xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision b6dcefde)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #define _ATH5K_PHY
24 
25 #include <linux/delay.h>
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32 
33 /*
34  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35  */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 					const struct ath5k_rf_reg *rf_regs,
38 					u32 val, u8 reg_id, bool set)
39 {
40 	const struct ath5k_rf_reg *rfreg = NULL;
41 	u8 offset, bank, num_bits, col, position;
42 	u16 entry;
43 	u32 mask, data, last_bit, bits_shifted, first_bit;
44 	u32 *rfb;
45 	s32 bits_left;
46 	int i;
47 
48 	data = 0;
49 	rfb = ah->ah_rf_banks;
50 
51 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 		if (rf_regs[i].index == reg_id) {
53 			rfreg = &rf_regs[i];
54 			break;
55 		}
56 	}
57 
58 	if (rfb == NULL || rfreg == NULL) {
59 		ATH5K_PRINTF("Rf register not found!\n");
60 		/* should not happen */
61 		return 0;
62 	}
63 
64 	bank = rfreg->bank;
65 	num_bits = rfreg->field.len;
66 	first_bit = rfreg->field.pos;
67 	col = rfreg->field.col;
68 
69 	/* first_bit is an offset from bank's
70 	 * start. Since we have all banks on
71 	 * the same array, we use this offset
72 	 * to mark each bank's start */
73 	offset = ah->ah_offset[bank];
74 
75 	/* Boundary check */
76 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
78 		return 0;
79 	}
80 
81 	entry = ((first_bit - 1) / 8) + offset;
82 	position = (first_bit - 1) % 8;
83 
84 	if (set)
85 		data = ath5k_hw_bitswap(val, num_bits);
86 
87 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 	position = 0, entry++) {
89 
90 		last_bit = (position + bits_left > 8) ? 8 :
91 					position + bits_left;
92 
93 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94 								(col * 8);
95 
96 		if (set) {
97 			rfb[entry] &= ~mask;
98 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 			data >>= (8 - position);
100 		} else {
101 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102 				<< bits_shifted;
103 			bits_shifted += last_bit - position;
104 		}
105 
106 		bits_left -= 8 - position;
107 	}
108 
109 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110 
111 	return data;
112 }
113 
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117 
118 /*
119  * This code is used to optimize rf gain on different environments
120  * (temperature mostly) based on feedback from a power detector.
121  *
122  * It's only used on RF5111 and RF5112, later RF chips seem to have
123  * auto adjustment on hw -notice they have a much smaller BANK 7 and
124  * no gain optimization ladder-.
125  *
126  * For more infos check out this patent doc
127  * http://www.freepatentsonline.com/7400691.html
128  *
129  * This paper describes power drops as seen on the receiver due to
130  * probe packets
131  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132  * %20of%20Power%20Control.pdf
133  *
134  * And this is the MadWiFi bug entry related to the above
135  * http://madwifi-project.org/ticket/1659
136  * with various measurements and diagrams
137  *
138  * TODO: Deal with power drops due to probes by setting an apropriate
139  * tx power on the probe packets ! Make this part of the calibration process.
140  */
141 
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145 	/* Initialize the gain optimization values */
146 	switch (ah->ah_radio) {
147 	case AR5K_RF5111:
148 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 		ah->ah_gain.g_low = 20;
150 		ah->ah_gain.g_high = 35;
151 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152 		break;
153 	case AR5K_RF5112:
154 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 		ah->ah_gain.g_low = 20;
156 		ah->ah_gain.g_high = 85;
157 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158 		break;
159 	default:
160 		return -EINVAL;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Schedule a gain probe check on the next transmited packet.
167  * That means our next packet is going to be sent with lower
168  * tx power and a Peak to Average Power Detector (PAPD) will try
169  * to measure the gain.
170  *
171  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
172  * just after we enable the probe so that we don't mess with
173  * standard traffic ? Maybe it's time to use sw interrupts and
174  * a probe tasklet !!!
175  */
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177 {
178 
179 	/* Skip if gain calibration is inactive or
180 	 * we already handle a probe request */
181 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182 		return;
183 
184 	/* Send the packet with 2dB below max power as
185 	 * patent doc suggest */
186 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189 
190 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191 
192 }
193 
194 /* Calculate gain_F measurement correction
195  * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 {
198 	u32 mix, step;
199 	u32 *rf;
200 	const struct ath5k_gain_opt *go;
201 	const struct ath5k_gain_opt_step *g_step;
202 	const struct ath5k_rf_reg *rf_regs;
203 
204 	/* Only RF5112 Rev. 2 supports it */
205 	if ((ah->ah_radio != AR5K_RF5112) ||
206 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207 		return 0;
208 
209 	go = &rfgain_opt_5112;
210 	rf_regs = rf_regs_5112a;
211 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212 
213 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
214 
215 	if (ah->ah_rf_banks == NULL)
216 		return 0;
217 
218 	rf = ah->ah_rf_banks;
219 	ah->ah_gain.g_f_corr = 0;
220 
221 	/* No VGA (Variable Gain Amplifier) override, skip */
222 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223 		return 0;
224 
225 	/* Mix gain stepping */
226 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227 
228 	/* Mix gain override */
229 	mix = g_step->gos_param[0];
230 
231 	switch (mix) {
232 	case 3:
233 		ah->ah_gain.g_f_corr = step * 2;
234 		break;
235 	case 2:
236 		ah->ah_gain.g_f_corr = (step - 5) * 2;
237 		break;
238 	case 1:
239 		ah->ah_gain.g_f_corr = step;
240 		break;
241 	default:
242 		ah->ah_gain.g_f_corr = 0;
243 		break;
244 	}
245 
246 	return ah->ah_gain.g_f_corr;
247 }
248 
249 /* Check if current gain_F measurement is in the range of our
250  * power detector windows. If we get a measurement outside range
251  * we know it's not accurate (detectors can't measure anything outside
252  * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254 {
255 	const struct ath5k_rf_reg *rf_regs;
256 	u32 step, mix_ovr, level[4];
257 	u32 *rf;
258 
259 	if (ah->ah_rf_banks == NULL)
260 		return false;
261 
262 	rf = ah->ah_rf_banks;
263 
264 	if (ah->ah_radio == AR5K_RF5111) {
265 
266 		rf_regs = rf_regs_5111;
267 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268 
269 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270 			false);
271 
272 		level[0] = 0;
273 		level[1] = (step == 63) ? 50 : step + 4;
274 		level[2] = (step != 63) ? 64 : level[0];
275 		level[3] = level[2] + 50 ;
276 
277 		ah->ah_gain.g_high = level[3] -
278 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279 		ah->ah_gain.g_low = level[0] +
280 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281 	} else {
282 
283 		rf_regs = rf_regs_5112;
284 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285 
286 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287 			false);
288 
289 		level[0] = level[2] = 0;
290 
291 		if (mix_ovr == 1) {
292 			level[1] = level[3] = 83;
293 		} else {
294 			level[1] = level[3] = 107;
295 			ah->ah_gain.g_high = 55;
296 		}
297 	}
298 
299 	return (ah->ah_gain.g_current >= level[0] &&
300 			ah->ah_gain.g_current <= level[1]) ||
301 		(ah->ah_gain.g_current >= level[2] &&
302 			ah->ah_gain.g_current <= level[3]);
303 }
304 
305 /* Perform gain_F adjustment by choosing the right set
306  * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 {
309 	const struct ath5k_gain_opt *go;
310 	const struct ath5k_gain_opt_step *g_step;
311 	int ret = 0;
312 
313 	switch (ah->ah_radio) {
314 	case AR5K_RF5111:
315 		go = &rfgain_opt_5111;
316 		break;
317 	case AR5K_RF5112:
318 		go = &rfgain_opt_5112;
319 		break;
320 	default:
321 		return 0;
322 	}
323 
324 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
325 
326 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327 
328 		/* Reached maximum */
329 		if (ah->ah_gain.g_step_idx == 0)
330 			return -1;
331 
332 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
334 				ah->ah_gain.g_step_idx > 0;
335 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 			ah->ah_gain.g_target -= 2 *
337 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338 			    g_step->gos_gain);
339 
340 		ret = 1;
341 		goto done;
342 	}
343 
344 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345 
346 		/* Reached minimum */
347 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348 			return -2;
349 
350 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
353 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 			ah->ah_gain.g_target -= 2 *
355 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356 			    g_step->gos_gain);
357 
358 		ret = 2;
359 		goto done;
360 	}
361 
362 done:
363 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364 		"ret %d, gain step %u, current gain %u, target gain %u\n",
365 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366 		ah->ah_gain.g_target);
367 
368 	return ret;
369 }
370 
371 /* Main callback for thermal rf gain calibration engine
372  * Check for a new gain reading and schedule an adjustment
373  * if needed.
