen at the antennas.
1336  * This value is then stored in a ring buffer of recently measured
1337  * noise floor values so we have a moving window of the last few
1338  * samples.
1339  *
1340  * The median of the values in the history is then loaded into the
1341  * hardware for its own use for RSSI and CCA measurements.
1342  */
1343 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1344 {
1345 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1346 	u32 val;
1347 	s16 nf, threshold;
1348 	u8 ee_mode;
1349 
1350 	/* keep last value if calibration hasn't completed */
1351 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1352 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1353 			"NF did not complete in calibration window\n");
1354 
1355 		return;
1356 	}
1357 
1358 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1359 
1360 	/* completed NF calibration, test threshold */
1361 	nf = ath5k_hw_read_measured_noise_floor(ah);
1362 	threshold = ee->ee_noise_floor_thr[ee_mode];
1363 
1364 	if (nf > threshold) {
1365 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1366 			"noise floor failure detected; "
1367 			"read %d, threshold %d\n",
1368 			nf, threshold);
1369 
1370 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1371 	}
1372 
1373 	ath5k_hw_update_nfcal_hist(ah, nf);
1374 	nf = ath5k_hw_get_median_noise_floor(ah);
1375 
1376 	/* load noise floor (in .5 dBm) so the hardware will use it */
1377 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1378 	val |= (nf * 2) & AR5K_PHY_NF_M;
1379 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1380 
1381 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1382 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1383 
1384 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1385 		0, false);
1386 
1387 	/*
1388 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1389 	 * so that we're not capped by the median we just loaded.
1390 	 * This will be used as the initial value for the next noise
1391 	 * floor calibration.
1392 	 */
1393 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1394 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1395 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1396 		AR5K_PHY_AGCCTL_NF_EN |
1397 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1398 		AR5K_PHY_AGCCTL_NF);
1399 
1400 	ah->ah_noise_floor = nf;
1401 
1402 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1403 		"noise floor calibrated: %d\n", nf);
1404 }
1405 
1406 /*
1407  * Perform a PHY calibration on RF5110
1408  * -Fix BPSK/QAM Constellation (I/Q correction)
1409  */
1410 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1411 		struct ieee80211_channel *channel)
1412 {
1413 	u32 phy_sig, phy_agc, phy_sat, beacon;
1414 	int ret;
1415 
1416 	/*
1417 	 * Disable beacons and RX/TX queues, wait
1418 	 */
1419 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1420 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1421 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1422 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1423 
1424 	mdelay(2);
1425 
1426 	/*
1427 	 * Set the channel (with AGC turned off)
1428 	 */
1429 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1430 	udelay(10);
1431 	ret = ath5k_hw_channel(ah, channel);
1432 
1433 	/*
1434 	 * Activate PHY and wait
1435 	 */
1436 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1437 	mdelay(1);
1438 
1439 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1440 
1441 	if (ret)
1442 		return ret;
1443 
1444 	/*
1445 	 * Calibrate the radio chip
1446 	 */
1447 
1448 	/* Remember normal state */
1449 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1450 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1451 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1452 
1453 	/* Update radio registers */
1454 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1455 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1456 
1457 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1458 			AR5K_PHY_AGCCOARSE_LO)) |
1459 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1460 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1461 
1462 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1463 			AR5K_PHY_ADCSAT_THR)) |
1464 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1465 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1466 
1467 	udelay(20);
1468 
1469 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1470 	udelay(10);
1471 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1472 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1473 
1474 	mdelay(1);
1475 
1476 	/*
1477 	 * Enable calibration and wait until completion
1478 	 */
1479 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1480 
1481 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1482 			AR5K_PHY_AGCCTL_CAL, 0, false);
1483 
1484 	/* Reset to normal state */
1485 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1486 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1487 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1488 
1489 	if (ret) {
1490 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1491 				channel->center_freq);
1492 		return ret;
1493 	}
1494 
1495 	/*
1496 	 * Re-enable RX/TX and beacons
1497 	 */
1498 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1499 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1500 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Perform I/Q calibration on RF5111/5112 and newer chips
1507  */
1508 static int
1509 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1510 {
1511 	u32 i_pwr, q_pwr;
1512 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1513 	int i;
1514 
1515 	if (!ah->ah_calibration ||
1516 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1517 		return 0;
1518 
1519 	/* Calibration has finished, get the results and re-run */
1520 	/* work around empty results which can apparently happen on 5212 */
1521 	for (i = 0; i <= 10; i++) {
1522 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1523 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1524 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1525 		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1526 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1527 		if (i_pwr && q_pwr)
1528 			break;
1529 	}
1530 
1531 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1532 
1533 	if (ah->ah_version == AR5K_AR5211)
1534 		q_coffd = q_pwr >> 6;
1535 	else
1536 		q_coffd = q_pwr >> 7;
1537 
1538 	/* protect against divide by 0 and loss of sign bits */
1539 	if (i_coffd == 0 || q_coffd < 2)
1540 		return 0;
1541 
1542 	i_coff = (-iq_corr) / i_coffd;
1543 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1544 
1545 	if (ah->ah_version == AR5K_AR5211)
1546 		q_coff = (i_pwr / q_coffd) - 64;
1547 	else
1548 		q_coff = (i_pwr / q_coffd) - 128;
1549 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1550 
1551 	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1552 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1553 			i_coff, q_coff, i_coffd, q_coffd);
1554 
1555 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1556 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1557 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1558 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1559 
1560 	/* Re-enable calibration -if we don't we'll commit
1561 	 * the same values again and again */
1562 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1563 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1564 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Perform a PHY calibration
1571  */
1572 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1573 		struct ieee80211_channel *channel)
1574 {
1575 	int ret;
1576 
1577 	if (ah->ah_radio == AR5K_RF5110)
1578 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1579 	else {
1580 		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1581 		ath5k_hw_request_rfgain_probe(ah);
1582 	}
1583 
1584 	return ret;
1585 }
1586 
1587 
1588 /***************************\
1589 * Spur mitigation functions *
1590 \***************************/
1591 
1592 static void
1593 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1594 				struct ieee80211_channel *channel)
1595 {
1596 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597 	u32 mag_mask[4] = {0, 0, 0, 0};
1598 	u32 pilot_mask[2] = {0, 0};
1599 	/* Note: fbin values are scaled up by 2 */
1600 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1601 	s32 spur_delta_phase, spur_freq_sigma_delta;
1602 	s32 spur_offset, num_symbols_x16;
1603 	u8 num_symbol_offsets, i, freq_band;
1604 
1605 	/* Convert current frequency to fbin value (the same way channels
1606 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1607 	 * up by 2 so we can compare it later */
1608 	if (channel->hw_value & CHANNEL_2GHZ) {
1609 		chan_fbin = (channel->center_freq - 2300) * 10;
1610 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1611 	} else {
1612 		chan_fbin = (channel->center_freq - 4900) * 10;
1613 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1614 	}
1615 
1616 	/* Check if any spur_chan_fbin from EEPROM is
1617 	 * within our current channel's spur detection range */
1618 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1619 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1620 	/* XXX: Half/Quarter channels ?*/
1621 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1622 		spur_detection_window *= 2;
1623 
1624 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1625 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1626 
