xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision 7ebf812b)
1 /*
2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 /***********************\
22 * PHY related functions *
23 \***********************/
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/sort.h>
30 #include <asm/unaligned.h>
31 
32 #include "ath5k.h"
33 #include "reg.h"
34 #include "rfbuffer.h"
35 #include "rfgain.h"
36 #include "../regd.h"
37 
38 
39 /**
40  * DOC: PHY related functions
41  *
42  * Here we handle the low-level functions related to baseband
43  * and analog frontend (RF) parts. This is by far the most complex
44  * part of the hw code so make sure you know what you are doing.
45  *
46  * Here is a list of what this is all about:
47  *
48  * - Channel setting/switching
49  *
50  * - Automatic Gain Control (AGC) calibration
51  *
52  * - Noise Floor calibration
53  *
54  * - I/Q imbalance calibration (QAM correction)
55  *
56  * - Calibration due to thermal changes (gain_F)
57  *
58  * - Spur noise mitigation
59  *
60  * - RF/PHY initialization for the various operating modes and bwmodes
61  *
62  * - Antenna control
63  *
64  * - TX power control per channel/rate/packet type
65  *
66  * Also have in mind we never got documentation for most of these
67  * functions, what we have comes mostly from Atheros's code, reverse
68  * engineering and patent docs/presentations etc.
69  */
70 
71 
72 /******************\
73 * Helper functions *
74 \******************/
75 
76 /**
77  * ath5k_hw_radio_revision() - Get the PHY Chip revision
78  * @ah: The &struct ath5k_hw
79  * @band: One of enum nl80211_band
80  *
81  * Returns the revision number of a 2GHz, 5GHz or single chip
82  * radio.
83  */
84 u16
85 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
86 {
87 	unsigned int i;
88 	u32 srev;
89 	u16 ret;
90 
91 	/*
92 	 * Set the radio chip access register
93 	 */
94 	switch (band) {
95 	case NL80211_BAND_2GHZ:
96 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
97 		break;
98 	case NL80211_BAND_5GHZ:
99 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
100 		break;
101 	default:
102 		return 0;
103 	}
104 
105 	usleep_range(2000, 2500);
106 
107 	/* ...wait until PHY is ready and read the selected radio revision */
108 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
109 
110 	for (i = 0; i < 8; i++)
111 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
112 
113 	if (ah->ah_version == AR5K_AR5210) {
114 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
115 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
116 	} else {
117 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
118 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
119 				((srev & 0x0f) << 4), 8);
120 	}
121 
122 	/* Reset to the 5GHz mode */
123 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
124 
125 	return ret;
126 }
127 
128 /**
129  * ath5k_channel_ok() - Check if a channel is supported by the hw
130  * @ah: The &struct ath5k_hw
131  * @channel: The &struct ieee80211_channel
132  *
133  * Note: We don't do any regulatory domain checks here, it's just
134  * a sanity check.
135  */
136 bool
137 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
138 {
139 	u16 freq = channel->center_freq;
140 
141 	/* Check if the channel is in our supported range */
142 	if (channel->band == NL80211_BAND_2GHZ) {
143 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
144 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
145 			return true;
146 	} else if (channel->band == NL80211_BAND_5GHZ)
147 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
148 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
149 			return true;
150 
151 	return false;
152 }
153 
154 /**
155  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
156  * @ah: The &struct ath5k_hw
157  * @channel: The &struct ieee80211_channel
158  */
159 bool
160 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
161 				struct ieee80211_channel *channel)
162 {
163 	u8 refclk_freq;
164 
165 	if ((ah->ah_radio == AR5K_RF5112) ||
166 	(ah->ah_radio == AR5K_RF5413) ||
167 	(ah->ah_radio == AR5K_RF2413) ||
168 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
169 		refclk_freq = 40;
170 	else
171 		refclk_freq = 32;
172 
173 	if ((channel->center_freq % refclk_freq != 0) &&
174 	((channel->center_freq % refclk_freq < 10) ||
175 	(channel->center_freq % refclk_freq > 22)))
176 		return true;
177 	else
178 		return false;
179 }
180 
181 /**
182  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
183  * @ah: The &struct ath5k_hw
184  * @rf_regs: The struct ath5k_rf_reg
185  * @val: New value
186  * @reg_id: RF register ID
187  * @set: Indicate we need to swap data
188  *
189  * This is an internal function used to modify RF Banks before
190  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
191  * infos.