374  *
375  * TODO: Use sw interrupt to schedule reset if gain_F needs
376  * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378 {
379 	u32 data, type;
380 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381 
382 	ATH5K_TRACE(ah->ah_sc);
383 
384 	if (ah->ah_rf_banks == NULL ||
385 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386 		return AR5K_RFGAIN_INACTIVE;
387 
388 	/* No check requested, either engine is inactive
389 	 * or an adjustment is already requested */
390 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391 		goto done;
392 
393 	/* Read the PAPD (Peak to Average Power Detector)
394 	 * register */
395 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396 
397 	/* No probe is scheduled, read gain_F measurement */
398 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401 
402 		/* If tx packet is CCK correct the gain_F measurement
403 		 * by cck ofdm gain delta */
404 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406 				ah->ah_gain.g_current +=
407 					ee->ee_cck_ofdm_gain_delta;
408 			else
409 				ah->ah_gain.g_current +=
410 					AR5K_GAIN_CCK_PROBE_CORR;
411 		}
412 
413 		/* Further correct gain_F measurement for
414 		 * RF5112A radios */
415 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416 			ath5k_hw_rf_gainf_corr(ah);
417 			ah->ah_gain.g_current =
418 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420 				0;
421 		}
422 
423 		/* Check if measurement is ok and if we need
424 		 * to adjust gain, schedule a gain adjustment,
425 		 * else switch back to the acive state */
426 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
427 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428 		ath5k_hw_rf_gainf_adjust(ah)) {
429 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430 		} else {
431 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432 		}
433 	}
434 
435 done:
436 	return ah->ah_gain.g_state;
437 }
438 
439 /* Write initial rf gain table to set the RF sensitivity
440  * this one works on all RF chips and has nothing to do
441  * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443 {
444 	const struct ath5k_ini_rfgain *ath5k_rfg;
445 	unsigned int i, size;
446 
447 	switch (ah->ah_radio) {
448 	case AR5K_RF5111:
449 		ath5k_rfg = rfgain_5111;
450 		size = ARRAY_SIZE(rfgain_5111);
451 		break;
452 	case AR5K_RF5112:
453 		ath5k_rfg = rfgain_5112;
454 		size = ARRAY_SIZE(rfgain_5112);
455 		break;
456 	case AR5K_RF2413:
457 		ath5k_rfg = rfgain_2413;
458 		size = ARRAY_SIZE(rfgain_2413);
459 		break;
460 	case AR5K_RF2316:
461 		ath5k_rfg = rfgain_2316;
462 		size = ARRAY_SIZE(rfgain_2316);
463 		break;
464 	case AR5K_RF5413:
465 		ath5k_rfg = rfgain_5413;
466 		size = ARRAY_SIZE(rfgain_5413);
467 		break;
468 	case AR5K_RF2317:
469 	case AR5K_RF2425:
470 		ath5k_rfg = rfgain_2425;
471 		size = ARRAY_SIZE(rfgain_2425);
472 		break;
473 	default:
474 		return -EINVAL;
475 	}
476 
477 	switch (freq) {
478 	case AR5K_INI_RFGAIN_2GHZ:
479 	case AR5K_INI_RFGAIN_5GHZ:
480 		break;
481 	default:
482 		return -EINVAL;
483 	}
484 
485 	for (i = 0; i < size; i++) {
486 		AR5K_REG_WAIT(i);
487 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488 			(u32)ath5k_rfg[i].rfg_register);
489 	}
490 
491 	return 0;
492 }
493 
494 
495 
496 /********************\
497 * RF Registers setup *
498 \********************/
499 
500 
501 /*
502  * Setup RF registers by writing rf buffer on hw
503  */
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505 		unsigned int mode)
506 {
507 	const struct ath5k_rf_reg *rf_regs;
508 	const struct ath5k_ini_rfbuffer *ini_rfb;
509 	const struct ath5k_gain_opt *go = NULL;
510 	const struct ath5k_gain_opt_step *g_step;
511 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 	u8 ee_mode = 0;
513 	u32 *rfb;
514 	int i, obdb = -1, bank = -1;
515 
516 	switch (ah->ah_radio) {
517 	case AR5K_RF5111:
518 		rf_regs = rf_regs_5111;
519 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520 		ini_rfb = rfb_5111;
521 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522 		go = &rfgain_opt_5111;
523 		break;
524 	case AR5K_RF5112:
525 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526 			rf_regs = rf_regs_5112a;
527 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528 			ini_rfb = rfb_5112a;
529 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530 		} else {
531 			rf_regs = rf_regs_5112;
532 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533 			ini_rfb = rfb_5112;
534 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535 		}
536 		go = &rfgain_opt_5112;
537 		break;
538 	case AR5K_RF2413:
539 		rf_regs = rf_regs_2413;
540 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541 		ini_rfb = rfb_2413;
542 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543 		break;
544 	case AR5K_RF2316:
545 		rf_regs = rf_regs_2316;
546 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547 		ini_rfb = rfb_2316;
548 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549 		break;
550 	case AR5K_RF5413:
551 		rf_regs = rf_regs_5413;
552 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553 		ini_rfb = rfb_5413;
554 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555 		break;
556 	case AR5K_RF2317:
557 		rf_regs = rf_regs_2425;
558 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559 		ini_rfb = rfb_2317;
560 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561 		break;
562 	case AR5K_RF2425:
563 		rf_regs = rf_regs_2425;
564 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566 			ini_rfb = rfb_2425;
567 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568 		} else {
569 			ini_rfb = rfb_2417;
570 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571 		}
572 		break;
573 	default:
574 		return -EINVAL;
575 	}
576 
577 	/* If it's the first time we set rf buffer, allocate
578 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
579 	 * we set above */
580 	if (ah->ah_rf_banks == NULL) {
581 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582 								GFP_KERNEL);
583 		if (ah->ah_rf_banks == NULL) {
584 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
585 			return -ENOMEM;
586 		}
587 	}
588 
589 	/* Copy values to modify them */
590 	rfb = ah->ah_rf_banks;
591 
592 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
593 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595 			return -EINVAL;
596 		}
597 
598 		/* Bank changed, write down the offset */
599 		if (bank != ini_rfb[i].rfb_bank) {
600 			bank = ini_rfb[i].rfb_bank;
601 			ah->ah_offset[bank] = i;
602 		}
603 
604 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605 	}
606 
607 	/* Set Output and Driver bias current (OB/DB) */
608 	if (channel->hw_value & CHANNEL_2GHZ) {
609 
610 		if (channel->hw_value & CHANNEL_CCK)
611 			ee_mode = AR5K_EEPROM_MODE_11B;
612 		else
613 			ee_mode = AR5K_EEPROM_MODE_11G;
614 
615 		/* For RF511X/RF211X combination we
616 		 * use b_OB and b_DB parameters stored
617 		 * in eeprom on ee->ee_ob[ee_mode][0]
618 		 *
619 		 * For all other chips we use OB/DB for 2Ghz
620 		 * stored in the b/g modal section just like
621 		 * 802.11a on ee->ee_ob[ee_mode][1] */
622 		if ((ah->ah_radio == AR5K_RF5111) ||
623 		(ah->ah_radio == AR5K_RF5112))
624 			obdb = 0;
625 		else
626 			obdb = 1;
627 
628 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629 						AR5K_RF_OB_2GHZ, true);
630 
631 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632 						AR5K_RF_DB_2GHZ, true);
633 
634 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
636 			(ah->ah_radio == AR5K_RF5111)) {
637 
638 		/* For 11a, Turbo and XR we need to choose
639 		 * OB/DB based on frequency range */
640 		ee_mode = AR5K_EEPROM_MODE_11A;
641 		obdb =	 channel->center_freq >= 5725 ? 3 :
642 			(channel->center_freq >= 5500 ? 2 :
643 			(channel->center_freq >= 5260 ? 1 :
644 			 (channel->center_freq > 4000 ? 0 : -1)));
645 
646 		if (obdb < 0)
647 			return -EINVAL;
648 
649 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650 						AR5K_RF_OB_5GHZ, true);
651 
652 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653 						AR5K_RF_DB_5GHZ, true);
654 	}
655 
656 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
657 
658 	/* Bank Modifications (chip-specific) */
659 	if (ah->ah_radio == AR5K_RF5111) {
660 
661 		/* Set gain_F settings according to current step */
662 		if (channel->hw_value & CHANNEL_OFDM) {
663 
664 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665 					AR5K_PHY_FRAME_CTL_TX_CLIP,
666 					g_step->gos_param[0]);
667 
668 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669 							AR5K_RF_PWD_90, true);
670 
671 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672 							AR5K_RF_PWD_84, true);
673 
674 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675 						AR5K_RF_RFGAIN_SEL, true);
676 
677 			/* We programmed gain_F parameters, switch back
678 			 * to active state */
679 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680 
681 		}
682 
683 		/* Bank 6/7 setup */
684 
685 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686 						AR5K_RF_PWD_XPD, true);
687 
688 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689 						AR5K_RF_XPD_GAIN, true);
690 
691 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692 						AR5K_RF_GAIN_I, true);
693 
694 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695 						AR5K_RF_PLO_SEL, true);
696 
697 		/* TODO: Half/quarter channel support */
698 	}
699 
700 	if (ah->ah_radio == AR5K_RF5112) {
701 
702 		/* Set gain_F settings according to current step */
703 		if (channel->hw_value & CHANNEL_OFDM) {
704 
705 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706 						AR5K_RF_MIXGAIN_OVR, true);
707 
708 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709 						AR5K_RF_PWD_138, true);
710 
711 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712 						AR5K_RF_PWD_137, true);
713 
714 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715 						AR5K_RF_PWD_136, true);
716 
717 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718 						AR5K_RF_PWD_132, true);
719 
720 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721 						AR5K_RF_PWD_131, true);
722 
723 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724 						AR5K_RF_PWD_130, true);
725 
726 			/* We programmed gain_F parameters, switch back
727 			 * to active state */
728 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729 		}
730 
731 		/* Bank 6/7 setup */
732 
733 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734 						AR5K_RF_XPD_SEL, true);
735 
736 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737 			/* Rev. 1 supports only one xpd */
738 			ath5k_hw_rfb_op(ah, rf_regs,
739 						ee->ee_x_gain[ee_mode],
740 						AR5K_RF_XPD_GAIN, true);
741 
742 		} else {
743 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
744 			if (ee->ee_pd_gains[ee_mode] > 1) {
745 				ath5k_hw_rfb_op(ah, rf_regs,
746 						pdg_curve_to_idx[0],
747 						AR5K_RF_PD_GAIN_LO, true);
748 				ath5k_hw_rfb_op(ah, rf_regs,
749 						pdg_curve_to_idx[1],
750 						AR5K_RF_PD_GAIN_HI, true);
751 			} else {
752 				ath5k_hw_rfb_op(ah, rf_regs,
753 						pdg_curve_to_idx[0],
754 						AR5K_RF_PD_GAIN_LO, true);
755 				ath5k_hw_rfb_op(ah, rf_regs,
756 						pdg_curve_to_idx[0],
757 						AR5K_RF_PD_GAIN_HI, true);
758 			}
759 
760 			/* Lower synth voltage on Rev 2 */
761 			ath5k_hw_rfb_op(ah, rf_regs, 2,
762 					AR5K_RF_HIGH_VC_CP, true);
763 
764 			ath5k_hw_rfb_op(ah, rf_regs, 2,
765 					AR5K_RF_MID_VC_CP, true);
766 
767 			ath5k_hw_rfb_op(ah, rf_regs, 2,
768 					AR5K_RF_LOW_VC_CP, true);
769 
770 			ath5k_hw_rfb_op(ah, rf_regs, 2,
771 					AR5K_RF_PUSH_UP, true);
772 
773 			/* Decrease power consumption on 5213+ BaseBand */
774 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775 				ath5k_hw_rfb_op(ah, rf_regs, 1,
776 						AR5K_RF_PAD2GND, true);
777 
778 				ath5k_hw_rfb_op(ah, rf_regs, 1,
779 						AR5K_RF_XB2_LVL, true);
780 
781 				ath5k_hw_rfb_op(ah, rf_regs, 1,
782 						AR5K_RF_XB5_LVL, true);
783 
784 				ath5k_hw_rfb_op(ah, rf_regs, 1,
785 						AR5K_RF_PWD_167, true);
786 
787 				ath5k_hw_rfb_op(ah, rf_regs, 1,
788 						AR5K_RF_PWD_166, true);
789 			}
790 		}
791 
792 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793 						AR5K_RF_GAIN_I, true);
794 
795 		/* TODO: Half/quarter channel support */
796 
797 	}
798 
799 	if (ah->ah_radio == AR5K_RF5413 &&
800 	channel->hw_value & CHANNEL_2GHZ) {
801 
802 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803 									true);
804 
805 		/* Set optimum value for early revisions (on pci-e chips) */
806 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807 		ah->ah_mac_srev < AR5K_SREV_AR5413)
808 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809 						AR5K_RF_PWD_ICLOBUF_2G, true);
810 
811 	}
812 
813 	/* Write RF banks on hw */
814 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
815 		AR5K_REG_WAIT(i);
816 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817 	}
818 
819 	return 0;
820 }
821 
822 
823 /**************************\
824   PHY/RF channel functions
825 \**************************/
826 
827 /*
828  * Check if a channel is supported
829  */
830 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832 	/* Check if the channel is in our supported range */
833 	if (flags & CHANNEL_2GHZ) {
834 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836 			return true;
837 	} else if (flags & CHANNEL_5GHZ)
838 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840 			return true;
841 
842 	return false;
843 }
844 
845 /*
846  * Convertion needed for RF5110
847  */
848 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
849 {
850 	u32 athchan;
851 
852 	/*
853 	 * Convert IEEE channel/MHz to an internal channel value used
854 	 * by the AR5210 chipset. This has not been verified with
855 	 * newer chipsets like the AR5212A who have a completely
856 	 * different RF/PHY part.