1627 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1628 		 * so it's zero if we got nothing from EEPROM */
1629 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1630 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1631 			break;
1632 		}
1633 
1634 		if ((chan_fbin - spur_detection_window <=
1635 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1636 		(chan_fbin + spur_detection_window >=
1637 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1638 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1639 			break;
1640 		}
1641 	}
1642 
1643 	/* We need to enable spur filter for this channel */
1644 	if (spur_chan_fbin) {
1645 		spur_offset = spur_chan_fbin - chan_fbin;
1646 		/*
1647 		 * Calculate deltas:
1648 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1649 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1650 		 * Note: Both values have 100Hz resolution
1651 		 */
1652 		switch (ah->ah_bwmode) {
1653 		case AR5K_BWMODE_40MHZ:
1654 			/* Both sample_freq and chip_freq are 80MHz */
1655 			spur_delta_phase = (spur_offset << 16) / 25;
1656 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1657 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1658 			break;
1659 		case AR5K_BWMODE_10MHZ:
1660 			/* Both sample_freq and chip_freq are 20MHz (?) */
1661 			spur_delta_phase = (spur_offset << 18) / 25;
1662 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1663 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1664 		case AR5K_BWMODE_5MHZ:
1665 			/* Both sample_freq and chip_freq are 10MHz (?) */
1666 			spur_delta_phase = (spur_offset << 19) / 25;
1667 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1668 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1669 		default:
1670 			if (channel->hw_value == CHANNEL_A) {
1671 				/* Both sample_freq and chip_freq are 40MHz */
1672 				spur_delta_phase = (spur_offset << 17) / 25;
1673 				spur_freq_sigma_delta =
1674 						(spur_delta_phase >> 10);
1675 				symbol_width =
1676 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1677 			} else {
1678 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1679 				 * (for b compatibility) */
1680 				spur_delta_phase = (spur_offset << 17) / 25;
1681 				spur_freq_sigma_delta =
1682 						(spur_offset << 8) / 55;
1683 				symbol_width =
1684 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1685 			}
1686 			break;
1687 		}
1688 
1689 		/* Calculate pilot and magnitude masks */
1690 
1691 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1692 		 * and divide by symbol_width to find how many symbols we have
1693 		 * Note: number of symbols is scaled up by 16 */
1694 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1695 
1696 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1697 		if (!(num_symbols_x16 & 0xF))
1698 			/* _X_ */
1699 			num_symbol_offsets = 3;
1700 		else
1701 			/* _xx_ */
1702 			num_symbol_offsets = 4;
1703 
1704 		for (i = 0; i < num_symbol_offsets; i++) {
1705 
1706 			/* Calculate pilot mask */
1707 			s32 curr_sym_off =
1708 				(num_symbols_x16 / 16) + i + 25;
1709 
1710 			/* Pilot magnitude mask seems to be a way to
1711 			 * declare the boundaries for our detection
1712 			 * window or something, it's 2 for the middle
1713 			 * value(s) where the symbol is expected to be
1714 			 * and 1 on the boundary values */
1715 			u8 plt_mag_map =
1716 				(i == 0 || i == (num_symbol_offsets - 1))
1717 								? 1 : 2;
1718 
1719 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1720 				if (curr_sym_off <= 25)
1721 					pilot_mask[0] |= 1 << curr_sym_off;
1722 				else if (curr_sym_off >= 27)
1723 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1724 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1725 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1726 
1727 			/* Calculate magnitude mask (for viterbi decoder) */
1728 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1729 				mag_mask[0] |=
1730 					plt_mag_map << (curr_sym_off + 1) * 2;
1731 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1732 				mag_mask[1] |=
1733 					plt_mag_map << (curr_sym_off - 15) * 2;
1734 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1735 				mag_mask[2] |=
1736 					plt_mag_map << (curr_sym_off - 31) * 2;
1737 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1738 				mag_mask[3] |=
1739 					plt_mag_map << (curr_sym_off - 47) * 2;
1740 
1741 		}
1742 
1743 		/* Write settings on hw to enable spur filter */
1744 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1745 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1746 		/* XXX: Self correlator also ? */
1747 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1748 					AR5K_PHY_IQ_PILOT_MASK_EN |
1749 					AR5K_PHY_IQ_CHAN_MASK_EN |
1750 					AR5K_PHY_IQ_SPUR_FILT_EN);
1751 
1752 		/* Set delta phase and freq sigma delta */
1753 		ath5k_hw_reg_write(ah,
1754 				AR5K_REG_SM(spur_delta_phase,
1755 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1756 				AR5K_REG_SM(spur_freq_sigma_delta,
1757 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1758 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1759 				AR5K_PHY_TIMING_11);
1760 
1761 		/* Write pilot masks */
1762 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1763 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1764 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1765 					pilot_mask[1]);
1766 
1767 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1768 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1769 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1770 					pilot_mask[1]);
1771 
1772 		/* Write magnitude masks */
1773 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1774 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1775 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1776 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1777 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1778 					mag_mask[3]);
1779 
1780 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1781 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1782 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1783 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1784 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1785 					mag_mask[3]);
1786 
1787 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1788 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1789 		/* Clean up spur mitigation settings and disable fliter */
1790 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1791 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1792 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1793 					AR5K_PHY_IQ_PILOT_MASK_EN |
1794 					AR5K_PHY_IQ_CHAN_MASK_EN |
1795 					AR5K_PHY_IQ_SPUR_FILT_EN);
1796 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1797 
1798 		/* Clear pilot masks */
1799 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1800 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1801 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1802 					0);
1803 
1804 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1805 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1806 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1807 					0);
1808 
1809 		/* Clear magnitude masks */
1810 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1811 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1812 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1813 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1814 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1815 					0);
1816 
1817 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1818 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1819 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1820 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1821 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1822 					0);
1823 	}
1824 }
1825 
1826 
1827 /*****************\
1828 * Antenna control *
1829 \*****************/
1830 
1831 static void /*TODO:Boundary check*/
1832 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1833 {
1834 	if (ah->ah_version != AR5K_AR5210)
1835 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1836 }
1837 
1838 /*
1839  * Enable/disable fast rx antenna diversity
1840  */
1841 static void
1842 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1843 {
1844 	switch (ee_mode) {
1845 	case AR5K_EEPROM_MODE_11G:
1846 		/* XXX: This is set to
1847 		 * disabled on initvals !!! */
1848 	case AR5K_EEPROM_MODE_11A:
1849 		if (enable)
1850 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1851 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1852 		else
1853 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1854 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1855 		break;
1856 	case AR5K_EEPROM_MODE_11B:
1857 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1858 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1859 		break;
1860 	default:
1861 		return;
1862 	}
1863 
1864 	if (enable) {
1865 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1866 				AR5K_PHY_RESTART_DIV_GC, 4);
1867 
1868 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1869 					AR5K_PHY_FAST_ANT_DIV_EN);
1870 	} else {
1871 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1872 				AR5K_PHY_RESTART_DIV_GC, 0);
1873 
1874 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1875 					AR5K_PHY_FAST_ANT_DIV_EN);
1876 	}
1877 }
1878 
1879 void
1880 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1881 {
1882 	u8 ant0, ant1;
1883 
1884 	/*
1885 	 * In case a fixed antenna was set as default
1886 	 * use the same switch table twice.
