1 /* 2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 */ 20 21 /***********************\ 22 * PHY related functions * 23 \***********************/ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <asm/unaligned.h> 30 31 #include "ath5k.h" 32 #include "reg.h" 33 #include "rfbuffer.h" 34 #include "rfgain.h" 35 #include "../regd.h" 36 37 38 /** 39 * DOC: PHY related functions 40 * 41 * Here we handle the low-level functions related to baseband 42 * and analog frontend (RF) parts. This is by far the most complex 43 * part of the hw code so make sure you know what you are doing. 44 * 45 * Here is a list of what this is all about: 46 * 47 * - Channel setting/switching 48 * 49 * - Automatic Gain Control (AGC) calibration 50 * 51 * - Noise Floor calibration 52 * 53 * - I/Q imbalance calibration (QAM correction) 54 * 55 * - Calibration due to thermal changes (gain_F) 56 * 57 * - Spur noise mitigation 58 * 59 * - RF/PHY initialization for the various operating modes and bwmodes 60 * 61 * - Antenna control 62 * 63 * - TX power control per channel/rate/packet type 64 * 65 * Also have in mind we never got documentation for most of these 66 * functions, what we have comes mostly from Atheros's code, reverse 67 * engineering and patent docs/presentations etc. 68 */ 69 70 71 /******************\ 72 * Helper functions * 73 \******************/ 74 75 /** 76 * ath5k_hw_radio_revision() - Get the PHY Chip revision 77 * @ah: The &struct ath5k_hw 78 * @band: One of enum nl80211_band 79 * 80 * Returns the revision number of a 2GHz, 5GHz or single chip 81 * radio. 82 */ 83 u16 84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band) 85 { 86 unsigned int i; 87 u32 srev; 88 u16 ret; 89 90 /* 91 * Set the radio chip access register 92 */ 93 switch (band) { 94 case NL80211_BAND_2GHZ: 95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); 96 break; 97 case NL80211_BAND_5GHZ: 98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 99 break; 100 default: 101 return 0; 102 } 103 104 usleep_range(2000, 2500); 105 106 /* ...wait until PHY is ready and read the selected radio revision */ 107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); 108 109 for (i = 0; i < 8; i++) 110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); 111 112 if (ah->ah_version == AR5K_AR5210) { 113 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf; 114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; 115 } else { 116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; 117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | 118 ((srev & 0x0f) << 4), 8); 119 } 120 121 /* Reset to the 5GHz mode */ 122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 123 124 return ret; 125 } 126 127 /** 128 * ath5k_channel_ok() - Check if a channel is supported by the hw 129 * @ah: The &struct ath5k_hw 130 * @channel: The &struct ieee80211_channel 131 * 132 * Note: We don't do any regulatory domain checks here, it's just 133 * a sanity check. 134 */ 135 bool 136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) 137 { 138 u16 freq = channel->center_freq; 139 140 /* Check if the channel is in our supported range */ 141 if (channel->band == NL80211_BAND_2GHZ) { 142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 144 return true; 145 } else if (channel->band == NL80211_BAND_5GHZ) 146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 148 return true; 149 150 return false; 151 } 152 153 /** 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise 155 * @ah: The &struct ath5k_hw 156 * @channel: The &struct ieee80211_channel 157 */ 158 bool 159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, 160 struct ieee80211_channel *channel) 161 { 162 u8 refclk_freq; 163 164 if ((ah->ah_radio == AR5K_RF5112) || 165 (ah->ah_radio == AR5K_RF5413) || 166 (ah->ah_radio == AR5K_RF2413) || 167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 168 refclk_freq = 40; 169 else 170 refclk_freq = 32; 171 172 if ((channel->center_freq % refclk_freq != 0) && 173 ((channel->center_freq % refclk_freq < 10) || 174 (channel->center_freq % refclk_freq > 22))) 175 return true; 176 else 177 return false; 178 } 179 180 /** 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer 182 * @ah: The &struct ath5k_hw 183 * @rf_regs: The struct ath5k_rf_reg 184 * @val: New value 185 * @reg_id: RF register ID 186 * @set: Indicate we need to swap data 187 * 188 * This is an internal function used to modify RF Banks before 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more 190 * infos. 191 */ 192 static unsigned int 193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, 194 u32 val, u8 reg_id, bool set) 195 { 196 const struct ath5k_rf_reg *rfreg = NULL; 197 u8 offset, bank, num_bits, col, position; 198 u16 entry; 199 u32 mask, data, last_bit, bits_shifted, first_bit; 200 u32 *rfb; 201 s32 bits_left; 202 int i; 203 204 data = 0; 205 rfb = ah->ah_rf_banks; 206 207 for (i = 0; i < ah->ah_rf_regs_count; i++) { 208 if (rf_regs[i].index == reg_id) { 209 rfreg = &rf_regs[i]; 210 break; 211 } 212 } 213 214 if (rfb == NULL || rfreg == NULL) { 215 ATH5K_PRINTF("Rf register not found!\n"); 216 /* should not happen */ 217 return 0; 218 } 219 220 bank = rfreg->bank; 221 num_bits = rfreg->field.len; 222 first_bit = rfreg->field.pos; 223 col = rfreg->field.col; 224 225 /* first_bit is an offset from bank's 226 * start. Since we have all banks on 227 * the same array, we use this offset 228 * to mark each bank's start */ 229 offset = ah->ah_offset[bank]; 230 231 /* Boundary check */ 232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { 233 ATH5K_PRINTF("invalid values at offset %u\n", offset); 234 return 0; 235 } 236 237 entry = ((first_bit - 1) / 8) + offset; 238 position = (first_bit - 1) % 8; 239 240 if (set) 241 data = ath5k_hw_bitswap(val, num_bits); 242 243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; 244 position = 0, entry++) { 245 246 last_bit = (position + bits_left > 8) ? 8 : 247 position + bits_left; 248 249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << 250 (col * 8); 251 252 if (set) { 253 rfb[entry] &= ~mask; 254 rfb[entry] |= ((data << position) << (col * 8)) & mask; 255 data >>= (8 - position); 256 } else { 257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position) 258 << bits_shifted; 259 bits_shifted += last_bit - position; 260 } 261 262 bits_left -= 8 - position; 263 } 264 265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 266 267 return data; 268 } 269 270 /** 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 272 * @ah: the &struct ath5k_hw 273 * @channel: the currently set channel upon reset 274 * 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 277 * 278 * Since delta slope is floating point we split it on its exponent and 279 * mantissa and provide these values on hw. 280 * 281 * For more infos i think this patent is related 282 * "http://www.freepatentsonline.com/7184495.html" 283 */ 284 static inline int 285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 286 struct ieee80211_channel *channel) 287 { 288 /* Get exponent and mantissa and set it */ 289 u32 coef_scaled, coef_exp, coef_man, 290 ds_coef_exp, ds_coef_man, clock; 291 292 BUG_ON(!(ah->ah_version == AR5K_AR5212) || 293 (channel->hw_value == AR5K_MODE_11B)); 294 295 /* Get coefficient 296 * ALGO: coef = (5 * clock / carrier_freq) / 2 297 * we scale coef by shifting clock value by 24 for 298 * better precision since we use integers */ 299 switch (ah->ah_bwmode) { 300 case AR5K_BWMODE_40MHZ: 301 clock = 40 * 2; 302 break; 303 case AR5K_BWMODE_10MHZ: 304 clock = 40 / 2; 305 break; 306 case AR5K_BWMODE_5MHZ: 307 clock = 40 / 4; 308 break; 309 default: 310 clock = 40; 311 break; 312 } 313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; 314 315 /* Get exponent 316 * ALGO: coef_exp = 14 - highest set bit position */ 317 coef_exp = ilog2(coef_scaled); 318 319 /* Doesn't make sense if it's zero*/ 320 if (!coef_scaled || !coef_exp) 321 return -EINVAL; 322 323 /* Note: we've shifted coef_scaled by 24 */ 324 coef_exp = 14 - (coef_exp - 24); 325 326 327 /* Get mantissa (significant digits) 328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ 329 coef_man = coef_scaled + 330 (1 << (24 - coef_exp - 1)); 331 332 /* Calculate delta slope coefficient exponent 333 * and mantissa (remove scaling) and set them on hw */ 334 ds_coef_man = coef_man >> (24 - coef_exp); 335 ds_coef_exp = coef_exp - 16; 336 337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 341 342 return 0; 343 } 344 345 /** 346 * ath5k_hw_phy_disable() - Disable PHY 347 * @ah: The &struct ath5k_hw 348 */ 349 int ath5k_hw_phy_disable(struct ath5k_hw *ah) 350 { 351 /*Just a try M.F.*/ 352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 353 354 return 0; 355 } 356 357 /** 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle 359 * @ah: The &struct ath5k_hw 360 * @channel: The &struct ieee80211_channel 361 */ 362 static void 363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah, 364 struct ieee80211_channel *channel) 365 { 366 /* 367 * On 5211+ read activation -> rx delay 368 * and use it (100ns steps). 369 */ 370 if (ah->ah_version != AR5K_AR5210) { 371 u32 delay; 372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & 373 AR5K_PHY_RX_DELAY_M; 374 delay = (channel->hw_value == AR5K_MODE_11B) ? 375 ((delay << 2) / 22) : (delay / 10); 376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) 377 delay = delay << 1; 378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) 379 delay = delay << 2; 380 /* XXX: /2 on turbo ? Let's be safe 381 * for now */ 382 usleep_range(100 + delay, 100 + (2 * delay)); 383 } else { 384 usleep_range(1000, 1500); 385 } 386 } 387 388 389 /**********************\ 390 * RF Gain optimization * 391 \**********************/ 392 393 /** 394 * DOC: RF Gain optimization 395 * 396 * This code is used to optimize RF gain on different environments 397 * (temperature mostly) based on feedback from a power detector. 398 * 399 * It's only used on RF5111 and RF5112, later RF chips seem to have 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and 401 * no gain optimization ladder-. 402 * 403 * For more infos check out this patent doc 404 * "http://www.freepatentsonline.com/7400691.html" 405 * 406 * This paper describes power drops as seen on the receiver due to 407 * probe packets 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 409 * %20of%20Power%20Control.pdf" 410 * 411 * And this is the MadWiFi bug entry related to the above 412 * "http://madwifi-project.org/ticket/1659" 413 * with various measurements and diagrams 414 */ 415 416 /** 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach 418 * @ah: The &struct ath5k_hw 419 */ 420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 421 { 422 /* Initialize the gain optimization values */ 423 switch (ah->ah_radio) { 424 case AR5K_RF5111: 425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 426 ah->ah_gain.g_low = 20; 427 ah->ah_gain.g_high = 35; 428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 429 break; 430 case AR5K_RF5112: 431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; 432 ah->ah_gain.g_low = 20; 433 ah->ah_gain.g_high = 85; 434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 435 break; 436 default: 437 return -EINVAL; 438 } 439 440 return 0; 441 } 442 443 /** 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet 445 * @ah: The &struct ath5k_hw 446 * 447 * Schedules a gain probe check on the next transmitted packet. 448 * That means our next packet is going to be sent with lower 449 * tx power and a Peak to Average Power Detector (PAPD) will try 450 * to measure the gain. 451 * 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc) 453 * just after we enable the probe so that we don't mess with 454 * standard traffic. 455 */ 456 static void 457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) 458 { 459 460 /* Skip if gain calibration is inactive or 461 * we already handle a probe request */ 462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 463 return; 464 465 /* Send the packet with 2dB below max power as 466 * patent doc suggest */ 467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 468 AR5K_PHY_PAPD_PROBE_TXPOWER) | 469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 470 471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 472 473 } 474 475 /** 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction 477 * @ah: The &struct ath5k_hw 478 * 479 * Calculate Gain_F measurement correction 480 * based on the current step for RF5112 rev. 2 481 */ 482 static u32 483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) 484 { 485 u32 mix, step; 486 u32 *rf; 487 const struct ath5k_gain_opt *go; 488 const struct ath5k_gain_opt_step *g_step; 489 const struct ath5k_rf_reg *rf_regs; 490 491 /* Only RF5112 Rev. 2 supports it */ 492 if ((ah->ah_radio != AR5K_RF5112) || 493 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) 494 return 0; 495 496 go = &rfgain_opt_5112; 497 rf_regs = rf_regs_5112a; 498 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 499 500 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 501 502 if (ah->ah_rf_banks == NULL) 503 return 0; 504 505 rf = ah->ah_rf_banks; 506 ah->ah_gain.g_f_corr = 0; 507 508 /* No VGA (Variable Gain Amplifier) override, skip */ 509 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) 510 return 0; 511 512 /* Mix gain stepping */ 513 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); 514 515 /* Mix gain override */ 516 mix = g_step->gos_param[0]; 517 518 switch (mix) { 519 case 3: 520 ah->ah_gain.g_f_corr = step * 2; 521 break; 522 case 2: 523 ah->ah_gain.g_f_corr = (step - 5) * 2; 524 break; 525 case 1: 526 ah->ah_gain.g_f_corr = step; 527 break; 528 default: 529 ah->ah_gain.g_f_corr = 0; 530 break; 531 } 532 533 return ah->ah_gain.g_f_corr; 534 } 535 536 /** 537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector 538 * @ah: The &struct ath5k_hw 539 * 540 * Check if current gain_F measurement is in the range of our 541 * power detector windows. If we get a measurement outside range 542 * we know it's not accurate (detectors can't measure anything outside 543 * their detection window) so we must ignore it. 544 * 545 * Returns true if readback was O.K. or false on failure 546 */ 547 static bool 548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) 549 { 550 const struct ath5k_rf_reg *rf_regs; 551 u32 step, mix_ovr, level[4]; 552 u32 *rf; 553 554 if (ah->ah_rf_banks == NULL) 555 return false; 556 557 rf = ah->ah_rf_banks; 558 559 if (ah->ah_radio == AR5K_RF5111) { 560 561 rf_regs = rf_regs_5111; 562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 563 564 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, 565 false); 566 567 level[0] = 0; 568 level[1] = (step == 63) ? 50 : step + 4; 569 level[2] = (step != 63) ? 