857 	 */
858 	athchan = (ath5k_hw_bitswap(
859 			(ieee80211_frequency_to_channel(
860 				channel->center_freq) - 24) / 2, 5)
861 				<< 1) | (1 << 6) | 0x1;
862 	return athchan;
863 }
864 
865 /*
866  * Set channel on RF5110
867  */
868 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
869 		struct ieee80211_channel *channel)
870 {
871 	u32 data;
872 
873 	/*
874 	 * Set the channel and wait
875 	 */
876 	data = ath5k_hw_rf5110_chan2athchan(channel);
877 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
878 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
879 	mdelay(1);
880 
881 	return 0;
882 }
883 
884 /*
885  * Convertion needed for 5111
886  */
887 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888 		struct ath5k_athchan_2ghz *athchan)
889 {
890 	int channel;
891 
892 	/* Cast this value to catch negative channel numbers (>= -19) */
893 	channel = (int)ieee;
894 
895 	/*
896 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
897 	 */
898 	if (channel <= 13) {
899 		athchan->a2_athchan = 115 + channel;
900 		athchan->a2_flags = 0x46;
901 	} else if (channel == 14) {
902 		athchan->a2_athchan = 124;
903 		athchan->a2_flags = 0x44;
904 	} else if (channel >= 15 && channel <= 26) {
905 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
906 		athchan->a2_flags = 0x46;
907 	} else
908 		return -EINVAL;
909 
910 	return 0;
911 }
912 
913 /*
914  * Set channel on 5111
915  */
916 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
917 		struct ieee80211_channel *channel)
918 {
919 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 	unsigned int ath5k_channel =
921 		ieee80211_frequency_to_channel(channel->center_freq);
922 	u32 data0, data1, clock;
923 	int ret;
924 
925 	/*
926 	 * Set the channel on the RF5111 radio
927 	 */
928 	data0 = data1 = 0;
929 
930 	if (channel->hw_value & CHANNEL_2GHZ) {
931 		/* Map 2GHz channel to 5GHz Atheros channel ID */
932 		ret = ath5k_hw_rf5111_chan2athchan(
933 			ieee80211_frequency_to_channel(channel->center_freq),
934 			&ath5k_channel_2ghz);
935 		if (ret)
936 			return ret;
937 
938 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
939 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
940 		    << 5) | (1 << 4);
941 	}
942 
943 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
944 		clock = 1;
945 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
946 			(clock << 1) | (1 << 10) | 1;
947 	} else {
948 		clock = 0;
949 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
950 			<< 2) | (clock << 1) | (1 << 10) | 1;
951 	}
952 
953 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
954 			AR5K_RF_BUFFER);
955 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
956 			AR5K_RF_BUFFER_CONTROL_3);
957 
958 	return 0;
959 }
960 
961 /*
962  * Set channel on 5112 and newer
963  */
964 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
965 		struct ieee80211_channel *channel)
966 {
967 	u32 data, data0, data1, data2;
968 	u16 c;
969 
970 	data = data0 = data1 = data2 = 0;
971 	c = channel->center_freq;
972 
973 	if (c < 4800) {
974 		if (!((c - 2224) % 5)) {
975 			data0 = ((2 * (c - 704)) - 3040) / 10;
976 			data1 = 1;
977 		} else if (!((c - 2192) % 5)) {
978 			data0 = ((2 * (c - 672)) - 3040) / 10;
979 			data1 = 0;
980 		} else
981 			return -EINVAL;
982 
983 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984 	} else if ((c - (c % 5)) != 2 || c > 5435) {
985 		if (!(c % 20) && c >= 5120) {
986 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
987 			data2 = ath5k_hw_bitswap(3, 2);
988 		} else if (!(c % 10)) {
989 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
990 			data2 = ath5k_hw_bitswap(2, 2);
991 		} else if (!(c % 5)) {
992 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
993 			data2 = ath5k_hw_bitswap(1, 2);
994 		} else
995 			return -EINVAL;
996 	} else {
997 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
998 		data2 = ath5k_hw_bitswap(0, 2);
999 	}
1000 
1001 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1002 
1003 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Set the channel on the RF2425
1011  */
1012 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013 		struct ieee80211_channel *channel)
1014 {
1015 	u32 data, data0, data2;
1016 	u16 c;
1017 
1018 	data = data0 = data2 = 0;
1019 	c = channel->center_freq;
1020 
1021 	if (c < 4800) {
1022 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1023 		data2 = 0;
1024 	/* ? 5GHz ? */
1025 	} else if ((c - (c % 5)) != 2 || c > 5435) {
1026 		if (!(c % 20) && c < 5120)
1027 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028 		else if (!(c % 10))
1029 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030 		else if (!(c % 5))
1031 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032 		else
1033 			return -EINVAL;
1034 		data2 = ath5k_hw_bitswap(1, 2);
1035 	} else {
1036 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037 		data2 = ath5k_hw_bitswap(0, 2);
1038 	}
1039 
1040 	data = (data0 << 4) | data2 << 2 | 0x1001;
1041 
1042 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * Set a channel on the radio chip
1050  */
1051 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1052 {
1053 	int ret;
1054 	/*
1055 	 * Check bounds supported by the PHY (we don't care about regultory
1056 	 * restrictions at this point). Note: hw_value already has the band
1057 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058 	 * of the band by that */
1059 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060 		ATH5K_ERR(ah->ah_sc,
1061 			"channel frequency (%u MHz) out of supported "
1062 			"band range\n",
1063 			channel->center_freq);
1064 			return -EINVAL;
1065 	}
1066 
1067 	/*
1068 	 * Set the channel and wait
1069 	 */
1070 	switch (ah->ah_radio) {
1071 	case AR5K_RF5110:
1072 		ret = ath5k_hw_rf5110_channel(ah, channel);
1073 		break;
1074 	case AR5K_RF5111:
1075 		ret = ath5k_hw_rf5111_channel(ah, channel);
1076 		break;
1077 	case AR5K_RF2425:
1078 		ret = ath5k_hw_rf2425_channel(ah, channel);
1079 		break;
1080 	default:
1081 		ret = ath5k_hw_rf5112_channel(ah, channel);
1082 		break;
1083 	}
1084 
1085 	if (ret)
1086 		return ret;
1087 
1088 	/* Set JAPAN setting for channel 14 */
1089 	if (channel->center_freq == 2484) {
1090 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 				AR5K_PHY_CCKTXCTL_JAPAN);
1092 	} else {
1093 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094 				AR5K_PHY_CCKTXCTL_WORLD);
1095 	}
1096 
1097 	ah->ah_current_channel = channel;
1098 	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099 
1100 	return 0;
1101 }
1102 
1103 /*****************\
1104   PHY calibration
1105 \*****************/
1106 
1107 void
1108 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1109 {
1110 	/* Calibration interval in jiffies */
1111 	unsigned long cal_intval;
1112 
1113 	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1114 
1115 	/* Initialize timestamp if needed */
1116 	if (!ah->ah_cal_tstamp)
1117 		ah->ah_cal_tstamp = jiffies;
1118 
1119 	/* For now we always do full calibration
1120 	 * Mark software interrupt mask and fire software
1121 	 * interrupt (bit gets auto-cleared) */
1122 	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123 		ah->ah_cal_tstamp = jiffies;
1124 		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125 		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1126 	}
1127 }
1128 
1129 static int sign_extend(int val, const int nbits)
1130 {
1131 	int order = BIT(nbits-1);
1132 	return (val ^ order) - order;
1133 }
1134 
1135 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1136 {
1137 	s32 val;
1138 
1139 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1140 	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1141 }
1142 
1143 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1144 {
1145 	int i;
1146 
1147 	ah->ah_nfcal_hist.index = 0;
1148 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1149 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1150 }
1151 
1152 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1153 {
1154 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1155 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1156 	hist->nfval[hist->index] = noise_floor;
1157 }
1158 
1159 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1160 {
1161 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1162 	s16 tmp;
1163 	int i, j;
1164 
1165 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1166 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1167 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1168 			if (sort[j] > sort[j-1]) {
1169 				tmp = sort[j];
1170 				sort[j] = sort[j-1];
1171 				sort[j-1] = tmp;
1172 			}
1173 		}
1174 	}
1175 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1176 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1177 			"cal %d:%d\n", i, sort[i]);
1178 	}
1179 	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1180 }
1181 
1182 /*
1183  * When we tell the hardware to perform a noise floor calibration
1184  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1185  * sample-and-hold the minimum noise level seen at the antennas.
1186  * This value is then stored in a ring buffer of recently measured
1187  * noise floor values so we have a moving window of the last few
1188  * samples.
1189  *
1190  * The median of the values in the history is then loaded into the
1191  * hardware for its own use for RSSI and CCA measurements.
1192  */
1193 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1194 {
1195 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1196 	u32 val;
1197 	s16 nf, threshold;
1198 	u8 ee_mode;
1199 
1200 	/* keep last value if calibration hasn't completed */
1201 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1202 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1203 			"NF did not complete in calibration window\n");
1204 
1205 		return;
1206 	}
1207 
1208 	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1209 	case CHANNEL_A:
1210 	case CHANNEL_T:
1211 	case CHANNEL_XR:
1212 		ee_mode = AR5K_EEPROM_MODE_11A;
1213 		break;
1214 	case CHANNEL_G:
1215 	case CHANNEL_TG:
1216 		ee_mode = AR5K_EEPROM_MODE_11G;
1217 		break;
1218 	default:
1219 	case CHANNEL_B:
1220 		ee_mode = AR5K_EEPROM_MODE_11B;
1221 		break;
1222 	}
1223 
1224 
1225 	/* completed NF calibration, test threshold */
1226 	nf = ath5k_hw_read_measured_noise_floor(ah);
1227 	threshold = ee->ee_noise_floor_thr[ee_mode];
1228 
1229 	if (nf > threshold) {
1230 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1231 			"noise floor failure detected; "
1232 			"read %d, threshold %d\n",
1233 			nf, threshold);
1234 
1235 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1236 	}
1237 
1238 	ath5k_hw_update_nfcal_hist(ah, nf);
1239 	nf = ath5k_hw_get_median_noise_floor(ah);
1240 
1241 	/* load noise floor (in .5 dBm) so the hardware will use it */
1242 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1243 	val |= (nf * 2) & AR5K_PHY_NF_M;
1244 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1245 
1246 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1247 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1248 
1249 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1250 		0, false);
1251 
1252 	/*
1253 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1254 	 * so that we're not capped by the median we just loaded.
1255 	 * This will be used as the initial value for the next noise
1256 	 * floor calibration.
