xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision 95777591)
1 /*
2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 /***********************\
22 * PHY related functions *
23 \***********************/
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
30 
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "rfbuffer.h"
34 #include "rfgain.h"
35 #include "../regd.h"
36 
37 
38 /**
39  * DOC: PHY related functions
40  *
41  * Here we handle the low-level functions related to baseband
42  * and analog frontend (RF) parts. This is by far the most complex
43  * part of the hw code so make sure you know what you are doing.
44  *
45  * Here is a list of what this is all about:
46  *
47  * - Channel setting/switching
48  *
49  * - Automatic Gain Control (AGC) calibration
50  *
51  * - Noise Floor calibration
52  *
53  * - I/Q imbalance calibration (QAM correction)
54  *
55  * - Calibration due to thermal changes (gain_F)
56  *
57  * - Spur noise mitigation
58  *
59  * - RF/PHY initialization for the various operating modes and bwmodes
60  *
61  * - Antenna control
62  *
63  * - TX power control per channel/rate/packet type
64  *
65  * Also have in mind we never got documentation for most of these
66  * functions, what we have comes mostly from Atheros's code, reverse
67  * engineering and patent docs/presentations etc.
68  */
69 
70 
71 /******************\
72 * Helper functions *
73 \******************/
74 
75 /**
76  * ath5k_hw_radio_revision() - Get the PHY Chip revision
77  * @ah: The &struct ath5k_hw
78  * @band: One of enum nl80211_band
79  *
80  * Returns the revision number of a 2GHz, 5GHz or single chip
81  * radio.
82  */
83 u16
84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
85 {
86 	unsigned int i;
87 	u32 srev;
88 	u16 ret;
89 
90 	/*
91 	 * Set the radio chip access register
92 	 */
93 	switch (band) {
94 	case NL80211_BAND_2GHZ:
95 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96 		break;
97 	case NL80211_BAND_5GHZ:
98 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99 		break;
100 	default:
101 		return 0;
102 	}
103 
104 	usleep_range(2000, 2500);
105 
106 	/* ...wait until PHY is ready and read the selected radio revision */
107 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108 
109 	for (i = 0; i < 8; i++)
110 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111 
112 	if (ah->ah_version == AR5K_AR5210) {
113 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
114 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115 	} else {
116 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118 				((srev & 0x0f) << 4), 8);
119 	}
120 
121 	/* Reset to the 5GHz mode */
122 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123 
124 	return ret;
125 }
126 
127 /**
128  * ath5k_channel_ok() - Check if a channel is supported by the hw
129  * @ah: The &struct ath5k_hw
130  * @channel: The &struct ieee80211_channel
131  *
132  * Note: We don't do any regulatory domain checks here, it's just
133  * a sanity check.
134  */
135 bool
136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137 {
138 	u16 freq = channel->center_freq;
139 
140 	/* Check if the channel is in our supported range */
141 	if (channel->band == NL80211_BAND_2GHZ) {
142 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144 			return true;
145 	} else if (channel->band == NL80211_BAND_5GHZ)
146 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148 			return true;
149 
150 	return false;
151 }
152 
153 /**
154  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155  * @ah: The &struct ath5k_hw
156  * @channel: The &struct ieee80211_channel
157  */
158 bool
159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160 				struct ieee80211_channel *channel)
161 {
162 	u8 refclk_freq;
163 
164 	if ((ah->ah_radio == AR5K_RF5112) ||
165 	(ah->ah_radio == AR5K_RF5413) ||
166 	(ah->ah_radio == AR5K_RF2413) ||
167 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168 		refclk_freq = 40;
169 	else
170 		refclk_freq = 32;
171 
172 	if ((channel->center_freq % refclk_freq != 0) &&
173 	((channel->center_freq % refclk_freq < 10) ||
174 	(channel->center_freq % refclk_freq > 22)))
175 		return true;
176 	else
177 		return false;
178 }
179 
180 /**
181  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182  * @ah: The &struct ath5k_hw
183  * @rf_regs: The struct ath5k_rf_reg
184  * @val: New value
185  * @reg_id: RF register ID
186  * @set: Indicate we need to swap data
187  *
188  * This is an internal function used to modify RF Banks before
189  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190  * infos.
191  */
192 static unsigned int
193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194 					u32 val, u8 reg_id, bool set)
195 {
196 	const struct ath5k_rf_reg *rfreg = NULL;
197 	u8 offset, bank, num_bits, col, position;
198 	u16 entry;
199 	u32 mask, data, last_bit, bits_shifted, first_bit;
200 	u32 *rfb;
201 	s32 bits_left;
202 	int i;
203 
204 	data = 0;
205 	rfb = ah->ah_rf_banks;
206 
207 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
208 		if (rf_regs[i].index == reg_id) {
209 			rfreg = &rf_regs[i];
210 			break;
211 		}
212 	}
213 
214 	if (rfb == NULL || rfreg == NULL) {
215 		ATH5K_PRINTF("Rf register not found!\n");
216 		/* should not happen */
217 		return 0;
218 	}
219 
220 	bank = rfreg->bank;
221 	num_bits = rfreg->field.len;
222 	first_bit = rfreg->field.pos;
223 	col = rfreg->field.col;
224 
225 	/* first_bit is an offset from bank's
226 	 * start. Since we have all banks on
227 	 * the same array, we use this offset
228 	 * to mark each bank's start */
229 	offset = ah->ah_offset[bank];
230 
231 	/* Boundary check */
232 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
234 		return 0;
235 	}
236 
237 	entry = ((first_bit - 1) / 8) + offset;
238 	position = (first_bit - 1) % 8;
239 
240 	if (set)
241 		data = ath5k_hw_bitswap(val, num_bits);
242 
243 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244 	     position = 0, entry++) {
245 
246 		last_bit = (position + bits_left > 8) ? 8 :
247 					position + bits_left;
248 
249 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250 								(col * 8);
251 
252 		if (set) {
253 			rfb[entry] &= ~mask;
254 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
255 			data >>= (8 - position);
256 		} else {
257 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258 				<< bits_shifted;
259 			bits_shifted += last_bit - position;
260 		}
261 
262 		bits_left -= 8 - position;
263 	}
264 
265 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266 
267 	return data;
268 }
269 
270 /**
271  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272  * @ah: the &struct ath5k_hw
273  * @channel: the currently set channel upon reset
274  *
275  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277  *
278  * Since delta slope is floating point we split it on its exponent and
279  * mantissa and provide these values on hw.
280  *
281  * For more infos i think this patent is related
282  * "http://www.freepatentsonline.com/7184495.html"
283  */
284 static inline int
285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286 				struct ieee80211_channel *channel)
287 {
288 	/* Get exponent and mantissa and set it */
289 	u32 coef_scaled, coef_exp, coef_man,
290 		ds_coef_exp, ds_coef_man, clock;
291 
292 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293 		(channel->hw_value == AR5K_MODE_11B));
294 
295 	/* Get coefficient
296 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 	 * we scale coef by shifting clock value by 24 for
298 	 * better precision since we use integers */
299 	switch (ah->ah_bwmode) {
300 	case AR5K_BWMODE_40MHZ:
301 		clock = 40 * 2;
302 		break;
303 	case AR5K_BWMODE_10MHZ:
304 		clock = 40 / 2;
305 		break;
306 	case AR5K_BWMODE_5MHZ:
307 		clock = 40 / 4;
308 		break;
309 	default:
310 		clock = 40;
311 		break;
312 	}
313 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314 
315 	/* Get exponent
316 	 * ALGO: coef_exp = 14 - highest set bit position */
317 	coef_exp = ilog2(coef_scaled);
318 
319 	/* Doesn't make sense if it's zero*/
320 	if (!coef_scaled || !coef_exp)
321 		return -EINVAL;
322 
323 	/* Note: we've shifted coef_scaled by 24 */
324 	coef_exp = 14 - (coef_exp - 24);
325 
326 
327 	/* Get mantissa (significant digits)
328 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 	coef_man = coef_scaled +
330 		(1 << (24 - coef_exp - 1));
331 
332 	/* Calculate delta slope coefficient exponent
333 	 * and mantissa (remove scaling) and set them on hw */
334 	ds_coef_man = coef_man >> (24 - coef_exp);
335 	ds_coef_exp = coef_exp - 16;
336 
337 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341 
342 	return 0;
343 }
344 
345 /**
346  * ath5k_hw_phy_disable() - Disable PHY
347  * @ah: The &struct ath5k_hw
348  */
349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350 {
351 	/*Just a try M.F.*/
352 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353 
354 	return 0;
355 }
356 
357 /**
358  * ath5k_hw_wait_for_synth() - Wait for synth to settle
359  * @ah: The &struct ath5k_hw
360  * @channel: The &struct ieee80211_channel
361  */
362 static void
363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364 			struct ieee80211_channel *channel)
365 {
366 	/*
367 	 * On 5211+ read activation -> rx delay
368 	 * and use it (100ns steps).
369 	 */
370 	if (ah->ah_version != AR5K_AR5210) {
371 		u32 delay;
372 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373 			AR5K_PHY_RX_DELAY_M;
374 		delay = (channel->hw_value == AR5K_MODE_11B) ?
375 			((delay << 2) / 22) : (delay / 10);
376 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377 			delay = delay << 1;
378 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379 			delay = delay << 2;
380 		/* XXX: /2 on turbo ? Let's be safe
381 		 * for now */
382 		usleep_range(100 + delay, 100 + (2 * delay));
383 	} else {
384 		usleep_range(1000, 1500);
385 	}
386 }
387 
388 
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
392 
393 /**
394  * DOC: RF Gain optimization
395  *
396  * This code is used to optimize RF gain on different environments
397  * (temperature mostly) based on feedback from a power detector.
398  *
399  * It's only used on RF5111 and RF5112, later RF chips seem to have
400  * auto adjustment on hw -notice they have a much smaller BANK 7 and
401  * no gain optimization ladder-.
402  *
403  * For more infos check out this patent doc
404  * "http://www.freepatentsonline.com/7400691.html"
405  *
406  * This paper describes power drops as seen on the receiver due to
407  * probe packets
408  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409  * %20of%20Power%20Control.pdf"
410  *
411  * And this is the MadWiFi bug entry related to the above
412  * "http://madwifi-project.org/ticket/1659"
413  * with various measurements and diagrams
414  */
415 
416 /**
417  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418  * @ah: The &struct ath5k_hw
419  */
420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421 {
422 	/* Initialize the gain optimization values */
423 	switch (ah->ah_radio) {
424 	case AR5K_RF5111:
425 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426 		ah->ah_gain.g_low = 20;
427 		ah->ah_gain.g_high = 35;
428 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 		break;
430 	case AR5K_RF5112:
431 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432 		ah->ah_gain.g_low = 20;
433 		ah->ah_gain.g_high = 85;
434 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 		break;
436 	default:
437 		return -EINVAL;
438 	}
439 
440 	return 0;
441 }
442 
443 /**
444  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445  * @ah: The &struct ath5k_hw
446  *
447  * Schedules a gain probe check on the next transmitted packet.
448  * That means our next packet is going to be sent with lower
449  * tx power and a Peak to Average Power Detector (PAPD) will try
450  * to measure the gain.
451  *
452  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453  * just after we enable the probe so that we don't mess with
454  * standard traffic.
455  */
456 static void
457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458 {
459 
460 	/* Skip if gain calibration is inactive or
461 	 * we already handle a probe request */
462 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463 		return;
464 
465 	/* Send the packet with 2dB below max power as
466 	 * patent doc suggest */
467 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
469 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470 
471 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472 
473 }
474 
475 /**
476  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477  * @ah: The &struct ath5k_hw
478  *
479  * Calculate Gain_F measurement correction
480  * based on the current step for RF5112 rev. 2
481  */
482 static u32
483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484 {
485 	u32 mix, step;
486 	const struct ath5k_gain_opt *go;
487 	const struct ath5k_gain_opt_step *g_step;
488 	const struct ath5k_rf_reg *rf_regs;
489 
490 	/* Only RF5112 Rev. 2 supports it */
491 	if ((ah->ah_radio != AR5K_RF5112) ||
492 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
493 		return 0;
494 
495 	go = &rfgain_opt_5112;
496 	rf_regs = rf_regs_5112a;
497 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
498 
499 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
500 
501 	if (ah->ah_rf_banks == NULL)
502 		return 0;
503 
504 	ah->ah_gain.g_f_corr = 0;
505 
506 	/* No VGA (Variable Gain Amplifier) override, skip */
507 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508 		return 0;
509 
510 	/* Mix gain stepping */
511 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
512 
513 	/* Mix gain override */
514 	mix = g_step->gos_param[0];
515 
516 	switch (mix) {
517 	case 3:
518 		ah->ah_gain.g_f_corr = step * 2;
519 		break;
520 	case 2:
521 		ah->ah_gain.g_f_corr = (step - 5) * 2;
522 		break;
523 	case 1:
524 		ah->ah_gain.g_f_corr = step;
525 		break;
526 	default:
527 		ah->ah_gain.g_f_corr = 0;
528 		break;
529 	}
530 
531 	return ah->ah_gain.g_f_corr;
532 }
533 
534 /**
535  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536  * @ah: The &struct ath5k_hw
537  *
538  * Check if current gain_F measurement is in the range of our
539  * power detector windows. If we get a measurement outside range
540  * we know it's not accurate (detectors can't measure anything outside
541  * their detection window) so we must ignore it.