64 : level[0]; 570 level[3] = level[2] + 50; 571 572 ah->ah_gain.g_high = level[3] - 573 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); 574 ah->ah_gain.g_low = level[0] + 575 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); 576 } else { 577 578 rf_regs = rf_regs_5112; 579 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 580 581 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 582 false); 583 584 level[0] = level[2] = 0; 585 586 if (mix_ovr == 1) { 587 level[1] = level[3] = 83; 588 } else { 589 level[1] = level[3] = 107; 590 ah->ah_gain.g_high = 55; 591 } 592 } 593 594 return (ah->ah_gain.g_current >= level[0] && 595 ah->ah_gain.g_current <= level[1]) || 596 (ah->ah_gain.g_current >= level[2] && 597 ah->ah_gain.g_current <= level[3]); 598 } 599 600 /** 601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment 602 * @ah: The &struct ath5k_hw 603 * 604 * Choose the right target gain based on current gain 605 * and RF gain optimization ladder 606 */ 607 static s8 608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) 609 { 610 const struct ath5k_gain_opt *go; 611 const struct ath5k_gain_opt_step *g_step; 612 int ret = 0; 613 614 switch (ah->ah_radio) { 615 case AR5K_RF5111: 616 go = &rfgain_opt_5111; 617 break; 618 case AR5K_RF5112: 619 go = &rfgain_opt_5112; 620 break; 621 default: 622 return 0; 623 } 624 625 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 626 627 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { 628 629 /* Reached maximum */ 630 if (ah->ah_gain.g_step_idx == 0) 631 return -1; 632 633 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 634 ah->ah_gain.g_target >= ah->ah_gain.g_high && 635 ah->ah_gain.g_step_idx > 0; 636 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 637 ah->ah_gain.g_target -= 2 * 638 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - 639 g_step->gos_gain); 640 641 ret = 1; 642 goto done; 643 } 644 645 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { 646 647 /* Reached minimum */ 648 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) 649 return -2; 650 651 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 652 ah->ah_gain.g_target <= ah->ah_gain.g_low && 653 ah->ah_gain.g_step_idx < go->go_steps_count - 1; 654 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 655 ah->ah_gain.g_target -= 2 * 656 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - 657 g_step->gos_gain); 658 659 ret = 2; 660 goto done; 661 } 662 663 done: 664 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 665 "ret %d, gain step %u, current gain %u, target gain %u\n", 666 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 667 ah->ah_gain.g_target); 668 669 return ret; 670 } 671 672 /** 673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration 674 * @ah: The &struct ath5k_hw 675 * 676 * Main callback for thermal RF gain calibration engine 677 * Check for a new gain reading and schedule an adjustment 678 * if needed. 679 * 680 * Returns one of enum ath5k_rfgain codes 681 */ 682 enum ath5k_rfgain 683 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) 684 { 685 u32 data, type; 686 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 687 688 if (ah->ah_rf_banks == NULL || 689 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 690 return AR5K_RFGAIN_INACTIVE; 691 692 /* No check requested, either engine is inactive 693 * or an adjustment is already requested */ 694 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) 695 goto done; 696 697 /* Read the PAPD (Peak to Average Power Detector) 698 * register */ 699 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); 700 701 /* No probe is scheduled, read gain_F measurement */ 702 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { 703 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; 704 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); 705 706 /* If tx packet is CCK correct the gain_F measurement 707 * by cck ofdm gain delta */ 708 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { 709 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) 710 ah->ah_gain.g_current += 711 ee->ee_cck_ofdm_gain_delta; 712 else 713 ah->ah_gain.g_current += 714 AR5K_GAIN_CCK_PROBE_CORR; 715 } 716 717 /* Further correct gain_F measurement for 718 * RF5112A radios */ 719 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 720 ath5k_hw_rf_gainf_corr(ah); 721 ah->ah_gain.g_current = 722 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? 723 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : 724 0; 725 } 726 727 /* Check if measurement is ok and if we need 728 * to adjust gain, schedule a gain adjustment, 729 * else switch back to the active state */ 730 if (ath5k_hw_rf_check_gainf_readback(ah) && 731 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && 732 ath5k_hw_rf_gainf_adjust(ah)) { 733 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; 734 } else { 735 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 736 } 737 } 738 739 done: 740 return ah->ah_gain.g_state; 741 } 742 743 /** 744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw 745 * @ah: The &struct ath5k_hw 746 * @band: One of enum nl80211_band 747 * 748 * Write initial RF gain table to set the RF sensitivity. 749 * 750 * NOTE: This one works on all RF chips and has nothing to do 751 * with Gain_F calibration 752 */ 753 static int 754 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band) 755 { 756 const struct ath5k_ini_rfgain *ath5k_rfg; 757 unsigned int i, size, index; 758 759 switch (ah->ah_radio) { 760 case AR5K_RF5111: 761 ath5k_rfg = rfgain_5111; 762 size = ARRAY_SIZE(rfgain_5111); 763 break; 764 case AR5K_RF5112: 765 ath5k_rfg = rfgain_5112; 766 size = ARRAY_SIZE(rfgain_5112); 767 break; 768 case AR5K_RF2413: 769 ath5k_rfg = rfgain_2413; 770 size = ARRAY_SIZE(rfgain_2413); 771 break; 772 case AR5K_RF2316: 773 ath5k_rfg = rfgain_2316; 774 size = ARRAY_SIZE(rfgain_2316); 775 break; 776 case AR5K_RF5413: 777 ath5k_rfg = rfgain_5413; 778 size = ARRAY_SIZE(rfgain_5413); 779 break; 780 case AR5K_RF2317: 781 case AR5K_RF2425: 782 ath5k_rfg = rfgain_2425; 783 size = ARRAY_SIZE(rfgain_2425); 784 break; 785 default: 786 return -EINVAL; 787 } 788 789 index = (band == NL80211_BAND_2GHZ) ? 1 : 0; 790 791 for (i = 0; i < size; i++) { 792 AR5K_REG_WAIT(i); 793 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 794 (u32)ath5k_rfg[i].rfg_register); 795 } 796 797 return 0; 798 } 799 800 801 /********************\ 802 * RF Registers setup * 803 \********************/ 804 805 /** 806 * ath5k_hw_rfregs_init() - Initialize RF register settings 807 * @ah: The &struct ath5k_hw 808 * @channel: The &struct ieee80211_channel 809 * @mode: One of enum ath5k_driver_mode 810 * 811 * Setup RF registers by writing RF buffer on hw. For 812 * more infos on this, check out rfbuffer.h 813 */ 814 static int 815 ath5k_hw_rfregs_init(struct ath5k_hw *ah, 816 struct ieee80211_channel *channel, 817 unsigned int mode) 818 { 819 const struct ath5k_rf_reg *rf_regs; 820 const struct ath5k_ini_rfbuffer *ini_rfb; 821 const struct ath5k_gain_opt *go = NULL; 822 const struct ath5k_gain_opt_step *g_step; 823 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 824 u8 ee_mode = 0; 825 u32 *rfb; 826 int i, obdb = -1, bank = -1; 827 828 switch (ah->ah_radio) { 829 case AR5K_RF5111: 830 rf_regs = rf_regs_5111; 831 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 832 ini_rfb = rfb_5111; 833 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); 834 go = &rfgain_opt_5111; 835 break; 836 case AR5K_RF5112: 837 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 838 rf_regs = rf_regs_5112a; 839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 840 ini_rfb = rfb_5112a; 841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); 842 } else { 843 rf_regs = rf_regs_5112; 844 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 845 ini_rfb = rfb_5112; 846 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); 847 } 848 go = &rfgain_opt_5112; 849 break; 850 case AR5K_RF2413: 851 rf_regs = rf_regs_2413; 852 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); 853 ini_rfb = rfb_2413; 854 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); 855 break; 856 case AR5K_RF2316: 857 rf_regs = rf_regs_2316; 858 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); 859 ini_rfb = rfb_2316; 860 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); 861 break; 862 case AR5K_RF5413: 863 rf_regs = rf_regs_5413; 864 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); 865 ini_rfb = rfb_5413; 866 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); 867 break; 868 case AR5K_RF2317: 869 rf_regs = rf_regs_2425; 870 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 871 ini_rfb = rfb_2317; 872 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); 873 break; 874 case AR5K_RF2425: 875 rf_regs = rf_regs_2425; 876 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 877 if (ah->ah_mac_srev < AR5K_SREV_AR2417) { 878 ini_rfb = rfb_2425; 879 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); 880 } else { 881 ini_rfb = rfb_2417; 882 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); 883 } 884 break; 885 default: 886 return -EINVAL; 887 } 888 889 /* If it's the first time we set RF buffer, allocate 890 * ah->ah_rf_banks based on ah->ah_rf_banks_size 891 * we set above */ 892 if (ah->ah_rf_banks == NULL) { 893 ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size, 894 sizeof(u32), 895 GFP_KERNEL); 896 if (ah->ah_rf_banks == NULL) { 897 ATH5K_ERR(ah, "out of memory\n"); 898 return -ENOMEM; 899 } 900 } 901 902 /* Copy values to modify them */ 903 rfb = ah->ah_rf_banks; 904 905 for (i = 0; i < ah->ah_rf_banks_size; i++) { 906 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { 907 ATH5K_ERR(ah, "invalid bank\n"); 908 return -EINVAL; 909 } 910 911 /* Bank changed, write down the offset */ 912 if (bank != ini_rfb[i].rfb_bank) { 913 bank = ini_rfb[i].rfb_bank; 914 ah->ah_offset[bank] = i; 915 } 916 917 rfb[i] = ini_rfb[i].rfb_mode_data[mode]; 918 } 919 920 /* Set Output and Driver bias current (OB/DB) */ 921 if (channel->band == NL80211_BAND_2GHZ) { 922 923 if (channel->hw_value == AR5K_MODE_11B) 924 ee_mode = AR5K_EEPROM_MODE_11B; 925 else 926 ee_mode = AR5K_EEPROM_MODE_11G; 927 928 /* For RF511X/RF211X combination we 929 * use b_OB and b_DB parameters stored 930 * in eeprom on ee->ee_ob[ee_mode][0] 931 * 932 * For all other chips we use OB/DB for 2GHz 933 * stored in the b/g modal section just like 934 * 802.11a on ee->ee_ob[ee_mode][1] */ 935 if ((ah->ah_radio == AR5K_RF5111) || 936 (ah->ah_radio == AR5K_RF5112)) 937 obdb = 0; 938 else 939 obdb = 1; 940 941 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 942 AR5K_RF_OB_2GHZ, true); 943 944 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 945 AR5K_RF_DB_2GHZ, true); 946 947 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ 948 } else if ((channel->band == NL80211_BAND_5GHZ) || 949 (ah->ah_radio == AR5K_RF5111)) { 950 951 /* For 11a, Turbo and XR we need to choose 952 * OB/DB based on frequency range */ 953 ee_mode = AR5K_EEPROM_MODE_11A; 954 obdb = channel->center_freq >= 5725 ? 3 : 955 (channel->center_freq >= 5500 ? 2 : 956 (channel->center_freq >= 5260 ? 1 : 957 (channel->center_freq > 4000 ? 0 : -1))); 958 959 if (obdb < 0) 960 return -EINVAL; 961 962 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 963 AR5K_RF_OB_5GHZ, true); 964 965 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 966 AR5K_RF_DB_5GHZ, true); 967 } 968 969 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 970 971 /* Set turbo mode (N/A on RF5413) */ 972 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && 973 (ah->ah_radio != AR5K_RF5413)) 974 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); 975 976 /* Bank Modifications (chip-specific) */ 977 if (ah->ah_radio == AR5K_RF5111) { 978 979 /* Set gain_F settings according to current step */ 980 if (channel->hw_value != AR5K_MODE_11B) { 981 982 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, 983 AR5K_PHY_FRAME_CTL_TX_CLIP, 984 g_step->gos_param[0]); 985 986 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 987 AR5K_RF_PWD_90, true); 988 989 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 990 AR5K_RF_PWD_84, true); 991 992 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 993 AR5K_RF_RFGAIN_SEL, true); 994 995 /* We programmed gain_F parameters, switch back 996 * to active state */ 997 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 998 999 } 1000 1001 /* Bank 6/7 setup */ 1002 1003 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], 1004 AR5K_RF_PWD_XPD, true); 1005 1006 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], 1007 AR5K_RF_XPD_GAIN, true); 1008 1009 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1010 AR5K_RF_GAIN_I, true); 1011 1012 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1013 AR5K_RF_PLO_SEL, true); 1014 1015 /* Tweak power detectors for half/quarter rate support */ 1016 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1017 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1018 u8 wait_i; 1019 1020 ath5k_hw_rfb_op(ah, rf_regs, 0x1f, 1021 AR5K_RF_WAIT_S, true); 1022 1023 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1024 0x1f : 0x10; 1025 1026 ath5k_hw_rfb_op(ah, rf_regs, wait_i, 1027 AR5K_RF_WAIT_I, true); 1028 ath5k_hw_rfb_op(ah, rf_regs, 3, 1029 AR5K_RF_MAX_TIME, true); 1030 1031 } 1032 } 1033 1034 if (ah->ah_radio == AR5K_RF5112) { 1035 1036 /* Set gain_F settings according to current step */ 1037 if (channel->hw_value != AR5K_MODE_11B) { 1038 1039 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], 1040 AR5K_RF_MIXGAIN_OVR, true); 1041 1042 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 1043 AR5K_RF_PWD_138, true); 1044 1045 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 1046 AR5K_RF_PWD_137, true); 1047 1048 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 1049 AR5K_RF_PWD_136, true); 1050 1051 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], 1052 AR5K_RF_PWD_132, true); 1053 1054 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], 1055 AR5K_RF_PWD_131, true); 1056 1057 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], 1058 AR5K_RF_PWD_130, true); 1059 1060 /* We programmed gain_F parameters, switch back 1061 * to active state */ 1062 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 1063 } 1064 1065 /* Bank 6/7 setup */ 1066 1067 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1068 AR5K_RF_XPD_SEL, true); 1069 1070 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { 1071 /* Rev. 1 supports only one xpd */ 1072 ath5k_hw_rfb_op(ah, rf_regs, 1073 ee->ee_x_gain[ee_mode], 1074 AR5K_RF_XPD_GAIN, true); 1075 1076 } else { 1077 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 1078 if (ee->ee_pd_gains[ee_mode] > 1) { 1079 ath5k_hw_rfb_op(ah, rf_regs, 1080 pdg_curve_to_idx[0], 1081 AR5K_RF_PD_GAIN_LO, true); 1082 ath5k_hw_rfb_op(ah, rf_regs, 1083 pdg_curve_to_idx[1], 1084 AR5K_RF_PD_GAIN_HI, true); 1085 } else { 1086 ath5k_hw_rfb_op(ah, rf_regs, 1087 pdg_curve_to_idx[0], 1088 AR5K_RF_PD_GAIN_LO, true); 1089 ath5k_hw_rfb_op(ah, rf_regs, 1090 pdg_curve_to_idx[0], 1091 AR5K_RF_PD_GAIN_HI, true); 1092 } 1093 1094 /* Lower synth voltage on Rev 2 */ 1095 if (ah->ah_radio == AR5K_RF5112 && 1096 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { 1097 ath5k_hw_rfb_op(ah, rf_regs, 2, 1098 AR5K_RF_HIGH_VC_CP, true); 1099 1100 ath5k_hw_rfb_op(ah, rf_regs, 2, 1101 AR5K_RF_MID_VC_CP, true); 1102 1103 ath5k_hw_rfb_op(ah, rf_regs, 2, 1104 AR5K_RF_LOW_VC_CP, true); 1105 1106 ath5k_hw_rfb_op(ah, rf_regs, 2, 1107 AR5K_RF_PUSH_UP, true); 1108 } 1109 1110 /* Decrease power consumption on 5213+ BaseBand */ 1111 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 1112 ath5k_hw_rfb_op(ah, rf_regs, 1, 1113 AR5K_RF_PAD2GND, true); 1114 1115 ath5k_hw_rfb_op(ah, rf_regs, 1, 1116 AR5K_RF_XB2_LVL, true); 1117 1118 ath5k_hw_rfb_op(ah, rf_regs, 1, 1119 AR5K_RF_XB5_LVL, true); 1120 1121 ath5k_hw_rfb_op(ah, rf_regs, 1, 1122 AR5K_RF_PWD_167, true); 1123 1124 ath5k_hw_rfb_op(ah, rf_regs, 1, 1125 AR5K_RF_PWD_166, true); 1126 } 1127 } 1128 1129 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1130 AR5K_RF_GAIN_I, true); 1131 1132 /* Tweak power detector for half/quarter rates */ 1133 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1134 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1135 u8 pd_delay; 1136 1137 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1138 0xf : 0x8; 1139 1140 ath5k_hw_rfb_op(ah, rf_regs, pd_delay, 1141 AR5K_RF_PD_PERIOD_A, true); 1142 ath5k_hw_rfb_op(ah, rf_regs, 0xf, 1143 AR5K_RF_PD_DELAY_A, true); 1144 1145 } 1146 } 1147 1148 if (ah->ah_radio == AR5K_RF5413 && 1149 channel->band == NL80211_BAND_2GHZ) { 1150 1151 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, 1152 true); 1153 1154 /* Set optimum value for early revisions (on pci-e chips) */ 1155 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && 1156 ah->ah_mac_srev < AR5K_SREV_AR5413) 1157 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), 1158 AR5K_RF_PWD_ICLOBUF_2G, true); 1159 1160 } 1161 1162 /* Write RF banks on hw */ 1163 for (i = 0; i < ah->ah_rf_banks_size; i++) { 1164 AR5K_REG_WAIT(i); 1165 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); 1166 } 1167 1168 return 0; 1169 } 1170 1171 1172 /**************************\ 1173 PHY/RF channel functions 1174 \**************************/ 1175 1176 /** 1177 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 1178 * @channel: The &struct ieee80211_channel 1179 * 1180 * Map channel frequency to IEEE channel number and convert it 1181 * to an internal channel value used by the RF5110 chipset. 