1257 	 */
1258 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1259 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1260 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1261 		AR5K_PHY_AGCCTL_NF_EN |
1262 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1263 		AR5K_PHY_AGCCTL_NF);
1264 
1265 	ah->ah_noise_floor = nf;
1266 
1267 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1268 		"noise floor calibrated: %d\n", nf);
1269 }
1270 
1271 /*
1272  * Perform a PHY calibration on RF5110
1273  * -Fix BPSK/QAM Constellation (I/Q correction)
1274  * -Calculate Noise Floor
1275  */
1276 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1277 		struct ieee80211_channel *channel)
1278 {
1279 	u32 phy_sig, phy_agc, phy_sat, beacon;
1280 	int ret;
1281 
1282 	/*
1283 	 * Disable beacons and RX/TX queues, wait
1284 	 */
1285 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1286 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1287 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1288 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1289 
1290 	mdelay(2);
1291 
1292 	/*
1293 	 * Set the channel (with AGC turned off)
1294 	 */
1295 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1296 	udelay(10);
1297 	ret = ath5k_hw_channel(ah, channel);
1298 
1299 	/*
1300 	 * Activate PHY and wait
1301 	 */
1302 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1303 	mdelay(1);
1304 
1305 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1306 
1307 	if (ret)
1308 		return ret;
1309 
1310 	/*
1311 	 * Calibrate the radio chip
1312 	 */
1313 
1314 	/* Remember normal state */
1315 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1316 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1317 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1318 
1319 	/* Update radio registers */
1320 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1321 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1322 
1323 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1324 			AR5K_PHY_AGCCOARSE_LO)) |
1325 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1326 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1327 
1328 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1329 			AR5K_PHY_ADCSAT_THR)) |
1330 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1331 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1332 
1333 	udelay(20);
1334 
1335 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1336 	udelay(10);
1337 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1338 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1339 
1340 	mdelay(1);
1341 
1342 	/*
1343 	 * Enable calibration and wait until completion
1344 	 */
1345 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1346 
1347 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1348 			AR5K_PHY_AGCCTL_CAL, 0, false);
1349 
1350 	/* Reset to normal state */
1351 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1352 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1353 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1354 
1355 	if (ret) {
1356 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1357 				channel->center_freq);
1358 		return ret;
1359 	}
1360 
1361 	ath5k_hw_update_noise_floor(ah);
1362 
1363 	/*
1364 	 * Re-enable RX/TX and beacons
1365 	 */
1366 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1367 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1368 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1369 
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Perform a PHY calibration on RF5111/5112 and newer chips
1375  */
1376 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1377 		struct ieee80211_channel *channel)
1378 {
1379 	u32 i_pwr, q_pwr;
1380 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1381 	int i;
1382 	ATH5K_TRACE(ah->ah_sc);
1383 
1384 	if (!ah->ah_calibration ||
1385 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1386 		goto done;
1387 
1388 	/* Calibration has finished, get the results and re-run */
1389 	for (i = 0; i <= 10; i++) {
1390 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1391 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1392 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1393 	}
1394 
1395 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1396 	q_coffd = q_pwr >> 7;
1397 
1398 	/* No correction */
1399 	if (i_coffd == 0 || q_coffd == 0)
1400 		goto done;
1401 
1402 	i_coff = ((-iq_corr) / i_coffd);
1403 
1404 	/* Boundary check */
1405 	if (i_coff > 31)
1406 		i_coff = 31;
1407 	if (i_coff < -32)
1408 		i_coff = -32;
1409 
1410 	q_coff = (((s32)i_pwr / q_coffd) - 128);
1411 
1412 	/* Boundary check */
1413 	if (q_coff > 15)
1414 		q_coff = 15;
1415 	if (q_coff < -16)
1416 		q_coff = -16;
1417 
1418 	/* Commit new I/Q value */
1419 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1420 		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1421 
1422 	/* Re-enable calibration -if we don't we'll commit
1423 	 * the same values again and again */
1424 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1425 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1426 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1427 
1428 done:
1429 
1430 	/* TODO: Separate noise floor calibration from I/Q calibration
1431 	 * since noise floor calibration interrupts rx path while I/Q
1432 	 * calibration doesn't. We don't need to run noise floor calibration
1433 	 * as often as I/Q calibration.*/
1434 	ath5k_hw_update_noise_floor(ah);
1435 
1436 	/* Initiate a gain_F calibration */
1437 	ath5k_hw_request_rfgain_probe(ah);
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Perform a PHY calibration
1444  */
1445 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1446 		struct ieee80211_channel *channel)
1447 {
1448 	int ret;
1449 
1450 	if (ah->ah_radio == AR5K_RF5110)
1451 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1452 	else
1453 		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1454 
1455 	return ret;
1456 }
1457 
1458 /***************************\
1459 * Spur mitigation functions *
1460 \***************************/
1461 
1462 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1463 				struct ieee80211_channel *channel)
1464 {
1465 	u8 refclk_freq;
1466 
1467 	if ((ah->ah_radio == AR5K_RF5112) ||
1468 	(ah->ah_radio == AR5K_RF5413) ||
1469 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1470 		refclk_freq = 40;
1471 	else
1472 		refclk_freq = 32;
1473 
1474 	if ((channel->center_freq % refclk_freq != 0) &&
1475 	((channel->center_freq % refclk_freq < 10) ||
1476 	(channel->center_freq % refclk_freq > 22)))
1477 		return true;
1478 	else
1479 		return false;
1480 }
1481 
1482 void
1483 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1484 				struct ieee80211_channel *channel)
1485 {
1486 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1487 	u32 mag_mask[4] = {0, 0, 0, 0};
1488 	u32 pilot_mask[2] = {0, 0};
1489 	/* Note: fbin values are scaled up by 2 */
1490 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1491 	s32 spur_delta_phase, spur_freq_sigma_delta;
1492 	s32 spur_offset, num_symbols_x16;
1493 	u8 num_symbol_offsets, i, freq_band;
1494 
1495 	/* Convert current frequency to fbin value (the same way channels
1496 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1497 	 * up by 2 so we can compare it later */
1498 	if (channel->hw_value & CHANNEL_2GHZ) {
1499 		chan_fbin = (channel->center_freq - 2300) * 10;
1500 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1501 	} else {
1502 		chan_fbin = (channel->center_freq - 4900) * 10;
1503 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1504 	}
1505 
1506 	/* Check if any spur_chan_fbin from EEPROM is
1507 	 * within our current channel's spur detection range */
1508 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1509 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1510 	/* XXX: Half/Quarter channels ?*/
1511 	if (channel->hw_value & CHANNEL_TURBO)
1512 		spur_detection_window *= 2;
1513 
1514 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1515 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1516 
1517 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1518 		 * so it's zero if we got nothing from EEPROM */
1519 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1520 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1521 			break;
1522 		}
1523 
1524 		if ((chan_fbin - spur_detection_window <=
1525 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1526 		(chan_fbin + spur_detection_window >=
1527 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1528 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1529 			break;
1530 		}
1531 	}
1532 
1533 	/* We need to enable spur filter for this channel */
1534 	if (spur_chan_fbin) {
1535 		spur_offset = spur_chan_fbin - chan_fbin;
1536 		/*
1537 		 * Calculate deltas:
1538 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1539 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1540 		 * Note: Both values have 100KHz resolution
1541 		 */
1542 		/* XXX: Half/Quarter rate channels ? */
1543 		switch (channel->hw_value) {
1544 		case CHANNEL_A:
1545 			/* Both sample_freq and chip_freq are 40MHz */
1546 			spur_delta_phase = (spur_offset << 17) / 25;
1547 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1548 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1549 			break;
1550 		case CHANNEL_G:
1551 			/* sample_freq -> 40MHz chip_freq -> 44MHz
1552 			 * (for b compatibility) */
1553 			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1554 			spur_delta_phase = (spur_offset << 17) / 25;
1555 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1556 			break;
1557 		case CHANNEL_T:
1558 		case CHANNEL_TG:
1559 			/* Both sample_freq and chip_freq are 80MHz */
1560 			spur_delta_phase = (spur_offset << 16) / 25;
1561 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1562 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1563 			break;
1564 		default:
1565 			return;
1566 		}
1567 
1568 		/* Calculate pilot and magnitude masks */
1569 
1570 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1571 		 * and divide by symbol_width to find how many symbols we have
1572 		 * Note: number of symbols is scaled up by 16 */
1573 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1574 
1575 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1576 		if (!(num_symbols_x16 & 0xF))
1577 			/* _X_ */
1578 			num_symbol_offsets = 3;
1579 		else
1580 			/* _xx_ */
1581 			num_symbol_offsets = 4;
1582 
1583 		for (i = 0; i < num_symbol_offsets; i++) {
1584 
1585 			/* Calculate pilot mask */
1586 			s32 curr_sym_off =
1587 				(num_symbols_x16 / 16) + i + 25;
1588 
1589 			/* Pilot magnitude mask seems to be a way to
1590 			 * declare the boundaries for our detection
1591 			 * window or something, it's 2 for the middle
1592 			 * value(s) where the symbol is expected to be
1593 			 * and 1 on the boundary values */
1594 			u8 plt_mag_map =
1595 				(i == 0 || i == (num_symbol_offsets - 1))
1596 								? 1 : 2;
1597 
1598 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1599 				if (curr_sym_off <= 25)
1600 					pilot_mask[0] |= 1 << curr_sym_off;
1601 				else if (curr_sym_off >= 27)
1602 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1603 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1604 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1605 
1606 			/* Calculate magnitude mask (for viterbi decoder) */
1607 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1608 				mag_mask[0] |=
1609 					plt_mag_map << (curr_sym_off + 1) * 2;
1610 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1611 				mag_mask[1] |=
1612 					plt_mag_map << (curr_sym_off - 15) * 2;
1613 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1614 				mag_mask[2] |=
1615 					plt_mag_map << (curr_sym_off - 31) * 2;
1616 			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1617 				mag_mask[3] |=
1618 					plt_mag_map << (curr_sym_off - 47) * 2;
1619 
1620 		}
1621 
1622 		/* Write settings on hw to enable spur filter */
1623 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1624 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1625 		/* XXX: Self correlator also ? */
1626 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1627 					AR5K_PHY_IQ_PILOT_MASK_EN |
1628 					AR5K_PHY_IQ_CHAN_MASK_EN |
1629 					AR5K_PHY_IQ_SPUR_FILT_EN);
1630 
1631 		/* Set delta phase and freq sigma delta */
1632 		ath5k_hw_reg_write(ah,
1633 				AR5K_REG_SM(spur_delta_phase,