542  *
543  * Returns true if readback was O.K. or false on failure
544  */
545 static bool
546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
547 {
548 	const struct ath5k_rf_reg *rf_regs;
549 	u32 step, mix_ovr, level[4];
550 
551 	if (ah->ah_rf_banks == NULL)
552 		return false;
553 
554 	if (ah->ah_radio == AR5K_RF5111) {
555 
556 		rf_regs = rf_regs_5111;
557 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
558 
559 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
560 			false);
561 
562 		level[0] = 0;
563 		level[1] = (step == 63) ? 50 : step + 4;
564 		level[2] = (step != 63) ? 64 : level[0];
565 		level[3] = level[2] + 50;
566 
567 		ah->ah_gain.g_high = level[3] -
568 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
569 		ah->ah_gain.g_low = level[0] +
570 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
571 	} else {
572 
573 		rf_regs = rf_regs_5112;
574 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
575 
576 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
577 			false);
578 
579 		level[0] = level[2] = 0;
580 
581 		if (mix_ovr == 1) {
582 			level[1] = level[3] = 83;
583 		} else {
584 			level[1] = level[3] = 107;
585 			ah->ah_gain.g_high = 55;
586 		}
587 	}
588 
589 	return (ah->ah_gain.g_current >= level[0] &&
590 			ah->ah_gain.g_current <= level[1]) ||
591 		(ah->ah_gain.g_current >= level[2] &&
592 			ah->ah_gain.g_current <= level[3]);
593 }
594 
595 /**
596  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
597  * @ah: The &struct ath5k_hw
598  *
599  * Choose the right target gain based on current gain
600  * and RF gain optimization ladder
601  */
602 static s8
603 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
604 {
605 	const struct ath5k_gain_opt *go;
606 	const struct ath5k_gain_opt_step *g_step;
607 	int ret = 0;
608 
609 	switch (ah->ah_radio) {
610 	case AR5K_RF5111:
611 		go = &rfgain_opt_5111;
612 		break;
613 	case AR5K_RF5112:
614 		go = &rfgain_opt_5112;
615 		break;
616 	default:
617 		return 0;
618 	}
619 
620 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
621 
622 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
623 
624 		/* Reached maximum */
625 		if (ah->ah_gain.g_step_idx == 0)
626 			return -1;
627 
628 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
629 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
630 				ah->ah_gain.g_step_idx > 0;
631 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
632 			ah->ah_gain.g_target -= 2 *
633 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
634 			    g_step->gos_gain);
635 
636 		ret = 1;
637 		goto done;
638 	}
639 
640 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
641 
642 		/* Reached minimum */
643 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
644 			return -2;
645 
646 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
647 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
648 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
649 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
650 			ah->ah_gain.g_target -= 2 *
651 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
652 			    g_step->gos_gain);
653 
654 		ret = 2;
655 		goto done;
656 	}
657 
658 done:
659 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
660 		"ret %d, gain step %u, current gain %u, target gain %u\n",
661 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
662 		ah->ah_gain.g_target);
663 
664 	return ret;
665 }
666 
667 /**
668  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
669  * @ah: The &struct ath5k_hw
670  *
671  * Main callback for thermal RF gain calibration engine
672  * Check for a new gain reading and schedule an adjustment
673  * if needed.
674  *
675  * Returns one of enum ath5k_rfgain codes
676  */
677 enum ath5k_rfgain
678 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
679 {
680 	u32 data, type;
681 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
682 
683 	if (ah->ah_rf_banks == NULL ||
684 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
685 		return AR5K_RFGAIN_INACTIVE;
686 
687 	/* No check requested, either engine is inactive
688 	 * or an adjustment is already requested */
689 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
690 		goto done;
691 
692 	/* Read the PAPD (Peak to Average Power Detector)
693 	 * register */
694 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
695 
696 	/* No probe is scheduled, read gain_F measurement */
697 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
698 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
699 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
700 
701 		/* If tx packet is CCK correct the gain_F measurement
702 		 * by cck ofdm gain delta */
703 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
704 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
705 				ah->ah_gain.g_current +=
706 					ee->ee_cck_ofdm_gain_delta;
707 			else
708 				ah->ah_gain.g_current +=
709 					AR5K_GAIN_CCK_PROBE_CORR;
710 		}
711 
712 		/* Further correct gain_F measurement for
713 		 * RF5112A radios */
714 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
715 			ath5k_hw_rf_gainf_corr(ah);
716 			ah->ah_gain.g_current =
717 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
718 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
719 				0;
720 		}
721 
722 		/* Check if measurement is ok and if we need
723 		 * to adjust gain, schedule a gain adjustment,
724 		 * else switch back to the active state */
725 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
726 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
727 		ath5k_hw_rf_gainf_adjust(ah)) {
728 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
729 		} else {
730 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
731 		}
732 	}
733 
734 done:
735 	return ah->ah_gain.g_state;
736 }
737 
738 /**
739  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
740  * @ah: The &struct ath5k_hw
741  * @band: One of enum nl80211_band
742  *
743  * Write initial RF gain table to set the RF sensitivity.
744  *
745  * NOTE: This one works on all RF chips and has nothing to do
746  * with Gain_F calibration
747  */
748 static int
749 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
750 {
751 	const struct ath5k_ini_rfgain *ath5k_rfg;
752 	unsigned int i, size, index;
753 
754 	switch (ah->ah_radio) {
755 	case AR5K_RF5111:
756 		ath5k_rfg = rfgain_5111;
757 		size = ARRAY_SIZE(rfgain_5111);
758 		break;
759 	case AR5K_RF5112:
760 		ath5k_rfg = rfgain_5112;
761 		size = ARRAY_SIZE(rfgain_5112);
762 		break;
763 	case AR5K_RF2413:
764 		ath5k_rfg = rfgain_2413;
765 		size = ARRAY_SIZE(rfgain_2413);
766 		break;
767 	case AR5K_RF2316:
768 		ath5k_rfg = rfgain_2316;
769 		size = ARRAY_SIZE(rfgain_2316);
770 		break;
771 	case AR5K_RF5413:
772 		ath5k_rfg = rfgain_5413;
773 		size = ARRAY_SIZE(rfgain_5413);
774 		break;
775 	case AR5K_RF2317:
776 	case AR5K_RF2425:
777 		ath5k_rfg = rfgain_2425;
778 		size = ARRAY_SIZE(rfgain_2425);
779 		break;
780 	default:
781 		return -EINVAL;
782 	}
783 
784 	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
785 
786 	for (i = 0; i < size; i++) {
787 		AR5K_REG_WAIT(i);
788 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
789 			(u32)ath5k_rfg[i].rfg_register);
790 	}
791 
792 	return 0;
793 }
794 
795 
796 /********************\
797 * RF Registers setup *
798 \********************/
799 
800 /**
801  * ath5k_hw_rfregs_init() - Initialize RF register settings
802  * @ah: The &struct ath5k_hw
803  * @channel: The &struct ieee80211_channel
804  * @mode: One of enum ath5k_driver_mode
805  *
806  * Setup RF registers by writing RF buffer on hw. For
807  * more infos on this, check out rfbuffer.h
808  */
809 static int
810 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
811 			struct ieee80211_channel *channel,
812 			unsigned int mode)
813 {
814 	const struct ath5k_rf_reg *rf_regs;
815 	const struct ath5k_ini_rfbuffer *ini_rfb;
816 	const struct ath5k_gain_opt *go = NULL;
817 	const struct ath5k_gain_opt_step *g_step;
818 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
819 	u8 ee_mode = 0;
820 	u32 *rfb;
821 	int i, obdb = -1, bank = -1;
822 
823 	switch (ah->ah_radio) {
824 	case AR5K_RF5111:
825 		rf_regs = rf_regs_5111;
826 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
827 		ini_rfb = rfb_5111;
828 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
829 		go = &rfgain_opt_5111;
830 		break;
831 	case AR5K_RF5112:
832 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
833 			rf_regs = rf_regs_5112a;
834 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
835 			ini_rfb = rfb_5112a;
836 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
837 		} else {
838 			rf_regs = rf_regs_5112;
839 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
840 			ini_rfb = rfb_5112;
841 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
842 		}
843 		go = &rfgain_opt_5112;
844 		break;
845 	case AR5K_RF2413:
846 		rf_regs = rf_regs_2413;
847 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
848 		ini_rfb = rfb_2413;
849 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
850 		break;
851 	case AR5K_RF2316:
852 		rf_regs = rf_regs_2316;
853 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
854 		ini_rfb = rfb_2316;
855 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
856 		break;
857 	case AR5K_RF5413:
858 		rf_regs = rf_regs_5413;
859 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
860 		ini_rfb = rfb_5413;
861 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
862 		break;
863 	case AR5K_RF2317:
864 		rf_regs = rf_regs_2425;
865 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
866 		ini_rfb = rfb_2317;
867 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
868 		break;
869 	case AR5K_RF2425:
870 		rf_regs = rf_regs_2425;
871 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
872 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
873 			ini_rfb = rfb_2425;
874 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
875 		} else {
876 			ini_rfb = rfb_2417;
877 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
878 		}
879 		break;
880 	default:
881 		return -EINVAL;
882 	}
883 
884 	/* If it's the first time we set RF buffer, allocate
885 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
886 	 * we set above */
887 	if (ah->ah_rf_banks == NULL) {
888 		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
889 								sizeof(u32),
890 								GFP_KERNEL);
891 		if (ah->ah_rf_banks == NULL) {
892 			ATH5K_ERR(ah, "out of memory\n");
893 			return -ENOMEM;
894 		}
895 	}
896 
897 	/* Copy values to modify them */
898 	rfb = ah->ah_rf_banks;
899 
900 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
901 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
902 			ATH5K_ERR(ah, "invalid bank\n");
903 			return -EINVAL;
904 		}
905 
906 		/* Bank changed, write down the offset */
907 		if (bank != ini_rfb[i].rfb_bank) {
908 			bank = ini_rfb[i].rfb_bank;
909 			ah->ah_offset[bank] = i;
910 		}
911 
912 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
913 	}
914 
915 	/* Set Output and Driver bias current (OB/DB) */
916 	if (channel->band == NL80211_BAND_2GHZ) {
917 
918 		if (channel->hw_value == AR5K_MODE_11B)
919 			ee_mode = AR5K_EEPROM_MODE_11B;
920 		else
921 			ee_mode = AR5K_EEPROM_MODE_11G;
922 
923 		/* For RF511X/RF211X combination we
924 		 * use b_OB and b_DB parameters stored
925 		 * in eeprom on ee->ee_ob[ee_mode][0]
926 		 *
927 		 * For all other chips we use OB/DB for 2GHz
928 		 * stored in the b/g modal section just like
929 		 * 802.11a on ee->ee_ob[ee_mode][1] */
930 		if ((ah->ah_radio == AR5K_RF5111) ||
931 		(ah->ah_radio == AR5K_RF5112))
932 			obdb = 0;
933 		else
934 			obdb = 1;
935 
936 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
937 						AR5K_RF_OB_2GHZ, true);
938 
939 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
940 						AR5K_RF_DB_2GHZ, true);
941 
942 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
943 	} else if ((channel->band == NL80211_BAND_5GHZ) ||
944 			(ah->ah_radio == AR5K_RF5111)) {
945 
946 		/* For 11a, Turbo and XR we need to choose
947 		 * OB/DB based on frequency range */
948 		ee_mode = AR5K_EEPROM_MODE_11A;
949 		obdb =	 channel->center_freq >= 5725 ? 3 :
950 			(channel->center_freq >= 5500 ? 2 :
951 			(channel->center_freq >= 5260 ? 1 :
952 			 (channel->center_freq > 4000 ? 0 : -1)));
953 
954 		if (obdb < 0)
955 			return -EINVAL;
956 
957 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
958 						AR5K_RF_OB_5GHZ, true);
959 
960 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
961 						AR5K_RF_DB_5GHZ, true);
962 	}
963 
964 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
965 
966 	/* Set turbo mode (N/A on RF5413) */
967 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
968 	(ah->ah_radio != AR5K_RF5413))
969 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
970 
971 	/* Bank Modifications (chip-specific) */
972 	if (ah->ah_radio == AR5K_RF5111) {
973 
974 		/* Set gain_F settings according to current step */
975 		if (channel->hw_value != AR5K_MODE_11B) {
976 
977 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
978 					AR5K_PHY_FRAME_CTL_TX_CLIP,
979 					g_step->gos_param[0]);
980 
981 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
982 							AR5K_RF_PWD_90, true);
983 
984 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
985 							AR5K_RF_PWD_84, true);
986 
987 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
988 						AR5K_RF_RFGAIN_SEL, true);
989 
990 			/* We programmed gain_F parameters, switch back
991 			 * to active state */
992 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
993 
994 		}
995 
996 		/* Bank 6/7 setup */
997 
998 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
999 						AR5K_RF_PWD_XPD, true);
1000 
1001 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002 						AR5K_RF_XPD_GAIN, true);
1003 
1004 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005 						AR5K_RF_GAIN_I, true);
1006 
1007 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008 						AR5K_RF_PLO_SEL, true);
1009 
1010 		/* Tweak power detectors for half/quarter rate support */
1011 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013 			u8 wait_i;
1014 
1015 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016 						AR5K_RF_WAIT_S, true);
1017 
1018 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019 							0x1f : 0x10;
1020 
1021 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022 						AR5K_RF_WAIT_I, true);
1023 			ath5k_hw_rfb_op(ah, rf_regs, 3,
1024 						AR5K_RF_MAX_TIME, true);
1025 
1026 		}
1027 	}
1028 
1029 	if (ah->ah_radio == AR5K_RF5112) {
1030 
1031 		/* Set gain_F settings according to current step */
1032 		if (channel->hw_value != AR5K_MODE_11B) {
1033 
1034 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035 						AR5K_RF_MIXGAIN_OVR, true);
1036 
1037 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038 						AR5K_RF_PWD_138, true);
1039 
1040 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041 						AR5K_RF_PWD_137, true);
1042 
1043 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044 						AR5K_RF_PWD_136, true);
1045 
1046 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047 						AR5K_RF_PWD_132, true);
1048 
1049 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050 						AR5K_RF_PWD_131, true);
1051 
1052 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053 						AR5K_RF_PWD_130, true);
1054 
1055 			/* We programmed gain_F parameters, switch back
1056 			 * to active state */
1057 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058 		}
1059 
1060 		/* Bank 6/7 setup */
1061 
1062 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063 						AR5K_RF_XPD_SEL, true);
1064 
1065 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066 			/* Rev. 1 supports only one xpd */
1067 			ath5k_hw_rfb_op(ah, rf_regs,
1068 						ee->ee_x_gain[ee_mode],
1069 						AR5K_RF_XPD_GAIN, true);
1070 
1071 		} else {
1072 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073 			if (ee->ee_pd_gains[ee_mode] > 1) {
1074 				ath5k_hw_rfb_op(ah, rf_regs,
1075 						pdg_curve_to_idx[0],
1076 						AR5K_RF_PD_GAIN_LO, true);
1077 				ath5k_hw_rfb_op(ah, rf_regs,
1078 						pdg_curve_to_idx[1],
1079 						AR5K_RF_PD_GAIN_HI, true);
1080 			} else {
1081 				ath5k_hw_rfb_op(ah, rf_regs,
1082 						pdg_curve_to_idx[0],
1083 						AR5K_RF_PD_GAIN_LO, true);
1084 				ath5k_hw_rfb_op(ah, rf_regs,
1085 						pdg_curve_to_idx[0],
1086 						AR5K_RF_PD_GAIN_HI, true);
1087 			}
1088 
1089 			/* Lower synth voltage on Rev 2 */
1090 			if (ah->ah_radio == AR5K_RF5112 &&
1091 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1093 						AR5K_RF_HIGH_VC_CP, true);
1094 
1095 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1096 						AR5K_RF_MID_VC_CP, true);
1097 
1098 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1099 						AR5K_RF_LOW_VC_CP, true);
1100 
1101 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1102 						AR5K_RF_PUSH_UP, true);
1103 			}
1104 
1105 			/* Decrease power consumption on 5213+ BaseBand */
1106 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1108 						AR5K_RF_PAD2GND, true);
1109 
1110 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1111 						AR5K_RF_XB2_LVL, true);
1112 
1113 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1114 						AR5K_RF_XB5_LVL, true);
1115 
1116 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1117 						AR5K_RF_PWD_167, true);
1118 
1119 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1120 						AR5K_RF_PWD_166, true);
1121 			}
1122 		}
1123 
1124 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125 						AR5K_RF_GAIN_I, true);
1126 
1127 		/* Tweak power detector for half/quarter rates */
1128 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130 			u8 pd_delay;
1131 
1132 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133 							0xf : 0x8;
1134 
1135 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136 						AR5K_RF_PD_PERIOD_A, true);
1137 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138 						AR5K_RF_PD_DELAY_A, true);
1139 
1140 		}
1141 	}
1142 
1143 	if (ah->ah_radio == AR5K_RF5413 &&
1144 	channel->band == NL80211_BAND_2GHZ) {
1145 
1146 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147 									true);
1148 
1149 		/* Set optimum value for early revisions (on pci-e chips) */
1150 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1152 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153 						AR5K_RF_PWD_ICLOBUF_2G, true);
1154 
1155 	}
1156 
1157 	/* Write RF banks on hw */
1158 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159 		AR5K_REG_WAIT(i);
1160 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 
1167 /**************************\
1168   PHY/RF channel functions
1169 \**************************/
1170 
1171 /**
1172  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173  * @channel: The &struct ieee80211_channel
1174  *
1175  * Map channel frequency to IEEE channel number and convert it
1176  * to an internal channel value used by the RF5110 chipset.