1887 	 */
1888 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1889 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1890 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1891 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1892 	else {
1893 		ant0 = AR5K_ANT_SWTABLE_A;
1894 		ant1 = AR5K_ANT_SWTABLE_B;
1895 	}
1896 
1897 	/* Set antenna idle switch table */
1898 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1899 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1900 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1901 			AR5K_PHY_ANT_CTL_TXRX_EN));
1902 
1903 	/* Set antenna switch tables */
1904 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1905 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1906 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1907 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1908 }
1909 
1910 /*
1911  * Set antenna operating mode
1912  */
1913 void
1914 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1915 {
1916 	struct ieee80211_channel *channel = ah->ah_current_channel;
1917 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1918 	bool use_def_for_sg;
1919 	int ee_mode;
1920 	u8 def_ant, tx_ant;
1921 	u32 sta_id1 = 0;
1922 
1923 	/* if channel is not initialized yet we can't set the antennas
1924 	 * so just store the mode. it will be set on the next reset */
1925 	if (channel == NULL) {
1926 		ah->ah_ant_mode = ant_mode;
1927 		return;
1928 	}
1929 
1930 	def_ant = ah->ah_def_ant;
1931 
1932 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1933 	if (ee_mode < 0) {
1934 		ATH5K_ERR(ah->ah_sc,
1935 			"invalid channel: %d\n", channel->center_freq);
1936 		return;
1937 	}
1938 
1939 	switch (ant_mode) {
1940 	case AR5K_ANTMODE_DEFAULT:
1941 		tx_ant = 0;
1942 		use_def_for_tx = false;
1943 		update_def_on_tx = false;
1944 		use_def_for_rts = false;
1945 		use_def_for_sg = false;
1946 		fast_div = true;
1947 		break;
1948 	case AR5K_ANTMODE_FIXED_A:
1949 		def_ant = 1;
1950 		tx_ant = 1;
1951 		use_def_for_tx = true;
1952 		update_def_on_tx = false;
1953 		use_def_for_rts = true;
1954 		use_def_for_sg = true;
1955 		fast_div = false;
1956 		break;
1957 	case AR5K_ANTMODE_FIXED_B:
1958 		def_ant = 2;
1959 		tx_ant = 2;
1960 		use_def_for_tx = true;
1961 		update_def_on_tx = false;
1962 		use_def_for_rts = true;
1963 		use_def_for_sg = true;
1964 		fast_div = false;
1965 		break;
1966 	case AR5K_ANTMODE_SINGLE_AP:
1967 		def_ant = 1;	/* updated on tx */
1968 		tx_ant = 0;
1969 		use_def_for_tx = true;
1970 		update_def_on_tx = true;
1971 		use_def_for_rts = true;
1972 		use_def_for_sg = true;
1973 		fast_div = true;
1974 		break;
1975 	case AR5K_ANTMODE_SECTOR_AP:
1976 		tx_ant = 1;	/* variable */
1977 		use_def_for_tx = false;
1978 		update_def_on_tx = false;
1979 		use_def_for_rts = true;
1980 		use_def_for_sg = false;
1981 		fast_div = false;
1982 		break;
1983 	case AR5K_ANTMODE_SECTOR_STA:
1984 		tx_ant = 1;	/* variable */
1985 		use_def_for_tx = true;
1986 		update_def_on_tx = false;
1987 		use_def_for_rts = true;
1988 		use_def_for_sg = false;
1989 		fast_div = true;
1990 		break;
1991 	case AR5K_ANTMODE_DEBUG:
1992 		def_ant = 1;
1993 		tx_ant = 2;
1994 		use_def_for_tx = false;
1995 		update_def_on_tx = false;
1996 		use_def_for_rts = false;
1997 		use_def_for_sg = false;
1998 		fast_div = false;
1999 		break;
2000 	default:
2001 		return;
2002 	}
2003 
2004 	ah->ah_tx_ant = tx_ant;
2005 	ah->ah_ant_mode = ant_mode;
2006 	ah->ah_def_ant = def_ant;
2007 
2008 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2009 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2010 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2011 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2012 
2013 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2014 
2015 	if (sta_id1)
2016 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2017 
2018 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2019 	/* Note: set diversity before default antenna
2020 	 * because it won't work correctly */
2021 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2022 	ath5k_hw_set_def_antenna(ah, def_ant);
2023 }
2024 
2025 
2026 /****************\
2027 * TX power setup *
2028 \****************/
2029 
2030 /*
2031  * Helper functions
2032  */
2033 
2034 /*
2035  * Do linear interpolation between two given (x, y) points
2036  */
2037 static s16
2038 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2039 					s16 y_left, s16 y_right)
2040 {
2041 	s16 ratio, result;
2042 
2043 	/* Avoid divide by zero and skip interpolation
2044 	 * if we have the same point */
2045 	if ((x_left == x_right) || (y_left == y_right))
2046 		return y_left;
2047 
2048 	/*
2049 	 * Since we use ints and not fps, we need to scale up in
2050 	 * order to get a sane ratio value (or else we 'll eg. get
2051 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2052 	 * to have some accuracy both for 0.5 and 0.25 steps.
2053 	 */
2054 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2055 
2056 	/* Now scale down to be in range */
2057 	result = y_left + (ratio * (target - x_left) / 100);
2058 
2059 	return result;
2060 }
2061 
2062 /*
2063  * Find vertical boundary (min pwr) for the linear PCDAC curve.
2064  *
2065  * Since we have the top of the curve and we draw the line below
2066  * until we reach 1 (1 pcdac step) we need to know which point
2067  * (x value) that is so that we don't go below y axis and have negative
2068  * pcdac values when creating the curve, or fill the table with zeroes.
2069  */
2070 static s16
2071 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2072 				const s16 *pwrL, const s16 *pwrR)
2073 {
2074 	s8 tmp;
2075 	s16 min_pwrL, min_pwrR;
2076 	s16 pwr_i;
2077 
2078 	/* Some vendors write the same pcdac value twice !!! */
2079 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2080 		return max(pwrL[0], pwrR[0]);
2081 
2082 	if (pwrL[0] == pwrL[1])
2083 		min_pwrL = pwrL[0];
2084 	else {
2085 		pwr_i = pwrL[0];
2086 		do {
2087 			pwr_i--;
2088 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2089 							pwrL[0], pwrL[1],
2090 							stepL[0], stepL[1]);
2091 		} while (tmp > 1);
2092 
2093 		min_pwrL = pwr_i;
2094 	}
2095 
2096 	if (pwrR[0] == pwrR[1])
2097 		min_pwrR = pwrR[0];
2098 	else {
2099 		pwr_i = pwrR[0];
2100 		do {
2101 			pwr_i--;
2102 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2103 							pwrR[0], pwrR[1],
2104 							stepR[0], stepR[1]);
2105 		} while (tmp > 1);
2106 
2107 		min_pwrR = pwr_i;
2108 	}
2109 
2110 	/* Keep the right boundary so that it works for both curves */
2111 	return max(min_pwrL, min_pwrR);
2112 }
2113 
2114 /*
2115  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2116  * Power to PCDAC curve.
2117  *
2118  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2119  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2120  * PCDAC/PDADC step for each curve is 64 but we can write more than
2121  * one curves on hw so we can go up to 128 (which is the max step we
2122  * can write on the final table).
2123  *
2124  * We write y values (PCDAC/PDADC steps) on hw.
2125  */
2126 static void
2127 ath5k_create_power_curve(s16 pmin, s16 pmax,
2128 			const s16 *pwr, const u8 *vpd,
2129 			u8 num_points,
2130 			u8 *vpd_table, u8 type)
2131 {
2132 	u8 idx[2] = { 0, 1 };
2133 	s16 pwr_i = 2*pmin;
2134 	int i;
2135 
2136 	if (num_points < 2)
2137 		return;
2138 
2139 	/* We want the whole line, so adjust boundaries
2140 	 * to cover the entire power range. Note that
2141 	 * power values are already 0.25dB so no need
2142 	 * to multiply pwr_i by 2 */
2143 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2144 		pwr_i = pmin;
2145 		pmin = 0;
2146 		pmax = 63;
2147 	}
2148 
2149 	/* Find surrounding turning points (TPs)
2150 	 * and interpolate between them */
2151 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2152 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2153 
2154 		/* We passed the right TP, move to the next set of TPs
2155 		 * if we pass the last TP, extrapolate above using the last
2156 		 * two TPs for ratio */
2157 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2158 			idx[0]++;
2159 			idx[1]++;
2160 		}
2161 
2162 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2163 						pwr[idx[0]], pwr[idx[1]],
2164 						vpd[idx[0]], vpd[idx[1]]);
2165 
2166 		/* Increase by 0.5dB
2167 		 * (0.25 dB units) */
2168 		pwr_i += 2;
2169 	}
2170 }
2171 
2172 /*
2173  * Get the surrounding per-channel power calibration piers
2174  * for a given frequency so that we can interpolate between
2175  * them and come up with an apropriate dataset for our current
2176  * channel.