1634 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1635 				AR5K_REG_SM(spur_freq_sigma_delta,
1636 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1637 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1638 				AR5K_PHY_TIMING_11);
1639 
1640 		/* Write pilot masks */
1641 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1642 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1643 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1644 					pilot_mask[1]);
1645 
1646 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1647 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1648 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1649 					pilot_mask[1]);
1650 
1651 		/* Write magnitude masks */
1652 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1653 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1654 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1655 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1656 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1657 					mag_mask[3]);
1658 
1659 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1660 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1661 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1662 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1663 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1664 					mag_mask[3]);
1665 
1666 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1667 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1668 		/* Clean up spur mitigation settings and disable fliter */
1669 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1670 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1671 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1672 					AR5K_PHY_IQ_PILOT_MASK_EN |
1673 					AR5K_PHY_IQ_CHAN_MASK_EN |
1674 					AR5K_PHY_IQ_SPUR_FILT_EN);
1675 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1676 
1677 		/* Clear pilot masks */
1678 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1679 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1680 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1681 					0);
1682 
1683 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1684 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1685 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1686 					0);
1687 
1688 		/* Clear magnitude masks */
1689 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1690 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1691 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1692 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1693 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1694 					0);
1695 
1696 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1697 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1698 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1699 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1700 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1701 					0);
1702 	}
1703 }
1704 
1705 /********************\
1706   Misc PHY functions
1707 \********************/
1708 
1709 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1710 {
1711 	ATH5K_TRACE(ah->ah_sc);
1712 	/*Just a try M.F.*/
1713 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1714 
1715 	return 0;
1716 }
1717 
1718 /*
1719  * Get the PHY Chip revision
1720  */
1721 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1722 {
1723 	unsigned int i;
1724 	u32 srev;
1725 	u16 ret;
1726 
1727 	ATH5K_TRACE(ah->ah_sc);
1728 
1729 	/*
1730 	 * Set the radio chip access register
1731 	 */
1732 	switch (chan) {
1733 	case CHANNEL_2GHZ:
1734 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1735 		break;
1736 	case CHANNEL_5GHZ:
1737 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1738 		break;
1739 	default:
1740 		return 0;
1741 	}
1742 
1743 	mdelay(2);
1744 
1745 	/* ...wait until PHY is ready and read the selected radio revision */
1746 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1747 
1748 	for (i = 0; i < 8; i++)
1749 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1750 
1751 	if (ah->ah_version == AR5K_AR5210) {
1752 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1753 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1754 	} else {
1755 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1756 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1757 				((srev & 0x0f) << 4), 8);
1758 	}
1759 
1760 	/* Reset to the 5GHz mode */
1761 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1762 
1763 	return ret;
1764 }
1765 
1766 /*****************\
1767 * Antenna control *
1768 \*****************/
1769 
1770 void /*TODO:Boundary check*/
1771 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1772 {
1773 	ATH5K_TRACE(ah->ah_sc);
1774 
1775 	if (ah->ah_version != AR5K_AR5210)
1776 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1777 }
1778 
1779 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1780 {
1781 	ATH5K_TRACE(ah->ah_sc);
1782 
1783 	if (ah->ah_version != AR5K_AR5210)
1784 		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1785 
1786 	return false; /*XXX: What do we return for 5210 ?*/
1787 }
1788 
1789 /*
1790  * Enable/disable fast rx antenna diversity
1791  */
1792 static void
1793 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1794 {
1795 	switch (ee_mode) {
1796 	case AR5K_EEPROM_MODE_11G:
1797 		/* XXX: This is set to
1798 		 * disabled on initvals !!! */
1799 	case AR5K_EEPROM_MODE_11A:
1800 		if (enable)
1801 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1802 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1803 		else
1804 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1805 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1806 		break;
1807 	case AR5K_EEPROM_MODE_11B:
1808 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1809 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1810 		break;
1811 	default:
1812 		return;
1813 	}
1814 
1815 	if (enable) {
1816 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1817 				AR5K_PHY_RESTART_DIV_GC, 0xc);
1818 
1819 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1820 					AR5K_PHY_FAST_ANT_DIV_EN);
1821 	} else {
1822 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1823 				AR5K_PHY_RESTART_DIV_GC, 0x8);
1824 
1825 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1826 					AR5K_PHY_FAST_ANT_DIV_EN);
1827 	}
1828 }
1829 
1830 /*
1831  * Set antenna operating mode
1832  */
1833 void
1834 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1835 {
1836 	struct ieee80211_channel *channel = ah->ah_current_channel;
1837 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1838 	bool use_def_for_sg;
1839 	u8 def_ant, tx_ant, ee_mode;
1840 	u32 sta_id1 = 0;
1841 
1842 	def_ant = ah->ah_def_ant;
1843 
1844 	ATH5K_TRACE(ah->ah_sc);
1845 
1846 	switch (channel->hw_value & CHANNEL_MODES) {
1847 	case CHANNEL_A:
1848 	case CHANNEL_T:
1849 	case CHANNEL_XR:
1850 		ee_mode = AR5K_EEPROM_MODE_11A;
1851 		break;
1852 	case CHANNEL_G:
1853 	case CHANNEL_TG:
1854 		ee_mode = AR5K_EEPROM_MODE_11G;
1855 		break;
1856 	case CHANNEL_B:
1857 		ee_mode = AR5K_EEPROM_MODE_11B;
1858 		break;
1859 	default:
1860 		ATH5K_ERR(ah->ah_sc,
1861 			"invalid channel: %d\n", channel->center_freq);
1862 		return;
1863 	}
1864 
1865 	switch (ant_mode) {
1866 	case AR5K_ANTMODE_DEFAULT:
1867 		tx_ant = 0;
1868 		use_def_for_tx = false;
1869 		update_def_on_tx = false;
1870 		use_def_for_rts = false;
1871 		use_def_for_sg = false;
1872 		fast_div = true;
1873 		break;
1874 	case AR5K_ANTMODE_FIXED_A:
1875 		def_ant = 1;
1876 		tx_ant = 0;
1877 		use_def_for_tx = true;
1878 		update_def_on_tx = false;
1879 		use_def_for_rts = true;
1880 		use_def_for_sg = true;
1881 		fast_div = false;
1882 		break;
1883 	case AR5K_ANTMODE_FIXED_B:
1884 		def_ant = 2;
1885 		tx_ant = 0;
1886 		use_def_for_tx = true;
1887 		update_def_on_tx = false;
1888 		use_def_for_rts = true;
1889 		use_def_for_sg = true;
1890 		fast_div = false;
1891 		break;
1892 	case AR5K_ANTMODE_SINGLE_AP:
1893 		def_ant = 1;	/* updated on tx */
1894 		tx_ant = 0;
1895 		use_def_for_tx = true;
1896 		update_def_on_tx = true;
1897 		use_def_for_rts = true;
1898 		use_def_for_sg = true;
1899 		fast_div = true;
1900 		break;
1901 	case AR5K_ANTMODE_SECTOR_AP:
1902 		tx_ant = 1;	/* variable */
1903 		use_def_for_tx = false;
1904 		update_def_on_tx = false;
1905 		use_def_for_rts = true;
1906 		use_def_for_sg = false;
1907 		fast_div = false;
1908 		break;
1909 	case AR5K_ANTMODE_SECTOR_STA:
1910 		tx_ant = 1;	/* variable */
1911 		use_def_for_tx = true;
1912 		update_def_on_tx = false;
1913 		use_def_for_rts = true;
1914 		use_def_for_sg = false;
1915 		fast_div = true;
1916 		break;
1917 	case AR5K_ANTMODE_DEBUG:
1918 		def_ant = 1;
1919 		tx_ant = 2;
1920 		use_def_for_tx = false;
1921 		update_def_on_tx = false;
1922 		use_def_for_rts = false;
1923 		use_def_for_sg = false;
1924 		fast_div = false;
1925 		break;
1926 	default:
1927 		return;
1928 	}
1929 
1930 	ah->ah_tx_ant = tx_ant;
1931 	ah->ah_ant_mode = ant_mode;
1932 
1933 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1934 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1935 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1936 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1937 
1938 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1939 
1940 	if (sta_id1)
1941 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1942 
1943 	/* Note: set diversity before default antenna
1944 	 * because it won't work correctly */
1945 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1946 	ath5k_hw_set_def_antenna(ah, def_ant);
1947 }
1948 
1949 
1950 /****************\
1951 * TX power setup *
1952 \****************/
1953 
1954 /*
1955  * Helper functions
1956  */
1957 
1958 /*
1959  * Do linear interpolation between two given (x, y) points
1960  */
1961 static s16
1962 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1963 					s16 y_left, s16 y_right)
1964 {
1965 	s16 ratio, result;
1966 
1967 	/* Avoid divide by zero and skip interpolation
1968 	 * if we have the same point */
1969 	if ((x_left == x_right) || (y_left == y_right))
1970 		return y_left;
1971 
1972 	/*
1973 	 * Since we use ints and not fps, we need to scale up in
1974 	 * order to get a sane ratio value (or else we 'll eg. get
1975 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1976 	 * to have some accuracy both for 0.5 and 0.25 steps.
1977 	 */
1978 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1979 
1980 	/* Now scale down to be in range */
1981 	result = y_left + (ratio * (target - x_left) / 100);
1982 
1983 	return result;
1984 }
1985 
1986 /*
1987  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1988  *
1989  * Since we have the top of the curve and we draw the line below
1990  * until we reach 1 (1 pcdac step) we need to know which point
1991  * (x value) that is so that we don't go below y axis and have negative
1992  * pcdac values when creating the curve, or fill the table with zeroes.
1993  */
1994 static s16
1995 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1996 				const s16 *pwrL, const s16 *pwrR)
1997 {
1998 	s8 tmp;
1999 	s16 min_pwrL, min_pwrR;
2000 	s16 pwr_i;
2001 
2002 	/* Some vendors write the same pcdac value twice !!! */
2003 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2004 		return max(pwrL[0], pwrR[0]);
2005 
2006 	if (pwrL[0] == pwrL[1])
2007 		min_pwrL = pwrL[0];
2008 	else {
2009 		pwr_i = pwrL[0];
2010 		do {
2011 			pwr_i--;
2012 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2013 							pwrL[0], pwrL[1],
2014 							stepL[0], stepL[1]);
2015 		} while (tmp > 1);
2016 
2017 		min_pwrL = pwr_i;
2018 	}
2019 
2020 	if (pwrR[0] == pwrR[1])
2021 		min_pwrR = pwrR[0];
2022 	else {
2023 		pwr_i = pwrR[0];
2024 		do {
2025 			pwr_i--;
2026 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2027 							pwrR[0], pwrR[1],
2028 							stepR[0], stepR[1]);
2029 		} while (tmp > 1);
2030 
2031 		min_pwrR = pwr_i;
2032 	}
2033 
2034 	/* Keep the right boundary so that it works for both curves */
2035 	return max(min_pwrL, min_pwrR);
2036 }
2037 
2038 /*
2039  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2040  * Power to PCDAC curve.
2041  *
2042  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2043  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2044  * PCDAC/PDADC step for each curve is 64 but we can write more than
2045  * one curves on hw so we can go up to 128 (which is the max step we
2046  * can write on the final table).
2047  *
2048  * We write y values (PCDAC/PDADC steps) on hw.