1177  */
1178 static u32
1179 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180 {
1181 	u32 athchan;
1182 
1183 	athchan = (ath5k_hw_bitswap(
1184 			(ieee80211_frequency_to_channel(
1185 				channel->center_freq) - 24) / 2, 5)
1186 				<< 1) | (1 << 6) | 0x1;
1187 	return athchan;
1188 }
1189 
1190 /**
1191  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192  * @ah: The &struct ath5k_hw
1193  * @channel: The &struct ieee80211_channel
1194  */
1195 static int
1196 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197 		struct ieee80211_channel *channel)
1198 {
1199 	u32 data;
1200 
1201 	/*
1202 	 * Set the channel and wait
1203 	 */
1204 	data = ath5k_hw_rf5110_chan2athchan(channel);
1205 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207 	usleep_range(1000, 1500);
1208 
1209 	return 0;
1210 }
1211 
1212 /**
1213  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214  * @ieee: IEEE channel number
1215  * @athchan: The &struct ath5k_athchan_2ghz
1216  *
1217  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218  * we need to add some offsets and extra flags to the data values we pass
1219  * on to the PHY. So for every 2GHz channel this function gets called
1220  * to do the conversion.
1221  */
1222 static int
1223 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224 		struct ath5k_athchan_2ghz *athchan)
1225 {
1226 	int channel;
1227 
1228 	/* Cast this value to catch negative channel numbers (>= -19) */
1229 	channel = (int)ieee;
1230 
1231 	/*
1232 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1233 	 */
1234 	if (channel <= 13) {
1235 		athchan->a2_athchan = 115 + channel;
1236 		athchan->a2_flags = 0x46;
1237 	} else if (channel == 14) {
1238 		athchan->a2_athchan = 124;
1239 		athchan->a2_flags = 0x44;
1240 	} else if (channel >= 15 && channel <= 26) {
1241 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242 		athchan->a2_flags = 0x46;
1243 	} else
1244 		return -EINVAL;
1245 
1246 	return 0;
1247 }
1248 
1249 /**
1250  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251  * @ah: The &struct ath5k_hw
1252  * @channel: The &struct ieee80211_channel
1253  */
1254 static int
1255 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256 		struct ieee80211_channel *channel)
1257 {
1258 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259 	unsigned int ath5k_channel =
1260 		ieee80211_frequency_to_channel(channel->center_freq);
1261 	u32 data0, data1, clock;
1262 	int ret;
1263 
1264 	/*
1265 	 * Set the channel on the RF5111 radio
1266 	 */
1267 	data0 = data1 = 0;
1268 
1269 	if (channel->band == NL80211_BAND_2GHZ) {
1270 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1271 		ret = ath5k_hw_rf5111_chan2athchan(
1272 			ieee80211_frequency_to_channel(channel->center_freq),
1273 			&ath5k_channel_2ghz);
1274 		if (ret)
1275 			return ret;
1276 
1277 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279 		    << 5) | (1 << 4);
1280 	}
1281 
1282 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283 		clock = 1;
1284 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285 			(clock << 1) | (1 << 10) | 1;
1286 	} else {
1287 		clock = 0;
1288 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289 			<< 2) | (clock << 1) | (1 << 10) | 1;
1290 	}
1291 
1292 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293 			AR5K_RF_BUFFER);
1294 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295 			AR5K_RF_BUFFER_CONTROL_3);
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302  * @ah: The &struct ath5k_hw
1303  * @channel: The &struct ieee80211_channel
1304  *
1305  * On RF5112/2112 and newer we don't need to do any conversion.
1306  * We pass the frequency value after a few modifications to the
1307  * chip directly.
1308  *
1309  * NOTE: Make sure channel frequency given is within our range or else
1310  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311  */
1312 static int
1313 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314 		struct ieee80211_channel *channel)
1315 {
1316 	u32 data, data0, data1, data2;
1317 	u16 c;
1318 
1319 	data = data0 = data1 = data2 = 0;
1320 	c = channel->center_freq;
1321 
1322 	/* My guess based on code:
1323 	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324 	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325 	 * (3040/2). data0 is used to set the PLL divider and data1
1326 	 * selects synth mode. */
1327 	if (c < 4800) {
1328 		/* Channel 14 and all frequencies with 2Hz spacing
1329 		 * below/above (non-standard channels) */
1330 		if (!((c - 2224) % 5)) {
1331 			/* Same as (c - 2224) / 5 */
1332 			data0 = ((2 * (c - 704)) - 3040) / 10;
1333 			data1 = 1;
1334 		/* Channel 1 and all frequencies with 5Hz spacing
1335 		 * below/above (standard channels without channel 14) */
1336 		} else if (!((c - 2192) % 5)) {
1337 			/* Same as (c - 2192) / 5 */
1338 			data0 = ((2 * (c - 672)) - 3040) / 10;
1339 			data1 = 0;
1340 		} else
1341 			return -EINVAL;
1342 
1343 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344 	/* This is more complex, we have a single synthesizer with
1345 	 * 4 reference clock settings (?) based on frequency spacing
1346 	 * and set using data2. LO is at 4800Hz and data0 is again used
1347 	 * to set some divider.
1348 	 *
1349 	 * NOTE: There is an old atheros presentation at Stanford
1350 	 * that mentions a method called dual direct conversion
1351 	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352 	 * have here, or an updated version. */
1353 	} else if ((c % 5) != 2 || c > 5435) {
1354 		if (!(c % 20) && c >= 5120) {
1355 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356 			data2 = ath5k_hw_bitswap(3, 2);
1357 		} else if (!(c % 10)) {
1358 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359 			data2 = ath5k_hw_bitswap(2, 2);
1360 		} else if (!(c % 5)) {
1361 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362 			data2 = ath5k_hw_bitswap(1, 2);
1363 		} else
1364 			return -EINVAL;
1365 	} else {
1366 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367 		data2 = ath5k_hw_bitswap(0, 2);
1368 	}
1369 
1370 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371 
1372 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374 
1375 	return 0;
1376 }
1377 
1378 /**
1379  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380  * @ah: The &struct ath5k_hw
1381  * @channel: The &struct ieee80211_channel
1382  *
1383  * AR2425/2417 have a different 2GHz RF so code changes
1384  * a little bit from RF5112.
1385  */
1386 static int
1387 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388 		struct ieee80211_channel *channel)
1389 {
1390 	u32 data, data0, data2;
1391 	u16 c;
1392 
1393 	data = data0 = data2 = 0;
1394 	c = channel->center_freq;
1395 
1396 	if (c < 4800) {
1397 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1398 		data2 = 0;
1399 	/* ? 5GHz ? */
1400 	} else if ((c % 5) != 2 || c > 5435) {
1401 		if (!(c % 20) && c < 5120)
1402 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403 		else if (!(c % 10))
1404 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405 		else if (!(c % 5))
1406 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407 		else
1408 			return -EINVAL;
1409 		data2 = ath5k_hw_bitswap(1, 2);
1410 	} else {
1411 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412 		data2 = ath5k_hw_bitswap(0, 2);
1413 	}
1414 
1415 	data = (data0 << 4) | data2 << 2 | 0x1001;
1416 
1417 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419 
1420 	return 0;
1421 }
1422 
1423 /**
1424  * ath5k_hw_channel() - Set a channel on the radio chip
1425  * @ah: The &struct ath5k_hw
1426  * @channel: The &struct ieee80211_channel
1427  *
1428  * This is the main function called to set a channel on the
1429  * radio chip based on the radio chip version.
1430  */
1431 static int
1432 ath5k_hw_channel(struct ath5k_hw *ah,
1433 		struct ieee80211_channel *channel)
1434 {
1435 	int ret;
1436 	/*
1437 	 * Check bounds supported by the PHY (we don't care about regulatory
1438 	 * restrictions at this point).
1439 	 */
1440 	if (!ath5k_channel_ok(ah, channel)) {
1441 		ATH5K_ERR(ah,
1442 			"channel frequency (%u MHz) out of supported "
1443 			"band range\n",
1444 			channel->center_freq);
1445 		return -EINVAL;
1446 	}
1447 
1448 	/*
1449 	 * Set the channel and wait
1450 	 */
1451 	switch (ah->ah_radio) {
1452 	case AR5K_RF5110:
1453 		ret = ath5k_hw_rf5110_channel(ah, channel);
1454 		break;
1455 	case AR5K_RF5111:
1456 		ret = ath5k_hw_rf5111_channel(ah, channel);
1457 		break;
1458 	case AR5K_RF2317:
1459 	case AR5K_RF2425:
1460 		ret = ath5k_hw_rf2425_channel(ah, channel);
1461 		break;
1462 	default:
1463 		ret = ath5k_hw_rf5112_channel(ah, channel);
1464 		break;
1465 	}
1466 
1467 	if (ret)
1468 		return ret;
1469 
1470 	/* Set JAPAN setting for channel 14 */
1471 	if (channel->center_freq == 2484) {
1472 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473 				AR5K_PHY_CCKTXCTL_JAPAN);
1474 	} else {
1475 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476 				AR5K_PHY_CCKTXCTL_WORLD);
1477 	}
1478 
1479 	ah->ah_current_channel = channel;
1480 
1481 	return 0;
1482 }
1483 
1484 
1485 /*****************\
1486   PHY calibration
1487 \*****************/
1488 
1489 /**
1490  * DOC: PHY Calibration routines
1491  *
1492  * Noise floor calibration: When we tell the hardware to
1493  * perform a noise floor calibration by setting the
1494  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495  * sample-and-hold the minimum noise level seen at the antennas.
1496  * This value is then stored in a ring buffer of recently measured
1497  * noise floor values so we have a moving window of the last few
1498  * samples. The median of the values in the history is then loaded
1499  * into the hardware for its own use for RSSI and CCA measurements.
1500  * This type of calibration doesn't interfere with traffic.
1501  *
1502  * AGC calibration: When we tell the hardware to perform
1503  * an AGC (Automatic Gain Control) calibration by setting the
1504  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505  * a calibration on the DC offsets of ADCs. During this period
1506  * rx/tx gets disabled so we have to deal with it on the driver
1507  * part.
1508  *
1509  * I/Q calibration: When we tell the hardware to perform
1510  * an I/Q calibration, it tries to correct I/Q imbalance and
1511  * fix QAM constellation by sampling data from rxed frames.
1512  * It doesn't interfere with traffic.
1513  *
1514  * For more infos on AGC and I/Q calibration check out patent doc
1515  * #03/094463.