2177  */
2178 static void
2179 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2180 			struct ieee80211_channel *channel,
2181 			struct ath5k_chan_pcal_info **pcinfo_l,
2182 			struct ath5k_chan_pcal_info **pcinfo_r)
2183 {
2184 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2185 	struct ath5k_chan_pcal_info *pcinfo;
2186 	u8 idx_l, idx_r;
2187 	u8 mode, max, i;
2188 	u32 target = channel->center_freq;
2189 
2190 	idx_l = 0;
2191 	idx_r = 0;
2192 
2193 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2194 		pcinfo = ee->ee_pwr_cal_b;
2195 		mode = AR5K_EEPROM_MODE_11B;
2196 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2197 		pcinfo = ee->ee_pwr_cal_g;
2198 		mode = AR5K_EEPROM_MODE_11G;
2199 	} else {
2200 		pcinfo = ee->ee_pwr_cal_a;
2201 		mode = AR5K_EEPROM_MODE_11A;
2202 	}
2203 	max = ee->ee_n_piers[mode] - 1;
2204 
2205 	/* Frequency is below our calibrated
2206 	 * range. Use the lowest power curve
2207 	 * we have */
2208 	if (target < pcinfo[0].freq) {
2209 		idx_l = idx_r = 0;
2210 		goto done;
2211 	}
2212 
2213 	/* Frequency is above our calibrated
2214 	 * range. Use the highest power curve
2215 	 * we have */
2216 	if (target > pcinfo[max].freq) {
2217 		idx_l = idx_r = max;
2218 		goto done;
2219 	}
2220 
2221 	/* Frequency is inside our calibrated
2222 	 * channel range. Pick the surrounding
2223 	 * calibration piers so that we can
2224 	 * interpolate */
2225 	for (i = 0; i <= max; i++) {
2226 
2227 		/* Frequency matches one of our calibration
2228 		 * piers, no need to interpolate, just use
2229 		 * that calibration pier */
2230 		if (pcinfo[i].freq == target) {
2231 			idx_l = idx_r = i;
2232 			goto done;
2233 		}
2234 
2235 		/* We found a calibration pier that's above
2236 		 * frequency, use this pier and the previous
2237 		 * one to interpolate */
2238 		if (target < pcinfo[i].freq) {
2239 			idx_r = i;
2240 			idx_l = idx_r - 1;
2241 			goto done;
2242 		}
2243 	}
2244 
2245 done:
2246 	*pcinfo_l = &pcinfo[idx_l];
2247 	*pcinfo_r = &pcinfo[idx_r];
2248 }
2249 
2250 /*
2251  * Get the surrounding per-rate power calibration data
2252  * for a given frequency and interpolate between power
2253  * values to set max target power supported by hw for
2254  * each rate.
2255  */
2256 static void
2257 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2258 			struct ieee80211_channel *channel,
2259 			struct ath5k_rate_pcal_info *rates)
2260 {
2261 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2262 	struct ath5k_rate_pcal_info *rpinfo;
2263 	u8 idx_l, idx_r;
2264 	u8 mode, max, i;
2265 	u32 target = channel->center_freq;
2266 
2267 	idx_l = 0;
2268 	idx_r = 0;
2269 
2270 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2271 		rpinfo = ee->ee_rate_tpwr_b;
2272 		mode = AR5K_EEPROM_MODE_11B;
2273 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2274 		rpinfo = ee->ee_rate_tpwr_g;
2275 		mode = AR5K_EEPROM_MODE_11G;
2276 	} else {
2277 		rpinfo = ee->ee_rate_tpwr_a;
2278 		mode = AR5K_EEPROM_MODE_11A;
2279 	}
2280 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2281 
2282 	/* Get the surrounding calibration
2283 	 * piers - same as above */
2284 	if (target < rpinfo[0].freq) {
2285 		idx_l = idx_r = 0;
2286 		goto done;
2287 	}
2288 
2289 	if (target > rpinfo[max].freq) {
2290 		idx_l = idx_r = max;
2291 		goto done;
2292 	}
2293 
2294 	for (i = 0; i <= max; i++) {
2295 
2296 		if (rpinfo[i].freq == target) {
2297 			idx_l = idx_r = i;
2298 			goto done;
2299 		}
2300 
2301 		if (target < rpinfo[i].freq) {
2302 			idx_r = i;
2303 			idx_l = idx_r - 1;
2304 			goto done;
2305 		}
2306 	}
2307 
2308 done:
2309 	/* Now interpolate power value, based on the frequency */
2310 	rates->freq = target;
2311 
2312 	rates->target_power_6to24 =
2313 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2314 					rpinfo[idx_r].freq,
2315 					rpinfo[idx_l].target_power_6to24,
2316 					rpinfo[idx_r].target_power_6to24);
2317 
2318 	rates->target_power_36 =
2319 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2320 					rpinfo[idx_r].freq,
2321 					rpinfo[idx_l].target_power_36,
2322 					rpinfo[idx_r].target_power_36);
2323 
2324 	rates->target_power_48 =
2325 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2326 					rpinfo[idx_r].freq,
2327 					rpinfo[idx_l].target_power_48,
2328 					rpinfo[idx_r].target_power_48);
2329 
2330 	rates->target_power_54 =
2331 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2332 					rpinfo[idx_r].freq,
2333 					rpinfo[idx_l].target_power_54,
2334 					rpinfo[idx_r].target_power_54);
2335 }
2336 
2337 /*
2338  * Get the max edge power for this channel if
2339  * we have such data from EEPROM's Conformance Test
2340  * Limits (CTL), and limit max power if needed.
2341  */
2342 static void
2343 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2344 			struct ieee80211_channel *channel)
2345 {
2346 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2347 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2348 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2349 	u8 *ctl_val = ee->ee_ctl;
2350 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2351 	s16 edge_pwr = 0;
2352 	u8 rep_idx;
2353 	u8 i, ctl_mode;
2354 	u8 ctl_idx = 0xFF;
2355 	u32 target = channel->center_freq;
2356 
2357 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2358 
2359 	switch (channel->hw_value & CHANNEL_MODES) {
2360 	case CHANNEL_A:
2361 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2362 			ctl_mode |= AR5K_CTL_TURBO;
2363 		else
2364 			ctl_mode |= AR5K_CTL_11A;
2365 		break;
2366 	case CHANNEL_G:
2367 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2368 			ctl_mode |= AR5K_CTL_TURBOG;
2369 		else
2370 			ctl_mode |= AR5K_CTL_11G;
2371 		break;
2372 	case CHANNEL_B:
2373 		ctl_mode |= AR5K_CTL_11B;
2374 		break;
2375 	case CHANNEL_XR:
2376 		/* Fall through */
2377 	default:
2378 		return;
2379 	}
2380 
2381 	for (i = 0; i < ee->ee_ctls; i++) {
2382 		if (ctl_val[i] == ctl_mode) {
2383 			ctl_idx = i;
2384 			break;
2385 		}
2386 	}
2387 
2388 	/* If we have a CTL dataset available grab it and find the
2389 	 * edge power for our frequency */
2390 	if (ctl_idx == 0xFF)
2391 		return;
2392 
2393 	/* Edge powers are sorted by frequency from lower
2394 	 * to higher. Each CTL corresponds to 8 edge power
2395 	 * measurements. */
2396 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2397 
2398 	/* Don't do boundaries check because we
2399 	 * might have more that one bands defined
2400 	 * for this mode */
2401 
2402 	/* Get the edge power that's closer to our
2403 	 * frequency */
2404 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2405 		rep_idx += i;
2406 		if (target <= rep[rep_idx].freq)
2407 			edge_pwr = (s16) rep[rep_idx].edge;
2408 	}
2409 
2410 	if (edge_pwr)
2411 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2412 }
2413 
2414 
2415 /*
2416  * Power to PCDAC table functions
2417  */
2418 
2419 /*
2420  * Fill Power to PCDAC table on RF5111
2421  *
2422  * No further processing is needed for RF5111, the only thing we have to
2423  * do is fill the values below and above calibration range since eeprom data
2424  * may not cover the entire PCDAC table.