1182 */ 1183 static u32 1184 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) 1185 { 1186 u32 athchan; 1187 1188 athchan = (ath5k_hw_bitswap( 1189 (ieee80211_frequency_to_channel( 1190 channel->center_freq) - 24) / 2, 5) 1191 << 1) | (1 << 6) | 0x1; 1192 return athchan; 1193 } 1194 1195 /** 1196 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 1197 * @ah: The &struct ath5k_hw 1198 * @channel: The &struct ieee80211_channel 1199 */ 1200 static int 1201 ath5k_hw_rf5110_channel(struct ath5k_hw *ah, 1202 struct ieee80211_channel *channel) 1203 { 1204 u32 data; 1205 1206 /* 1207 * Set the channel and wait 1208 */ 1209 data = ath5k_hw_rf5110_chan2athchan(channel); 1210 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 1211 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 1212 usleep_range(1000, 1500); 1213 1214 return 0; 1215 } 1216 1217 /** 1218 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 1219 * @ieee: IEEE channel number 1220 * @athchan: The &struct ath5k_athchan_2ghz 1221 * 1222 * In order to enable the RF2111 frequency converter on RF5111/2111 setups 1223 * we need to add some offsets and extra flags to the data values we pass 1224 * on to the PHY. So for every 2GHz channel this function gets called 1225 * to do the conversion. 1226 */ 1227 static int 1228 ath5k_hw_rf5111_chan2athchan(unsigned int ieee, 1229 struct ath5k_athchan_2ghz *athchan) 1230 { 1231 int channel; 1232 1233 /* Cast this value to catch negative channel numbers (>= -19) */ 1234 channel = (int)ieee; 1235 1236 /* 1237 * Map 2GHz IEEE channel to 5GHz Atheros channel 1238 */ 1239 if (channel <= 13) { 1240 athchan->a2_athchan = 115 + channel; 1241 athchan->a2_flags = 0x46; 1242 } else if (channel == 14) { 1243 athchan->a2_athchan = 124; 1244 athchan->a2_flags = 0x44; 1245 } else if (channel >= 15 && channel <= 26) { 1246 athchan->a2_athchan = ((channel - 14) * 4) + 132; 1247 athchan->a2_flags = 0x46; 1248 } else 1249 return -EINVAL; 1250 1251 return 0; 1252 } 1253 1254 /** 1255 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 1256 * @ah: The &struct ath5k_hw 1257 * @channel: The &struct ieee80211_channel 1258 */ 1259 static int 1260 ath5k_hw_rf5111_channel(struct ath5k_hw *ah, 1261 struct ieee80211_channel *channel) 1262 { 1263 struct ath5k_athchan_2ghz ath5k_channel_2ghz; 1264 unsigned int ath5k_channel = 1265 ieee80211_frequency_to_channel(channel->center_freq); 1266 u32 data0, data1, clock; 1267 int ret; 1268 1269 /* 1270 * Set the channel on the RF5111 radio 1271 */ 1272 data0 = data1 = 0; 1273 1274 if (channel->band == NL80211_BAND_2GHZ) { 1275 /* Map 2GHz channel to 5GHz Atheros channel ID */ 1276 ret = ath5k_hw_rf5111_chan2athchan( 1277 ieee80211_frequency_to_channel(channel->center_freq), 1278 &ath5k_channel_2ghz); 1279 if (ret) 1280 return ret; 1281 1282 ath5k_channel = ath5k_channel_2ghz.a2_athchan; 1283 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) 1284 << 5) | (1 << 4); 1285 } 1286 1287 if (ath5k_channel < 145 || !(ath5k_channel & 1)) { 1288 clock = 1; 1289 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | 1290 (clock << 1) | (1 << 10) | 1; 1291 } else { 1292 clock = 0; 1293 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) 1294 << 2) | (clock << 1) | (1 << 10) | 1; 1295 } 1296 1297 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 1298 AR5K_RF_BUFFER); 1299 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 1300 AR5K_RF_BUFFER_CONTROL_3); 1301 1302 return 0; 1303 } 1304 1305 /** 1306 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer 1307 * @ah: The &struct ath5k_hw 1308 * @channel: The &struct ieee80211_channel 1309 * 1310 * On RF5112/2112 and newer we don't need to do any conversion. 1311 * We pass the frequency value after a few modifications to the 1312 * chip directly. 1313 * 1314 * NOTE: Make sure channel frequency given is within our range or else 1315 * we might damage the chip ! Use ath5k_channel_ok before calling this one. 1316 */ 1317 static int 1318 ath5k_hw_rf5112_channel(struct ath5k_hw *ah, 1319 struct ieee80211_channel *channel) 1320 { 1321 u32 data, data0, data1, data2; 1322 u16 c; 1323 1324 data = data0 = data1 = data2 = 0; 1325 c = channel->center_freq; 1326 1327 /* My guess based on code: 1328 * 2GHz RF has 2 synth modes, one with a Local Oscillator 1329 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz 1330 * (3040/2). data0 is used to set the PLL divider and data1 1331 * selects synth mode. */ 1332 if (c < 4800) { 1333 /* Channel 14 and all frequencies with 2Hz spacing 1334 * below/above (non-standard channels) */ 1335 if (!((c - 2224) % 5)) { 1336 /* Same as (c - 2224) / 5 */ 1337 data0 = ((2 * (c - 704)) - 3040) / 10; 1338 data1 = 1; 1339 /* Channel 1 and all frequencies with 5Hz spacing 1340 * below/above (standard channels without channel 14) */ 1341 } else if (!((c - 2192) % 5)) { 1342 /* Same as (c - 2192) / 5 */ 1343 data0 = ((2 * (c - 672)) - 3040) / 10; 1344 data1 = 0; 1345 } else 1346 return -EINVAL; 1347 1348 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); 1349 /* This is more complex, we have a single synthesizer with 1350 * 4 reference clock settings (?) based on frequency spacing 1351 * and set using data2. LO is at 4800Hz and data0 is again used 1352 * to set some divider. 1353 * 1354 * NOTE: There is an old atheros presentation at Stanford 1355 * that mentions a method called dual direct conversion 1356 * with 1GHz sliding IF for RF5110. Maybe that's what we 1357 * have here, or an updated version. */ 1358 } else if ((c % 5) != 2 || c > 5435) { 1359 if (!(c % 20) && c >= 5120) { 1360 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1361 data2 = ath5k_hw_bitswap(3, 2); 1362 } else if (!(c % 10)) { 1363 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1364 data2 = ath5k_hw_bitswap(2, 2); 1365 } else if (!(c % 5)) { 1366 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1367 data2 = ath5k_hw_bitswap(1, 2); 1368 } else 1369 return -EINVAL; 1370 } else { 1371 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1372 data2 = ath5k_hw_bitswap(0, 2); 1373 } 1374 1375 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 1376 1377 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1378 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 1385 * @ah: The &struct ath5k_hw 1386 * @channel: The &struct ieee80211_channel 1387 * 1388 * AR2425/2417 have a different 2GHz RF so code changes 1389 * a little bit from RF5112. 1390 */ 1391 static int 1392 ath5k_hw_rf2425_channel(struct ath5k_hw *ah, 1393 struct ieee80211_channel *channel) 1394 { 1395 u32 data, data0, data2; 1396 u16 c; 1397 1398 data = data0 = data2 = 0; 1399 c = channel->center_freq; 1400 1401 if (c < 4800) { 1402 data0 = ath5k_hw_bitswap((c - 2272), 8); 1403 data2 = 0; 1404 /* ? 5GHz ? */ 1405 } else if ((c % 5) != 2 || c > 5435) { 1406 if (!(c % 20) && c < 5120) 1407 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1408 else if (!(c % 10)) 1409 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1410 else if (!(c % 5)) 1411 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1412 else 1413 return -EINVAL; 1414 data2 = ath5k_hw_bitswap(1, 2); 1415 } else { 1416 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1417 data2 = ath5k_hw_bitswap(0, 2); 1418 } 1419 1420 data = (data0 << 4) | data2 << 2 | 0x1001; 1421 1422 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1423 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1424 1425 return 0; 1426 } 1427 1428 /** 1429 * ath5k_hw_channel() - Set a channel on the radio chip 1430 * @ah: The &struct ath5k_hw 1431 * @channel: The &struct ieee80211_channel 1432 * 1433 * This is the main function called to set a channel on the 1434 * radio chip based on the radio chip version. 1435 */ 1436 static int 1437 ath5k_hw_channel(struct ath5k_hw *ah, 1438 struct ieee80211_channel *channel) 1439 { 1440 int ret; 1441 /* 1442 * Check bounds supported by the PHY (we don't care about regulatory 1443 * restrictions at this point). 1444 */ 1445 if (!ath5k_channel_ok(ah, channel)) { 1446 ATH5K_ERR(ah, 1447 "channel frequency (%u MHz) out of supported " 1448 "band range\n", 1449 channel->center_freq); 1450 return -EINVAL; 1451 } 1452 1453 /* 1454 * Set the channel and wait 1455 */ 1456 switch (ah->ah_radio) { 1457 case AR5K_RF5110: 1458 ret = ath5k_hw_rf5110_channel(ah, channel); 1459 break; 1460 case AR5K_RF5111: 1461 ret = ath5k_hw_rf5111_channel(ah, channel); 1462 break; 1463 case AR5K_RF2317: 1464 case AR5K_RF2425: 1465 ret = ath5k_hw_rf2425_channel(ah, channel); 1466 break; 1467 default: 1468 ret = ath5k_hw_rf5112_channel(ah, channel); 1469 break; 1470 } 1471 1472 if (ret) 1473 return ret; 1474 1475 /* Set JAPAN setting for channel 14 */ 1476 if (channel->center_freq == 2484) { 1477 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1478 AR5K_PHY_CCKTXCTL_JAPAN); 1479 } else { 1480 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1481 AR5K_PHY_CCKTXCTL_WORLD); 1482 } 1483 1484 ah->ah_current_channel = channel; 1485 1486 return 0; 1487 } 1488 1489 1490 /*****************\ 1491 PHY calibration 1492 \*****************/ 1493 1494 /** 1495 * DOC: PHY Calibration routines 1496 * 1497 * Noise floor calibration: When we tell the hardware to 1498 * perform a noise floor calibration by setting the 1499 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically 1500 * sample-and-hold the minimum noise level seen at the antennas. 1501 * This value is then stored in a ring buffer of recently measured 1502 * noise floor values so we have a moving window of the last few 1503 * samples. The median of the values in the history is then loaded 1504 * into the hardware for its own use for RSSI and CCA measurements. 1505 * This type of calibration doesn't interfere with traffic. 1506 * 1507 * AGC calibration: When we tell the hardware to perform 1508 * an AGC (Automatic Gain Control) calibration by setting the 1509 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does 1510 * a calibration on the DC offsets of ADCs. During this period 1511 * rx/tx gets disabled so we have to deal with it on the driver 1512 * part. 1513 * 1514 * I/Q calibration: When we tell the hardware to perform 1515 * an I/Q calibration, it tries to correct I/Q imbalance and 1516 * fix QAM constellation by sampling data from rxed frames. 1517 * It doesn't interfere with traffic. 1518 * 1519 * For more infos on AGC and I/Q calibration check out patent doc 1520 * #03/094463. 1521 */ 1522 1523 /** 1524 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw 1525 * @ah: The &struct ath5k_hw 1526 */ 1527 static s32 1528 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) 1529 { 1530 s32 val; 1531 1532 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 1533 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 1534 } 1535 1536 /** 1537 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer 1538 * @ah: The &struct ath5k_hw 1539 */ 1540 void 1541 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) 1542 { 1543 int i; 1544 1545 ah->ah_nfcal_hist.index = 0; 1546 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 1547 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1548 } 1549 1550 /** 1551 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer 1552 * @ah: The &struct ath5k_hw 1553 * @noise_floor: The NF we got from hw 1554 */ 1555 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 1556 { 1557 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 1558 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 1559 hist->nfval[hist->index] = noise_floor; 1560 } 1561 1562 /** 1563 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer 1564 * @ah: The &struct ath5k_hw 1565 */ 1566 static s16 1567 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) 1568 { 1569 s16 sort[ATH5K_NF_CAL_HIST_MAX]; 1570 s16 tmp; 1571 int i, j; 1572 1573 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); 1574 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { 1575 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { 1576 if (sort[j] > sort[j - 1]) { 1577 tmp = sort[j]; 1578 sort[j] = sort[j - 1]; 1579 sort[j - 1] = tmp; 1580 } 1581 } 1582 } 1583 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 1584 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1585 "cal %d:%d\n", i, sort[i]); 1586 } 1587 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 1588 } 1589 1590 /** 1591 * ath5k_hw_update_noise_floor() - Update NF on hardware 1592 * @ah: The &struct ath5k_hw 1593 * 1594 * This is the main function we call to perform a NF calibration, 1595 * it reads NF from hardware, calculates the median and updates 1596 * NF on hw. 1597 */ 1598 void 1599 ath5k_hw_update_noise_floor(struct ath5k_hw *ah) 1600 { 1601 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1602 u32 val; 1603 s16 nf, threshold; 1604 u8 ee_mode; 1605 1606 /* keep last value if calibration hasn't completed */ 1607 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { 1608 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1609 "NF did not complete in calibration window\n"); 1610 1611 return; 1612 } 1613 1614 ah->ah_cal_mask |= AR5K_CALIBRATION_NF; 1615 1616 ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel); 1617 1618 /* completed NF calibration, test threshold */ 1619 nf = ath5k_hw_read_measured_noise_floor(ah); 1620 threshold = ee->ee_noise_floor_thr[ee_mode]; 1621 1622 if (nf > threshold) { 1623 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1624 "noise floor failure detected; " 1625 "read %d, threshold %d\n", 1626 nf, threshold); 1627 1628 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1629 } 1630 1631 ath5k_hw_update_nfcal_hist(ah, nf); 1632 nf = ath5k_hw_get_median_noise_floor(ah); 1633 1634 /* load noise floor (in .5 dBm) so the hardware will use it */ 1635 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; 1636 val |= (nf * 2) & AR5K_PHY_NF_M; 1637 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1638 1639 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1640 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); 1641 1642 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1643 0, false); 1644 1645 /* 1646 * Load a high max CCA Power value (-50 dBm in .5 dBm units) 1647 * so that we're not capped by the median we just loaded. 