1516  */
1517 
1518 /**
1519  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520  * @ah: The &struct ath5k_hw
1521  */
1522 static s32
1523 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524 {
1525 	s32 val;
1526 
1527 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529 }
1530 
1531 /**
1532  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533  * @ah: The &struct ath5k_hw
1534  */
1535 void
1536 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537 {
1538 	int i;
1539 
1540 	ah->ah_nfcal_hist.index = 0;
1541 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543 }
1544 
1545 /**
1546  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547  * @ah: The &struct ath5k_hw
1548  * @noise_floor: The NF we got from hw
1549  */
1550 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551 {
1552 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554 	hist->nfval[hist->index] = noise_floor;
1555 }
1556 
1557 /**
1558  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559  * @ah: The &struct ath5k_hw
1560  */
1561 static s16
1562 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563 {
1564 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565 	s16 tmp;
1566 	int i, j;
1567 
1568 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571 			if (sort[j] > sort[j - 1]) {
1572 				tmp = sort[j];
1573 				sort[j] = sort[j - 1];
1574 				sort[j - 1] = tmp;
1575 			}
1576 		}
1577 	}
1578 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580 			"cal %d:%d\n", i, sort[i]);
1581 	}
1582 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583 }
1584 
1585 /**
1586  * ath5k_hw_update_noise_floor() - Update NF on hardware
1587  * @ah: The &struct ath5k_hw
1588  *
1589  * This is the main function we call to perform a NF calibration,
1590  * it reads NF from hardware, calculates the median and updates
1591  * NF on hw.
1592  */
1593 void
1594 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595 {
1596 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597 	u32 val;
1598 	s16 nf, threshold;
1599 	u8 ee_mode;
1600 
1601 	/* keep last value if calibration hasn't completed */
1602 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604 			"NF did not complete in calibration window\n");
1605 
1606 		return;
1607 	}
1608 
1609 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610 
1611 	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612 
1613 	/* completed NF calibration, test threshold */
1614 	nf = ath5k_hw_read_measured_noise_floor(ah);
1615 	threshold = ee->ee_noise_floor_thr[ee_mode];
1616 
1617 	if (nf > threshold) {
1618 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619 			"noise floor failure detected; "
1620 			"read %d, threshold %d\n",
1621 			nf, threshold);
1622 
1623 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624 	}
1625 
1626 	ath5k_hw_update_nfcal_hist(ah, nf);
1627 	nf = ath5k_hw_get_median_noise_floor(ah);
1628 
1629 	/* load noise floor (in .5 dBm) so the hardware will use it */
1630 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631 	val |= (nf * 2) & AR5K_PHY_NF_M;
1632 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633 
1634 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636 
1637 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638 		0, false);
1639 
1640 	/*
1641 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642 	 * so that we're not capped by the median we just loaded.
1643 	 * This will be used as the initial value for the next noise
1644 	 * floor calibration.
1645 	 */
1646 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649 		AR5K_PHY_AGCCTL_NF_EN |
1650 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651 		AR5K_PHY_AGCCTL_NF);
1652 
1653 	ah->ah_noise_floor = nf;
1654 
1655 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656 
1657 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658 		"noise floor calibrated: %d\n", nf);
1659 }
1660 
1661 /**
1662  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663  * @ah: The &struct ath5k_hw
1664  * @channel: The &struct ieee80211_channel
1665  *
1666  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667  */
1668 static int
1669 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670 		struct ieee80211_channel *channel)
1671 {
1672 	u32 phy_sig, phy_agc, phy_sat, beacon;
1673 	int ret;
1674 
1675 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676 		return 0;
1677 
1678 	/*
1679 	 * Disable beacons and RX/TX queues, wait
1680 	 */
1681 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685 
1686 	usleep_range(2000, 2500);
1687 
1688 	/*
1689 	 * Set the channel (with AGC turned off)
1690 	 */
1691 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692 	udelay(10);
1693 	ret = ath5k_hw_channel(ah, channel);
1694 
1695 	/*
1696 	 * Activate PHY and wait
1697 	 */
1698 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699 	usleep_range(1000, 1500);
1700 
1701 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702 
1703 	if (ret)
1704 		return ret;
1705 
1706 	/*
1707 	 * Calibrate the radio chip
1708 	 */
1709 
1710 	/* Remember normal state */
1711 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714 
1715 	/* Update radio registers */
1716 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718 
1719 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720 			AR5K_PHY_AGCCOARSE_LO)) |
1721 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723 
1724 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725 			AR5K_PHY_ADCSAT_THR)) |
1726 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728 
1729 	udelay(20);
1730 
1731 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732 	udelay(10);
1733 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735 
1736 	usleep_range(1000, 1500);
1737 
1738 	/*
1739 	 * Enable calibration and wait until completion
1740 	 */
1741 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742 
1743 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744 			AR5K_PHY_AGCCTL_CAL, 0, false);
1745 
1746 	/* Reset to normal state */
1747 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750 
1751 	if (ret) {
1752 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753 				channel->center_freq);
1754 		return ret;
1755 	}
1756 
1757 	/*
1758 	 * Re-enable RX/TX and beacons
1759 	 */
1760 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769  * @ah: The &struct ath5k_hw
1770  */
1771 static int
1772 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773 {
1774 	u32 i_pwr, q_pwr;
1775 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776 	int i;
1777 
1778 	/* Skip if I/Q calibration is not needed or if it's still running */
1779 	if (!ah->ah_iq_cal_needed)
1780 		return -EINVAL;
1781 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783 				"I/Q calibration still running");
1784 		return -EBUSY;
1785 	}
1786 
1787 	/* Calibration has finished, get the results and re-run */
1788 
1789 	/* Work around for empty results which can apparently happen on 5212:
1790 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791 	for (i = 0; i <= 10; i++) {
1792 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797 		if (i_pwr && q_pwr)
1798 			break;
1799 	}
1800 
1801 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802 
1803 	if (ah->ah_version == AR5K_AR5211)
1804 		q_coffd = q_pwr >> 6;
1805 	else
1806 		q_coffd = q_pwr >> 7;
1807 
1808 	/* In case i_coffd became zero, cancel calibration
1809 	 * not only it's too small, it'll also result a divide
1810 	 * by zero later on. */
1811 	if (i_coffd == 0 || q_coffd < 2)
1812 		return -ECANCELED;
1813 
1814 	/* Protect against loss of sign bits */
1815 
1816 	i_coff = (-iq_corr) / i_coffd;
1817 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818 
1819 	if (ah->ah_version == AR5K_AR5211)
1820 		q_coff = (i_pwr / q_coffd) - 64;
1821 	else
1822 		q_coff = (i_pwr / q_coffd) - 128;
1823 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824 
1825 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827 			i_coff, q_coff, i_coffd, q_coffd);
1828 
1829 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1830 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833 
1834 	/* Re-enable calibration -if we don't we'll commit
1835 	 * the same values again and again */
1836 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845  * @ah: The &struct ath5k_hw
1846  * @channel: The &struct ieee80211_channel
1847  *
1848  * The main function we call from above to perform
1849  * a short or full PHY calibration based on RF chip
1850  * and current channel
1851  */
1852 int
1853 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854 		struct ieee80211_channel *channel)
1855 {
1856 	int ret;
1857 
1858 	if (ah->ah_radio == AR5K_RF5110)
1859 		return ath5k_hw_rf5110_calibrate(ah, channel);
1860 
1861 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862 	if (ret) {
1863 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864 			"No I/Q correction performed (%uMHz)\n",
1865 			channel->center_freq);
1866 
1867 		/* Happens all the time if there is not much
1868 		 * traffic, consider it normal behaviour. */
1869 		ret = 0;
1870 	}
1871 
1872 	/* On full calibration request a PAPD probe for
1873 	 * gainf calibration if needed */
1874 	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875 	    (ah->ah_radio == AR5K_RF5111 ||
1876 	     ah->ah_radio == AR5K_RF5112) &&
1877 	    channel->hw_value != AR5K_MODE_11B)
1878 		ath5k_hw_request_rfgain_probe(ah);
1879 
1880 	/* Update noise floor */
1881 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882 		ath5k_hw_update_noise_floor(ah);
1883 
1884 	return ret;
1885 }
1886 
1887 
1888 /***************************\
1889 * Spur mitigation functions *
1890 \***************************/
1891 
1892 /**
1893  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894  * @ah: The &struct ath5k_hw
1895  * @channel: The &struct ieee80211_channel
1896  *
1897  * This function gets called during PHY initialization to
1898  * configure the spur filter for the given channel. Spur is noise
1899  * generated due to "reflection" effects, for more information on this
1900  * method check out patent US7643810
1901  */
1902 static void
1903 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904 				struct ieee80211_channel *channel)
1905 {
1906 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907 	u32 mag_mask[4] = {0, 0, 0, 0};
1908 	u32 pilot_mask[2] = {0, 0};
1909 	/* Note: fbin values are scaled up by 2 */
1910 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911 	s32 spur_delta_phase, spur_freq_sigma_delta;
1912 	s32 spur_offset, num_symbols_x16;
1913 	u8 num_symbol_offsets, i, freq_band;
1914 
1915 	/* Convert current frequency to fbin value (the same way channels
1916 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917 	 * up by 2 so we can compare it later */
1918 	if (channel->band == NL80211_BAND_2GHZ) {
1919 		chan_fbin = (channel->center_freq - 2300) * 10;
1920 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1921 	} else {
1922 		chan_fbin = (channel->center_freq - 4900) * 10;
1923 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1924 	}
1925 
1926 	/* Check if any spur_chan_fbin from EEPROM is
1927 	 * within our current channel's spur detection range */
1928 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930 	/* XXX: Half/Quarter channels ?*/
1931 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932 		spur_detection_window *= 2;
1933 
1934 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936 
1937 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938 		 * so it's zero if we got nothing from EEPROM */
1939 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941 			break;
1942 		}
1943 
1944 		if ((chan_fbin - spur_detection_window <=
1945 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946 		(chan_fbin + spur_detection_window >=
1947 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949 			break;
1950 		}
1951 	}
1952 
1953 	/* We need to enable spur filter for this channel */
1954 	if (spur_chan_fbin) {
1955 		spur_offset = spur_chan_fbin - chan_fbin;
1956 		/*
1957 		 * Calculate deltas:
1958 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1960 		 * Note: Both values have 100Hz resolution
1961 		 */
1962 		switch (ah->ah_bwmode) {
1963 		case AR5K_BWMODE_40MHZ:
1964 			/* Both sample_freq and chip_freq are 80MHz */
1965 			spur_delta_phase = (spur_offset << 16) / 25;
1966 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968 			break;
1969 		case AR5K_BWMODE_10MHZ:
1970 			/* Both sample_freq and chip_freq are 20MHz (?) */
1971 			spur_delta_phase = (spur_offset << 18) / 25;
1972 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974 			break;
1975 		case AR5K_BWMODE_5MHZ:
1976 			/* Both sample_freq and chip_freq are 10MHz (?) */
1977 			spur_delta_phase = (spur_offset << 19) / 25;
1978 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980 			break;
1981 		default:
1982 			if (channel->band == NL80211_BAND_5GHZ) {
1983 				/* Both sample_freq and chip_freq are 40MHz */
1984 				spur_delta_phase = (spur_offset << 17) / 25;
1985 				spur_freq_sigma_delta =
1986 						(spur_delta_phase >> 10);
1987 				symbol_width =
1988 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989 			} else {
1990 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1991 				 * (for b compatibility) */
1992 				spur_delta_phase = (spur_offset << 17) / 25;
1993 				spur_freq_sigma_delta =
1994 						(spur_offset << 8) / 55;
1995 				symbol_width =
1996 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997 			}
1998 			break;
1999 		}
2000 
2001 		/* Calculate pilot and magnitude masks */
2002 
2003 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004 		 * and divide by symbol_width to find how many symbols we have
2005 		 * Note: number of symbols is scaled up by 16 */
2006 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007 
2008 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009 		if (!(num_symbols_x16 & 0xF))
2010 			/* _X_ */
2011 			num_symbol_offsets = 3;
2012 		else
2013 			/* _xx_ */
2014 			num_symbol_offsets = 4;
2015 
2016 		for (i = 0; i < num_symbol_offsets; i++) {
2017 
2018 			/* Calculate pilot mask */
2019 			s32 curr_sym_off =
2020 				(num_symbols_x16 / 16) + i + 25;
2021 
2022 			/* Pilot magnitude mask seems to be a way to
2023 			 * declare the boundaries for our detection
2024 			 * window or something, it's 2 for the middle
2025 			 * value(s) where the symbol is expected to be
2026 			 * and 1 on the boundary values */
2027 			u8 plt_mag_map =
2028 				(i == 0 || i == (num_symbol_offsets - 1))
2029 								? 1 : 2;
2030 
2031 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032 				if (curr_sym_off <= 25)
2033 					pilot_mask[0] |= 1 << curr_sym_off;
2034 				else if (curr_sym_off >= 27)
2035 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038 
2039 			/* Calculate magnitude mask (for viterbi decoder) */
2040 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041 				mag_mask[0] |=
2042 					plt_mag_map << (curr_sym_off + 1) * 2;
2043 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044 				mag_mask[1] |=
2045 					plt_mag_map << (curr_sym_off - 15) * 2;
2046 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047 				mag_mask[2] |=
2048 					plt_mag_map << (curr_sym_off - 31) * 2;
2049 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050 				mag_mask[3] |=
2051 					plt_mag_map << (curr_sym_off - 47) * 2;
2052 
2053 		}
2054 
2055 		/* Write settings on hw to enable spur filter */
2056 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058 		/* XXX: Self correlator also ? */
2059 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060 					AR5K_PHY_IQ_PILOT_MASK_EN |
2061 					AR5K_PHY_IQ_CHAN_MASK_EN |
2062 					AR5K_PHY_IQ_SPUR_FILT_EN);
2063 
2064 		/* Set delta phase and freq sigma delta */
2065 		ath5k_hw_reg_write(ah,
2066 				AR5K_REG_SM(spur_delta_phase,
2067 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068 				AR5K_REG_SM(spur_freq_sigma_delta,
2069 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071 				AR5K_PHY_TIMING_11);
2072 
2073 		/* Write pilot masks */
2074 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077 					pilot_mask[1]);
2078 
2079 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082 					pilot_mask[1]);
2083 
2084 		/* Write magnitude masks */
2085 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090 					mag_mask[3]);
2091 
2092 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2097 					mag_mask[3]);
2098 
2099 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100 	AR5K_PHY_IQ_SPUR_FILT_EN) {
2101 		/* Clean up spur mitigation settings and disable filter */
2102 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105 					AR5K_PHY_IQ_PILOT_MASK_EN |
2106 					AR5K_PHY_IQ_CHAN_MASK_EN |
2107 					AR5K_PHY_IQ_SPUR_FILT_EN);
2108 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109 
2110 		/* Clear pilot masks */
2111 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114 					0);
2115 
2116 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119 					0);
2120 
2121 		/* Clear magnitude masks */
2122 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127 					0);
2128 
2129 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2134 					0);
2135 	}
2136 }
2137 
2138 
2139 /*****************\
2140 * Antenna control *
2141 \*****************/
2142 
2143 /**
2144  * DOC: Antenna control
2145  *
2146  * Hw supports up to 14 antennas ! I haven't found any card that implements
2147  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150  *
2151  * We can have a single antenna for RX and multiple antennas for TX.