2425  */
2426 static void
2427 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2428 							s16 *table_max)
2429 {
2430 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2431 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2432 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2433 	s16	min_pwr, max_pwr;
2434 
2435 	/* Get table boundaries */
2436 	min_pwr = table_min[0];
2437 	pcdac_0 = pcdac_tmp[0];
2438 
2439 	max_pwr = table_max[0];
2440 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2441 
2442 	/* Extrapolate below minimum using pcdac_0 */
2443 	pcdac_i = 0;
2444 	for (i = 0; i < min_pwr; i++)
2445 		pcdac_out[pcdac_i++] = pcdac_0;
2446 
2447 	/* Copy values from pcdac_tmp */
2448 	pwr_idx = min_pwr;
2449 	for (i = 0 ; pwr_idx <= max_pwr &&
2450 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2451 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2452 		pwr_idx++;
2453 	}
2454 
2455 	/* Extrapolate above maximum */
2456 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2457 		pcdac_out[pcdac_i++] = pcdac_n;
2458 
2459 }
2460 
2461 /*
2462  * Combine available XPD Curves and fill Linear Power to PCDAC table
2463  * on RF5112
2464  *
2465  * RFX112 can have up to 2 curves (one for low txpower range and one for
2466  * higher txpower range). We need to put them both on pcdac_out and place
2467  * them in the correct location. In case we only have one curve available
2468  * just fit it on pcdac_out (it's supposed to cover the entire range of
2469  * available pwr levels since it's always the higher power curve). Extrapolate
2470  * below and above final table if needed.
2471  */
2472 static void
2473 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2474 						s16 *table_max, u8 pdcurves)
2475 {
2476 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2477 	u8	*pcdac_low_pwr;
2478 	u8	*pcdac_high_pwr;
2479 	u8	*pcdac_tmp;
2480 	u8	pwr;
2481 	s16	max_pwr_idx;
2482 	s16	min_pwr_idx;
2483 	s16	mid_pwr_idx = 0;
2484 	/* Edge flag turs on the 7nth bit on the PCDAC
2485 	 * to delcare the higher power curve (force values
2486 	 * to be greater than 64). If we only have one curve
2487 	 * we don't need to set this, if we have 2 curves and
2488 	 * fill the table backwards this can also be used to
2489 	 * switch from higher power curve to lower power curve */
2490 	u8	edge_flag;
2491 	int	i;
2492 
2493 	/* When we have only one curve available
2494 	 * that's the higher power curve. If we have
2495 	 * two curves the first is the high power curve
2496 	 * and the next is the low power curve. */
2497 	if (pdcurves > 1) {
2498 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2499 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2500 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2501 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2502 
2503 		/* If table size goes beyond 31.5dB, keep the
2504 		 * upper 31.5dB range when setting tx power.
2505 		 * Note: 126 = 31.5 dB in quarter dB steps */
2506 		if (table_max[0] - table_min[1] > 126)
2507 			min_pwr_idx = table_max[0] - 126;
2508 		else
2509 			min_pwr_idx = table_min[1];
2510 
2511 		/* Since we fill table backwards
2512 		 * start from high power curve */
2513 		pcdac_tmp = pcdac_high_pwr;
2514 
2515 		edge_flag = 0x40;
2516 	} else {
2517 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2518 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2519 		min_pwr_idx = table_min[0];
2520 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2521 		pcdac_tmp = pcdac_high_pwr;
2522 		edge_flag = 0;
2523 	}
2524 
2525 	/* This is used when setting tx power*/
2526 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2527 
2528 	/* Fill Power to PCDAC table backwards */
2529 	pwr = max_pwr_idx;
2530 	for (i = 63; i >= 0; i--) {
2531 		/* Entering lower power range, reset
2532 		 * edge flag and set pcdac_tmp to lower
2533 		 * power curve.*/
2534 		if (edge_flag == 0x40 &&
2535 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2536 			edge_flag = 0x00;
2537 			pcdac_tmp = pcdac_low_pwr;
2538 			pwr = mid_pwr_idx/2;
2539 		}
2540 
2541 		/* Don't go below 1, extrapolate below if we have
2542 		 * already swithced to the lower power curve -or
2543 		 * we only have one curve and edge_flag is zero
2544 		 * anyway */
2545 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2546 			while (i >= 0) {
2547 				pcdac_out[i] = pcdac_out[i + 1];
2548 				i--;
2549 			}
2550 			break;
2551 		}
2552 
2553 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2554 
2555 		/* Extrapolate above if pcdac is greater than
2556 		 * 126 -this can happen because we OR pcdac_out
2557 		 * value with edge_flag on high power curve */
2558 		if (pcdac_out[i] > 126)
2559 			pcdac_out[i] = 126;
2560 
2561 		/* Decrease by a 0.5dB step */
2562 		pwr--;
2563 	}
2564 }
2565 
2566 /* Write PCDAC values on hw */
2567 static void
2568 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2569 {
2570 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2571 	int	i;
2572 
2573 	/*
2574 	 * Write TX power values
2575 	 */
2576 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2577 		ath5k_hw_reg_write(ah,
2578 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2579 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2580 			AR5K_PHY_PCDAC_TXPOWER(i));
2581 	}
2582 }
2583 
2584 
2585 /*
2586  * Power to PDADC table functions
2587  */
2588 
2589 /*
2590  * Set the gain boundaries and create final Power to PDADC table
2591  *
2592  * We can have up to 4 pd curves, we need to do a simmilar process
2593  * as we do for RF5112. This time we don't have an edge_flag but we
2594  * set the gain boundaries on a separate register.
2595  */
2596 static void
2597 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2598 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2599 {
2600 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2601 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2602 	u8 *pdadc_tmp;
2603 	s16 pdadc_0;
2604 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2605 	u8 pd_gain_overlap;
2606 
2607 	/* Note: Register value is initialized on initvals
2608 	 * there is no feedback from hw.