2049  */
2050 static void
2051 ath5k_create_power_curve(s16 pmin, s16 pmax,
2052 			const s16 *pwr, const u8 *vpd,
2053 			u8 num_points,
2054 			u8 *vpd_table, u8 type)
2055 {
2056 	u8 idx[2] = { 0, 1 };
2057 	s16 pwr_i = 2*pmin;
2058 	int i;
2059 
2060 	if (num_points < 2)
2061 		return;
2062 
2063 	/* We want the whole line, so adjust boundaries
2064 	 * to cover the entire power range. Note that
2065 	 * power values are already 0.25dB so no need
2066 	 * to multiply pwr_i by 2 */
2067 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2068 		pwr_i = pmin;
2069 		pmin = 0;
2070 		pmax = 63;
2071 	}
2072 
2073 	/* Find surrounding turning points (TPs)
2074 	 * and interpolate between them */
2075 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2076 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2077 
2078 		/* We passed the right TP, move to the next set of TPs
2079 		 * if we pass the last TP, extrapolate above using the last
2080 		 * two TPs for ratio */
2081 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2082 			idx[0]++;
2083 			idx[1]++;
2084 		}
2085 
2086 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2087 						pwr[idx[0]], pwr[idx[1]],
2088 						vpd[idx[0]], vpd[idx[1]]);
2089 
2090 		/* Increase by 0.5dB
2091 		 * (0.25 dB units) */
2092 		pwr_i += 2;
2093 	}
2094 }
2095 
2096 /*
2097  * Get the surrounding per-channel power calibration piers
2098  * for a given frequency so that we can interpolate between
2099  * them and come up with an apropriate dataset for our current
2100  * channel.
2101  */
2102 static void
2103 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2104 			struct ieee80211_channel *channel,
2105 			struct ath5k_chan_pcal_info **pcinfo_l,
2106 			struct ath5k_chan_pcal_info **pcinfo_r)
2107 {
2108 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2109 	struct ath5k_chan_pcal_info *pcinfo;
2110 	u8 idx_l, idx_r;
2111 	u8 mode, max, i;
2112 	u32 target = channel->center_freq;
2113 
2114 	idx_l = 0;
2115 	idx_r = 0;
2116 
2117 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2118 		pcinfo = ee->ee_pwr_cal_b;
2119 		mode = AR5K_EEPROM_MODE_11B;
2120 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2121 		pcinfo = ee->ee_pwr_cal_g;
2122 		mode = AR5K_EEPROM_MODE_11G;
2123 	} else {
2124 		pcinfo = ee->ee_pwr_cal_a;
2125 		mode = AR5K_EEPROM_MODE_11A;
2126 	}
2127 	max = ee->ee_n_piers[mode] - 1;
2128 
2129 	/* Frequency is below our calibrated
2130 	 * range. Use the lowest power curve
2131 	 * we have */
2132 	if (target < pcinfo[0].freq) {
2133 		idx_l = idx_r = 0;
2134 		goto done;
2135 	}
2136 
2137 	/* Frequency is above our calibrated
2138 	 * range. Use the highest power curve
2139 	 * we have */
2140 	if (target > pcinfo[max].freq) {
2141 		idx_l = idx_r = max;
2142 		goto done;
2143 	}
2144 
2145 	/* Frequency is inside our calibrated
2146 	 * channel range. Pick the surrounding
2147 	 * calibration piers so that we can
2148 	 * interpolate */
2149 	for (i = 0; i <= max; i++) {
2150 
2151 		/* Frequency matches one of our calibration
2152 		 * piers, no need to interpolate, just use
2153 		 * that calibration pier */
2154 		if (pcinfo[i].freq == target) {
2155 			idx_l = idx_r = i;
2156 			goto done;
2157 		}
2158 
2159 		/* We found a calibration pier that's above
2160 		 * frequency, use this pier and the previous
2161 		 * one to interpolate */
2162 		if (target < pcinfo[i].freq) {
2163 			idx_r = i;
2164 			idx_l = idx_r - 1;
2165 			goto done;
2166 		}
2167 	}
2168 
2169 done:
2170 	*pcinfo_l = &pcinfo[idx_l];
2171 	*pcinfo_r = &pcinfo[idx_r];
2172 
2173 	return;
2174 }
2175 
2176 /*
2177  * Get the surrounding per-rate power calibration data
2178  * for a given frequency and interpolate between power
2179  * values to set max target power supported by hw for
2180  * each rate.
2181  */
2182 static void
2183 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2184 			struct ieee80211_channel *channel,
2185 			struct ath5k_rate_pcal_info *rates)
2186 {
2187 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2188 	struct ath5k_rate_pcal_info *rpinfo;
2189 	u8 idx_l, idx_r;
2190 	u8 mode, max, i;
2191 	u32 target = channel->center_freq;
2192 
2193 	idx_l = 0;
2194 	idx_r = 0;
2195 
2196 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2197 		rpinfo = ee->ee_rate_tpwr_b;
2198 		mode = AR5K_EEPROM_MODE_11B;
2199 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2200 		rpinfo = ee->ee_rate_tpwr_g;
2201 		mode = AR5K_EEPROM_MODE_11G;
2202 	} else {
2203 		rpinfo = ee->ee_rate_tpwr_a;
2204 		mode = AR5K_EEPROM_MODE_11A;
2205 	}
2206 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2207 
2208 	/* Get the surrounding calibration
2209 	 * piers - same as above */
2210 	if (target < rpinfo[0].freq) {
2211 		idx_l = idx_r = 0;
2212 		goto done;
2213 	}
2214 
2215 	if (target > rpinfo[max].freq) {
2216 		idx_l = idx_r = max;
2217 		goto done;
2218 	}
2219 
2220 	for (i = 0; i <= max; i++) {
2221 
2222 		if (rpinfo[i].freq == target) {
2223 			idx_l = idx_r = i;
2224 			goto done;
2225 		}
2226 
2227 		if (target < rpinfo[i].freq) {
2228 			idx_r = i;
2229 			idx_l = idx_r - 1;
2230 			goto done;
2231 		}
2232 	}
2233 
2234 done:
2235 	/* Now interpolate power value, based on the frequency */
2236 	rates->freq = target;
2237 
2238 	rates->target_power_6to24 =
2239 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2240 					rpinfo[idx_r].freq,
2241 					rpinfo[idx_l].target_power_6to24,
2242 					rpinfo[idx_r].target_power_6to24);
2243 
2244 	rates->target_power_36 =
2245 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2246 					rpinfo[idx_r].freq,
2247 					rpinfo[idx_l].target_power_36,
2248 					rpinfo[idx_r].target_power_36);
2249 
2250 	rates->target_power_48 =
2251 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2252 					rpinfo[idx_r].freq,
2253 					rpinfo[idx_l].target_power_48,
2254 					rpinfo[idx_r].target_power_48);
2255 
2256 	rates->target_power_54 =
2257 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2258 					rpinfo[idx_r].freq,
2259 					rpinfo[idx_l].target_power_54,
2260 					rpinfo[idx_r].target_power_54);
2261 }
2262 
2263 /*
2264  * Get the max edge power for this channel if
2265  * we have such data from EEPROM's Conformance Test
2266  * Limits (CTL), and limit max power if needed.
2267  */
2268 static void
2269 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2270 			struct ieee80211_channel *channel)
2271 {
2272 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2273 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2274 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2275 	u8 *ctl_val = ee->ee_ctl;
2276 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2277 	s16 edge_pwr = 0;
2278 	u8 rep_idx;
2279 	u8 i, ctl_mode;
2280 	u8 ctl_idx = 0xFF;
2281 	u32 target = channel->center_freq;
2282 
2283 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2284 
2285 	switch (channel->hw_value & CHANNEL_MODES) {
2286 	case CHANNEL_A:
2287 		ctl_mode |= AR5K_CTL_11A;
2288 		break;
2289 	case CHANNEL_G:
2290 		ctl_mode |= AR5K_CTL_11G;
2291 		break;
2292 	case CHANNEL_B:
2293 		ctl_mode |= AR5K_CTL_11B;
2294 		break;
2295 	case CHANNEL_T:
2296 		ctl_mode |= AR5K_CTL_TURBO;
2297 		break;
2298 	case CHANNEL_TG:
2299 		ctl_mode |= AR5K_CTL_TURBOG;
2300 		break;
2301 	case CHANNEL_XR:
2302 		/* Fall through */
2303 	default:
2304 		return;
2305 	}
2306 
2307 	for (i = 0; i < ee->ee_ctls; i++) {
2308 		if (ctl_val[i] == ctl_mode) {
2309 			ctl_idx = i;
2310 			break;
2311 		}
2312 	}
2313 
2314 	/* If we have a CTL dataset available grab it and find the
2315 	 * edge power for our frequency */
2316 	if (ctl_idx == 0xFF)
2317 		return;
2318 
2319 	/* Edge powers are sorted by frequency from lower
2320 	 * to higher. Each CTL corresponds to 8 edge power
2321 	 * measurements. */
2322 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2323 
2324 	/* Don't do boundaries check because we
2325 	 * might have more that one bands defined
2326 	 * for this mode */
2327 
2328 	/* Get the edge power that's closer to our
2329 	 * frequency */
2330 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2331 		rep_idx += i;
2332 		if (target <= rep[rep_idx].freq)
2333 			edge_pwr = (s16) rep[rep_idx].edge;
2334 	}
2335 
2336 	if (edge_pwr)
2337 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2338 }
2339 
2340 
2341 /*
2342  * Power to PCDAC table functions
2343  */
2344 
2345 /*
2346  * Fill Power to PCDAC table on RF5111
2347  *
2348  * No further processing is needed for RF5111, the only thing we have to
2349  * do is fill the values below and above calibration range since eeprom data
2350  * may not cover the entire PCDAC table.
2351  */
2352 static void
2353 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2354 							s16 *table_max)
2355 {
2356 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2357 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2358 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2359 	s16	min_pwr, max_pwr;
2360 
2361 	/* Get table boundaries */
2362 	min_pwr = table_min[0];
2363 	pcdac_0 = pcdac_tmp[0];
2364 
2365 	max_pwr = table_max[0];
2366 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2367 
2368 	/* Extrapolate below minimum using pcdac_0 */
2369 	pcdac_i = 0;
2370 	for (i = 0; i < min_pwr; i++)
2371 		pcdac_out[pcdac_i++] = pcdac_0;
2372 
2373 	/* Copy values from pcdac_tmp */
2374 	pwr_idx = min_pwr;
2375 	for (i = 0 ; pwr_idx <= max_pwr &&
2376 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2377 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2378 		pwr_idx++;
2379 	}
2380 
2381 	/* Extrapolate above maximum */
2382 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2383 		pcdac_out[pcdac_i++] = pcdac_n;
2384 
2385 }
2386 
2387 /*
2388  * Combine available XPD Curves and fill Linear Power to PCDAC table
2389  * on RF5112
2390  *
2391  * RFX112 can have up to 2 curves (one for low txpower range and one for
2392  * higher txpower range). We need to put them both on pcdac_out and place
2393  * them in the correct location. In case we only have one curve available
2394  * just fit it on pcdac_out (it's supposed to cover the entire range of
2395  * available pwr levels since it's always the higher power curve). Extrapolate
2396  * below and above final table if needed.