1648 * This will be used as the initial value for the next noise 1649 * floor calibration. 1650 */ 1651 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); 1652 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1653 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 1654 AR5K_PHY_AGCCTL_NF_EN | 1655 AR5K_PHY_AGCCTL_NF_NOUPDATE | 1656 AR5K_PHY_AGCCTL_NF); 1657 1658 ah->ah_noise_floor = nf; 1659 1660 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 1661 1662 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1663 "noise floor calibrated: %d\n", nf); 1664 } 1665 1666 /** 1667 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 1668 * @ah: The &struct ath5k_hw 1669 * @channel: The &struct ieee80211_channel 1670 * 1671 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 1672 */ 1673 static int 1674 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, 1675 struct ieee80211_channel *channel) 1676 { 1677 u32 phy_sig, phy_agc, phy_sat, beacon; 1678 int ret; 1679 1680 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) 1681 return 0; 1682 1683 /* 1684 * Disable beacons and RX/TX queues, wait 1685 */ 1686 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, 1687 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1688 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); 1689 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); 1690 1691 usleep_range(2000, 2500); 1692 1693 /* 1694 * Set the channel (with AGC turned off) 1695 */ 1696 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1697 udelay(10); 1698 ret = ath5k_hw_channel(ah, channel); 1699 1700 /* 1701 * Activate PHY and wait 1702 */ 1703 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 1704 usleep_range(1000, 1500); 1705 1706 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1707 1708 if (ret) 1709 return ret; 1710 1711 /* 1712 * Calibrate the radio chip 1713 */ 1714 1715 /* Remember normal state */ 1716 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); 1717 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); 1718 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); 1719 1720 /* Update radio registers */ 1721 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | 1722 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); 1723 1724 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | 1725 AR5K_PHY_AGCCOARSE_LO)) | 1726 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | 1727 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); 1728 1729 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | 1730 AR5K_PHY_ADCSAT_THR)) | 1731 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | 1732 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); 1733 1734 udelay(20); 1735 1736 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1737 udelay(10); 1738 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); 1739 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1740 1741 usleep_range(1000, 1500); 1742 1743 /* 1744 * Enable calibration and wait until completion 1745 */ 1746 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); 1747 1748 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 1749 AR5K_PHY_AGCCTL_CAL, 0, false); 1750 1751 /* Reset to normal state */ 1752 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); 1753 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); 1754 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); 1755 1756 if (ret) { 1757 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", 1758 channel->center_freq); 1759 return ret; 1760 } 1761 1762 /* 1763 * Re-enable RX/TX and beacons 1764 */ 1765 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 1766 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1767 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 1768 1769 return 0; 1770 } 1771 1772 /** 1773 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer 1774 * @ah: The &struct ath5k_hw 1775 */ 1776 static int 1777 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 1778 { 1779 u32 i_pwr, q_pwr; 1780 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 1781 int i; 1782 1783 /* Skip if I/Q calibration is not needed or if it's still running */ 1784 if (!ah->ah_iq_cal_needed) 1785 return -EINVAL; 1786 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { 1787 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1788 "I/Q calibration still running"); 1789 return -EBUSY; 1790 } 1791 1792 /* Calibration has finished, get the results and re-run */ 1793 1794 /* Work around for empty results which can apparently happen on 5212: 1795 * Read registers up to 10 times until we get both i_pr and q_pwr */ 1796 for (i = 0; i <= 10; i++) { 1797 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); 1798 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); 1799 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); 1800 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1801 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); 1802 if (i_pwr && q_pwr) 1803 break; 1804 } 1805 1806 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; 1807 1808 if (ah->ah_version == AR5K_AR5211) 1809 q_coffd = q_pwr >> 6; 1810 else 1811 q_coffd = q_pwr >> 7; 1812 1813 /* In case i_coffd became zero, cancel calibration 1814 * not only it's too small, it'll also result a divide 1815 * by zero later on. */ 1816 if (i_coffd == 0 || q_coffd < 2) 1817 return -ECANCELED; 1818 1819 /* Protect against loss of sign bits */ 1820 1821 i_coff = (-iq_corr) / i_coffd; 1822 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ 1823 1824 if (ah->ah_version == AR5K_AR5211) 1825 q_coff = (i_pwr / q_coffd) - 64; 1826 else 1827 q_coff = (i_pwr / q_coffd) - 128; 1828 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ 1829 1830 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1831 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", 1832 i_coff, q_coff, i_coffd, q_coffd); 1833 1834 /* Commit new I/Q values (set enable bit last to match HAL sources) */ 1835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); 1836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); 1837 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); 1838 1839 /* Re-enable calibration -if we don't we'll commit 1840 * the same values again and again */ 1841 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1842 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1843 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 1844 1845 return 0; 1846 } 1847 1848 /** 1849 * ath5k_hw_phy_calibrate() - Perform a PHY calibration 1850 * @ah: The &struct ath5k_hw 1851 * @channel: The &struct ieee80211_channel 1852 * 1853 * The main function we call from above to perform 1854 * a short or full PHY calibration based on RF chip 1855 * and current channel 1856 */ 1857 int 1858 ath5k_hw_phy_calibrate(struct ath5k_hw *ah, 1859 struct ieee80211_channel *channel) 1860 { 1861 int ret; 1862 1863 if (ah->ah_radio == AR5K_RF5110) 1864 return ath5k_hw_rf5110_calibrate(ah, channel); 1865 1866 ret = ath5k_hw_rf511x_iq_calibrate(ah); 1867 if (ret) { 1868 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1869 "No I/Q correction performed (%uMHz)\n", 1870 channel->center_freq); 1871 1872 /* Happens all the time if there is not much 1873 * traffic, consider it normal behaviour. */ 1874 ret = 0; 1875 } 1876 1877 /* On full calibration request a PAPD probe for 1878 * gainf calibration if needed */ 1879 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 1880 (ah->ah_radio == AR5K_RF5111 || 1881 ah->ah_radio == AR5K_RF5112) && 1882 channel->hw_value != AR5K_MODE_11B) 1883 ath5k_hw_request_rfgain_probe(ah); 1884 1885 /* Update noise floor */ 1886 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) 1887 ath5k_hw_update_noise_floor(ah); 1888 1889 return ret; 1890 } 1891 1892 1893 /***************************\ 1894 * Spur mitigation functions * 1895 \***************************/ 1896 1897 /** 1898 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter 1899 * @ah: The &struct ath5k_hw 1900 * @channel: The &struct ieee80211_channel 1901 * 1902 * This function gets called during PHY initialization to 1903 * configure the spur filter for the given channel. Spur is noise 1904 * generated due to "reflection" effects, for more information on this 1905 * method check out patent US7643810 1906 */ 1907 static void 1908 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 1909 struct ieee80211_channel *channel) 1910 { 1911 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1912 u32 mag_mask[4] = {0, 0, 0, 0}; 1913 u32 pilot_mask[2] = {0, 0}; 1914 /* Note: fbin values are scaled up by 2 */ 1915 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; 1916 s32 spur_delta_phase, spur_freq_sigma_delta; 1917 s32 spur_offset, num_symbols_x16; 1918 u8 num_symbol_offsets, i, freq_band; 1919 1920 /* Convert current frequency to fbin value (the same way channels 1921 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale 1922 * up by 2 so we can compare it later */ 1923 if (channel->band == NL80211_BAND_2GHZ) { 1924 chan_fbin = (channel->center_freq - 2300) * 10; 1925 freq_band = AR5K_EEPROM_BAND_2GHZ; 1926 } else { 1927 chan_fbin = (channel->center_freq - 4900) * 10; 1928 freq_band = AR5K_EEPROM_BAND_5GHZ; 1929 } 1930 1931 /* Check if any spur_chan_fbin from EEPROM is 1932 * within our current channel's spur detection range */ 1933 spur_chan_fbin = AR5K_EEPROM_NO_SPUR; 1934 spur_detection_window = AR5K_SPUR_CHAN_WIDTH; 1935 /* XXX: Half/Quarter channels ?*/ 1936 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 1937 spur_detection_window *= 2; 1938 1939 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { 1940 spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; 1941 1942 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag 1943 * so it's zero if we got nothing from EEPROM */ 1944 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { 1945 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1946 break; 1947 } 1948 1949 if ((chan_fbin - spur_detection_window <= 1950 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && 1951 (chan_fbin + spur_detection_window >= 1952 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { 1953 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1954 break; 1955 } 1956 } 1957 1958 /* We need to enable spur filter for this channel */ 1959 if (spur_chan_fbin) { 1960 spur_offset = spur_chan_fbin - chan_fbin; 1961 /* 1962 * Calculate deltas: 1963 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 1964 * spur_delta_phase -> spur_offset / chip_freq << 11 1965 * Note: Both values have 100Hz resolution 1966 */ 1967 switch (ah->ah_bwmode) { 1968 case AR5K_BWMODE_40MHZ: 1969 /* Both sample_freq and chip_freq are 80MHz */ 1970 spur_delta_phase = (spur_offset << 16) / 25; 1971 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1972 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; 1973 break; 1974 case AR5K_BWMODE_10MHZ: 1975 /* Both sample_freq and chip_freq are 20MHz (?) */ 1976 spur_delta_phase = (spur_offset << 18) / 25; 1977 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1978 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; 1979 break; 1980 case AR5K_BWMODE_5MHZ: 1981 /* Both sample_freq and chip_freq are 10MHz (?) */ 1982 spur_delta_phase = (spur_offset << 19) / 25; 1983 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1984 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; 1985 break; 1986 default: 1987 if (channel->band == NL80211_BAND_5GHZ) { 1988 /* Both sample_freq and chip_freq are 40MHz */ 1989 spur_delta_phase = (spur_offset << 17) / 25; 1990 spur_freq_sigma_delta = 1991 (spur_delta_phase >> 10); 1992 symbol_width = 1993 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 1994 } else { 1995 /* sample_freq -> 40MHz chip_freq -> 44MHz 1996 * (for b compatibility) */ 1997 spur_delta_phase = (spur_offset << 17) / 25; 1998 spur_freq_sigma_delta = 1999 (spur_offset << 8) / 55; 2000 symbol_width = 2001 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 2002 } 2003 break; 2004 } 2005 2006 /* Calculate pilot and magnitude masks */ 2007 2008 /* Scale up spur_offset by 1000 to switch to 100HZ resolution 2009 * and divide by symbol_width to find how many symbols we have 2010 * Note: number of symbols is scaled up by 16 */ 2011 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; 2012 2013 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ 2014 if (!(num_symbols_x16 & 0xF)) 2015 /* _X_ */ 2016 num_symbol_offsets = 3; 2017 else 2018 /* _xx_ */ 2019 num_symbol_offsets = 4; 2020 2021 for (i = 0; i < num_symbol_offsets; i++) { 2022 2023 /* Calculate pilot mask */ 2024 s32 curr_sym_off = 2025 (num_symbols_x16 / 16) + i + 25; 2026 2027 /* Pilot magnitude mask seems to be a way to 2028 * declare the boundaries for our detection 2029 * window or something, it's 2 for the middle 2030 * value(s) where the symbol is expected to be 2031 * and 1 on the boundary values */ 2032 u8 plt_mag_map = 2033 (i == 0 || i == (num_symbol_offsets - 1)) 2034 ? 