2152  * RX antenna is our "default" antenna (usually antenna 1) set on
2153  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154  * (0 for automatic selection, 1 - 14 antenna number).
2155  *
2156  * We can let hw do all the work doing fast antenna diversity for both
2157  * tx and rx or we can do things manually. Here are the options we have
2158  * (all are bits of STA_ID1 register):
2159  *
2160  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161  * control descriptor, use the default antenna to transmit or else use the last
2162  * antenna on which we received an ACK.
2163  *
2164  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165  * the antenna on which we got the ACK for that frame.
2166  *
2167  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168  * one on the TX descriptor.
2169  *
2170  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171  * (ACKs etc), or else use current antenna (the one we just used for TX).
2172  *
2173  * Using the above we support the following scenarios:
2174  *
2175  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176  *
2177  * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2178  *
2179  * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2180  *
2181  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182  *
2183  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184  *
2185  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186  *
2187  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188  *
2189  * Also note that when setting antenna to F on tx descriptor card inverts
2190  * current tx antenna.
2191  */
2192 
2193 /**
2194  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195  * @ah: The &struct ath5k_hw
2196  * @ant: Antenna number
2197  */
2198 static void
2199 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200 {
2201 	if (ah->ah_version != AR5K_AR5210)
2202 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203 }
2204 
2205 /**
2206  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207  * @ah: The &struct ath5k_hw
2208  * @ee_mode: One of enum ath5k_driver_mode
2209  * @enable: True to enable, false to disable
2210  */
2211 static void
2212 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213 {
2214 	switch (ee_mode) {
2215 	case AR5K_EEPROM_MODE_11G:
2216 		/* XXX: This is set to
2217 		 * disabled on initvals !!! */
2218 	case AR5K_EEPROM_MODE_11A:
2219 		if (enable)
2220 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222 		else
2223 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225 		break;
2226 	case AR5K_EEPROM_MODE_11B:
2227 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229 		break;
2230 	default:
2231 		return;
2232 	}
2233 
2234 	if (enable) {
2235 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236 				AR5K_PHY_RESTART_DIV_GC, 4);
2237 
2238 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239 					AR5K_PHY_FAST_ANT_DIV_EN);
2240 	} else {
2241 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242 				AR5K_PHY_RESTART_DIV_GC, 0);
2243 
2244 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245 					AR5K_PHY_FAST_ANT_DIV_EN);
2246 	}
2247 }
2248 
2249 /**
2250  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251  * @ah: The &struct ath5k_hw
2252  * @ee_mode: One of enum ath5k_driver_mode
2253  *
2254  * Switch table comes from EEPROM and includes information on controlling
2255  * the 2 antenna RX attenuators
2256  */
2257 void
2258 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259 {
2260 	u8 ant0, ant1;
2261 
2262 	/*
2263 	 * In case a fixed antenna was set as default
2264 	 * use the same switch table twice.
2265 	 */
2266 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270 	else {
2271 		ant0 = AR5K_ANT_SWTABLE_A;
2272 		ant1 = AR5K_ANT_SWTABLE_B;
2273 	}
2274 
2275 	/* Set antenna idle switch table */
2276 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279 			AR5K_PHY_ANT_CTL_TXRX_EN));
2280 
2281 	/* Set antenna switch tables */
2282 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283 		AR5K_PHY_ANT_SWITCH_TABLE_0);
2284 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285 		AR5K_PHY_ANT_SWITCH_TABLE_1);
2286 }
2287 
2288 /**
2289  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290  * @ah: The &struct ath5k_hw
2291  * @ant_mode: One of enum ath5k_ant_mode
2292  */
2293 void
2294 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295 {
2296 	struct ieee80211_channel *channel = ah->ah_current_channel;
2297 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298 	bool use_def_for_sg;
2299 	int ee_mode;
2300 	u8 def_ant, tx_ant;
2301 	u32 sta_id1 = 0;
2302 
2303 	/* if channel is not initialized yet we can't set the antennas
2304 	 * so just store the mode. it will be set on the next reset */
2305 	if (channel == NULL) {
2306 		ah->ah_ant_mode = ant_mode;
2307 		return;
2308 	}
2309 
2310 	def_ant = ah->ah_def_ant;
2311 
2312 	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313 
2314 	switch (ant_mode) {
2315 	case AR5K_ANTMODE_DEFAULT:
2316 		tx_ant = 0;
2317 		use_def_for_tx = false;
2318 		update_def_on_tx = false;
2319 		use_def_for_rts = false;
2320 		use_def_for_sg = false;
2321 		fast_div = true;
2322 		break;
2323 	case AR5K_ANTMODE_FIXED_A:
2324 		def_ant = 1;
2325 		tx_ant = 1;
2326 		use_def_for_tx = true;
2327 		update_def_on_tx = false;
2328 		use_def_for_rts = true;
2329 		use_def_for_sg = true;
2330 		fast_div = false;
2331 		break;
2332 	case AR5K_ANTMODE_FIXED_B:
2333 		def_ant = 2;
2334 		tx_ant = 2;
2335 		use_def_for_tx = true;
2336 		update_def_on_tx = false;
2337 		use_def_for_rts = true;
2338 		use_def_for_sg = true;
2339 		fast_div = false;
2340 		break;
2341 	case AR5K_ANTMODE_SINGLE_AP:
2342 		def_ant = 1;	/* updated on tx */
2343 		tx_ant = 0;
2344 		use_def_for_tx = true;
2345 		update_def_on_tx = true;
2346 		use_def_for_rts = true;
2347 		use_def_for_sg = true;
2348 		fast_div = true;
2349 		break;
2350 	case AR5K_ANTMODE_SECTOR_AP:
2351 		tx_ant = 1;	/* variable */
2352 		use_def_for_tx = false;
2353 		update_def_on_tx = false;
2354 		use_def_for_rts = true;
2355 		use_def_for_sg = false;
2356 		fast_div = false;
2357 		break;
2358 	case AR5K_ANTMODE_SECTOR_STA:
2359 		tx_ant = 1;	/* variable */
2360 		use_def_for_tx = true;
2361 		update_def_on_tx = false;
2362 		use_def_for_rts = true;
2363 		use_def_for_sg = false;
2364 		fast_div = true;
2365 		break;
2366 	case AR5K_ANTMODE_DEBUG:
2367 		def_ant = 1;
2368 		tx_ant = 2;
2369 		use_def_for_tx = false;
2370 		update_def_on_tx = false;
2371 		use_def_for_rts = false;
2372 		use_def_for_sg = false;
2373 		fast_div = false;
2374 		break;
2375 	default:
2376 		return;
2377 	}
2378 
2379 	ah->ah_tx_ant = tx_ant;
2380 	ah->ah_ant_mode = ant_mode;
2381 	ah->ah_def_ant = def_ant;
2382 
2383 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387 
2388 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389 
2390 	if (sta_id1)
2391 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392 
2393 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2394 	/* Note: set diversity before default antenna
2395 	 * because it won't work correctly */
2396 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397 	ath5k_hw_set_def_antenna(ah, def_ant);
2398 }
2399 
2400 
2401 /****************\
2402 * TX power setup *
2403 \****************/
2404 
2405 /*
2406  * Helper functions
2407  */
2408 
2409 /**
2410  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411  * @target: X value of the middle point
2412  * @x_left: X value of the left point
2413  * @x_right: X value of the right point
2414  * @y_left: Y value of the left point
2415  * @y_right: Y value of the right point
2416  */
2417 static s16
2418 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419 					s16 y_left, s16 y_right)
2420 {
2421 	s16 ratio, result;
2422 
2423 	/* Avoid divide by zero and skip interpolation
2424 	 * if we have the same point */
2425 	if ((x_left == x_right) || (y_left == y_right))
2426 		return y_left;
2427 
2428 	/*
2429 	 * Since we use ints and not fps, we need to scale up in
2430 	 * order to get a sane ratio value (or else we 'll eg. get
2431 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432 	 * to have some accuracy both for 0.5 and 0.25 steps.
2433 	 */
2434 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435 
2436 	/* Now scale down to be in range */
2437 	result = y_left + (ratio * (target - x_left) / 100);
2438 
2439 	return result;
2440 }
2441 
2442 /**
2443  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444  * linear PCDAC curve
2445  * @stepL: Left array with y values (pcdac steps)
2446  * @stepR: Right array with y values (pcdac steps)
2447  * @pwrL: Left array with x values (power steps)
2448  * @pwrR: Right array with x values (power steps)
2449  *
2450  * Since we have the top of the curve and we draw the line below
2451  * until we reach 1 (1 pcdac step) we need to know which point
2452  * (x value) that is so that we don't go below x axis and have negative
2453  * pcdac values when creating the curve, or fill the table with zeros.
2454  */
2455 static s16
2456 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457 				const s16 *pwrL, const s16 *pwrR)
2458 {
2459 	s8 tmp;
2460 	s16 min_pwrL, min_pwrR;
2461 	s16 pwr_i;
2462 
2463 	/* Some vendors write the same pcdac value twice !!! */
2464 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465 		return max(pwrL[0], pwrR[0]);
2466 
2467 	if (pwrL[0] == pwrL[1])
2468 		min_pwrL = pwrL[0];
2469 	else {
2470 		pwr_i = pwrL[0];
2471 		do {
2472 			pwr_i--;
2473 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474 							pwrL[0], pwrL[1],
2475 							stepL[0], stepL[1]);
2476 		} while (tmp > 1);
2477 
2478 		min_pwrL = pwr_i;
2479 	}
2480 
2481 	if (pwrR[0] == pwrR[1])
2482 		min_pwrR = pwrR[0];
2483 	else {
2484 		pwr_i = pwrR[0];
2485 		do {
2486 			pwr_i--;
2487 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488 							pwrR[0], pwrR[1],
2489 							stepR[0], stepR[1]);
2490 		} while (tmp > 1);
2491 
2492 		min_pwrR = pwr_i;
2493 	}
2494 
2495 	/* Keep the right boundary so that it works for both curves */
2496 	return max(min_pwrL, min_pwrR);
2497 }
2498 
2499 /**
2500  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501  * @pmin: Minimum power value (xmin)
2502  * @pmax: Maximum power value (xmax)
2503  * @pwr: Array of power steps (x values)
2504  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505  * @num_points: Number of provided points
2506  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507  * @type: One of enum ath5k_powertable_type (eeprom.h)
2508  *
2509  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510  * Power to PCDAC curve.
2511  *
2512  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514  * PCDAC/PDADC step for each curve is 64 but we can write more than
2515  * one curves on hw so we can go up to 128 (which is the max step we
2516  * can write on the final table).
2517  *
2518  * We write y values (PCDAC/PDADC steps) on hw.
2519  */
2520 static void
2521 ath5k_create_power_curve(s16 pmin, s16 pmax,
2522 			const s16 *pwr, const u8 *vpd,
2523 			u8 num_points,
2524 			u8 *vpd_table, u8 type)
2525 {
2526 	u8 idx[2] = { 0, 1 };
2527 	s16 pwr_i = 2 * pmin;
2528 	int i;
2529 
2530 	if (num_points < 2)
2531 		return;
2532 
2533 	/* We want the whole line, so adjust boundaries
2534 	 * to cover the entire power range. Note that
2535 	 * power values are already 0.25dB so no need
2536 	 * to multiply pwr_i by 2 */
2537 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538 		pwr_i = pmin;
2539 		pmin = 0;
2540 		pmax = 63;
2541 	}
2542 
2543 	/* Find surrounding turning points (TPs)
2544 	 * and interpolate between them */
2545 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547 
2548 		/* We passed the right TP, move to the next set of TPs
2549 		 * if we pass the last TP, extrapolate above using the last
2550 		 * two TPs for ratio */
2551 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552 			idx[0]++;
2553 			idx[1]++;
2554 		}
2555 
2556 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557 						pwr[idx[0]], pwr[idx[1]],
2558 						vpd[idx[0]], vpd[idx[1]]);
2559 
2560 		/* Increase by 0.5dB
2561 		 * (0.25 dB units) */
2562 		pwr_i += 2;
2563 	}
2564 }
2565 
2566 /**
2567  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568  * for a given channel.
2569  * @ah: The &struct ath5k_hw
2570  * @channel: The &struct ieee80211_channel
2571  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573  *
2574  * Get the surrounding per-channel power calibration piers
2575  * for a given frequency so that we can interpolate between
2576  * them and come up with an appropriate dataset for our current
2577  * channel.