2609 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2610 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2611 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2612 
2613 	/* Create final PDADC table */
2614 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2615 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2616 
2617 		if (pdg == pdcurves - 1)
2618 			/* 2 dB boundary stretch for last
2619 			 * (higher power) curve */
2620 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2621 		else
2622 			/* Set gain boundary in the middle
2623 			 * between this curve and the next one */
2624 			gain_boundaries[pdg] =
2625 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2626 
2627 		/* Sanity check in case our 2 db stretch got out of
2628 		 * range. */
2629 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2630 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2631 
2632 		/* For the first curve (lower power)
2633 		 * start from 0 dB */
2634 		if (pdg == 0)
2635 			pdadc_0 = 0;
2636 		else
2637 			/* For the other curves use the gain overlap */
2638 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2639 							pd_gain_overlap;
2640 
2641 		/* Force each power step to be at least 0.5 dB */
2642 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2643 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2644 		else
2645 			pwr_step = 1;
2646 
2647 		/* If pdadc_0 is negative, we need to extrapolate
2648 		 * below this pdgain by a number of pwr_steps */
2649 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2650 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2651 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2652 			pdadc_0++;
2653 		}
2654 
2655 		/* Set last pwr level, using gain boundaries */
2656 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2657 		/* Limit it to be inside pwr range */
2658 		table_size = pwr_max[pdg] - pwr_min[pdg];
2659 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2660 
2661 		/* Fill pdadc_out table */
2662 		while (pdadc_0 < max_idx && pdadc_i < 128)
2663 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2664 
2665 		/* Need to extrapolate above this pdgain? */
2666 		if (pdadc_n <= max_idx)
2667 			continue;
2668 
2669 		/* Force each power step to be at least 0.5 dB */
2670 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2671 			pwr_step = pdadc_tmp[table_size - 1] -
2672 						pdadc_tmp[table_size - 2];
2673 		else
2674 			pwr_step = 1;
2675 
2676 		/* Extrapolate above */
2677 		while ((pdadc_0 < (s16) pdadc_n) &&
2678 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2679 			s16 tmp = pdadc_tmp[table_size - 1] +
2680 					(pdadc_0 - max_idx) * pwr_step;
2681 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2682 			pdadc_0++;
2683 		}
2684 	}
2685 
2686 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2687 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2688 		pdg++;
2689 	}
2690 
2691 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2692 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2693 		pdadc_i++;
2694 	}
2695 
2696 	/* Set gain boundaries */
2697 	ath5k_hw_reg_write(ah,
2698 		AR5K_REG_SM(pd_gain_overlap,
2699 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2700 		AR5K_REG_SM(gain_boundaries[0],
2701 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2702 		AR5K_REG_SM(gain_boundaries[1],
2703 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2704 		AR5K_REG_SM(gain_boundaries[2],
2705 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2706 		AR5K_REG_SM(gain_boundaries[3],
2707 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2708 		AR5K_PHY_TPC_RG5);
2709 
2710 	/* Used for setting rate power table */
2711 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2712 
2713 }
2714 
2715 /* Write PDADC values on hw */
2716 static void
2717 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2718 {
2719 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2720 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2721 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2722 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2723 	u32 reg;
2724 	u8 i;
2725 
2726 	/* Select the right pdgain curves */
2727 
2728 	/* Clear current settings */
2729 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2730 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2731 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2732 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2733 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2734 
2735 	/*
2736 	 * Use pd_gains curve from eeprom
2737 	 *
2738 	 * This overrides the default setting from initvals
2739 	 * in case some vendors (e.g. Zcomax) don't use the default
2740 	 * curves. If we don't honor their settings we 'll get a
2741 	 * 5dB (1 * gain overlap ?) drop.
2742 	 */
2743 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2744 
2745 	switch (pdcurves) {
2746 	case 3:
2747 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2748 		/* Fall through */
2749 	case 2:
2750 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2751 		/* Fall through */
2752 	case 1:
2753 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2754 		break;
2755 	}
2756 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2757 
2758 	/*
2759 	 * Write TX power values
2760 	 */
2761 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2762 		ath5k_hw_reg_write(ah,
2763 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2764 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2765 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2766 			((pdadc_out[4*i + 3] & 0xff) << 24),
2767 			AR5K_PHY_PDADC_TXPOWER(i));
2768 	}
2769 }
2770 
2771 
2772 /*
2773  * Common code for PCDAC/PDADC tables
2774  */
2775 
2776 /*
2777  * This is the main function that uses all of the above
2778  * to set PCDAC/PDADC table on hw for the current channel.
2779  * This table is used for tx power calibration on the basband,
2780  * without it we get weird tx power levels and in some cases
2781  * distorted spectral mask
2782  */
2783 static int
2784 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2785 			struct ieee80211_channel *channel,
2786 			u8 ee_mode, u8 type)
2787 {
2788 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2789 	struct ath5k_chan_pcal_info *pcinfo_L;
2790 	struct ath5k_chan_pcal_info *pcinfo_R;
2791 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2792 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2793 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2794 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2795 	u8 *tmpL;
2796 	u8 *tmpR;
2797 	u32 target = channel->center_freq;
2798 	int pdg, i;
2799 
2800 	/* Get surounding freq piers for this channel */
2801 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2802 						&pcinfo_L,
2803 						&pcinfo_R);
2804 
2805 	/* Loop over pd gain curves on
2806 	 * surounding freq piers by index */
2807 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2808 
2809 		/* Fill curves in reverse order
2810 		 * from lower power (max gain)
2811 		 * to higher power. Use curve -> idx
2812 		 * backmapping we did on eeprom init */
2813 		u8 idx = pdg_curve_to_idx[pdg];
2814 
2815 		/* Grab the needed curves by index */
2816 		pdg_L = &pcinfo_L->pd_curves[idx];
2817 		pdg_R = &pcinfo_R->pd_curves[idx];
2818 
2819 		/* Initialize the temp tables */
2820 		tmpL = ah->ah_txpower.tmpL[pdg];
2821 		tmpR = ah->ah_txpower.tmpR[pdg];
2822 
2823 		/* Set curve's x boundaries and create
2824 		 * curves so that they cover the same
2825 		 * range (if we don't do that one table
2826 		 * will have values on some range and the
2827 		 * other one won't have any so interpolation
2828 		 * will fail) */
2829 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2830 					pdg_R->pd_pwr[0]) / 2;
2831 
2832 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2833 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2834 
2835 		/* Now create the curves on surrounding channels
2836 		 * and interpolate if needed to get the final
2837 		 * curve for this gain on this channel */
2838 		switch (type) {
2839 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2840 			/* Override min/max so that we don't loose
2841 			 * accuracy (don't divide by 2) */
2842 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2843 						pdg_R->pd_pwr[0]);
2844 
2845 			table_max[pdg] =
2846 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2847 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2848 
2849 			/* Override minimum so that we don't get
2850 			 * out of bounds while extrapolating
2851 			 * below. Don't do this when we have 2
2852 			 * curves and we are on the high power curve
2853 			 * because table_min is ok in this case */
2854 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2855 
2856 				table_min[pdg] =
2857 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2858 								pdg_R->pd_step,
2859 								pdg_L->pd_pwr,
2860 								pdg_R->pd_pwr);
2861 
2862 				/* Don't go too low because we will
2863 				 * miss the upper part of the curve.
2864 				 * Note: 126 = 31.5dB (max power supported)
2865 				 * in 0.25dB units */
2866 				if (table_max[pdg] - table_min[pdg] > 126)
2867 					table_min[pdg] = table_max[pdg] - 126;
2868 			}
2869 
2870 			/* Fall through */
2871 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2872 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2873 
2874 			ath5k_create_power_curve(table_min[pdg],
2875 						table_max[pdg],
2876 						pdg_L->pd_pwr,
2877 						pdg_L->pd_step,
2878 						pdg_L->pd_points, tmpL, type);
2879 
2880 			/* We are in a calibration
2881 			 * pier, no need to interpolate
2882 			 * between freq piers */
2883 			if (pcinfo_L == pcinfo_R)
2884 				continue;
2885 
2886 			ath5k_create_power_curve(table_min[pdg],
2887 						table_max[pdg],
2888 						pdg_R->pd_pwr,
2889 						pdg_R->pd_step,
2890 						pdg_R->pd_points, tmpR, type);
2891 			break;
2892 		default:
2893 			return -EINVAL;
2894 		}
2895 
2896 		/* Interpolate between curves
2897 		 * of surounding freq piers to
2898 		 * get the final curve for this
2899 		 * pd gain. Re-use tmpL for interpolation
2900 		 * output */
2901 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2902 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2903 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2904 							(s16) pcinfo_L->freq,
2905 							(s16) pcinfo_R->freq,
2906 							(s16) tmpL[i],
2907 							(s16) tmpR[i]);
2908 		}
2909 	}
2910 
2911 	/* Now we have a set of curves for this
2912 	 * channel on tmpL (x range is table_max - table_min
2913 	 * and y values are tmpL[pdg][]) sorted in the same
2914 	 * order as EEPROM (because we've used the backmapping).