1 : 2; 2035 2036 if (curr_sym_off >= 0 && curr_sym_off <= 32) { 2037 if (curr_sym_off <= 25) 2038 pilot_mask[0] |= 1 << curr_sym_off; 2039 else if (curr_sym_off >= 27) 2040 pilot_mask[0] |= 1 << (curr_sym_off - 1); 2041 } else if (curr_sym_off >= 33 && curr_sym_off <= 52) 2042 pilot_mask[1] |= 1 << (curr_sym_off - 33); 2043 2044 /* Calculate magnitude mask (for viterbi decoder) */ 2045 if (curr_sym_off >= -1 && curr_sym_off <= 14) 2046 mag_mask[0] |= 2047 plt_mag_map << (curr_sym_off + 1) * 2; 2048 else if (curr_sym_off >= 15 && curr_sym_off <= 30) 2049 mag_mask[1] |= 2050 plt_mag_map << (curr_sym_off - 15) * 2; 2051 else if (curr_sym_off >= 31 && curr_sym_off <= 46) 2052 mag_mask[2] |= 2053 plt_mag_map << (curr_sym_off - 31) * 2; 2054 else if (curr_sym_off >= 47 && curr_sym_off <= 53) 2055 mag_mask[3] |= 2056 plt_mag_map << (curr_sym_off - 47) * 2; 2057 2058 } 2059 2060 /* Write settings on hw to enable spur filter */ 2061 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2062 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); 2063 /* XXX: Self correlator also ? */ 2064 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 2065 AR5K_PHY_IQ_PILOT_MASK_EN | 2066 AR5K_PHY_IQ_CHAN_MASK_EN | 2067 AR5K_PHY_IQ_SPUR_FILT_EN); 2068 2069 /* Set delta phase and freq sigma delta */ 2070 ath5k_hw_reg_write(ah, 2071 AR5K_REG_SM(spur_delta_phase, 2072 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | 2073 AR5K_REG_SM(spur_freq_sigma_delta, 2074 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | 2075 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, 2076 AR5K_PHY_TIMING_11); 2077 2078 /* Write pilot masks */ 2079 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); 2080 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2081 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2082 pilot_mask[1]); 2083 2084 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); 2085 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2086 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2087 pilot_mask[1]); 2088 2089 /* Write magnitude masks */ 2090 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); 2091 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); 2092 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); 2093 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2094 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2095 mag_mask[3]); 2096 2097 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); 2098 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); 2099 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); 2100 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2101 AR5K_PHY_BIN_MASK2_4_MASK_4, 2102 mag_mask[3]); 2103 2104 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & 2105 AR5K_PHY_IQ_SPUR_FILT_EN) { 2106 /* Clean up spur mitigation settings and disable filter */ 2107 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2108 AR5K_PHY_BIN_MASK_CTL_RATE, 0); 2109 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, 2110 AR5K_PHY_IQ_PILOT_MASK_EN | 2111 AR5K_PHY_IQ_CHAN_MASK_EN | 2112 AR5K_PHY_IQ_SPUR_FILT_EN); 2113 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); 2114 2115 /* Clear pilot masks */ 2116 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); 2117 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2118 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2119 0); 2120 2121 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); 2122 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2123 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2124 0); 2125 2126 /* Clear magnitude masks */ 2127 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); 2128 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); 2129 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); 2130 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2131 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2132 0); 2133 2134 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); 2135 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); 2136 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); 2137 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2138 AR5K_PHY_BIN_MASK2_4_MASK_4, 2139 0); 2140 } 2141 } 2142 2143 2144 /*****************\ 2145 * Antenna control * 2146 \*****************/ 2147 2148 /** 2149 * DOC: Antenna control 2150 * 2151 * Hw supports up to 14 antennas ! I haven't found any card that implements 2152 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 2153 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) 2154 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). 2155 * 2156 * We can have a single antenna for RX and multiple antennas for TX. 2157 * RX antenna is our "default" antenna (usually antenna 1) set on 2158 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor 2159 * (0 for automatic selection, 1 - 14 antenna number). 2160 * 2161 * We can let hw do all the work doing fast antenna diversity for both 2162 * tx and rx or we can do things manually. Here are the options we have 2163 * (all are bits of STA_ID1 register): 2164 * 2165 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX 2166 * control descriptor, use the default antenna to transmit or else use the last 2167 * antenna on which we received an ACK. 2168 * 2169 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to 2170 * the antenna on which we got the ACK for that frame. 2171 * 2172 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the 2173 * one on the TX descriptor. 2174 * 2175 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames 2176 * (ACKs etc), or else use current antenna (the one we just used for TX). 2177 * 2178 * Using the above we support the following scenarios: 2179 * 2180 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically 2181 * 2182 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present 2183 * 2184 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present 2185 * 2186 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap 2187 * 2188 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc 2189 * 2190 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc 2191 * 2192 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- 2193 * 2194 * Also note that when setting antenna to F on tx descriptor card inverts 2195 * current tx antenna. 2196 */ 2197 2198 /** 2199 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer 2200 * @ah: The &struct ath5k_hw 2201 * @ant: Antenna number 2202 */ 2203 static void 2204 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 2205 { 2206 if (ah->ah_version != AR5K_AR5210) 2207 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 2208 } 2209 2210 /** 2211 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity 2212 * @ah: The &struct ath5k_hw 2213 * @ee_mode: One of enum ath5k_driver_mode 2214 * @enable: True to enable, false to disable 2215 */ 2216 static void 2217 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 2218 { 2219 switch (ee_mode) { 2220 case AR5K_EEPROM_MODE_11G: 2221 /* XXX: This is set to 2222 * disabled on initvals !!! */ 2223 case AR5K_EEPROM_MODE_11A: 2224 if (enable) 2225 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, 2226 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2227 else 2228 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2229 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2230 break; 2231 case AR5K_EEPROM_MODE_11B: 2232 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2233 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2234 break; 2235 default: 2236 return; 2237 } 2238 2239 if (enable) { 2240 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2241 AR5K_PHY_RESTART_DIV_GC, 4); 2242 2243 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2244 AR5K_PHY_FAST_ANT_DIV_EN); 2245 } else { 2246 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2247 AR5K_PHY_RESTART_DIV_GC, 0); 2248 2249 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2250 AR5K_PHY_FAST_ANT_DIV_EN); 2251 } 2252 } 2253 2254 /** 2255 * ath5k_hw_set_antenna_switch() - Set up antenna switch table 2256 * @ah: The &struct ath5k_hw 2257 * @ee_mode: One of enum ath5k_driver_mode 2258 * 2259 * Switch table comes from EEPROM and includes information on controlling 2260 * the 2 antenna RX attenuators 2261 */ 2262 void 2263 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 2264 { 2265 u8 ant0, ant1; 2266 2267 /* 2268 * In case a fixed antenna was set as default 2269 * use the same switch table twice. 2270 */ 2271 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) 2272 ant0 = ant1 = AR5K_ANT_SWTABLE_A; 2273 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) 2274 ant0 = ant1 = AR5K_ANT_SWTABLE_B; 2275 else { 2276 ant0 = AR5K_ANT_SWTABLE_A; 2277 ant1 = AR5K_ANT_SWTABLE_B; 2278 } 2279 2280 /* Set antenna idle switch table */ 2281 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, 2282 AR5K_PHY_ANT_CTL_SWTABLE_IDLE, 2283 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | 2284 AR5K_PHY_ANT_CTL_TXRX_EN)); 2285 2286 /* Set antenna switch tables */ 2287 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 2288 AR5K_PHY_ANT_SWITCH_TABLE_0); 2289 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 2290 AR5K_PHY_ANT_SWITCH_TABLE_1); 2291 } 2292 2293 /** 2294 * ath5k_hw_set_antenna_mode() - Set antenna operating mode 2295 * @ah: The &struct ath5k_hw 2296 * @ant_mode: One of enum ath5k_ant_mode 2297 */ 2298 void 2299 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 2300 { 2301 struct ieee80211_channel *channel = ah->ah_current_channel; 2302 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 2303 bool use_def_for_sg; 2304 int ee_mode; 2305 u8 def_ant, tx_ant; 2306 u32 sta_id1 = 0; 2307 2308 /* if channel is not initialized yet we can't set the antennas 2309 * so just store the mode. it will be set on the next reset */ 2310 if (channel == NULL) { 2311 ah->ah_ant_mode = ant_mode; 2312 return; 2313 } 2314 2315 def_ant = ah->ah_def_ant; 2316 2317 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 2318 2319 switch (ant_mode) { 2320 case AR5K_ANTMODE_DEFAULT: 2321 tx_ant = 0; 2322 use_def_for_tx = false; 2323 update_def_on_tx = false; 2324 use_def_for_rts = false; 2325 use_def_for_sg = false; 2326 fast_div = true; 2327 break; 2328 case AR5K_ANTMODE_FIXED_A: 2329 def_ant = 1; 2330 tx_ant = 1; 2331 use_def_for_tx = true; 2332 update_def_on_tx = false; 2333 use_def_for_rts = true; 2334 use_def_for_sg = true; 2335 fast_div = false; 2336 break; 2337 case AR5K_ANTMODE_FIXED_B: 2338 def_ant = 2; 2339 tx_ant = 2; 2340 use_def_for_tx = true; 2341 update_def_on_tx = false; 2342 use_def_for_rts = true; 2343 use_def_for_sg = true; 2344 fast_div = false; 2345 break; 2346 case AR5K_ANTMODE_SINGLE_AP: 2347 def_ant = 1; /* updated on tx */ 2348 tx_ant = 0; 2349 use_def_for_tx = true; 2350 update_def_on_tx = true; 2351 use_def_for_rts = true; 2352 use_def_for_sg = true; 2353 fast_div = true; 2354 break; 2355 case AR5K_ANTMODE_SECTOR_AP: 2356 tx_ant = 1; /* variable */ 2357 use_def_for_tx = false; 2358 update_def_on_tx = false; 2359 use_def_for_rts = true; 2360 use_def_for_sg = false; 2361 fast_div = false; 2362 break; 2363 case AR5K_ANTMODE_SECTOR_STA: 2364 tx_ant = 1; /* variable */ 2365 use_def_for_tx = true; 2366 update_def_on_tx = false; 2367 use_def_for_rts = true; 2368 use_def_for_sg = false; 2369 fast_div = true; 2370 break; 2371 case AR5K_ANTMODE_DEBUG: 2372 def_ant = 1; 2373 tx_ant = 2; 2374 use_def_for_tx = false; 2375 update_def_on_tx = false; 2376 use_def_for_rts = false; 2377 use_def_for_sg = false; 2378 fast_div = false; 2379 break; 2380 default: 2381 return; 2382 } 2383 2384 ah->ah_tx_ant = tx_ant; 2385 ah->ah_ant_mode = ant_mode; 2386 ah->ah_def_ant = def_ant; 2387 2388 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; 2389 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; 2390 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; 2391 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; 2392 2393 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); 2394 2395 if (sta_id1) 2396 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); 2397 2398 ath5k_hw_set_antenna_switch(ah, ee_mode); 2399 /* Note: set diversity before default antenna 2400 * because it won't work correctly */ 2401 ath5k_hw_set_fast_div(ah, ee_mode, fast_div); 2402 ath5k_hw_set_def_antenna(ah, def_ant); 2403 } 2404 2405 2406 /****************\ 2407 * TX power setup * 2408 \****************/ 2409 2410 /* 2411 * Helper functions 2412 */ 2413 2414 /** 2415 * ath5k_get_interpolated_value() - Get interpolated Y val between two points 2416 * @target: X value of the middle point 2417 * @x_left: X value of the left point 2418 * @x_right: X value of the right point 2419 * @y_left: Y value of the left point 2420 * @y_right: Y value of the right point 2421 */ 2422 static s16 2423 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 2424 s16 y_left, s16 y_right) 2425 { 2426 s16 ratio, result; 2427 2428 /* Avoid divide by zero and skip interpolation 2429 * if we have the same point */ 2430 if ((x_left == x_right) || (y_left == y_right)) 2431 return y_left; 2432 2433 /* 2434 * Since we use ints and not fps, we need to scale up in 2435 * order to get a sane ratio value (or else we 'll eg. get 2436 * always 1 instead of 1.25, 1.75 etc). We scale up by 100 2437 * to have some accuracy both for 0.5 and 0.25 steps. 2438 */ 2439 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 2440 2441 /* Now scale down to be in range */ 2442 result = y_left + (ratio * (target - x_left) / 100); 2443 2444 return result; 2445 } 2446 2447 /** 2448 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the 2449 * linear PCDAC curve 2450 * @stepL: Left array with y values (pcdac steps) 2451 * @stepR: Right array with y values (pcdac steps) 2452 * @pwrL: Left array with x values (power steps) 2453 * @pwrR: Right array with x values (power steps) 2454 * 2455 * Since we have the top of the curve and we draw the line below 2456 * until we reach 1 (1 pcdac step) we need to know which point 2457 * (x value) that is so that we don't go below x axis and have negative 2458 * pcdac values when creating the curve, or fill the table with zeros. 2459 */ 2460 static s16 2461 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 2462 const s16 *pwrL, const s16 *pwrR) 2463 { 2464 s8 tmp; 2465 s16 min_pwrL, min_pwrR; 2466 s16 pwr_i; 2467 2468 /* Some vendors write the same pcdac value twice !!! */ 2469 if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) 2470 return max(pwrL[0], pwrR[0]); 2471 2472 if (pwrL[0] == pwrL[1]) 2473 min_pwrL = pwrL[0]; 2474 else { 2475 pwr_i = pwrL[0]; 2476 do { 2477 pwr_i--; 2478 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2479 pwrL[0], pwrL[1], 2480 stepL[0], stepL[1]); 2481 } while (tmp > 1); 2482 2483 min_pwrL = pwr_i; 2484 } 2485 2486 if (pwrR[0] == pwrR[1]) 2487 min_pwrR = pwrR[0]; 2488 else { 2489 pwr_i = pwrR[0]; 2490 do { 2491 pwr_i--; 2492 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2493 pwrR[0], pwrR[1], 2494 stepR[0], stepR[1]); 2495 } while (tmp > 1); 2496 2497 min_pwrR = pwr_i; 2498 } 2499 2500 /* Keep the right boundary so that it works for both curves */ 2501 return max(min_pwrL, min_pwrR); 2502 } 2503 2504 /** 2505 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve 2506 * @pmin: Minimum power value (xmin) 2507 * @pmax: Maximum power value (xmax) 2508 * @pwr: Array of power steps (x values) 2509 * @vpd: Array of matching PCDAC/PDADC steps (y values) 2510 * @num_points: Number of provided points 2511 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) 2512 * @type: One of enum ath5k_powertable_type (eeprom.h) 2513 * 2514 * Interpolate (pwr,vpd) points to create a Power to PDADC or a 2515 * Power to PCDAC curve. 2516 * 2517 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 2518 * steps (offsets) on y axis. Power can go up to 31.5dB and max 2519 * PCDAC/PDADC step for each curve is 64 but we can write more than 2520 * one curves on hw so we can go up to 128 (which is the max step we 2521 * can write on the final table). 