192  */
193 static unsigned int
194 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
195 					u32 val, u8 reg_id, bool set)
196 {
197 	const struct ath5k_rf_reg *rfreg = NULL;
198 	u8 offset, bank, num_bits, col, position;
199 	u16 entry;
200 	u32 mask, data, last_bit, bits_shifted, first_bit;
201 	u32 *rfb;
202 	s32 bits_left;
203 	int i;
204 
205 	data = 0;
206 	rfb = ah->ah_rf_banks;
207 
208 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
209 		if (rf_regs[i].index == reg_id) {
210 			rfreg = &rf_regs[i];
211 			break;
212 		}
213 	}
214 
215 	if (rfb == NULL || rfreg == NULL) {
216 		ATH5K_PRINTF("Rf register not found!\n");
217 		/* should not happen */
218 		return 0;
219 	}
220 
221 	bank = rfreg->bank;
222 	num_bits = rfreg->field.len;
223 	first_bit = rfreg->field.pos;
224 	col = rfreg->field.col;
225 
226 	/* first_bit is an offset from bank's
227 	 * start. Since we have all banks on
228 	 * the same array, we use this offset
229 	 * to mark each bank's start */
230 	offset = ah->ah_offset[bank];
231 
232 	/* Boundary check */
233 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
234 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
235 		return 0;
236 	}
237 
238 	entry = ((first_bit - 1) / 8) + offset;
239 	position = (first_bit - 1) % 8;
240 
241 	if (set)
242 		data = ath5k_hw_bitswap(val, num_bits);
243 
244 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
245 	     position = 0, entry++) {
246 
247 		last_bit = (position + bits_left > 8) ? 8 :
248 					position + bits_left;
249 
250 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
251 								(col * 8);
252 
253 		if (set) {
254 			rfb[entry] &= ~mask;
255 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
256 			data >>= (8 - position);
257 		} else {
258 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
259 				<< bits_shifted;
260 			bits_shifted += last_bit - position;
261 		}
262 
263 		bits_left -= 8 - position;
264 	}
265 
266 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
267 
268 	return data;
269 }
270 
271 /**
272  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
273  * @ah: the &struct ath5k_hw
274  * @channel: the currently set channel upon reset
275  *
276  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
277  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278  *
279  * Since delta slope is floating point we split it on its exponent and
280  * mantissa and provide these values on hw.