2397  */
2398 static void
2399 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2400 						s16 *table_max, u8 pdcurves)
2401 {
2402 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2403 	u8	*pcdac_low_pwr;
2404 	u8	*pcdac_high_pwr;
2405 	u8	*pcdac_tmp;
2406 	u8	pwr;
2407 	s16	max_pwr_idx;
2408 	s16	min_pwr_idx;
2409 	s16	mid_pwr_idx = 0;
2410 	/* Edge flag turs on the 7nth bit on the PCDAC
2411 	 * to delcare the higher power curve (force values
2412 	 * to be greater than 64). If we only have one curve
2413 	 * we don't need to set this, if we have 2 curves and
2414 	 * fill the table backwards this can also be used to
2415 	 * switch from higher power curve to lower power curve */
2416 	u8	edge_flag;
2417 	int	i;
2418 
2419 	/* When we have only one curve available
2420 	 * that's the higher power curve. If we have
2421 	 * two curves the first is the high power curve
2422 	 * and the next is the low power curve. */
2423 	if (pdcurves > 1) {
2424 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2425 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2427 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428 
2429 		/* If table size goes beyond 31.5dB, keep the
2430 		 * upper 31.5dB range when setting tx power.
2431 		 * Note: 126 = 31.5 dB in quarter dB steps */
2432 		if (table_max[0] - table_min[1] > 126)
2433 			min_pwr_idx = table_max[0] - 126;
2434 		else
2435 			min_pwr_idx = table_min[1];
2436 
2437 		/* Since we fill table backwards
2438 		 * start from high power curve */
2439 		pcdac_tmp = pcdac_high_pwr;
2440 
2441 		edge_flag = 0x40;
2442 #if 0
2443 		/* If both min and max power limits are in lower
2444 		 * power curve's range, only use the low power curve.
2445 		 * TODO: min/max levels are related to target
2446 		 * power values requested from driver/user
2447 		 * XXX: Is this really needed ? */
2448 		if (min_pwr < table_max[1] &&
2449 		max_pwr < table_max[1]) {
2450 			edge_flag = 0;
2451 			pcdac_tmp = pcdac_low_pwr;
2452 			max_pwr_idx = (table_max[1] - table_min[1])/2;
2453 		}
2454 #endif
2455 	} else {
2456 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2457 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2458 		min_pwr_idx = table_min[0];
2459 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2460 		pcdac_tmp = pcdac_high_pwr;
2461 		edge_flag = 0;
2462 	}
2463 
2464 	/* This is used when setting tx power*/
2465 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2466 
2467 	/* Fill Power to PCDAC table backwards */
2468 	pwr = max_pwr_idx;
2469 	for (i = 63; i >= 0; i--) {
2470 		/* Entering lower power range, reset
2471 		 * edge flag and set pcdac_tmp to lower
2472 		 * power curve.*/
2473 		if (edge_flag == 0x40 &&
2474 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2475 			edge_flag = 0x00;
2476 			pcdac_tmp = pcdac_low_pwr;
2477 			pwr = mid_pwr_idx/2;
2478 		}
2479 
2480 		/* Don't go below 1, extrapolate below if we have
2481 		 * already swithced to the lower power curve -or
2482 		 * we only have one curve and edge_flag is zero
2483 		 * anyway */
2484 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2485 			while (i >= 0) {
2486 				pcdac_out[i] = pcdac_out[i + 1];
2487 				i--;
2488 			}
2489 			break;
2490 		}
2491 
2492 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2493 
2494 		/* Extrapolate above if pcdac is greater than
2495 		 * 126 -this can happen because we OR pcdac_out
2496 		 * value with edge_flag on high power curve */
2497 		if (pcdac_out[i] > 126)
2498 			pcdac_out[i] = 126;
2499 
2500 		/* Decrease by a 0.5dB step */
2501 		pwr--;
2502 	}
2503 }
2504 
2505 /* Write PCDAC values on hw */
2506 static void
2507 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2508 {
2509 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2510 	int	i;
2511 
2512 	/*
2513 	 * Write TX power values
2514 	 */
2515 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2516 		ath5k_hw_reg_write(ah,
2517 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2518 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2519 			AR5K_PHY_PCDAC_TXPOWER(i));
2520 	}
2521 }
2522 
2523 
2524 /*
2525  * Power to PDADC table functions
2526  */
2527 
2528 /*
2529  * Set the gain boundaries and create final Power to PDADC table
2530  *
2531  * We can have up to 4 pd curves, we need to do a simmilar process
2532  * as we do for RF5112. This time we don't have an edge_flag but we
2533  * set the gain boundaries on a separate register.
2534  */
2535 static void
2536 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2537 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2538 {
2539 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2540 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2541 	u8 *pdadc_tmp;
2542 	s16 pdadc_0;
2543 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2544 	u8 pd_gain_overlap;
2545 
2546 	/* Note: Register value is initialized on initvals
2547 	 * there is no feedback from hw.
2548 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2549 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2550 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2551 
2552 	/* Create final PDADC table */
2553 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2554 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2555 
2556 		if (pdg == pdcurves - 1)
2557 			/* 2 dB boundary stretch for last
2558 			 * (higher power) curve */
2559 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2560 		else
2561 			/* Set gain boundary in the middle
2562 			 * between this curve and the next one */
2563 			gain_boundaries[pdg] =
2564 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2565 
2566 		/* Sanity check in case our 2 db stretch got out of
2567 		 * range. */
2568 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2569 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2570 
2571 		/* For the first curve (lower power)
2572 		 * start from 0 dB */
2573 		if (pdg == 0)
2574 			pdadc_0 = 0;
2575 		else
2576 			/* For the other curves use the gain overlap */
2577 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2578 							pd_gain_overlap;
2579 
2580 		/* Force each power step to be at least 0.5 dB */
2581 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2582 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2583 		else
2584 			pwr_step = 1;
2585 
2586 		/* If pdadc_0 is negative, we need to extrapolate
2587 		 * below this pdgain by a number of pwr_steps */
2588 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2589 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2590 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2591 			pdadc_0++;
2592 		}
2593 
2594 		/* Set last pwr level, using gain boundaries */
2595 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2596 		/* Limit it to be inside pwr range */
2597 		table_size = pwr_max[pdg] - pwr_min[pdg];
2598 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2599 
2600 		/* Fill pdadc_out table */
2601 		while (pdadc_0 < max_idx)
2602 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2603 
2604 		/* Need to extrapolate above this pdgain? */
2605 		if (pdadc_n <= max_idx)
2606 			continue;
2607 
2608 		/* Force each power step to be at least 0.5 dB */
2609 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2610 			pwr_step = pdadc_tmp[table_size - 1] -
2611 						pdadc_tmp[table_size - 2];
2612 		else
2613 			pwr_step = 1;
2614 
2615 		/* Extrapolate above */
2616 		while ((pdadc_0 < (s16) pdadc_n) &&
2617 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2618 			s16 tmp = pdadc_tmp[table_size - 1] +
2619 					(pdadc_0 - max_idx) * pwr_step;
2620 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2621 			pdadc_0++;
2622 		}
2623 	}
2624 
2625 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2626 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2627 		pdg++;
2628 	}
2629 
2630 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2631 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2632 		pdadc_i++;
2633 	}
2634 
2635 	/* Set gain boundaries */
2636 	ath5k_hw_reg_write(ah,
2637 		AR5K_REG_SM(pd_gain_overlap,
2638 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2639 		AR5K_REG_SM(gain_boundaries[0],
2640 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2641 		AR5K_REG_SM(gain_boundaries[1],
2642 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2643 		AR5K_REG_SM(gain_boundaries[2],
2644 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2645 		AR5K_REG_SM(gain_boundaries[3],
2646 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2647 		AR5K_PHY_TPC_RG5);
2648 
2649 	/* Used for setting rate power table */
2650 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2651 
2652 }
2653 
2654 /* Write PDADC values on hw */
2655 static void
2656 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2657 			u8 pdcurves, u8 *pdg_to_idx)
2658 {
2659 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2660 	u32 reg;
2661 	u8 i;
2662 
2663 	/* Select the right pdgain curves */
2664 
2665 	/* Clear current settings */
2666 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2667 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2668 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2669 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2670 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2671 
2672 	/*
2673 	 * Use pd_gains curve from eeprom
2674 	 *
2675 	 * This overrides the default setting from initvals
2676 	 * in case some vendors (e.g. Zcomax) don't use the default
2677 	 * curves. If we don't honor their settings we 'll get a
2678 	 * 5dB (1 * gain overlap ?) drop.
2679 	 */
2680 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2681 
2682 	switch (pdcurves) {
2683 	case 3:
2684 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2685 		/* Fall through */
2686 	case 2:
2687 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2688 		/* Fall through */
2689 	case 1:
2690 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2691 		break;
2692 	}
2693 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2694 
2695 	/*
2696 	 * Write TX power values
2697 	 */
2698 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2699 		ath5k_hw_reg_write(ah,
2700 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2701 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2702 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2703 			((pdadc_out[4*i + 3] & 0xff) << 24),
2704 			AR5K_PHY_PDADC_TXPOWER(i));
2705 	}
2706 }
2707 
2708 
2709 /*
2710  * Common code for PCDAC/PDADC tables
2711  */
2712 
2713 /*
2714  * This is the main function that uses all of the above
2715  * to set PCDAC/PDADC table on hw for the current channel.
2716  * This table is used for tx power calibration on the basband,
2717  * without it we get weird tx power levels and in some cases
2718  * distorted spectral mask
2719  */
2720 static int
2721 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2722 			struct ieee80211_channel *channel,
2723 			u8 ee_mode, u8 type)
2724 {
2725 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2726 	struct ath5k_chan_pcal_info *pcinfo_L;
2727 	struct ath5k_chan_pcal_info *pcinfo_R;
2728 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2729 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2730 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2731 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2732 	u8 *tmpL;
2733 	u8 *tmpR;
2734 	u32 target = channel->center_freq;
2735 	int pdg, i;
2736 
2737 	/* Get surounding freq piers for this channel */
2738 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2739 						&pcinfo_L,
2740 						&pcinfo_R);
2741 
2742 	/* Loop over pd gain curves on
2743 	 * surounding freq piers by index */
2744 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2745 
2746 		/* Fill curves in reverse order
2747 		 * from lower power (max gain)
2748 		 * to higher power. Use curve -> idx
2749 		 * backmapping we did on eeprom init */
2750 		u8 idx = pdg_curve_to_idx[pdg];
2751 
2752 		/* Grab the needed curves by index */
2753 		pdg_L = &pcinfo_L->pd_curves[idx];
2754 		pdg_R = &pcinfo_R->pd_curves[idx];
2755 
2756 		/* Initialize the temp tables */
2757 		tmpL = ah->ah_txpower.tmpL[pdg];
2758 		tmpR = ah->ah_txpower.tmpR[pdg];
2759 
2760 		/* Set curve's x boundaries and create
2761 		 * curves so that they cover the same
2762 		 * range (if we don't do that one table
2763 		 * will have values on some range and the
2764 		 * other one won't have any so interpolation
2765 		 * will fail) */
2766 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2767 					pdg_R->pd_pwr[0]) / 2;
2768 
2769 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2770 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2771 
2772 		/* Now create the curves on surrounding channels
2773 		 * and interpolate if needed to get the final
2774 		 * curve for this gain on this channel */
2775 		switch (type) {
2776 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2777 			/* Override min/max so that we don't loose
2778 			 * accuracy (don't divide by 2) */
2779 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2780 						pdg_R->pd_pwr[0]);
2781 
2782 			table_max[pdg] =
2783 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2784 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2785 
2786 			/* Override minimum so that we don't get
2787 			 * out of bounds while extrapolating
2788 			 * below. Don't do this when we have 2
2789 			 * curves and we are on the high power curve
2790 			 * because table_min is ok in this case */
2791 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2792 
2793 				table_min[pdg] =
2794 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2795 								pdg_R->pd_step,
2796 								pdg_L->pd_pwr,
2797 								pdg_R->pd_pwr);
2798 
2799 				/* Don't go too low because we will
2800 				 * miss the upper part of the curve.