2915 	 * So for RF5112 it's from higher power to lower power
2916 	 * and for RF2413 it's from lower power to higher power.
2917 	 * For RF5111 we only have one curve. */
2918 
2919 	/* Fill min and max power levels for this
2920 	 * channel by interpolating the values on
2921 	 * surounding channels to complete the dataset */
2922 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2923 					(s16) pcinfo_L->freq,
2924 					(s16) pcinfo_R->freq,
2925 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2926 
2927 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2928 					(s16) pcinfo_L->freq,
2929 					(s16) pcinfo_R->freq,
2930 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2931 
2932 	/* Fill PCDAC/PDADC table */
2933 	switch (type) {
2934 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2935 		/* For RF5112 we can have one or two curves
2936 		 * and each curve covers a certain power lvl
2937 		 * range so we need to do some more processing */
2938 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2939 						ee->ee_pd_gains[ee_mode]);
2940 
2941 		/* Set txp.offset so that we can
2942 		 * match max power value with max
2943 		 * table index */
2944 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2945 		break;
2946 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2947 		/* We are done for RF5111 since it has only
2948 		 * one curve, just fit the curve on the table */
2949 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2950 
2951 		/* No rate powertable adjustment for RF5111 */
2952 		ah->ah_txpower.txp_min_idx = 0;
2953 		ah->ah_txpower.txp_offset = 0;
2954 		break;
2955 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2956 		/* Set PDADC boundaries and fill
2957 		 * final PDADC table */
2958 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2959 						ee->ee_pd_gains[ee_mode]);
2960 
2961 		/* Set txp.offset, note that table_min
2962 		 * can be negative */
2963 		ah->ah_txpower.txp_offset = table_min[0];
2964 		break;
2965 	default:
2966 		return -EINVAL;
2967 	}
2968 
2969 	ah->ah_txpower.txp_setup = true;
2970 
2971 	return 0;
2972 }
2973 
2974 /* Write power table for current channel to hw */
2975 static void
2976 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
2977 {
2978 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
2979 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
2980 	else
2981 		ath5k_write_pcdac_table(ah);
2982 }
2983 
2984 /*
2985  * Per-rate tx power setting
2986  *
2987  * This is the code that sets the desired tx power (below
2988  * maximum) on hw for each rate (we also have TPC that sets
2989  * power per packet). We do that by providing an index on the
2990  * PCDAC/PDADC table we set up.
2991  */
2992 
2993 /*
2994  * Set rate power table
2995  *
2996  * For now we only limit txpower based on maximum tx power
2997  * supported by hw (what's inside rate_info). We need to limit
2998  * this even more, based on regulatory domain etc.
2999  *
3000  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3001  * and is indexed as follows:
3002  * rates[0] - rates[7] -> OFDM rates
3003  * rates[8] - rates[14] -> CCK rates
3004  * rates[15] -> XR rates (they all have the same power)
3005  */
3006 static void
3007 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3008 			struct ath5k_rate_pcal_info *rate_info,
3009 			u8 ee_mode)
3010 {
3011 	unsigned int i;
3012 	u16 *rates;
3013 
3014 	/* max_pwr is power level we got from driver/user in 0.5dB
3015 	 * units, switch to 0.25dB units so we can compare */
3016 	max_pwr *= 2;
3017 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3018 
3019 	/* apply rate limits */
3020 	rates = ah->ah_txpower.txp_rates_power_table;
3021 
3022 	/* OFDM rates 6 to 24Mb/s */
3023 	for (i = 0; i < 5; i++)
3024 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3025 
3026 	/* Rest OFDM rates */
3027 	rates[5] = min(rates[0], rate_info->target_power_36);
3028 	rates[6] = min(rates[0], rate_info->target_power_48);
3029 	rates[7] = min(rates[0], rate_info->target_power_54);
3030 
3031 	/* CCK rates */
3032 	/* 1L */
3033 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3034 	/* 2L */
3035 	rates[9] = min(rates[0], rate_info->target_power_36);
3036 	/* 2S */
3037 	rates[10] = min(rates[0], rate_info->target_power_36);
3038 	/* 5L */
3039 	rates[11] = min(rates[0], rate_info->target_power_48);
3040 	/* 5S */
3041 	rates[12] = min(rates[0], rate_info->target_power_48);
3042 	/* 11L */
3043 	rates[13] = min(rates[0], rate_info->target_power_54);
3044 	/* 11S */
3045 	rates[14] = min(rates[0], rate_info->target_power_54);
3046 
3047 	/* XR rates */
3048 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3049 
3050 	/* CCK rates have different peak to average ratio
3051 	 * so we have to tweak their power so that gainf
3052 	 * correction works ok. For this we use OFDM to
3053 	 * CCK delta from eeprom */
3054 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3055 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3056 		for (i = 8; i <= 15; i++)
3057 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3058 
3059 	/* Now that we have all rates setup use table offset to
3060 	 * match the power range set by user with the power indices
3061 	 * on PCDAC/PDADC table */
3062 	for (i = 0; i < 16; i++) {
3063 		rates[i] += ah->ah_txpower.txp_offset;
3064 		/* Don't get out of bounds */
3065 		if (rates[i] > 63)
3066 			rates[i] = 63;
3067 	}
3068 
3069 	/* Min/max in 0.25dB units */
3070 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3071 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3072 	ah->ah_txpower.txp_ofdm = rates[7];
3073 }
3074 
3075 
3076 /*
3077  * Set transmission power
3078  */
3079 static int
3080 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3081 		 u8 txpower)
3082 {
3083 	struct ath5k_rate_pcal_info rate_info;
3084 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3085 	int ee_mode;
3086 	u8 type;
3087 	int ret;
3088 
3089 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3090 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3091 		return -EINVAL;
3092 	}
3093 
3094 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3095 	if (ee_mode < 0) {
3096 		ATH5K_ERR(ah->ah_sc,
3097 			"invalid channel: %d\n", channel->center_freq);
3098 		return -EINVAL;
3099 	}
3100 
3101 	/* Initialize TX power table */
3102 	switch (ah->ah_radio) {
3103 	case AR5K_RF5110:
3104 		/* TODO */
3105 		return 0;
3106 	case AR5K_RF5111:
3107 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3108 		break;
3109 	case AR5K_RF5112:
3110 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3111 		break;
3112 	case AR5K_RF2413:
3113 	case AR5K_RF5413:
3114 	case AR5K_RF2316:
3115 	case AR5K_RF2317:
3116 	case AR5K_RF2425:
3117 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3118 		break;
3119 	default:
3120 		return -EINVAL;
3121 	}
3122 
3123 	/*
3124 	 * If we don't change channel/mode skip tx powertable calculation
3125 	 * and use the cached one.