281  *
282  * For more infos i think this patent is related
283  * "http://www.freepatentsonline.com/7184495.html"
284  */
285 static inline int
286 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
287 				struct ieee80211_channel *channel)
288 {
289 	/* Get exponent and mantissa and set it */
290 	u32 coef_scaled, coef_exp, coef_man,
291 		ds_coef_exp, ds_coef_man, clock;
292 
293 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
294 		(channel->hw_value == AR5K_MODE_11B));
295 
296 	/* Get coefficient
297 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
298 	 * we scale coef by shifting clock value by 24 for
299 	 * better precision since we use integers */
300 	switch (ah->ah_bwmode) {
301 	case AR5K_BWMODE_40MHZ:
302 		clock = 40 * 2;
303 		break;
304 	case AR5K_BWMODE_10MHZ:
305 		clock = 40 / 2;
306 		break;
307 	case AR5K_BWMODE_5MHZ:
308 		clock = 40 / 4;
309 		break;
310 	default:
311 		clock = 40;
312 		break;
313 	}
314 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
315 
316 	/* Get exponent
317 	 * ALGO: coef_exp = 14 - highest set bit position */
318 	coef_exp = ilog2(coef_scaled);
319 
320 	/* Doesn't make sense if it's zero*/
321 	if (!coef_scaled || !coef_exp)
322 		return -EINVAL;
323 
324 	/* Note: we've shifted coef_scaled by 24 */
325 	coef_exp = 14 - (coef_exp - 24);
326 
327 
328 	/* Get mantissa (significant digits)
329 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
330 	coef_man = coef_scaled +
331 		(1 << (24 - coef_exp - 1));
332 
333 	/* Calculate delta slope coefficient exponent
334 	 * and mantissa (remove scaling) and set them on hw */
335 	ds_coef_man = coef_man >> (24 - coef_exp);
336 	ds_coef_exp = coef_exp - 16;
337 
338 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
339 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
340 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
341 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
342 
343 	return 0;
344 }
345 
346 /**
347  * ath5k_hw_phy_disable() - Disable PHY
348  * @ah: The &struct ath5k_hw
349  */
350 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
351 {
352 	/*Just a try M.F.*/
353 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
354 
355 	return 0;
356 }
357 
358 /**
359  * ath5k_hw_wait_for_synth() - Wait for synth to settle
360  * @ah: The &struct ath5k_hw
361  * @channel: The &struct ieee80211_channel
362  */
363 static void
364 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
365 			struct ieee80211_channel *channel)
366 {
367 	/*
368 	 * On 5211+ read activation -> rx delay
369 	 * and use it (100ns steps).
370 	 */
371 	if (ah->ah_version != AR5K_AR5210) {
372 		u32 delay;
373 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
374 			AR5K_PHY_RX_DELAY_M;
375 		delay = (channel->hw_value == AR5K_MODE_11B) ?
376 			((delay << 2) / 22) : (delay / 10);
377 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
378 			delay = delay << 1;
379 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
380 			delay = delay << 2;
381 		/* XXX: /2 on turbo ? Let's be safe
382 		 * for now */
383 		usleep_range(100 + delay, 100 + (2 * delay));
384 	} else {
385 		usleep_range(1000, 1500);
386 	}
387 }
388 
389 
390 /**********************\
391 * RF Gain optimization *
392 \**********************/
393 
394 /**
395  * DOC: RF Gain optimization
396  *
397  * This code is used to optimize RF gain on different environments
398  * (temperature mostly) based on feedback from a power detector.
399  *
400  * It's only used on RF5111 and RF5112, later RF chips seem to have
401  * auto adjustment on hw -notice they have a much smaller BANK 7 and
402  * no gain optimization ladder-.
403  *
404  * For more infos check out this patent doc
405  * "http://www.freepatentsonline.com/7400691.html"
406  *
407  * This paper describes power drops as seen on the receiver due to
408  * probe packets
409  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
410  * %20of%20Power%20Control.pdf"
411  *
412  * And this is the MadWiFi bug entry related to the above
413  * "http://madwifi-project.org/ticket/1659"
414  * with various measurements and diagrams
415  */
416 
417 /**
418  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
419  * @ah: The &struct ath5k_hw
420  */
421 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
422 {
423 	/* Initialize the gain optimization values */
424 	switch (ah->ah_radio) {
425 	case AR5K_RF5111:
426 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
427 		ah->ah_gain.g_low = 20;
428 		ah->ah_gain.g_high = 35;
429 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430 		break;
431 	case AR5K_RF5112:
432 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
433 		ah->ah_gain.g_low = 20;
434 		ah->ah_gain.g_high = 85;
435 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
436 		break;
437 	default:
438 		return -EINVAL;
439 	}
440 
441 	return 0;
442 }
443 
444 /**
445  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
446  * @ah: The &struct ath5k_hw
447  *
448  * Schedules a gain probe check on the next transmitted packet.