2578  */
2579 static void
2580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581 			struct ieee80211_channel *channel,
2582 			struct ath5k_chan_pcal_info **pcinfo_l,
2583 			struct ath5k_chan_pcal_info **pcinfo_r)
2584 {
2585 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586 	struct ath5k_chan_pcal_info *pcinfo;
2587 	u8 idx_l, idx_r;
2588 	u8 mode, max, i;
2589 	u32 target = channel->center_freq;
2590 
2591 	idx_l = 0;
2592 	idx_r = 0;
2593 
2594 	switch (channel->hw_value) {
2595 	case AR5K_EEPROM_MODE_11A:
2596 		pcinfo = ee->ee_pwr_cal_a;
2597 		mode = AR5K_EEPROM_MODE_11A;
2598 		break;
2599 	case AR5K_EEPROM_MODE_11B:
2600 		pcinfo = ee->ee_pwr_cal_b;
2601 		mode = AR5K_EEPROM_MODE_11B;
2602 		break;
2603 	case AR5K_EEPROM_MODE_11G:
2604 	default:
2605 		pcinfo = ee->ee_pwr_cal_g;
2606 		mode = AR5K_EEPROM_MODE_11G;
2607 		break;
2608 	}
2609 	max = ee->ee_n_piers[mode] - 1;
2610 
2611 	/* Frequency is below our calibrated
2612 	 * range. Use the lowest power curve
2613 	 * we have */
2614 	if (target < pcinfo[0].freq) {
2615 		idx_l = idx_r = 0;
2616 		goto done;
2617 	}
2618 
2619 	/* Frequency is above our calibrated
2620 	 * range. Use the highest power curve
2621 	 * we have */
2622 	if (target > pcinfo[max].freq) {
2623 		idx_l = idx_r = max;
2624 		goto done;
2625 	}
2626 
2627 	/* Frequency is inside our calibrated
2628 	 * channel range. Pick the surrounding
2629 	 * calibration piers so that we can
2630 	 * interpolate */
2631 	for (i = 0; i <= max; i++) {
2632 
2633 		/* Frequency matches one of our calibration
2634 		 * piers, no need to interpolate, just use
2635 		 * that calibration pier */
2636 		if (pcinfo[i].freq == target) {
2637 			idx_l = idx_r = i;
2638 			goto done;
2639 		}
2640 
2641 		/* We found a calibration pier that's above
2642 		 * frequency, use this pier and the previous
2643 		 * one to interpolate */
2644 		if (target < pcinfo[i].freq) {
2645 			idx_r = i;
2646 			idx_l = idx_r - 1;
2647 			goto done;
2648 		}
2649 	}
2650 
2651 done:
2652 	*pcinfo_l = &pcinfo[idx_l];
2653 	*pcinfo_r = &pcinfo[idx_r];
2654 }
2655 
2656 /**
2657  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658  * calibration data
2659  * @ah: The &struct ath5k_hw *ah,
2660  * @channel: The &struct ieee80211_channel
2661  * @rates: The &struct ath5k_rate_pcal_info to fill
2662  *
2663  * Get the surrounding per-rate power calibration data
2664  * for a given frequency and interpolate between power
2665  * values to set max target power supported by hw for
2666  * each rate on this frequency.
2667  */
2668 static void
2669 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670 			struct ieee80211_channel *channel,
2671 			struct ath5k_rate_pcal_info *rates)
2672 {
2673 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674 	struct ath5k_rate_pcal_info *rpinfo;
2675 	u8 idx_l, idx_r;
2676 	u8 mode, max, i;
2677 	u32 target = channel->center_freq;
2678 
2679 	idx_l = 0;
2680 	idx_r = 0;
2681 
2682 	switch (channel->hw_value) {
2683 	case AR5K_MODE_11A:
2684 		rpinfo = ee->ee_rate_tpwr_a;
2685 		mode = AR5K_EEPROM_MODE_11A;
2686 		break;
2687 	case AR5K_MODE_11B:
2688 		rpinfo = ee->ee_rate_tpwr_b;
2689 		mode = AR5K_EEPROM_MODE_11B;
2690 		break;
2691 	case AR5K_MODE_11G:
2692 	default:
2693 		rpinfo = ee->ee_rate_tpwr_g;
2694 		mode = AR5K_EEPROM_MODE_11G;
2695 		break;
2696 	}
2697 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2698 
2699 	/* Get the surrounding calibration
2700 	 * piers - same as above */
2701 	if (target < rpinfo[0].freq) {
2702 		idx_l = idx_r = 0;
2703 		goto done;
2704 	}
2705 
2706 	if (target > rpinfo[max].freq) {
2707 		idx_l = idx_r = max;
2708 		goto done;
2709 	}
2710 
2711 	for (i = 0; i <= max; i++) {
2712 
2713 		if (rpinfo[i].freq == target) {
2714 			idx_l = idx_r = i;
2715 			goto done;
2716 		}
2717 
2718 		if (target < rpinfo[i].freq) {
2719 			idx_r = i;
2720 			idx_l = idx_r - 1;
2721 			goto done;
2722 		}
2723 	}
2724 
2725 done:
2726 	/* Now interpolate power value, based on the frequency */
2727 	rates->freq = target;
2728 
2729 	rates->target_power_6to24 =
2730 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731 					rpinfo[idx_r].freq,
2732 					rpinfo[idx_l].target_power_6to24,
2733 					rpinfo[idx_r].target_power_6to24);
2734 
2735 	rates->target_power_36 =
2736 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737 					rpinfo[idx_r].freq,
2738 					rpinfo[idx_l].target_power_36,
2739 					rpinfo[idx_r].target_power_36);
2740 
2741 	rates->target_power_48 =
2742 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743 					rpinfo[idx_r].freq,
2744 					rpinfo[idx_l].target_power_48,
2745 					rpinfo[idx_r].target_power_48);
2746 
2747 	rates->target_power_54 =
2748 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749 					rpinfo[idx_r].freq,
2750 					rpinfo[idx_l].target_power_54,
2751 					rpinfo[idx_r].target_power_54);
2752 }
2753 
2754 /**
2755  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756  * @ah: the &struct ath5k_hw
2757  * @channel: The &struct ieee80211_channel
2758  *
2759  * Get the max edge power for this channel if
2760  * we have such data from EEPROM's Conformance Test
2761  * Limits (CTL), and limit max power if needed.
2762  */
2763 static void
2764 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765 			struct ieee80211_channel *channel)
2766 {
2767 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770 	u8 *ctl_val = ee->ee_ctl;
2771 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772 	s16 edge_pwr = 0;
2773 	u8 rep_idx;
2774 	u8 i, ctl_mode;
2775 	u8 ctl_idx = 0xFF;
2776 	u32 target = channel->center_freq;
2777 
2778 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779 
2780 	switch (channel->hw_value) {
2781 	case AR5K_MODE_11A:
2782 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783 			ctl_mode |= AR5K_CTL_TURBO;
2784 		else
2785 			ctl_mode |= AR5K_CTL_11A;
2786 		break;
2787 	case AR5K_MODE_11G:
2788 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789 			ctl_mode |= AR5K_CTL_TURBOG;
2790 		else
2791 			ctl_mode |= AR5K_CTL_11G;
2792 		break;
2793 	case AR5K_MODE_11B:
2794 		ctl_mode |= AR5K_CTL_11B;
2795 		break;
2796 	default:
2797 		return;
2798 	}
2799 
2800 	for (i = 0; i < ee->ee_ctls; i++) {
2801 		if (ctl_val[i] == ctl_mode) {
2802 			ctl_idx = i;
2803 			break;
2804 		}
2805 	}
2806 
2807 	/* If we have a CTL dataset available grab it and find the
2808 	 * edge power for our frequency */
2809 	if (ctl_idx == 0xFF)
2810 		return;
2811 
2812 	/* Edge powers are sorted by frequency from lower
2813 	 * to higher. Each CTL corresponds to 8 edge power
2814 	 * measurements. */
2815 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816 
2817 	/* Don't do boundaries check because we
2818 	 * might have more that one bands defined
2819 	 * for this mode */
2820 
2821 	/* Get the edge power that's closer to our
2822 	 * frequency */
2823 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824 		rep_idx += i;
2825 		if (target <= rep[rep_idx].freq)
2826 			edge_pwr = (s16) rep[rep_idx].edge;
2827 	}
2828 
2829 	if (edge_pwr)
2830 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831 }
2832 
2833 
2834 /*
2835  * Power to PCDAC table functions
2836  */
2837 
2838 /**
2839  * DOC: Power to PCDAC table functions
2840  *
2841  * For RF5111 we have an XPD -eXternal Power Detector- curve
2842  * for each calibrated channel. Each curve has 0,5dB Power steps
2843  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844  * exponential function. To recreate the curve we read 11 points
2845  * from eeprom (eeprom.c) and interpolate here.
2846  *
2847  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850  * power steps on x axis and PCDAC steps on y axis and looks like a
2851  * linear function. To recreate the curve and pass the power values
2852  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854  * and interpolate here.
2855  *
2856  * For a given channel we get the calibrated points (piers) for it or
2857  * -if we don't have calibration data for this specific channel- from the
2858  * available surrounding channels we have calibration data for, after we do a
2859  * linear interpolation between them. Then since we have our calibrated points
2860  * for this channel, we do again a linear interpolation between them to get the
2861  * whole curve.
2862  *
2863  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864  */
2865 
2866 /**
2867  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868  * @ah: The &struct ath5k_hw
2869  * @table_min: Minimum power (x min)
2870  * @table_max: Maximum power (x max)
2871  *
2872  * No further processing is needed for RF5111, the only thing we have to
2873  * do is fill the values below and above calibration range since eeprom data
2874  * may not cover the entire PCDAC table.
2875  */
2876 static void
2877 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878 							s16 *table_max)
2879 {
2880 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2881 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2882 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883 	s16	min_pwr, max_pwr;
2884 
2885 	/* Get table boundaries */
2886 	min_pwr = table_min[0];
2887 	pcdac_0 = pcdac_tmp[0];
2888 
2889 	max_pwr = table_max[0];
2890 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891 
2892 	/* Extrapolate below minimum using pcdac_0 */
2893 	pcdac_i = 0;
2894 	for (i = 0; i < min_pwr; i++)
2895 		pcdac_out[pcdac_i++] = pcdac_0;
2896 
2897 	/* Copy values from pcdac_tmp */
2898 	pwr_idx = min_pwr;
2899 	for (i = 0; pwr_idx <= max_pwr &&
2900 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902 		pwr_idx++;
2903 	}
2904 
2905 	/* Extrapolate above maximum */
2906 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907 		pcdac_out[pcdac_i++] = pcdac_n;
2908 
2909 }
2910 
2911 /**
2912  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913  * @ah: The &struct ath5k_hw
2914  * @table_min: Minimum power (x min)
2915  * @table_max: Maximum power (x max)
2916  * @pdcurves: Number of pd curves
2917  *
2918  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919  * RFX112 can have up to 2 curves (one for low txpower range and one for
2920  * higher txpower range). We need to put them both on pcdac_out and place
2921  * them in the correct location. In case we only have one curve available
2922  * just fit it on pcdac_out (it's supposed to cover the entire range of
2923  * available pwr levels since it's always the higher power curve). Extrapolate
2924  * below and above final table if needed.
2925  */
2926 static void
2927 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928 						s16 *table_max, u8 pdcurves)
2929 {
2930 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2931 	u8	*pcdac_low_pwr;
2932 	u8	*pcdac_high_pwr;
2933 	u8	*pcdac_tmp;
2934 	u8	pwr;
2935 	s16	max_pwr_idx;
2936 	s16	min_pwr_idx;
2937 	s16	mid_pwr_idx = 0;
2938 	/* Edge flag turns on the 7nth bit on the PCDAC
2939 	 * to declare the higher power curve (force values
2940 	 * to be greater than 64). If we only have one curve
2941 	 * we don't need to set this, if we have 2 curves and
2942 	 * fill the table backwards this can also be used to
2943 	 * switch from higher power curve to lower power curve */
2944 	u8	edge_flag;
2945 	int	i;
2946 
2947 	/* When we have only one curve available
2948 	 * that's the higher power curve. If we have
2949 	 * two curves the first is the high power curve
2950 	 * and the next is the low power curve. */
2951 	if (pdcurves > 1) {
2952 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956 
2957 		/* If table size goes beyond 31.5dB, keep the
2958 		 * upper 31.5dB range when setting tx power.
2959 		 * Note: 126 = 31.5 dB in quarter dB steps */
2960 		if (table_max[0] - table_min[1] > 126)
2961 			min_pwr_idx = table_max[0] - 126;
2962 		else
2963 			min_pwr_idx = table_min[1];
2964 
2965 		/* Since we fill table backwards
2966 		 * start from high power curve */
2967 		pcdac_tmp = pcdac_high_pwr;
2968 
2969 		edge_flag = 0x40;
2970 	} else {
2971 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973 		min_pwr_idx = table_min[0];
2974 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975 		pcdac_tmp = pcdac_high_pwr;
2976 		edge_flag = 0;
2977 	}
2978 
2979 	/* This is used when setting tx power*/
2980 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981 
2982 	/* Fill Power to PCDAC table backwards */
2983 	pwr = max_pwr_idx;
2984 	for (i = 63; i >= 0; i--) {
2985 		/* Entering lower power range, reset
2986 		 * edge flag and set pcdac_tmp to lower
2987 		 * power curve.*/
2988 		if (edge_flag == 0x40 &&
2989 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990 			edge_flag = 0x00;
2991 			pcdac_tmp = pcdac_low_pwr;
2992 			pwr = mid_pwr_idx / 2;
2993 		}
2994 
2995 		/* Don't go below 1, extrapolate below if we have
2996 		 * already switched to the lower power curve -or
2997 		 * we only have one curve and edge_flag is zero
2998 		 * anyway */
2999 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000 			while (i >= 0) {
3001 				pcdac_out[i] = pcdac_out[i + 1];
3002 				i--;
3003 			}
3004 			break;
3005 		}
3006 
3007 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008 
3009 		/* Extrapolate above if pcdac is greater than
3010 		 * 126 -this can happen because we OR pcdac_out
3011 		 * value with edge_flag on high power curve */
3012 		if (pcdac_out[i] > 126)
3013 			pcdac_out[i] = 126;
3014 
3015 		/* Decrease by a 0.5dB step */
3016 		pwr--;
3017 	}
3018 }
3019 
3020 /**
3021  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022  * @ah: The &struct ath5k_hw
3023  */
3024 static void
3025 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026 {
3027 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3028 	int	i;
3029 
3030 	/*
3031 	 * Write TX power values
3032 	 */
3033 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034 		ath5k_hw_reg_write(ah,
3035 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037 			AR5K_PHY_PCDAC_TXPOWER(i));
3038 	}
3039 }
3040 
3041 
3042 /*
3043  * Power to PDADC table functions
3044  */
3045 
3046 /**
3047  * DOC: Power to PDADC table functions
3048  *
3049  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052  * PDADC steps on y axis and looks like an exponential function like the
3053  * RF5111 curve.