3126 	 */
3127 	if (!ah->ah_txpower.txp_setup ||
3128 	    (channel->hw_value != curr_channel->hw_value) ||
3129 	    (channel->center_freq != curr_channel->center_freq)) {
3130 		/* Reset TX power values */
3131 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3132 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3133 
3134 		/* Calculate the powertable */
3135 		ret = ath5k_setup_channel_powertable(ah, channel,
3136 							ee_mode, type);
3137 		if (ret)
3138 			return ret;
3139 	}
3140 
3141 	/* Write table on hw */
3142 	ath5k_write_channel_powertable(ah, ee_mode, type);
3143 
3144 	/* Limit max power if we have a CTL available */
3145 	ath5k_get_max_ctl_power(ah, channel);
3146 
3147 	/* FIXME: Antenna reduction stuff */
3148 
3149 	/* FIXME: Limit power on turbo modes */
3150 
3151 	/* FIXME: TPC scale reduction */
3152 
3153 	/* Get surounding channels for per-rate power table
3154 	 * calibration */
3155 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3156 
3157 	/* Setup rate power table */
3158 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3159 
3160 	/* Write rate power table on hw */
3161 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3162 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3163 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3164 
3165 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3166 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3167 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3168 
3169 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3170 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3171 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3172 
3173 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3174 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3175 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3176 
3177 	/* FIXME: TPC support */
3178 	if (ah->ah_txpower.txp_tpc) {
3179 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3180 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3181 
3182 		ath5k_hw_reg_write(ah,
3183 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3184 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3185 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3186 			AR5K_TPC);
3187 	} else {
3188 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3189 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3190 	}
3191 
3192 	return 0;
3193 }
3194 
3195 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3196 {
3197 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3198 		"changing txpower to %d\n", txpower);
3199 
3200 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3201 }
3202 
3203 /*************\
3204  Init function
3205 \*************/
3206 
3207 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3208 		      u8 mode, bool fast)
3209 {
3210 	struct ieee80211_channel *curr_channel;
3211 	int ret, i;
3212 	u32 phy_tst1;
3213 	ret = 0;
3214 
3215 	/*
3216 	 * Sanity check for fast flag
3217 	 * Don't try fast channel change when changing modulation
3218 	 * mode/band. We check for chip compatibility on
3219 	 * ath5k_hw_reset.
3220 	 */
3221 	curr_channel = ah->ah_current_channel;
3222 	if (fast && (channel->hw_value != curr_channel->hw_value))
3223 		return -EINVAL;
3224 
3225 	/*
3226 	 * On fast channel change we only set the synth parameters
3227 	 * while PHY is running, enable calibration and skip the rest.
3228 	 */
3229 	if (fast) {
3230 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3231 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3232 		for (i = 0; i < 100; i++) {
3233 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3234 				break;
3235 			udelay(5);
3236 		}
3237 		/* Failed */
3238 		if (i >= 100)
3239 			return -EIO;
3240 	}
3241 
3242 	/*
3243 	 * Set TX power
3244 	 *
3245 	 * Note: We need to do that before we set
3246 	 * RF buffer settings on 5211/5212+ so that we
3247 	 * properly set curve indices.
3248 	 */
3249 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3250 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3251 	if (ret)
3252 		return ret;
3253 
3254 	/*
3255 	 * For 5210 we do all initialization using
3256 	 * initvals, so we don't have to modify
3257 	 * any settings (5210 also only supports
3258 	 * a/aturbo modes)
3259 	 */
3260 	if ((ah->ah_version != AR5K_AR5210) && !fast) {
3261 
3262 		/*
3263 		 * Write initial RF gain settings
3264 		 * This should work for both 5111/5112
3265 		 */
3266 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3267 		if (ret)
3268 			return ret;
3269 
3270 		mdelay(1);
3271 
3272 		/*
3273 		 * Write RF buffer
3274 		 */
3275 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3276 		if (ret)
3277 			return ret;
3278 
3279 		/* Write OFDM timings on 5212*/
3280 		if (ah->ah_version == AR5K_AR5212 &&
3281 			channel->hw_value & CHANNEL_OFDM) {
3282 
3283 			ret = ath5k_hw_write_ofdm_timings(ah, channel);
3284 			if (ret)
3285 				return ret;
3286 
3287 			/* Spur info is available only from EEPROM versions
3288 			 * greater than 5.3, but the EEPROM routines will use
3289 			 * static values for older versions */
3290 			if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3291 				ath5k_hw_set_spur_mitigation_filter(ah,
3292 								    channel);
3293 		}
3294 
3295 		/*Enable/disable 802.11b mode on 5111
3296 		(enable 2111 frequency converter + CCK)*/
3297 		if (ah->ah_radio == AR5K_RF5111) {
3298 			if (mode == AR5K_MODE_11B)
3299 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3300 				    AR5K_TXCFG_B_MODE);
3301 			else
3302 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3303 				    AR5K_TXCFG_B_MODE);
3304 		}
3305 
3306 	} else if (ah->ah_version == AR5K_AR5210) {
3307 		mdelay(1);
3308 		/* Disable phy and wait */
3309 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3310 		mdelay(1);
3311 	}
3312 
3313 	/* Set channel on PHY */
3314 	ret = ath5k_hw_channel(ah, channel);
3315 	if (ret)
3316 		return ret;
3317 
3318 	/*
3319 	 * Enable the PHY and wait until completion
3320 	 * This includes BaseBand and Synthesizer
3321 	 * activation.
3322 	 */
3323 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3324 
3325 	/*
3326 	 * On 5211+ read activation -> rx delay
3327 	 * and use it.
3328 	 */
3329 	if (ah->ah_version != AR5K_AR5210) {
3330 		u32 delay;
3331 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3332 			AR5K_PHY_RX_DELAY_M;
3333 		delay = (channel->hw_value & CHANNEL_CCK) ?
3334 			((delay << 2) / 22) : (delay / 10);
3335 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3336 			delay = delay << 1;
3337 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3338 			delay = delay << 2;
3339 		/* XXX: /2 on turbo ? Let's be safe
3340 		 * for now */
3341 		udelay(100 + delay);
3342 	} else {
3343 		mdelay(1);
3344 	}
3345 
3346 	if (fast)
3347 		/*
3348 		 * Release RF Bus grant
3349 		 */
3350 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3351 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3352 	else {
3353 		/*
3354 		 * Perform ADC test to see if baseband is ready
3355 		 * Set tx hold and check adc test register
3356 		 */
3357 		phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3358 		ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3359 		for (i = 0; i <= 20; i++) {
3360 			if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3361 				break;
3362 			udelay(200);
3363 		}
3364 		ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3365 	}
3366 
3367 	/*
3368 	 * Start automatic gain control calibration
3369 	 *
3370 	 * During AGC calibration RX path is re-routed to
3371 	 * a power detector so we don't receive anything.
3372 	 *
3373 	 * This method is used to calibrate some static offsets
3374 	 * used together with on-the fly I/Q calibration (the
3375 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3376 	 * interrupt rx path.
3377 	 *
3378 	 * While rx path is re-routed to the power detector we also
3379 	 * start a noise floor calibration to measure the
3380 	 * card's noise floor (the noise we measure when we are not
3381 	 * transmitting or receiving anything).
3382 	 *
3383 	 * If we are in a noisy environment, AGC calibration may time
3384 	 * out and/or noise floor calibration might timeout.
3385 	 */
3386 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3387 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3388 
3389 	/* At the same time start I/Q calibration for QAM constellation
3390 	 * -no need for CCK- */
3391 	ah->ah_calibration = false;
3392 	if (!(mode == AR5K_MODE_11B)) {
3393 		ah->ah_calibration = true;
3394 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3395 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3396 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3397 				AR5K_PHY_IQ_RUN);
3398 	}
3399 
3400 	/* Wait for gain calibration to finish (we check for I/Q calibration
3401 	 * during ath5k_phy_calibrate) */
3402 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3403 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3404 		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3405 			channel->center_freq);
3406 	}
3407 
3408 	/* Restore antenna mode */
3409 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3410 
3411 	return ret;
3412 }
3413