449  * That means our next packet is going to be sent with lower
450  * tx power and a Peak to Average Power Detector (PAPD) will try
451  * to measure the gain.
452  *
453  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
454  * just after we enable the probe so that we don't mess with
455  * standard traffic.
456  */
457 static void
458 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
459 {
460 
461 	/* Skip if gain calibration is inactive or
462 	 * we already handle a probe request */
463 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
464 		return;
465 
466 	/* Send the packet with 2dB below max power as
467 	 * patent doc suggest */
468 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
469 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
470 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
471 
472 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
473 
474 }
475 
476 /**
477  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
478  * @ah: The &struct ath5k_hw
479  *
480  * Calculate Gain_F measurement correction
481  * based on the current step for RF5112 rev. 2
482  */
483 static u32
484 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
485 {
486 	u32 mix, step;
487 	const struct ath5k_gain_opt *go;
488 	const struct ath5k_gain_opt_step *g_step;
489 	const struct ath5k_rf_reg *rf_regs;
490 
491 	/* Only RF5112 Rev. 2 supports it */
492 	if ((ah->ah_radio != AR5K_RF5112) ||
493 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494 		return 0;
495 
496 	go = &rfgain_opt_5112;
497 	rf_regs = rf_regs_5112a;
498 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499 
500 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
501 
502 	if (ah->ah_rf_banks == NULL)
503 		return 0;
504 
505 	ah->ah_gain.g_f_corr = 0;
506 
507 	/* No VGA (Variable Gain Amplifier) override, skip */
508 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
509 		return 0;
510 
511 	/* Mix gain stepping */
512 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
513 
514 	/* Mix gain override */
515 	mix = g_step->gos_param[0];
516 
517 	switch (mix) {
518 	case 3:
519 		ah->ah_gain.g_f_corr = step * 2;
520 		break;
521 	case 2:
522 		ah->ah_gain.g_f_corr = (step - 5) * 2;
523 		break;
524 	case 1:
525 		ah->ah_gain.g_f_corr = step;
526 		break;
527 	default:
528 		ah->ah_gain.g_f_corr = 0;
529 		break;
530 	}
531 
532 	return ah->ah_gain.g_f_corr;
533 }
534 
535 /**
536  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
537  * @ah: The &struct ath5k_hw
538  *
539  * Check if current gain_F measurement is in the range of our
540  * power detector windows. If we get a measurement outside range
541  * we know it's not accurate (detectors can't measure anything outside
542  * their detection window) so we must ignore it.
543  *
544  * Returns true if readback was O.K. or false on failure
545  */
546 static bool
547 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
548 {
549 	const struct ath5k_rf_reg *rf_regs;
550 	u32 step, mix_ovr, level[4];
551 
552 	if (ah->ah_rf_banks == NULL)
553 		return false;
554 
555 	if (ah->ah_radio == AR5K_RF5111) {
556 
557 		rf_regs = rf_regs_5111;
558 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
559 
560 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
561 			false);
562 
563 		level[0] = 0;
564 		level[1] = (step == 63) ? 50 : step + 4;
565 		level[2] = (step != 63) ? 64 : level[0];
566 		level[3] = level[2] + 50;
567 
568 		ah->ah_gain.g_high = level[3] -
569 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
570 		ah->ah_gain.g_low = level[0] +
571 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
572 	} else {
573 
574 		rf_regs = rf_regs_5112;
575 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
576 
577 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
578 			false);
579 
580 		level[0] = level[2] = 0;
581 
582 		if (mix_ovr == 1) {
583 			level[1] = level[3] = 83;
584 		} else {
585 			level[1] = level[3] = 107;
586 			ah->ah_gain.g_high = 55;
587 		}
588 	}
589 
590 	return (ah->ah_gain.g_current >= level[0] &&
591 			ah->ah_gain.g_current <= level[1]) ||
592 		(ah->ah_gain.g_current >= level[2] &&
593 			ah->ah_gain.g_current <= level[3]);
594 }
595 
596 /**
597  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
598  * @ah: The &struct ath5k_hw
599  *
600  * Choose the right target gain based on current gain
601  * and RF gain optimization ladder