3054  *
3055  * To recreate the curves we read the points from eeprom (eeprom.c)
3056  * and interpolate here. Note that in most cases only 2 (higher and lower)
3057  * curves are used (like RF5112) but vendors have the opportunity to include
3058  * all 4 curves on eeprom. The final curve (higher power) has an extra
3059  * point for better accuracy like RF5112.
3060  *
3061  * The process is similar to what we do above for RF5111/5112
3062  */
3063 
3064 /**
3065  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066  * @ah: The &struct ath5k_hw
3067  * @pwr_min: Minimum power (x min)
3068  * @pwr_max: Maximum power (x max)
3069  * @pdcurves: Number of available curves
3070  *
3071  * Combine the various pd curves and create the final Power to PDADC table
3072  * We can have up to 4 pd curves, we need to do a similar process
3073  * as we do for RF5112. This time we don't have an edge_flag but we
3074  * set the gain boundaries on a separate register.
3075  */
3076 static void
3077 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079 {
3080 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082 	u8 *pdadc_tmp;
3083 	s16 pdadc_0;
3084 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085 	u8 pd_gain_overlap;
3086 
3087 	/* Note: Register value is initialized on initvals
3088 	 * there is no feedback from hw.
3089 	 * XXX: What about pd_gain_overlap from EEPROM ? */
3090 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092 
3093 	/* Create final PDADC table */
3094 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096 
3097 		if (pdg == pdcurves - 1)
3098 			/* 2 dB boundary stretch for last
3099 			 * (higher power) curve */
3100 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101 		else
3102 			/* Set gain boundary in the middle
3103 			 * between this curve and the next one */
3104 			gain_boundaries[pdg] =
3105 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106 
3107 		/* Sanity check in case our 2 db stretch got out of
3108 		 * range. */
3109 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111 
3112 		/* For the first curve (lower power)
3113 		 * start from 0 dB */
3114 		if (pdg == 0)
3115 			pdadc_0 = 0;
3116 		else
3117 			/* For the other curves use the gain overlap */
3118 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119 							pd_gain_overlap;
3120 
3121 		/* Force each power step to be at least 0.5 dB */
3122 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124 		else
3125 			pwr_step = 1;
3126 
3127 		/* If pdadc_0 is negative, we need to extrapolate
3128 		 * below this pdgain by a number of pwr_steps */
3129 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132 			pdadc_0++;
3133 		}
3134 
3135 		/* Set last pwr level, using gain boundaries */
3136 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137 		/* Limit it to be inside pwr range */
3138 		table_size = pwr_max[pdg] - pwr_min[pdg];
3139 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3140 
3141 		/* Fill pdadc_out table */
3142 		while (pdadc_0 < max_idx && pdadc_i < 128)
3143 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144 
3145 		/* Need to extrapolate above this pdgain? */
3146 		if (pdadc_n <= max_idx)
3147 			continue;
3148 
3149 		/* Force each power step to be at least 0.5 dB */
3150 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151 			pwr_step = pdadc_tmp[table_size - 1] -
3152 						pdadc_tmp[table_size - 2];
3153 		else
3154 			pwr_step = 1;
3155 
3156 		/* Extrapolate above */
3157 		while ((pdadc_0 < (s16) pdadc_n) &&
3158 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159 			s16 tmp = pdadc_tmp[table_size - 1] +
3160 					(pdadc_0 - max_idx) * pwr_step;
3161 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162 			pdadc_0++;
3163 		}
3164 	}
3165 
3166 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168 		pdg++;
3169 	}
3170 
3171 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173 		pdadc_i++;
3174 	}
3175 
3176 	/* Set gain boundaries */
3177 	ath5k_hw_reg_write(ah,
3178 		AR5K_REG_SM(pd_gain_overlap,
3179 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180 		AR5K_REG_SM(gain_boundaries[0],
3181 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182 		AR5K_REG_SM(gain_boundaries[1],
3183 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184 		AR5K_REG_SM(gain_boundaries[2],
3185 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186 		AR5K_REG_SM(gain_boundaries[3],
3187 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188 		AR5K_PHY_TPC_RG5);
3189 
3190 	/* Used for setting rate power table */
3191 	ah->ah_txpower.txp_min_idx = pwr_min[0];
3192 
3193 }
3194 
3195 /**
3196  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197  * @ah: The &struct ath5k_hw
3198  * @ee_mode: One of enum ath5k_driver_mode
3199  */
3200 static void
3201 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202 {
3203 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207 	u32 reg;
3208 	u8 i;
3209 
3210 	/* Select the right pdgain curves */
3211 
3212 	/* Clear current settings */
3213 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218 
3219 	/*
3220 	 * Use pd_gains curve from eeprom
3221 	 *
3222 	 * This overrides the default setting from initvals
3223 	 * in case some vendors (e.g. Zcomax) don't use the default
3224 	 * curves. If we don't honor their settings we 'll get a
3225 	 * 5dB (1 * gain overlap ?) drop.
3226 	 */
3227 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228 
3229 	switch (pdcurves) {
3230 	case 3:
3231 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232 		/* Fall through */
3233 	case 2:
3234 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235 		/* Fall through */
3236 	case 1:
3237 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238 		break;
3239 	}
3240 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241 
3242 	/*
3243 	 * Write TX power values
3244 	 */
3245 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248 	}
3249 }
3250 
3251 
3252 /*
3253  * Common code for PCDAC/PDADC tables
3254  */
3255 
3256 /**
3257  * ath5k_setup_channel_powertable() - Set up power table for this channel
3258  * @ah: The &struct ath5k_hw
3259  * @channel: The &struct ieee80211_channel
3260  * @ee_mode: One of enum ath5k_driver_mode
3261  * @type: One of enum ath5k_powertable_type (eeprom.h)
3262  *
3263  * This is the main function that uses all of the above
3264  * to set PCDAC/PDADC table on hw for the current channel.
3265  * This table is used for tx power calibration on the baseband,
3266  * without it we get weird tx power levels and in some cases
3267  * distorted spectral mask
3268  */
3269 static int
3270 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271 			struct ieee80211_channel *channel,
3272 			u8 ee_mode, u8 type)
3273 {
3274 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275 	struct ath5k_chan_pcal_info *pcinfo_L;
3276 	struct ath5k_chan_pcal_info *pcinfo_R;
3277 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281 	u8 *tmpL;
3282 	u8 *tmpR;
3283 	u32 target = channel->center_freq;
3284 	int pdg, i;
3285 
3286 	/* Get surrounding freq piers for this channel */
3287 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288 						&pcinfo_L,
3289 						&pcinfo_R);
3290 
3291 	/* Loop over pd gain curves on
3292 	 * surrounding freq piers by index */
3293 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294 
3295 		/* Fill curves in reverse order
3296 		 * from lower power (max gain)
3297 		 * to higher power. Use curve -> idx
3298 		 * backmapping we did on eeprom init */
3299 		u8 idx = pdg_curve_to_idx[pdg];
3300 
3301 		/* Grab the needed curves by index */
3302 		pdg_L = &pcinfo_L->pd_curves[idx];
3303 		pdg_R = &pcinfo_R->pd_curves[idx];
3304 
3305 		/* Initialize the temp tables */
3306 		tmpL = ah->ah_txpower.tmpL[pdg];
3307 		tmpR = ah->ah_txpower.tmpR[pdg];
3308 
3309 		/* Set curve's x boundaries and create
3310 		 * curves so that they cover the same
3311 		 * range (if we don't do that one table
3312 		 * will have values on some range and the
3313 		 * other one won't have any so interpolation
3314 		 * will fail) */
3315 		table_min[pdg] = min(pdg_L->pd_pwr[0],
3316 					pdg_R->pd_pwr[0]) / 2;
3317 
3318 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320 
3321 		/* Now create the curves on surrounding channels
3322 		 * and interpolate if needed to get the final
3323 		 * curve for this gain on this channel */
3324 		switch (type) {
3325 		case AR5K_PWRTABLE_LINEAR_PCDAC:
3326 			/* Override min/max so that we don't loose
3327 			 * accuracy (don't divide by 2) */
3328 			table_min[pdg] = min(pdg_L->pd_pwr[0],
3329 						pdg_R->pd_pwr[0]);
3330 
3331 			table_max[pdg] =
3332 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334 
3335 			/* Override minimum so that we don't get
3336 			 * out of bounds while extrapolating
3337 			 * below. Don't do this when we have 2
3338 			 * curves and we are on the high power curve
3339 			 * because table_min is ok in this case */
3340 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341 
3342 				table_min[pdg] =
3343 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344 								pdg_R->pd_step,
3345 								pdg_L->pd_pwr,
3346 								pdg_R->pd_pwr);
3347 
3348 				/* Don't go too low because we will
3349 				 * miss the upper part of the curve.
3350 				 * Note: 126 = 31.5dB (max power supported)
3351 				 * in 0.25dB units */
3352 				if (table_max[pdg] - table_min[pdg] > 126)
3353 					table_min[pdg] = table_max[pdg] - 126;
3354 			}
3355 
3356 			/* Fall through */
3357 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358 		case AR5K_PWRTABLE_PWR_TO_PDADC:
3359 
3360 			ath5k_create_power_curve(table_min[pdg],
3361 						table_max[pdg],
3362 						pdg_L->pd_pwr,
3363 						pdg_L->pd_step,
3364 						pdg_L->pd_points, tmpL, type);
3365 
3366 			/* We are in a calibration
3367 			 * pier, no need to interpolate
3368 			 * between freq piers */
3369 			if (pcinfo_L == pcinfo_R)
3370 				continue;
3371 
3372 			ath5k_create_power_curve(table_min[pdg],
3373 						table_max[pdg],
3374 						pdg_R->pd_pwr,
3375 						pdg_R->pd_step,
3376 						pdg_R->pd_points, tmpR, type);
3377 			break;
3378 		default:
3379 			return -EINVAL;
3380 		}
3381 
3382 		/* Interpolate between curves
3383 		 * of surrounding freq piers to
3384 		 * get the final curve for this
3385 		 * pd gain. Re-use tmpL for interpolation
3386 		 * output */
3387 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390 							(s16) pcinfo_L->freq,
3391 							(s16) pcinfo_R->freq,
3392 							(s16) tmpL[i],
3393 							(s16) tmpR[i]);
3394 		}
3395 	}
3396 
3397 	/* Now we have a set of curves for this
3398 	 * channel on tmpL (x range is table_max - table_min
3399 	 * and y values are tmpL[pdg][]) sorted in the same
3400 	 * order as EEPROM (because we've used the backmapping).
3401 	 * So for RF5112 it's from higher power to lower power
3402 	 * and for RF2413 it's from lower power to higher power.
3403 	 * For RF5111 we only have one curve. */
3404 
3405 	/* Fill min and max power levels for this
3406 	 * channel by interpolating the values on
3407 	 * surrounding channels to complete the dataset */
3408 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409 					(s16) pcinfo_L->freq,
3410 					(s16) pcinfo_R->freq,
3411 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412 
3413 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414 					(s16) pcinfo_L->freq,
3415 					(s16) pcinfo_R->freq,
3416 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417 
3418 	/* Fill PCDAC/PDADC table */
3419 	switch (type) {
3420 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3421 		/* For RF5112 we can have one or two curves
3422 		 * and each curve covers a certain power lvl
3423 		 * range so we need to do some more processing */
3424 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425 						ee->ee_pd_gains[ee_mode]);
3426 
3427 		/* Set txp.offset so that we can
3428 		 * match max power value with max
3429 		 * table index */
3430 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431 		break;
3432 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433 		/* We are done for RF5111 since it has only
3434 		 * one curve, just fit the curve on the table */
3435 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436 
3437 		/* No rate powertable adjustment for RF5111 */
3438 		ah->ah_txpower.txp_min_idx = 0;
3439 		ah->ah_txpower.txp_offset = 0;
3440 		break;
3441 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3442 		/* Set PDADC boundaries and fill
3443 		 * final PDADC table */
3444 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445 						ee->ee_pd_gains[ee_mode]);
3446 
3447 		/* Set txp.offset, note that table_min
3448 		 * can be negative */
3449 		ah->ah_txpower.txp_offset = table_min[0];
3450 		break;
3451 	default:
3452 		return -EINVAL;
3453 	}
3454 
3455 	ah->ah_txpower.txp_setup = true;
3456 
3457 	return 0;
3458 }
3459 
3460 /**
3461  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462  * @ah: The &struct ath5k_hw
3463  * @ee_mode: One of enum ath5k_driver_mode
3464  * @type: One of enum ath5k_powertable_type (eeprom.h)
3465  */
3466 static void
3467 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468 {
3469 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471 	else
3472 		ath5k_write_pcdac_table(ah);
3473 }
3474 
3475 
3476 /**
3477  * DOC: Per-rate tx power setting
3478  *
3479  * This is the code that sets the desired tx power limit (below
3480  * maximum) on hw for each rate (we also have TPC that sets
3481  * power per packet type). We do that by providing an index on the
3482  * PCDAC/PDADC table we set up above, for each rate.