2801 				 * Note: 126 = 31.5dB (max power supported)
2802 				 * in 0.25dB units */
2803 				if (table_max[pdg] - table_min[pdg] > 126)
2804 					table_min[pdg] = table_max[pdg] - 126;
2805 			}
2806 
2807 			/* Fall through */
2808 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2809 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2810 
2811 			ath5k_create_power_curve(table_min[pdg],
2812 						table_max[pdg],
2813 						pdg_L->pd_pwr,
2814 						pdg_L->pd_step,
2815 						pdg_L->pd_points, tmpL, type);
2816 
2817 			/* We are in a calibration
2818 			 * pier, no need to interpolate
2819 			 * between freq piers */
2820 			if (pcinfo_L == pcinfo_R)
2821 				continue;
2822 
2823 			ath5k_create_power_curve(table_min[pdg],
2824 						table_max[pdg],
2825 						pdg_R->pd_pwr,
2826 						pdg_R->pd_step,
2827 						pdg_R->pd_points, tmpR, type);
2828 			break;
2829 		default:
2830 			return -EINVAL;
2831 		}
2832 
2833 		/* Interpolate between curves
2834 		 * of surounding freq piers to
2835 		 * get the final curve for this
2836 		 * pd gain. Re-use tmpL for interpolation
2837 		 * output */
2838 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2839 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2840 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2841 							(s16) pcinfo_L->freq,
2842 							(s16) pcinfo_R->freq,
2843 							(s16) tmpL[i],
2844 							(s16) tmpR[i]);
2845 		}
2846 	}
2847 
2848 	/* Now we have a set of curves for this
2849 	 * channel on tmpL (x range is table_max - table_min
2850 	 * and y values are tmpL[pdg][]) sorted in the same
2851 	 * order as EEPROM (because we've used the backmapping).
2852 	 * So for RF5112 it's from higher power to lower power
2853 	 * and for RF2413 it's from lower power to higher power.
2854 	 * For RF5111 we only have one curve. */
2855 
2856 	/* Fill min and max power levels for this
2857 	 * channel by interpolating the values on
2858 	 * surounding channels to complete the dataset */
2859 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2860 					(s16) pcinfo_L->freq,
2861 					(s16) pcinfo_R->freq,
2862 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2863 
2864 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2865 					(s16) pcinfo_L->freq,
2866 					(s16) pcinfo_R->freq,
2867 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2868 
2869 	/* We are ready to go, fill PCDAC/PDADC
2870 	 * table and write settings on hardware */
2871 	switch (type) {
2872 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2873 		/* For RF5112 we can have one or two curves
2874 		 * and each curve covers a certain power lvl
2875 		 * range so we need to do some more processing */
2876 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2877 						ee->ee_pd_gains[ee_mode]);
2878 
2879 		/* Set txp.offset so that we can
2880 		 * match max power value with max
2881 		 * table index */
2882 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2883 
2884 		/* Write settings on hw */
2885 		ath5k_setup_pcdac_table(ah);
2886 		break;
2887 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2888 		/* We are done for RF5111 since it has only
2889 		 * one curve, just fit the curve on the table */
2890 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2891 
2892 		/* No rate powertable adjustment for RF5111 */
2893 		ah->ah_txpower.txp_min_idx = 0;
2894 		ah->ah_txpower.txp_offset = 0;
2895 
2896 		/* Write settings on hw */
2897 		ath5k_setup_pcdac_table(ah);
2898 		break;
2899 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2900 		/* Set PDADC boundaries and fill
2901 		 * final PDADC table */
2902 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2903 						ee->ee_pd_gains[ee_mode]);
2904 
2905 		/* Write settings on hw */
2906 		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2907 
2908 		/* Set txp.offset, note that table_min
2909 		 * can be negative */
2910 		ah->ah_txpower.txp_offset = table_min[0];
2911 		break;
2912 	default:
2913 		return -EINVAL;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 
2920 /*
2921  * Per-rate tx power setting
2922  *
2923  * This is the code that sets the desired tx power (below
2924  * maximum) on hw for each rate (we also have TPC that sets
2925  * power per packet). We do that by providing an index on the
2926  * PCDAC/PDADC table we set up.
2927  */
2928 
2929 /*
2930  * Set rate power table
2931  *
2932  * For now we only limit txpower based on maximum tx power
2933  * supported by hw (what's inside rate_info). We need to limit
2934  * this even more, based on regulatory domain etc.
2935  *
2936  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2937  * and is indexed as follows:
2938  * rates[0] - rates[7] -> OFDM rates
2939  * rates[8] - rates[14] -> CCK rates
2940  * rates[15] -> XR rates (they all have the same power)
2941  */
2942 static void
2943 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2944 			struct ath5k_rate_pcal_info *rate_info,
2945 			u8 ee_mode)
2946 {
2947 	unsigned int i;
2948 	u16 *rates;
2949 
2950 	/* max_pwr is power level we got from driver/user in 0.5dB
2951 	 * units, switch to 0.25dB units so we can compare */
2952 	max_pwr *= 2;
2953 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2954 
2955 	/* apply rate limits */
2956 	rates = ah->ah_txpower.txp_rates_power_table;
2957 
2958 	/* OFDM rates 6 to 24Mb/s */
2959 	for (i = 0; i < 5; i++)
2960 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2961 
2962 	/* Rest OFDM rates */
2963 	rates[5] = min(rates[0], rate_info->target_power_36);
2964 	rates[6] = min(rates[0], rate_info->target_power_48);
2965 	rates[7] = min(rates[0], rate_info->target_power_54);
2966 
2967 	/* CCK rates */
2968 	/* 1L */
2969 	rates[8] = min(rates[0], rate_info->target_power_6to24);
2970 	/* 2L */
2971 	rates[9] = min(rates[0], rate_info->target_power_36);
2972 	/* 2S */
2973 	rates[10] = min(rates[0], rate_info->target_power_36);
2974 	/* 5L */
2975 	rates[11] = min(rates[0], rate_info->target_power_48);
2976 	/* 5S */
2977 	rates[12] = min(rates[0], rate_info->target_power_48);
2978 	/* 11L */
2979 	rates[13] = min(rates[0], rate_info->target_power_54);
2980 	/* 11S */
2981 	rates[14] = min(rates[0], rate_info->target_power_54);
2982 
2983 	/* XR rates */
2984 	rates[15] = min(rates[0], rate_info->target_power_6to24);
2985 
2986 	/* CCK rates have different peak to average ratio
2987 	 * so we have to tweak their power so that gainf
2988 	 * correction works ok. For this we use OFDM to
2989 	 * CCK delta from eeprom */
2990 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2991 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2992 		for (i = 8; i <= 15; i++)
2993 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2994 
2995 	/* Now that we have all rates setup use table offset to
2996 	 * match the power range set by user with the power indices
2997 	 * on PCDAC/PDADC table */
2998 	for (i = 0; i < 16; i++) {
2999 		rates[i] += ah->ah_txpower.txp_offset;
3000 		/* Don't get out of bounds */
3001 		if (rates[i] > 63)
3002 			rates[i] = 63;
3003 	}
3004 
3005 	/* Min/max in 0.25dB units */
3006 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3007 	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
3008 	ah->ah_txpower.txp_ofdm = rates[7];
3009 }
3010 
3011 
3012 /*
3013  * Set transmition power
3014  */
3015 int
3016 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3017 		u8 ee_mode, u8 txpower)
3018 {
3019 	struct ath5k_rate_pcal_info rate_info;
3020 	u8 type;
3021 	int ret;
3022 
3023 	ATH5K_TRACE(ah->ah_sc);
3024 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3025 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3026 		return -EINVAL;
3027 	}
3028 
3029 	/* Reset TX power values */
3030 	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3031 	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3032 	ah->ah_txpower.txp_min_pwr = 0;
3033 	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3034 
3035 	/* Initialize TX power table */
3036 	switch (ah->ah_radio) {
3037 	case AR5K_RF5111:
3038 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3039 		break;
3040 	case AR5K_RF5112:
3041 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3042 		break;
3043 	case AR5K_RF2413:
3044 	case AR5K_RF5413:
3045 	case AR5K_RF2316:
3046 	case AR5K_RF2317:
3047 	case AR5K_RF2425:
3048 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3049 		break;
3050 	default:
3051 		return -EINVAL;
3052 	}
3053 
3054 	/* FIXME: Only on channel/mode change */
3055 	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3056 	if (ret)
3057 		return ret;
3058 
3059 	/* Limit max power if we have a CTL available */
3060 	ath5k_get_max_ctl_power(ah, channel);
3061 
3062 	/* FIXME: Tx power limit for this regdomain
3063 	 * XXX: Mac80211/CRDA will do that anyway ? */
3064 
3065 	/* FIXME: Antenna reduction stuff */
3066 
3067 	/* FIXME: Limit power on turbo modes */
3068 
3069 	/* FIXME: TPC scale reduction */
3070 
3071 	/* Get surounding channels for per-rate power table
3072 	 * calibration */
3073 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3074 
3075 	/* Setup rate power table */
3076 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3077 
3078 	/* Write rate power table on hw */
3079 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3080 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3081 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3082 
3083 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3084 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3085 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3086 
3087 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3088 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3089 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3090 
3091 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3092 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3093 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3094 
3095 	/* FIXME: TPC support */
3096 	if (ah->ah_txpower.txp_tpc) {
3097 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3098 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3099 
3100 		ath5k_hw_reg_write(ah,
3101 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3102 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3103 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3104 			AR5K_TPC);
3105 	} else {
3106 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3107 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3114 {
3115 	/*Just a try M.F.*/
3116 	struct ieee80211_channel *channel = ah->ah_current_channel;
3117 	u8 ee_mode;
3118 
3119 	ATH5K_TRACE(ah->ah_sc);
3120 
3121 	switch (channel->hw_value & CHANNEL_MODES) {
3122 	case CHANNEL_A:
3123 	case CHANNEL_T:
3124 	case CHANNEL_XR:
3125 		ee_mode = AR5K_EEPROM_MODE_11A;
3126 		break;
3127 	case CHANNEL_G:
3128 	case CHANNEL_TG:
3129 		ee_mode = AR5K_EEPROM_MODE_11G;
3130 		break;
3131 	case CHANNEL_B:
3132 		ee_mode = AR5K_EEPROM_MODE_11B;
3133 		break;
3134 	default:
3135 		ATH5K_ERR(ah->ah_sc,
3136 			"invalid channel: %d\n", channel->center_freq);
3137 		return -EINVAL;
3138 	}
3139 
3140 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3141 		"changing txpower to %d\n", txpower);
3142 
3143 	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3144 }
3145 
3146 #undef _ATH5K_PHY
3147