602  */
603 static s8
604 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
605 {
606 	const struct ath5k_gain_opt *go;
607 	const struct ath5k_gain_opt_step *g_step;
608 	int ret = 0;
609 
610 	switch (ah->ah_radio) {
611 	case AR5K_RF5111:
612 		go = &rfgain_opt_5111;
613 		break;
614 	case AR5K_RF5112:
615 		go = &rfgain_opt_5112;
616 		break;
617 	default:
618 		return 0;
619 	}
620 
621 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
622 
623 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
624 
625 		/* Reached maximum */
626 		if (ah->ah_gain.g_step_idx == 0)
627 			return -1;
628 
629 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
630 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
631 				ah->ah_gain.g_step_idx > 0;
632 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
633 			ah->ah_gain.g_target -= 2 *
634 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
635 			    g_step->gos_gain);
636 
637 		ret = 1;
638 		goto done;
639 	}
640 
641 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
642 
643 		/* Reached minimum */
644 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
645 			return -2;
646 
647 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
648 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
649 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
650 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
651 			ah->ah_gain.g_target -= 2 *
652 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
653 			    g_step->gos_gain);
654 
655 		ret = 2;
656 		goto done;
657 	}
658 
659 done:
660 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
661 		"ret %d, gain step %u, current gain %u, target gain %u\n",
662 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
663 		ah->ah_gain.g_target);
664 
665 	return ret;
666 }
667 
668 /**
669  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
670  * @ah: The &struct ath5k_hw
671  *
672  * Main callback for thermal RF gain calibration engine
673  * Check for a new gain reading and schedule an adjustment
674  * if needed.
675  *
676  * Returns one of enum ath5k_rfgain codes
677  */
678 enum ath5k_rfgain
679 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
680 {
681 	u32 data, type;
682 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
683 
684 	if (ah->ah_rf_banks == NULL ||
685 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
686 		return AR5K_RFGAIN_INACTIVE;
687 
688 	/* No check requested, either engine is inactive
689 	 * or an adjustment is already requested */
690 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
691 		goto done;
692 
693 	/* Read the PAPD (Peak to Average Power Detector)
694 	 * register */
695 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
696 
697 	/* No probe is scheduled, read gain_F measurement */
698 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
699 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
700 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
701 
702 		/* If tx packet is CCK correct the gain_F measurement
703 		 * by cck ofdm gain delta */
704 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
705 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
706 				ah->ah_gain.g_current +=
707 					ee->ee_cck_ofdm_gain_delta;
708 			else
709 				ah->ah_gain.g_current +=
710 					AR5K_GAIN_CCK_PROBE_CORR;
711 		}
712 
713 		/* Further correct gain_F measurement for
714 		 * RF5112A radios */
715 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
716 			ath5k_hw_rf_gainf_corr(ah);
717 			ah->ah_gain.g_current =
718 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
719 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
720 				0;
721 		}
722 
723 		/* Check if measurement is ok and if we need
724 		 * to adjust gain, schedule a gain adjustment,
725 		 * else switch back to the active state */
726 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
727 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
728 		ath5k_hw_rf_gainf_adjust(ah)) {
729 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
730 		} else {
731 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
732 		}
733 	}
734 
735 done:
736 	return ah->ah_gain.g_state;
737 }
738 
739 /**
740  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
741  * @ah: The &struct ath5k_hw
742  * @band: One of enum nl80211_band
743  *
744  * Write initial RF gain table to set the RF sensitivity.