2522 * 2523 * We write y values (PCDAC/PDADC steps) on hw. 2524 */ 2525 static void 2526 ath5k_create_power_curve(s16 pmin, s16 pmax, 2527 const s16 *pwr, const u8 *vpd, 2528 u8 num_points, 2529 u8 *vpd_table, u8 type) 2530 { 2531 u8 idx[2] = { 0, 1 }; 2532 s16 pwr_i = 2 * pmin; 2533 int i; 2534 2535 if (num_points < 2) 2536 return; 2537 2538 /* We want the whole line, so adjust boundaries 2539 * to cover the entire power range. Note that 2540 * power values are already 0.25dB so no need 2541 * to multiply pwr_i by 2 */ 2542 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { 2543 pwr_i = pmin; 2544 pmin = 0; 2545 pmax = 63; 2546 } 2547 2548 /* Find surrounding turning points (TPs) 2549 * and interpolate between them */ 2550 for (i = 0; (i <= (u16) (pmax - pmin)) && 2551 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 2552 2553 /* We passed the right TP, move to the next set of TPs 2554 * if we pass the last TP, extrapolate above using the last 2555 * two TPs for ratio */ 2556 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { 2557 idx[0]++; 2558 idx[1]++; 2559 } 2560 2561 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, 2562 pwr[idx[0]], pwr[idx[1]], 2563 vpd[idx[0]], vpd[idx[1]]); 2564 2565 /* Increase by 0.5dB 2566 * (0.25 dB units) */ 2567 pwr_i += 2; 2568 } 2569 } 2570 2571 /** 2572 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers 2573 * for a given channel. 2574 * @ah: The &struct ath5k_hw 2575 * @channel: The &struct ieee80211_channel 2576 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier 2577 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier 2578 * 2579 * Get the surrounding per-channel power calibration piers 2580 * for a given frequency so that we can interpolate between 2581 * them and come up with an appropriate dataset for our current 2582 * channel. 2583 */ 2584 static void 2585 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 2586 struct ieee80211_channel *channel, 2587 struct ath5k_chan_pcal_info **pcinfo_l, 2588 struct ath5k_chan_pcal_info **pcinfo_r) 2589 { 2590 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2591 struct ath5k_chan_pcal_info *pcinfo; 2592 u8 idx_l, idx_r; 2593 u8 mode, max, i; 2594 u32 target = channel->center_freq; 2595 2596 idx_l = 0; 2597 idx_r = 0; 2598 2599 switch (channel->hw_value) { 2600 case AR5K_EEPROM_MODE_11A: 2601 pcinfo = ee->ee_pwr_cal_a; 2602 mode = AR5K_EEPROM_MODE_11A; 2603 break; 2604 case AR5K_EEPROM_MODE_11B: 2605 pcinfo = ee->ee_pwr_cal_b; 2606 mode = AR5K_EEPROM_MODE_11B; 2607 break; 2608 case AR5K_EEPROM_MODE_11G: 2609 default: 2610 pcinfo = ee->ee_pwr_cal_g; 2611 mode = AR5K_EEPROM_MODE_11G; 2612 break; 2613 } 2614 max = ee->ee_n_piers[mode] - 1; 2615 2616 /* Frequency is below our calibrated 2617 * range. Use the lowest power curve 2618 * we have */ 2619 if (target < pcinfo[0].freq) { 2620 idx_l = idx_r = 0; 2621 goto done; 2622 } 2623 2624 /* Frequency is above our calibrated 2625 * range. Use the highest power curve 2626 * we have */ 2627 if (target > pcinfo[max].freq) { 2628 idx_l = idx_r = max; 2629 goto done; 2630 } 2631 2632 /* Frequency is inside our calibrated 2633 * channel range. Pick the surrounding 2634 * calibration piers so that we can 2635 * interpolate */ 2636 for (i = 0; i <= max; i++) { 2637 2638 /* Frequency matches one of our calibration 2639 * piers, no need to interpolate, just use 2640 * that calibration pier */ 2641 if (pcinfo[i].freq == target) { 2642 idx_l = idx_r = i; 2643 goto done; 2644 } 2645 2646 /* We found a calibration pier that's above 2647 * frequency, use this pier and the previous 2648 * one to interpolate */ 2649 if (target < pcinfo[i].freq) { 2650 idx_r = i; 2651 idx_l = idx_r - 1; 2652 goto done; 2653 } 2654 } 2655 2656 done: 2657 *pcinfo_l = &pcinfo[idx_l]; 2658 *pcinfo_r = &pcinfo[idx_r]; 2659 } 2660 2661 /** 2662 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power 2663 * calibration data 2664 * @ah: The &struct ath5k_hw *ah, 2665 * @channel: The &struct ieee80211_channel 2666 * @rates: The &struct ath5k_rate_pcal_info to fill 2667 * 2668 * Get the surrounding per-rate power calibration data 2669 * for a given frequency and interpolate between power 2670 * values to set max target power supported by hw for 2671 * each rate on this frequency. 2672 */ 2673 static void 2674 ath5k_get_rate_pcal_data(struct ath5k_hw *ah, 2675 struct ieee80211_channel *channel, 2676 struct ath5k_rate_pcal_info *rates) 2677 { 2678 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2679 struct ath5k_rate_pcal_info *rpinfo; 2680 u8 idx_l, idx_r; 2681 u8 mode, max, i; 2682 u32 target = channel->center_freq; 2683 2684 idx_l = 0; 2685 idx_r = 0; 2686 2687 switch (channel->hw_value) { 2688 case AR5K_MODE_11A: 2689 rpinfo = ee->ee_rate_tpwr_a; 2690 mode = AR5K_EEPROM_MODE_11A; 2691 break; 2692 case AR5K_MODE_11B: 2693 rpinfo = ee->ee_rate_tpwr_b; 2694 mode = AR5K_EEPROM_MODE_11B; 2695 break; 2696 case AR5K_MODE_11G: 2697 default: 2698 rpinfo = ee->ee_rate_tpwr_g; 2699 mode = AR5K_EEPROM_MODE_11G; 2700 break; 2701 } 2702 max = ee->ee_rate_target_pwr_num[mode] - 1; 2703 2704 /* Get the surrounding calibration 2705 * piers - same as above */ 2706 if (target < rpinfo[0].freq) { 2707 idx_l = idx_r = 0; 2708 goto done; 2709 } 2710 2711 if (target > rpinfo[max].freq) { 2712 idx_l = idx_r = max; 2713 goto done; 2714 } 2715 2716 for (i = 0; i <= max; i++) { 2717 2718 if (rpinfo[i].freq == target) { 2719 idx_l = idx_r = i; 2720 goto done; 2721 } 2722 2723 if (target < rpinfo[i].freq) { 2724 idx_r = i; 2725 idx_l = idx_r - 1; 2726 goto done; 2727 } 2728 } 2729 2730 done: 2731 /* Now interpolate power value, based on the frequency */ 2732 rates->freq = target; 2733 2734 rates->target_power_6to24 = 2735 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2736 rpinfo[idx_r].freq, 2737 rpinfo[idx_l].target_power_6to24, 2738 rpinfo[idx_r].target_power_6to24); 2739 2740 rates->target_power_36 = 2741 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2742 rpinfo[idx_r].freq, 2743 rpinfo[idx_l].target_power_36, 2744 rpinfo[idx_r].target_power_36); 2745 2746 rates->target_power_48 = 2747 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2748 rpinfo[idx_r].freq, 2749 rpinfo[idx_l].target_power_48, 2750 rpinfo[idx_r].target_power_48); 2751 2752 rates->target_power_54 = 2753 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2754 rpinfo[idx_r].freq, 2755 rpinfo[idx_l].target_power_54, 2756 rpinfo[idx_r].target_power_54); 2757 } 2758 2759 /** 2760 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency 2761 * @ah: the &struct ath5k_hw 2762 * @channel: The &struct ieee80211_channel 2763 * 2764 * Get the max edge power for this channel if 2765 * we have such data from EEPROM's Conformance Test 2766 * Limits (CTL), and limit max power if needed. 2767 */ 2768 static void 2769 ath5k_get_max_ctl_power(struct ath5k_hw *ah, 2770 struct ieee80211_channel *channel) 2771 { 2772 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2773 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2774 struct ath5k_edge_power *rep = ee->ee_ctl_pwr; 2775 u8 *ctl_val = ee->ee_ctl; 2776 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; 2777 s16 edge_pwr = 0; 2778 u8 rep_idx; 2779 u8 i, ctl_mode; 2780 u8 ctl_idx = 0xFF; 2781 u32 target = channel->center_freq; 2782 2783 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); 2784 2785 switch (channel->hw_value) { 2786 case AR5K_MODE_11A: 2787 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2788 ctl_mode |= AR5K_CTL_TURBO; 2789 else 2790 ctl_mode |= AR5K_CTL_11A; 2791 break; 2792 case AR5K_MODE_11G: 2793 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2794 ctl_mode |= AR5K_CTL_TURBOG; 2795 else 2796 ctl_mode |= AR5K_CTL_11G; 2797 break; 2798 case AR5K_MODE_11B: 2799 ctl_mode |= AR5K_CTL_11B; 2800 break; 2801 default: 2802 return; 2803 } 2804 2805 for (i = 0; i < ee->ee_ctls; i++) { 2806 if (ctl_val[i] == ctl_mode) { 2807 ctl_idx = i; 2808 break; 2809 } 2810 } 2811 2812 /* If we have a CTL dataset available grab it and find the 2813 * edge power for our frequency */ 2814 if (ctl_idx == 0xFF) 2815 return; 2816 2817 /* Edge powers are sorted by frequency from lower 2818 * to higher. Each CTL corresponds to 8 edge power 2819 * measurements. */ 2820 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; 2821 2822 /* Don't do boundaries check because we 2823 * might have more that one bands defined 2824 * for this mode */ 2825 2826 /* Get the edge power that's closer to our 2827 * frequency */ 2828 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { 2829 rep_idx += i; 2830 if (target <= rep[rep_idx].freq) 2831 edge_pwr = (s16) rep[rep_idx].edge; 2832 } 2833 2834 if (edge_pwr) 2835 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 2836 } 2837 2838 2839 /* 2840 * Power to PCDAC table functions 2841 */ 2842 2843 /** 2844 * DOC: Power to PCDAC table functions 2845 * 2846 * For RF5111 we have an XPD -eXternal Power Detector- curve 2847 * for each calibrated channel. Each curve has 0,5dB Power steps 2848 * on x axis and PCDAC steps (offsets) on y axis and looks like an 2849 * exponential function. To recreate the curve we read 11 points 2850 * from eeprom (eeprom.c) and interpolate here. 2851 * 2852 * For RF5112 we have 4 XPD -eXternal Power Detector- curves 2853 * for each calibrated channel on 0, -6, -12 and -18dBm but we only 2854 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB 2855 * power steps on x axis and PCDAC steps on y axis and looks like a 2856 * linear function. To recreate the curve and pass the power values 2857 * on hw, we get 4 points for xpd 0 (lower gain -> max power) 2858 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) 2859 * and interpolate here. 2860 * 2861 * For a given channel we get the calibrated points (piers) for it or 2862 * -if we don't have calibration data for this specific channel- from the 2863 * available surrounding channels we have calibration data for, after we do a 2864 * linear interpolation between them. Then since we have our calibrated points 2865 * for this channel, we do again a linear interpolation between them to get the 2866 * whole curve. 2867 * 2868 * We finally write the Y values of the curve(s) (the PCDAC values) on hw 2869 */ 2870 2871 /** 2872 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 2873 * @ah: The &struct ath5k_hw 2874 * @table_min: Minimum power (x min) 2875 * @table_max: Maximum power (x max) 2876 * 2877 * No further processing is needed for RF5111, the only thing we have to 2878 * do is fill the values below and above calibration range since eeprom data 2879 * may not cover the entire PCDAC table. 2880 */ 2881 static void 2882 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 2883 s16 *table_max) 2884 { 2885 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2886 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; 2887 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; 2888 s16 min_pwr, max_pwr; 2889 2890 /* Get table boundaries */ 2891 min_pwr = table_min[0]; 2892 pcdac_0 = pcdac_tmp[0]; 2893 2894 max_pwr = table_max[0]; 2895 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; 2896 2897 /* Extrapolate below minimum using pcdac_0 */ 2898 pcdac_i = 0; 2899 for (i = 0; i < min_pwr; i++) 2900 pcdac_out[pcdac_i++] = pcdac_0; 2901 2902 /* Copy values from pcdac_tmp */ 2903 pwr_idx = min_pwr; 2904 for (i = 0; pwr_idx <= max_pwr && 2905 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { 2906 pcdac_out[pcdac_i++] = pcdac_tmp[i]; 2907 pwr_idx++; 2908 } 2909 2910 /* Extrapolate above maximum */ 2911 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 2912 pcdac_out[pcdac_i++] = pcdac_n; 2913 2914 } 2915 2916 /** 2917 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves 2918 * @ah: The &struct ath5k_hw 2919 * @table_min: Minimum power (x min) 2920 * @table_max: Maximum power (x max) 2921 * @pdcurves: Number of pd curves 2922 * 2923 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 2924 * RFX112 can have up to 2 curves (one for low txpower range and one for 2925 * higher txpower range). We need to put them both on pcdac_out and place 2926 * them in the correct location. In case we only have one curve available 2927 * just fit it on pcdac_out (it's supposed to cover the entire range of 2928 * available pwr levels since it's always the higher power curve). Extrapolate 2929 * below and above final table if needed. 2930 */ 2931 static void 2932 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, 2933 s16 *table_max, u8 pdcurves) 2934 { 2935 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2936 u8 *pcdac_low_pwr; 2937 u8 *pcdac_high_pwr; 2938 u8 *pcdac_tmp; 2939 u8 pwr; 2940 s16 max_pwr_idx; 2941 s16 min_pwr_idx; 2942 s16 mid_pwr_idx = 0; 2943 /* Edge flag turns on the 7nth bit on the PCDAC 2944 * to declare the higher power curve (force values 2945 * to be greater than 64). If we only have one curve 2946 * we don't need to set this, if we have 2 curves and 2947 * fill the table backwards this can also be used to 2948 * switch from higher power curve to lower power curve */ 2949 u8 edge_flag; 2950 int i; 2951 2952 /* When we have only one curve available 2953 * that's the higher power curve. If we have 2954 * two curves the first is the high power curve 2955 * and the next is the low power curve. */ 2956 if (pdcurves > 1) { 2957 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; 2958 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2959 mid_pwr_idx = table_max[1] - table_min[1] - 1; 2960 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2961 2962 /* If table size goes beyond 31.5dB, keep the 2963 * upper 31.5dB range when setting tx power. 2964 * Note: 126 = 31.5 dB in quarter dB steps */ 2965 if (table_max[0] - table_min[1] > 126) 2966 min_pwr_idx = table_max[0] - 126; 2967 else 2968 min_pwr_idx = table_min[1]; 2969 2970 /* Since we fill table backwards 2971 * start from high power curve */ 2972 pcdac_tmp = pcdac_high_pwr; 2973 2974 edge_flag = 0x40; 2975 } else { 2976 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ 2977 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2978 min_pwr_idx = table_min[0]; 2979 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2980 pcdac_tmp = pcdac_high_pwr; 2981 edge_flag = 0; 2982 } 2983 2984 /* This is used when setting tx power*/ 2985 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; 2986 2987 /* Fill Power to PCDAC table backwards */ 2988 pwr = max_pwr_idx; 2989 for (i = 63; i >= 0; i--) { 2990 /* Entering lower power range, reset 2991 * edge flag and set pcdac_tmp to lower 2992 * power curve.*/ 2993 if (edge_flag == 0x40 && 2994 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { 2995 edge_flag = 0x00; 2996 pcdac_tmp = pcdac_low_pwr; 2997 pwr = mid_pwr_idx / 2; 2998 } 2999 3000 /* Don't go below 1, extrapolate below if we have 3001 * already switched to the lower power curve -or 3002 * we only have one curve and edge_flag is zero 3003 * anyway */ 3004 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { 3005 while (i >= 0) { 3006 pcdac_out[i] = pcdac_out[i + 1]; 3007 i--; 3008 } 3009 break; 3010 } 3011 3012 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; 3013 3014 /* Extrapolate above if pcdac is greater than 3015 * 126 -this can happen because we OR pcdac_out 3016 * value with edge_flag on high power curve */ 3017 if (pcdac_out[i] > 126) 3018 pcdac_out[i] = 126; 3019 3020 /* Decrease by a 0.5dB step */ 3021 pwr--; 3022 } 3023 } 3024 3025 /** 3026 * ath5k_write_pcdac_table() - Write the PCDAC values on hw 3027 * @ah: The &struct ath5k_hw 3028 */ 3029 static void 3030 ath5k_write_pcdac_table(struct ath5k_hw *ah) 3031 { 3032 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 3033 int i; 3034 3035 /* 3036 * Write TX power values 3037 */ 3038 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3039 ath5k_hw_reg_write(ah, 3040 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | 3041 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), 3042 AR5K_PHY_PCDAC_TXPOWER(i)); 3043 } 3044 } 3045 3046 3047 /* 3048 * Power to PDADC table functions 3049 */ 3050 3051 /** 3052 * DOC: Power to PDADC table functions 3053 * 3054 * For RF2413 and later we have a Power to PDADC table (Power Detector) 3055 * instead of a PCDAC (Power Control) and 4 pd gain curves for each 3056 * calibrated channel. Each curve has power on x axis in 0.5 db steps and 3057 * PDADC steps on y axis and looks like an exponential function like the 3058 * RF5111 curve. 