3483  *
3484  * For now we only limit txpower based on maximum tx power
3485  * supported by hw (what's inside rate_info) + conformance test
3486  * limits. We need to limit this even more, based on regulatory domain
3487  * etc to be safe. Normally this is done from above so we don't care
3488  * here, all we care is that the tx power we set will be O.K.
3489  * for the hw (e.g. won't create noise on PA etc).
3490  *
3491  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492  * x values) and is indexed as follows:
3493  * rates[0] - rates[7] -> OFDM rates
3494  * rates[8] - rates[14] -> CCK rates
3495  * rates[15] -> XR rates (they all have the same power)
3496  */
3497 
3498 /**
3499  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500  * @ah: The &struct ath5k_hw
3501  * @max_pwr: The maximum tx power requested in 0.5dB steps
3502  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503  * @ee_mode: One of enum ath5k_driver_mode
3504  */
3505 static void
3506 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507 			struct ath5k_rate_pcal_info *rate_info,
3508 			u8 ee_mode)
3509 {
3510 	unsigned int i;
3511 	u16 *rates;
3512 	s16 rate_idx_scaled = 0;
3513 
3514 	/* max_pwr is power level we got from driver/user in 0.5dB
3515 	 * units, switch to 0.25dB units so we can compare */
3516 	max_pwr *= 2;
3517 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518 
3519 	/* apply rate limits */
3520 	rates = ah->ah_txpower.txp_rates_power_table;
3521 
3522 	/* OFDM rates 6 to 24Mb/s */
3523 	for (i = 0; i < 5; i++)
3524 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525 
3526 	/* Rest OFDM rates */
3527 	rates[5] = min(rates[0], rate_info->target_power_36);
3528 	rates[6] = min(rates[0], rate_info->target_power_48);
3529 	rates[7] = min(rates[0], rate_info->target_power_54);
3530 
3531 	/* CCK rates */
3532 	/* 1L */
3533 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3534 	/* 2L */
3535 	rates[9] = min(rates[0], rate_info->target_power_36);
3536 	/* 2S */
3537 	rates[10] = min(rates[0], rate_info->target_power_36);
3538 	/* 5L */
3539 	rates[11] = min(rates[0], rate_info->target_power_48);
3540 	/* 5S */
3541 	rates[12] = min(rates[0], rate_info->target_power_48);
3542 	/* 11L */
3543 	rates[13] = min(rates[0], rate_info->target_power_54);
3544 	/* 11S */
3545 	rates[14] = min(rates[0], rate_info->target_power_54);
3546 
3547 	/* XR rates */
3548 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3549 
3550 	/* CCK rates have different peak to average ratio
3551 	 * so we have to tweak their power so that gainf
3552 	 * correction works ok. For this we use OFDM to
3553 	 * CCK delta from eeprom */
3554 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556 		for (i = 8; i <= 15; i++)
3557 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558 
3559 	/* Save min/max and current tx power for this channel
3560 	 * in 0.25dB units.
3561 	 *
3562 	 * Note: We use rates[0] for current tx power because
3563 	 * it covers most of the rates, in most cases. It's our
3564 	 * tx power limit and what the user expects to see. */
3565 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567 
3568 	/* Set max txpower for correct OFDM operation on all rates
3569 	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570 	 * gain probe and it's in 0.5dB units */
3571 	ah->ah_txpower.txp_ofdm = rates[7];
3572 
3573 	/* Now that we have all rates setup use table offset to
3574 	 * match the power range set by user with the power indices
3575 	 * on PCDAC/PDADC table */
3576 	for (i = 0; i < 16; i++) {
3577 		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578 		/* Don't get out of bounds */
3579 		if (rate_idx_scaled > 63)
3580 			rate_idx_scaled = 63;
3581 		if (rate_idx_scaled < 0)
3582 			rate_idx_scaled = 0;
3583 		rates[i] = rate_idx_scaled;
3584 	}
3585 }
3586 
3587 
3588 /**
3589  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590  * @ah: The &struct ath5k_hw
3591  * @channel: The &struct ieee80211_channel
3592  * @txpower: Requested tx power in 0.5dB steps
3593  *
3594  * Combines all of the above to set the requested tx power limit
3595  * on hw.
3596  */
3597 static int
3598 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599 		 u8 txpower)
3600 {
3601 	struct ath5k_rate_pcal_info rate_info;
3602 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603 	int ee_mode;
3604 	u8 type;
3605 	int ret;
3606 
3607 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609 		return -EINVAL;
3610 	}
3611 
3612 	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613 
3614 	/* Initialize TX power table */
3615 	switch (ah->ah_radio) {
3616 	case AR5K_RF5110:
3617 		/* TODO */
3618 		return 0;
3619 	case AR5K_RF5111:
3620 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621 		break;
3622 	case AR5K_RF5112:
3623 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624 		break;
3625 	case AR5K_RF2413:
3626 	case AR5K_RF5413:
3627 	case AR5K_RF2316:
3628 	case AR5K_RF2317:
3629 	case AR5K_RF2425:
3630 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631 		break;
3632 	default:
3633 		return -EINVAL;
3634 	}
3635 
3636 	/*
3637 	 * If we don't change channel/mode skip tx powertable calculation
3638 	 * and use the cached one.
3639 	 */
3640 	if (!ah->ah_txpower.txp_setup ||
3641 	    (channel->hw_value != curr_channel->hw_value) ||
3642 	    (channel->center_freq != curr_channel->center_freq)) {
3643 		/* Reset TX power values but preserve requested
3644 		 * tx power from above */
3645 		int requested_txpower = ah->ah_txpower.txp_requested;
3646 
3647 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648 
3649 		/* Restore TPC setting and requested tx power */
3650 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651 
3652 		ah->ah_txpower.txp_requested = requested_txpower;
3653 
3654 		/* Calculate the powertable */
3655 		ret = ath5k_setup_channel_powertable(ah, channel,
3656 							ee_mode, type);
3657 		if (ret)
3658 			return ret;
3659 	}
3660 
3661 	/* Write table on hw */
3662 	ath5k_write_channel_powertable(ah, ee_mode, type);
3663 
3664 	/* Limit max power if we have a CTL available */
3665 	ath5k_get_max_ctl_power(ah, channel);
3666 
3667 	/* FIXME: Antenna reduction stuff */
3668 
3669 	/* FIXME: Limit power on turbo modes */
3670 
3671 	/* FIXME: TPC scale reduction */
3672 
3673 	/* Get surrounding channels for per-rate power table
3674 	 * calibration */
3675 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676 
3677 	/* Setup rate power table */
3678 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679 
3680 	/* Write rate power table on hw */
3681 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684 
3685 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688 
3689 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692 
3693 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696 
3697 	/* FIXME: TPC support */
3698 	if (ah->ah_txpower.txp_tpc) {
3699 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701 
3702 		ath5k_hw_reg_write(ah,
3703 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706 			AR5K_TPC);
3707 	} else {
3708 		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709 			AR5K_PHY_TXPOWER_RATE_MAX);
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 /**
3716  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717  * @ah: The &struct ath5k_hw
3718  * @txpower: The requested tx power limit in 0.5dB steps
3719  *
3720  * This function provides access to ath5k_hw_txpower to the driver in
3721  * case user or an application changes it while PHY is running.
3722  */
3723 int
3724 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725 {
3726 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727 		"changing txpower to %d\n", txpower);
3728 
3729 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730 }
3731 
3732 
3733 /*************\
3734  Init function
3735 \*************/
3736 
3737 /**
3738  * ath5k_hw_phy_init() - Initialize PHY
3739  * @ah: The &struct ath5k_hw
3740  * @channel: The @struct ieee80211_channel
3741  * @mode: One of enum ath5k_driver_mode
3742  * @fast: Try a fast channel switch instead
3743  *
3744  * This is the main function used during reset to initialize PHY
3745  * or do a fast channel change if possible.
3746  *
3747  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748  * warm reset state !
3749  */
3750 int
3751 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752 		      u8 mode, bool fast)
3753 {
3754 	struct ieee80211_channel *curr_channel;
3755 	int ret, i;
3756 	u32 phy_tst1;
3757 	ret = 0;
3758 
3759 	/*
3760 	 * Sanity check for fast flag
3761 	 * Don't try fast channel change when changing modulation
3762 	 * mode/band. We check for chip compatibility on
3763 	 * ath5k_hw_reset.
3764 	 */
3765 	curr_channel = ah->ah_current_channel;
3766 	if (fast && (channel->hw_value != curr_channel->hw_value))
3767 		return -EINVAL;
3768 
3769 	/*
3770 	 * On fast channel change we only set the synth parameters
3771 	 * while PHY is running, enable calibration and skip the rest.
3772 	 */
3773 	if (fast) {
3774 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3776 		for (i = 0; i < 100; i++) {
3777 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778 				break;
3779 			udelay(5);
3780 		}
3781 		/* Failed */
3782 		if (i >= 100)
3783 			return -EIO;
3784 
3785 		/* Set channel and wait for synth */
3786 		ret = ath5k_hw_channel(ah, channel);
3787 		if (ret)
3788 			return ret;
3789 
3790 		ath5k_hw_wait_for_synth(ah, channel);
3791 	}
3792 
3793 	/*
3794 	 * Set TX power
3795 	 *
3796 	 * Note: We need to do that before we set
3797 	 * RF buffer settings on 5211/5212+ so that we
3798 	 * properly set curve indices.
3799 	 */
3800 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801 					ah->ah_txpower.txp_requested * 2 :
3802 					AR5K_TUNE_MAX_TXPOWER);
3803 	if (ret)
3804 		return ret;
3805 
3806 	/* Write OFDM timings on 5212*/
3807 	if (ah->ah_version == AR5K_AR5212 &&
3808 		channel->hw_value != AR5K_MODE_11B) {
3809 
3810 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811 		if (ret)
3812 			return ret;
3813 
3814 		/* Spur info is available only from EEPROM versions
3815 		 * greater than 5.3, but the EEPROM routines will use
3816 		 * static values for older versions */
3817 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818 			ath5k_hw_set_spur_mitigation_filter(ah,
3819 							    channel);
3820 	}
3821 
3822 	/* If we used fast channel switching
3823 	 * we are done, release RF bus and
3824 	 * fire up NF calibration.
3825 	 *
3826 	 * Note: Only NF calibration due to
3827 	 * channel change, not AGC calibration
3828 	 * since AGC is still running !
3829 	 */
3830 	if (fast) {
3831 		/*
3832 		 * Release RF Bus grant
3833 		 */
3834 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3836 
3837 		/*
3838 		 * Start NF calibration
3839 		 */
3840 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841 					AR5K_PHY_AGCCTL_NF);
3842 
3843 		return ret;
3844 	}
3845 
3846 	/*
3847 	 * For 5210 we do all initialization using
3848 	 * initvals, so we don't have to modify
3849 	 * any settings (5210 also only supports
3850 	 * a/aturbo modes)
3851 	 */
3852 	if (ah->ah_version != AR5K_AR5210) {
3853 
3854 		/*
3855 		 * Write initial RF gain settings
3856 		 * This should work for both 5111/5112
3857 		 */
3858 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3859 		if (ret)
3860 			return ret;
3861 
3862 		usleep_range(1000, 1500);
3863 
3864 		/*
3865 		 * Write RF buffer
3866 		 */
3867 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868 		if (ret)
3869 			return ret;
3870 
3871 		/*Enable/disable 802.11b mode on 5111
3872 		(enable 2111 frequency converter + CCK)*/
3873 		if (ah->ah_radio == AR5K_RF5111) {
3874 			if (mode == AR5K_MODE_11B)
3875 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876 				    AR5K_TXCFG_B_MODE);
3877 			else
3878 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879 				    AR5K_TXCFG_B_MODE);
3880 		}
3881 
3882 	} else if (ah->ah_version == AR5K_AR5210) {
3883 		usleep_range(1000, 1500);
3884 		/* Disable phy and wait */
3885 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886 		usleep_range(1000, 1500);
3887 	}
3888 
3889 	/* Set channel on PHY */
3890 	ret = ath5k_hw_channel(ah, channel);
3891 	if (ret)
3892 		return ret;
3893 
3894 	/*
3895 	 * Enable the PHY and wait until completion
3896 	 * This includes BaseBand and Synthesizer
3897 	 * activation.
3898 	 */
3899 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900 
3901 	ath5k_hw_wait_for_synth(ah, channel);
3902 
3903 	/*
3904 	 * Perform ADC test to see if baseband is ready
3905 	 * Set tx hold and check adc test register
3906 	 */
3907 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909 	for (i = 0; i <= 20; i++) {
3910 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911 			break;
3912 		usleep_range(200, 250);
3913 	}
3914 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915 
3916 	/*
3917 	 * Start automatic gain control calibration
3918 	 *
3919 	 * During AGC calibration RX path is re-routed to
3920 	 * a power detector so we don't receive anything.
3921 	 *
3922 	 * This method is used to calibrate some static offsets
3923 	 * used together with on-the fly I/Q calibration (the
3924 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925 	 * interrupt rx path.
3926 	 *
3927 	 * While rx path is re-routed to the power detector we also
3928 	 * start a noise floor calibration to measure the
3929 	 * card's noise floor (the noise we measure when we are not
3930 	 * transmitting or receiving anything).
3931 	 *
3932 	 * If we are in a noisy environment, AGC calibration may time
3933 	 * out and/or noise floor calibration might timeout.
3934 	 */
3935 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937 
3938 	/* At the same time start I/Q calibration for QAM constellation
3939 	 * -no need for CCK- */
3940 	ah->ah_iq_cal_needed = false;
3941 	if (!(mode == AR5K_MODE_11B)) {
3942 		ah->ah_iq_cal_needed = true;
3943 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946 				AR5K_PHY_IQ_RUN);
3947 	}
3948 
3949 	/* Wait for gain calibration to finish (we check for I/Q calibration
3950 	 * during ath5k_phy_calibrate) */
3951 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954 			channel->center_freq);
3955 	}
3956 
3957 	/* Restore antenna mode */
3958 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959 
3960 	return ret;
3961 }
3962