3059 * 3060 * To recreate the curves we read the points from eeprom (eeprom.c) 3061 * and interpolate here. Note that in most cases only 2 (higher and lower) 3062 * curves are used (like RF5112) but vendors have the opportunity to include 3063 * all 4 curves on eeprom. The final curve (higher power) has an extra 3064 * point for better accuracy like RF5112. 3065 * 3066 * The process is similar to what we do above for RF5111/5112 3067 */ 3068 3069 /** 3070 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves 3071 * @ah: The &struct ath5k_hw 3072 * @pwr_min: Minimum power (x min) 3073 * @pwr_max: Maximum power (x max) 3074 * @pdcurves: Number of available curves 3075 * 3076 * Combine the various pd curves and create the final Power to PDADC table 3077 * We can have up to 4 pd curves, we need to do a similar process 3078 * as we do for RF5112. This time we don't have an edge_flag but we 3079 * set the gain boundaries on a separate register. 3080 */ 3081 static void 3082 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 3083 s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 3084 { 3085 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; 3086 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3087 u8 *pdadc_tmp; 3088 s16 pdadc_0; 3089 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; 3090 u8 pd_gain_overlap; 3091 3092 /* Note: Register value is initialized on initvals 3093 * there is no feedback from hw. 3094 * XXX: What about pd_gain_overlap from EEPROM ? */ 3095 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & 3096 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; 3097 3098 /* Create final PDADC table */ 3099 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { 3100 pdadc_tmp = ah->ah_txpower.tmpL[pdg]; 3101 3102 if (pdg == pdcurves - 1) 3103 /* 2 dB boundary stretch for last 3104 * (higher power) curve */ 3105 gain_boundaries[pdg] = pwr_max[pdg] + 4; 3106 else 3107 /* Set gain boundary in the middle 3108 * between this curve and the next one */ 3109 gain_boundaries[pdg] = 3110 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; 3111 3112 /* Sanity check in case our 2 db stretch got out of 3113 * range. */ 3114 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) 3115 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; 3116 3117 /* For the first curve (lower power) 3118 * start from 0 dB */ 3119 if (pdg == 0) 3120 pdadc_0 = 0; 3121 else 3122 /* For the other curves use the gain overlap */ 3123 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - 3124 pd_gain_overlap; 3125 3126 /* Force each power step to be at least 0.5 dB */ 3127 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) 3128 pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; 3129 else 3130 pwr_step = 1; 3131 3132 /* If pdadc_0 is negative, we need to extrapolate 3133 * below this pdgain by a number of pwr_steps */ 3134 while ((pdadc_0 < 0) && (pdadc_i < 128)) { 3135 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; 3136 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; 3137 pdadc_0++; 3138 } 3139 3140 /* Set last pwr level, using gain boundaries */ 3141 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; 3142 /* Limit it to be inside pwr range */ 3143 table_size = pwr_max[pdg] - pwr_min[pdg]; 3144 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; 3145 3146 /* Fill pdadc_out table */ 3147 while (pdadc_0 < max_idx && pdadc_i < 128) 3148 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; 3149 3150 /* Need to extrapolate above this pdgain? */ 3151 if (pdadc_n <= max_idx) 3152 continue; 3153 3154 /* Force each power step to be at least 0.5 dB */ 3155 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) 3156 pwr_step = pdadc_tmp[table_size - 1] - 3157 pdadc_tmp[table_size - 2]; 3158 else 3159 pwr_step = 1; 3160 3161 /* Extrapolate above */ 3162 while ((pdadc_0 < (s16) pdadc_n) && 3163 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { 3164 s16 tmp = pdadc_tmp[table_size - 1] + 3165 (pdadc_0 - max_idx) * pwr_step; 3166 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; 3167 pdadc_0++; 3168 } 3169 } 3170 3171 while (pdg < AR5K_EEPROM_N_PD_GAINS) { 3172 gain_boundaries[pdg] = gain_boundaries[pdg - 1]; 3173 pdg++; 3174 } 3175 3176 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { 3177 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; 3178 pdadc_i++; 3179 } 3180 3181 /* Set gain boundaries */ 3182 ath5k_hw_reg_write(ah, 3183 AR5K_REG_SM(pd_gain_overlap, 3184 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | 3185 AR5K_REG_SM(gain_boundaries[0], 3186 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | 3187 AR5K_REG_SM(gain_boundaries[1], 3188 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | 3189 AR5K_REG_SM(gain_boundaries[2], 3190 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | 3191 AR5K_REG_SM(gain_boundaries[3], 3192 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 3193 AR5K_PHY_TPC_RG5); 3194 3195 /* Used for setting rate power table */ 3196 ah->ah_txpower.txp_min_idx = pwr_min[0]; 3197 3198 } 3199 3200 /** 3201 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw 3202 * @ah: The &struct ath5k_hw 3203 * @ee_mode: One of enum ath5k_driver_mode 3204 */ 3205 static void 3206 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 3207 { 3208 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3209 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3210 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3211 u8 pdcurves = ee->ee_pd_gains[ee_mode]; 3212 u32 reg; 3213 u8 i; 3214 3215 /* Select the right pdgain curves */ 3216 3217 /* Clear current settings */ 3218 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); 3219 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | 3220 AR5K_PHY_TPC_RG1_PDGAIN_2 | 3221 AR5K_PHY_TPC_RG1_PDGAIN_3 | 3222 AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3223 3224 /* 3225 * Use pd_gains curve from eeprom 3226 * 3227 * This overrides the default setting from initvals 3228 * in case some vendors (e.g. Zcomax) don't use the default 3229 * curves. If we don't honor their settings we 'll get a 3230 * 5dB (1 * gain overlap ?) drop. 3231 */ 3232 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3233 3234 switch (pdcurves) { 3235 case 3: 3236 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); 3237 /* Fall through */ 3238 case 2: 3239 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); 3240 /* Fall through */ 3241 case 1: 3242 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); 3243 break; 3244 } 3245 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); 3246 3247 /* 3248 * Write TX power values 3249 */ 3250 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3251 u32 val = get_unaligned_le32(&pdadc_out[4 * i]); 3252 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); 3253 } 3254 } 3255 3256 3257 /* 3258 * Common code for PCDAC/PDADC tables 3259 */ 3260 3261 /** 3262 * ath5k_setup_channel_powertable() - Set up power table for this channel 3263 * @ah: The &struct ath5k_hw 3264 * @channel: The &struct ieee80211_channel 3265 * @ee_mode: One of enum ath5k_driver_mode 3266 * @type: One of enum ath5k_powertable_type (eeprom.h) 3267 * 3268 * This is the main function that uses all of the above 3269 * to set PCDAC/PDADC table on hw for the current channel. 3270 * This table is used for tx power calibration on the baseband, 3271 * without it we get weird tx power levels and in some cases 3272 * distorted spectral mask 3273 */ 3274 static int 3275 ath5k_setup_channel_powertable(struct ath5k_hw *ah, 3276 struct ieee80211_channel *channel, 3277 u8 ee_mode, u8 type) 3278 { 3279 struct ath5k_pdgain_info *pdg_L, *pdg_R; 3280 struct ath5k_chan_pcal_info *pcinfo_L; 3281 struct ath5k_chan_pcal_info *pcinfo_R; 3282 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3283 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3284 s16 table_min[AR5K_EEPROM_N_PD_GAINS]; 3285 s16 table_max[AR5K_EEPROM_N_PD_GAINS]; 3286 u8 *tmpL; 3287 u8 *tmpR; 3288 u32 target = channel->center_freq; 3289 int pdg, i; 3290 3291 /* Get surrounding freq piers for this channel */ 3292 ath5k_get_chan_pcal_surrounding_piers(ah, channel, 3293 &pcinfo_L, 3294 &pcinfo_R); 3295 3296 /* Loop over pd gain curves on 3297 * surrounding freq piers by index */ 3298 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { 3299 3300 /* Fill curves in reverse order 3301 * from lower power (max gain) 3302 * to higher power. Use curve -> idx 3303 * backmapping we did on eeprom init */ 3304 u8 idx = pdg_curve_to_idx[pdg]; 3305 3306 /* Grab the needed curves by index */ 3307 pdg_L = &pcinfo_L->pd_curves[idx]; 3308 pdg_R = &pcinfo_R->pd_curves[idx]; 3309 3310 /* Initialize the temp tables */ 3311 tmpL = ah->ah_txpower.tmpL[pdg]; 3312 tmpR = ah->ah_txpower.tmpR[pdg]; 3313 3314 /* Set curve's x boundaries and create 3315 * curves so that they cover the same 3316 * range (if we don't do that one table 3317 * will have values on some range and the 3318 * other one won't have any so interpolation 3319 * will fail) */ 3320 table_min[pdg] = min(pdg_L->pd_pwr[0], 3321 pdg_R->pd_pwr[0]) / 2; 3322 3323 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3324 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; 3325 3326 /* Now create the curves on surrounding channels 3327 * and interpolate if needed to get the final 3328 * curve for this gain on this channel */ 3329 switch (type) { 3330 case AR5K_PWRTABLE_LINEAR_PCDAC: 3331 /* Override min/max so that we don't loose 3332 * accuracy (don't divide by 2) */ 3333 table_min[pdg] = min(pdg_L->pd_pwr[0], 3334 pdg_R->pd_pwr[0]); 3335 3336 table_max[pdg] = 3337 max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3338 pdg_R->pd_pwr[pdg_R->pd_points - 1]); 3339 3340 /* Override minimum so that we don't get 3341 * out of bounds while extrapolating 3342 * below. Don't do this when we have 2 3343 * curves and we are on the high power curve 3344 * because table_min is ok in this case */ 3345 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { 3346 3347 table_min[pdg] = 3348 ath5k_get_linear_pcdac_min(pdg_L->pd_step, 3349 pdg_R->pd_step, 3350 pdg_L->pd_pwr, 3351 pdg_R->pd_pwr); 3352 3353 /* Don't go too low because we will 3354 * miss the upper part of the curve. 3355 * Note: 126 = 31.5dB (max power supported) 3356 * in 0.25dB units */ 3357 if (table_max[pdg] - table_min[pdg] > 126) 3358 table_min[pdg] = table_max[pdg] - 126; 3359 } 3360 3361 /* Fall through */ 3362 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3363 case AR5K_PWRTABLE_PWR_TO_PDADC: 3364 3365 ath5k_create_power_curve(table_min[pdg], 3366 table_max[pdg], 3367 pdg_L->pd_pwr, 3368 pdg_L->pd_step, 3369 pdg_L->pd_points, tmpL, type); 3370 3371 /* We are in a calibration 3372 * pier, no need to interpolate 3373 * between freq piers */ 3374 if (pcinfo_L == pcinfo_R) 3375 continue; 3376 3377 ath5k_create_power_curve(table_min[pdg], 3378 table_max[pdg], 3379 pdg_R->pd_pwr, 3380 pdg_R->pd_step, 3381 pdg_R->pd_points, tmpR, type); 3382 break; 3383 default: 3384 return -EINVAL; 3385 } 3386 3387 /* Interpolate between curves 3388 * of surrounding freq piers to 3389 * get the final curve for this 3390 * pd gain. Re-use tmpL for interpolation 3391 * output */ 3392 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && 3393 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 3394 tmpL[i] = (u8) ath5k_get_interpolated_value(target, 3395 (s16) pcinfo_L->freq, 3396 (s16) pcinfo_R->freq, 3397 (s16) tmpL[i], 3398 (s16) tmpR[i]); 3399 } 3400 } 3401 3402 /* Now we have a set of curves for this 3403 * channel on tmpL (x range is table_max - table_min 3404 * and y values are tmpL[pdg][]) sorted in the same 3405 * order as EEPROM (because we've used the backmapping). 3406 * So for RF5112 it's from higher power to lower power 3407 * and for RF2413 it's from lower power to higher power. 3408 * For RF5111 we only have one curve. */ 3409 3410 /* Fill min and max power levels for this 3411 * channel by interpolating the values on 3412 * surrounding channels to complete the dataset */ 3413 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, 3414 (s16) pcinfo_L->freq, 3415 (s16) pcinfo_R->freq, 3416 pcinfo_L->min_pwr, pcinfo_R->min_pwr); 3417 3418 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, 3419 (s16) pcinfo_L->freq, 3420 (s16) pcinfo_R->freq, 3421 pcinfo_L->max_pwr, pcinfo_R->max_pwr); 3422 3423 /* Fill PCDAC/PDADC table */ 3424 switch (type) { 3425 case AR5K_PWRTABLE_LINEAR_PCDAC: 3426 /* For RF5112 we can have one or two curves 3427 * and each curve covers a certain power lvl 3428 * range so we need to do some more processing */ 3429 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, 3430 ee->ee_pd_gains[ee_mode]); 3431 3432 /* Set txp.offset so that we can 3433 * match max power value with max 3434 * table index */ 3435 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); 3436 break; 3437 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3438 /* We are done for RF5111 since it has only 3439 * one curve, just fit the curve on the table */ 3440 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); 3441 3442 /* No rate powertable adjustment for RF5111 */ 3443 ah->ah_txpower.txp_min_idx = 0; 3444 ah->ah_txpower.txp_offset = 0; 3445 break; 3446 case AR5K_PWRTABLE_PWR_TO_PDADC: 3447 /* Set PDADC boundaries and fill 3448 * final PDADC table */ 3449 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, 3450 ee->ee_pd_gains[ee_mode]); 3451 3452 /* Set txp.offset, note that table_min 3453 * can be negative */ 3454 ah->ah_txpower.txp_offset = table_min[0]; 3455 break; 3456 default: 3457 return -EINVAL; 3458 } 3459 3460 ah->ah_txpower.txp_setup = true; 3461 3462 return 0; 3463 } 3464 3465 /** 3466 * ath5k_write_channel_powertable() - Set power table for current channel on hw 3467 * @ah: The &struct ath5k_hw 3468 * @ee_mode: One of enum ath5k_driver_mode 3469 * @type: One of enum ath5k_powertable_type (eeprom.h) 3470 */ 3471 static void 3472 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 3473 { 3474 if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 3475 ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 3476 else 3477 ath5k_write_pcdac_table(ah); 3478 } 3479 3480 3481 /** 3482 * DOC: Per-rate tx power setting 3483 * 3484 * This is the code that sets the desired tx power limit (below 3485 * maximum) on hw for each rate (we also have TPC that sets 3486 * power per packet type). We do that by providing an index on the 3487 * PCDAC/PDADC table we set up above, for each rate. 3488 * 3489 * For now we only limit txpower based on maximum tx power 3490 * supported by hw (what's inside rate_info) + conformance test 3491 * limits. We need to limit this even more, based on regulatory domain 3492 * etc to be safe. Normally this is done from above so we don't care 3493 * here, all we care is that the tx power we set will be O.K. 3494 * for the hw (e.g. won't create noise on PA etc). 3495 * 3496 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - 3497 * x values) and is indexed as follows: 3498 * rates[0] - rates[7] -> OFDM rates 3499 * rates[8] - rates[14] -> CCK rates 3500 * rates[15] -> XR rates (they all have the same power) 3501 */ 3502 3503 /** 3504 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power 3505 * @ah: The &struct ath5k_hw 3506 * @max_pwr: The maximum tx power requested in 0.5dB steps 3507 * @rate_info: The &struct ath5k_rate_pcal_info to fill 3508 * @ee_mode: One of enum ath5k_driver_mode 3509 */ 3510 static void 3511 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 3512 struct ath5k_rate_pcal_info *rate_info, 3513 u8 ee_mode) 3514 { 3515 unsigned int i; 3516 u16 *rates; 3517 s16 rate_idx_scaled = 0; 3518 3519 /* max_pwr is power level we got from driver/user in 0.5dB 3520 * units, switch to 0.25dB units so we can compare */ 3521 max_pwr *= 2; 3522 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; 3523 3524 /* apply rate limits */ 3525 rates = ah->ah_txpower.txp_rates_power_table; 3526 3527 /* OFDM rates 6 to 24Mb/s */ 3528 for (i = 0; i < 5; i++) 3529 rates[i] = min(max_pwr, rate_info->target_power_6to24); 3530 3531 /* Rest OFDM rates */ 3532 rates[5] = min(rates[0], rate_info->target_power_36); 3533 rates[6] = min(rates[0], rate_info->target_power_48); 3534 rates[7] = min(rates[0], rate_info->target_power_54); 3535 3536 /* CCK rates */ 3537 /* 1L */ 3538 rates[8] = min(rates[0], rate_info->target_power_6to24); 3539 /* 2L */ 3540 rates[9] = min(rates[0], rate_info->target_power_36); 3541 /* 2S */ 3542 rates[10] = min(rates[0], rate_info->target_power_36); 3543 /* 5L */ 3544 rates[11] = min(rates[0], rate_info->target_power_48); 3545 /* 5S */ 3546 rates[12] = min(rates[0], rate_info->target_power_48); 3547 /* 11L */ 3548 rates[13] = min(rates[0], rate_info->target_power_54); 3549 /* 11S */ 3550 rates[14] = min(rates[0], rate_info->target_power_54); 3551 3552 /* XR rates */ 3553 rates[15] = min(rates[0], rate_info->target_power_6to24); 3554 3555 /* CCK rates have different peak to average ratio 3556 * so we have to tweak their power so that gainf 3557 * correction works ok. For this we use OFDM to 3558 * CCK delta from eeprom */ 3559 if ((ee_mode == AR5K_EEPROM_MODE_11G) && 3560 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) 3561 for (i = 8; i <= 15; i++) 3562 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; 3563 3564 /* Save min/max and current tx power for this channel 3565 * in 0.25dB units. 3566 * 3567 * Note: We use rates[0] for current tx power because 3568 * it covers most of the rates, in most cases. It's our 3569 * tx power limit and what the user expects to see. */ 3570 ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 3571 ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 3572 3573 /* Set max txpower for correct OFDM operation on all rates 3574 * -that is the txpower for 54Mbit-, it's used for the PAPD 3575 * gain probe and it's in 0.5dB units */ 3576 ah->ah_txpower.txp_ofdm = rates[7]; 3577 3578 /* Now that we have all rates setup use table offset to 3579 * match the power range set by user with the power indices 3580 * on PCDAC/PDADC table */ 3581 for (i = 0; i < 16; i++) { 3582 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset; 3583 /* Don't get out of bounds */ 3584 if (rate_idx_scaled > 63) 3585 rate_idx_scaled = 63; 3586 if (rate_idx_scaled < 0) 3587 rate_idx_scaled = 0; 3588 rates[i] = rate_idx_scaled; 3589 } 3590 } 3591 3592 3593 /** 3594 * ath5k_hw_txpower() - Set transmission power limit for a given channel 3595 * @ah: The &struct ath5k_hw 3596 * @channel: The &struct ieee80211_channel 3597 * @txpower: Requested tx power in 0.5dB steps 3598 * 3599 * Combines all of the above to set the requested tx power limit 3600 * on hw. 3601 */ 3602 static int 3603 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3604 u8 txpower) 3605 { 3606 struct ath5k_rate_pcal_info rate_info; 3607 struct ieee80211_channel *curr_channel = ah->ah_current_channel; 3608 int ee_mode; 3609 u8 type; 3610 int ret; 3611 3612 if (txpower > AR5K_TUNE_MAX_TXPOWER) { 3613 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); 3614 return -EINVAL; 3615 } 3616 3617 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 3618 3619 /* Initialize TX power table */ 3620 switch (ah->ah_radio) { 3621 case AR5K_RF5110: 3622 /* TODO */ 3623 return 0; 3624 case AR5K_RF5111: 3625 type = AR5K_PWRTABLE_PWR_TO_PCDAC; 3626 break; 3627 case AR5K_RF5112: 3628 type = AR5K_PWRTABLE_LINEAR_PCDAC; 3629 break; 3630 case AR5K_RF2413: 3631 case AR5K_RF5413: 3632 case AR5K_RF2316: 3633 case AR5K_RF2317: 3634 case AR5K_RF2425: 3635 type = AR5K_PWRTABLE_PWR_TO_PDADC; 3636 break; 3637 default: 3638 return -EINVAL; 3639 } 3640 3641 /* 3642 * If we don't change channel/mode skip tx powertable calculation 3643 * and use the cached one. 3644 */ 3645 if (!ah->ah_txpower.txp_setup || 3646 (channel->hw_value != curr_channel->hw_value) || 3647 (channel->center_freq != curr_channel->center_freq)) { 3648 /* Reset TX power values but preserve requested 3649 * tx power from above */ 3650 int requested_txpower = ah->ah_txpower.txp_requested; 3651 3652 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); 3653 3654 /* Restore TPC setting and requested tx power */ 3655 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; 3656 3657 ah->ah_txpower.txp_requested = requested_txpower; 3658 3659 /* Calculate the powertable */ 3660 ret = ath5k_setup_channel_powertable(ah, channel, 3661 ee_mode, type); 3662 if (ret) 3663 return ret; 3664 } 3665 3666 /* Write table on hw */ 3667 ath5k_write_channel_powertable(ah, ee_mode, type); 3668 3669 /* Limit max power if we have a CTL available */ 3670 ath5k_get_max_ctl_power(ah, channel); 3671 3672 /* FIXME: Antenna reduction stuff */ 3673 3674 /* FIXME: Limit power on turbo modes */ 3675 3676 /* FIXME: TPC scale reduction */ 3677 3678 /* Get surrounding channels for per-rate power table 3679 * calibration */ 3680 ath5k_get_rate_pcal_data(ah, channel, &rate_info); 3681 3682 /* Setup rate power table */ 3683 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); 3684 3685 /* Write rate power table on hw */ 3686 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | 3687 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | 3688 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); 3689 3690 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | 3691 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | 3692 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); 3693 3694 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | 3695 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | 3696 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); 3697 3698 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | 3699 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | 3700 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); 3701 3702 /* FIXME: TPC support */ 3703 if (ah->ah_txpower.txp_tpc) { 3704 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | 3705 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3706 3707 ath5k_hw_reg_write(ah, 3708 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | 3709 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | 3710 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), 3711 AR5K_TPC); 3712 } else { 3713 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER, 3714 AR5K_PHY_TXPOWER_RATE_MAX); 3715 } 3716 3717 return 0; 3718 } 3719 3720 /** 3721 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel 3722 * @ah: The &struct ath5k_hw 3723 * @txpower: The requested tx power limit in 0.5dB steps 3724 * 3725 * This function provides access to ath5k_hw_txpower to the driver in 3726 * case user or an application changes it while PHY is running. 3727 */ 3728 int 3729 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) 3730 { 3731 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 3732 "changing txpower to %d\n", txpower); 3733 3734 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 3735 } 3736 3737 3738 /*************\ 3739 Init function 3740 \*************/ 3741 3742 /** 3743 * ath5k_hw_phy_init() - Initialize PHY 3744 * @ah: The &struct ath5k_hw 3745 * @channel: The @struct ieee80211_channel 3746 * @mode: One of enum ath5k_driver_mode 3747 * @fast: Try a fast channel switch instead 3748 * 3749 * This is the main function used during reset to initialize PHY 3750 * or do a fast channel change if possible. 3751 * 3752 * NOTE: Do not call this one from the driver, it assumes PHY is in a 3753 * warm reset state ! 3754 */ 3755 int 3756 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3757 u8 mode, bool fast) 3758 { 3759 struct ieee80211_channel *curr_channel; 3760 int ret, i; 3761 u32 phy_tst1; 3762 ret = 0; 3763 3764 /* 3765 * Sanity check for fast flag 3766 * Don't try fast channel change when changing modulation 3767 * mode/band. We check for chip compatibility on 3768 * ath5k_hw_reset. 3769 */ 3770 curr_channel = ah->ah_current_channel; 3771 if (fast && (channel->hw_value != curr_channel->hw_value)) 3772 return -EINVAL; 3773 3774 /* 3775 * On fast channel change we only set the synth parameters 3776 * while PHY is running, enable calibration and skip the rest. 3777 */ 3778 if (fast) { 3779 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3780 AR5K_PHY_RFBUS_REQ_REQUEST); 3781 for (i = 0; i < 100; i++) { 3782 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) 3783 break; 3784 udelay(5); 3785 } 3786 /* Failed */ 3787 if (i >= 100) 3788 return -EIO; 3789 3790 /* Set channel and wait for synth */ 3791 ret = ath5k_hw_channel(ah, channel); 3792 if (ret) 3793 return ret; 3794 3795 ath5k_hw_wait_for_synth(ah, channel); 3796 } 3797 3798 /* 3799 * Set TX power 3800 * 3801 * Note: We need to do that before we set 3802 * RF buffer settings on 5211/5212+ so that we 3803 * properly set curve indices. 3804 */ 3805 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ? 3806 ah->ah_txpower.txp_requested * 2 : 3807 AR5K_TUNE_MAX_TXPOWER); 3808 if (ret) 3809 return ret; 3810 3811 /* Write OFDM timings on 5212*/ 3812 if (ah->ah_version == AR5K_AR5212 && 3813 channel->hw_value != AR5K_MODE_11B) { 3814 3815 ret = ath5k_hw_write_ofdm_timings(ah, channel); 3816 if (ret) 3817 return ret; 3818 3819 /* Spur info is available only from EEPROM versions 3820 * greater than 5.3, but the EEPROM routines will use 3821 * static values for older versions */ 3822 if (ah->ah_mac_srev >= AR5K_SREV_AR5424) 3823 ath5k_hw_set_spur_mitigation_filter(ah, 3824 channel); 3825 } 3826 3827 /* If we used fast channel switching 3828 * we are done, release RF bus and 3829 * fire up NF calibration. 3830 * 3831 * Note: Only NF calibration due to 3832 * channel change, not AGC calibration 3833 * since AGC is still running ! 3834 */ 3835 if (fast) { 3836 /* 3837 * Release RF Bus grant 3838 */ 3839 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3840 AR5K_PHY_RFBUS_REQ_REQUEST); 3841 3842 /* 3843 * Start NF calibration 3844 */ 3845 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3846 AR5K_PHY_AGCCTL_NF); 3847 3848 return ret; 3849 } 3850 3851 /* 3852 * For 5210 we do all initialization using 3853 * initvals, so we don't have to modify 3854 * any settings (5210 also only supports 3855 * a/aturbo modes) 3856 */ 3857 if (ah->ah_version != AR5K_AR5210) { 3858 3859 /* 3860 * Write initial RF gain settings 3861 * This should work for both 5111/5112 3862 */ 3863 ret = ath5k_hw_rfgain_init(ah, channel->band); 3864 if (ret) 3865 return ret; 3866 3867 usleep_range(1000, 1500); 3868 3869 /* 3870 * Write RF buffer 3871 */ 3872 ret = ath5k_hw_rfregs_init(ah, channel, mode); 3873 if (ret) 3874 return ret; 3875 3876 /*Enable/disable 802.11b mode on 5111 3877 (enable 2111 frequency converter + CCK)*/ 3878 if (ah->ah_radio == AR5K_RF5111) { 3879 if (mode == AR5K_MODE_11B) 3880 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, 3881 AR5K_TXCFG_B_MODE); 3882 else 3883 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 3884 AR5K_TXCFG_B_MODE); 3885 } 3886 3887 } else if (ah->ah_version == AR5K_AR5210) { 3888 usleep_range(1000, 1500); 3889 /* Disable phy and wait */ 3890 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 3891 usleep_range(1000, 1500); 3892 } 3893 3894 /* Set channel on PHY */ 3895 ret = ath5k_hw_channel(ah, channel); 3896 if (ret) 3897 return ret; 3898 3899 /* 3900 * Enable the PHY and wait until completion 3901 * This includes BaseBand and Synthesizer 3902 * activation. 3903 */ 3904 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 3905 3906 ath5k_hw_wait_for_synth(ah, channel); 3907 3908 /* 3909 * Perform ADC test to see if baseband is ready 3910 * Set tx hold and check adc test register 3911 */ 3912 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 3913 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 3914 for (i = 0; i <= 20; i++) { 3915 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) 3916 break; 3917 usleep_range(200, 250); 3918 } 3919 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); 3920 3921 /* 3922 * Start automatic gain control calibration 3923 * 3924 * During AGC calibration RX path is re-routed to 3925 * a power detector so we don't receive anything. 3926 * 3927 * This method is used to calibrate some static offsets 3928 * used together with on-the fly I/Q calibration (the 3929 * one performed via ath5k_hw_phy_calibrate), which doesn't 3930 * interrupt rx path. 3931 * 3932 * While rx path is re-routed to the power detector we also 3933 * start a noise floor calibration to measure the 3934 * card's noise floor (the noise we measure when we are not 3935 * transmitting or receiving anything). 3936 * 3937 * If we are in a noisy environment, AGC calibration may time 3938 * out and/or noise floor calibration might timeout. 3939 */ 3940 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3941 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); 3942 3943 /* At the same time start I/Q calibration for QAM constellation 3944 * -no need for CCK- */ 3945 ah->ah_iq_cal_needed = false; 3946 if (!(mode == AR5K_MODE_11B)) { 3947 ah->ah_iq_cal_needed = true; 3948 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 3949 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 3950 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 3951 AR5K_PHY_IQ_RUN); 3952 } 3953 3954 /* Wait for gain calibration to finish (we check for I/Q calibration 3955 * during ath5k_phy_calibrate) */ 3956 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 3957 AR5K_PHY_AGCCTL_CAL, 0, false)) { 3958 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", 3959 channel->center_freq); 3960 } 3961 3962 /* Restore antenna mode */ 3963 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); 3964 3965 return ret; 3966 } 3967