745  *
746  * NOTE: This one works on all RF chips and has nothing to do
747  * with Gain_F calibration
748  */
749 static int
750 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
751 {
752 	const struct ath5k_ini_rfgain *ath5k_rfg;
753 	unsigned int i, size, index;
754 
755 	switch (ah->ah_radio) {
756 	case AR5K_RF5111:
757 		ath5k_rfg = rfgain_5111;
758 		size = ARRAY_SIZE(rfgain_5111);
759 		break;
760 	case AR5K_RF5112:
761 		ath5k_rfg = rfgain_5112;
762 		size = ARRAY_SIZE(rfgain_5112);
763 		break;
764 	case AR5K_RF2413:
765 		ath5k_rfg = rfgain_2413;
766 		size = ARRAY_SIZE(rfgain_2413);
767 		break;
768 	case AR5K_RF2316:
769 		ath5k_rfg = rfgain_2316;
770 		size = ARRAY_SIZE(rfgain_2316);
771 		break;
772 	case AR5K_RF5413:
773 		ath5k_rfg = rfgain_5413;
774 		size = ARRAY_SIZE(rfgain_5413);
775 		break;
776 	case AR5K_RF2317:
777 	case AR5K_RF2425:
778 		ath5k_rfg = rfgain_2425;
779 		size = ARRAY_SIZE(rfgain_2425);
780 		break;
781 	default:
782 		return -EINVAL;
783 	}
784 
785 	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
786 
787 	for (i = 0; i < size; i++) {
788 		AR5K_REG_WAIT(i);
789 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
790 			(u32)ath5k_rfg[i].rfg_register);
791 	}
792 
793 	return 0;
794 }
795 
796 
797 /********************\
798 * RF Registers setup *
799 \********************/
800 
801 /**
802  * ath5k_hw_rfregs_init() - Initialize RF register settings
803  * @ah: The &struct ath5k_hw
804  * @channel: The &struct ieee80211_channel
805  * @mode: One of enum ath5k_driver_mode
806  *
807  * Setup RF registers by writing RF buffer on hw. For
808  * more infos on this, check out rfbuffer.h
809  */
810 static int
811 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
812 			struct ieee80211_channel *channel,
813 			unsigned int mode)
814 {
815 	const struct ath5k_rf_reg *rf_regs;
816 	const struct ath5k_ini_rfbuffer *ini_rfb;
817 	const struct ath5k_gain_opt *go = NULL;
818 	const struct ath5k_gain_opt_step *g_step;
819 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
820 	u8 ee_mode = 0;
821 	u32 *rfb;
822 	int i, obdb = -1, bank = -1;
823 
824 	switch (ah->ah_radio) {
825 	case AR5K_RF5111:
826 		rf_regs = rf_regs_5111;
827 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
828 		ini_rfb = rfb_5111;
829 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
830 		go = &rfgain_opt_5111;
831 		break;
832 	case AR5K_RF5112:
833 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
834 			rf_regs = rf_regs_5112a;
835 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
836 			ini_rfb = rfb_5112a;
837 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
838 		} else {
839 			rf_regs = rf_regs_5112;
840 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
841 			ini_rfb = rfb_5112;
842 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
843 		}
844 		go = &rfgain_opt_5112;
845 		break;
846 	case AR5K_RF2413:
847 		rf_regs = rf_regs_2413;
848 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
849 		ini_rfb = rfb_2413;
850 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
851 		break;
852 	case AR5K_RF2316:
853 		rf_regs = rf_regs_2316;
854 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
855 		ini_rfb = rfb_2316;
856 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
857 		break;
858 	case AR5K_RF5413:
859 		rf_regs = rf_regs_5413;
860 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
861 		ini_rfb = rfb_5413;
862 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
863 		break;
864 	case AR5K_RF2317:
865 		rf_regs = rf_regs_2425;
866 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
867 		ini_rfb = rfb_2317;
868 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
869 		break;
870 	case AR5K_RF2425:
871 		rf_regs = rf_regs_2425;
872 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
873 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
874 			ini_rfb = rfb_2425;
875 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
876 		} else {
877 			ini_rfb = rfb_2417;
878 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
879 		}
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 
885 	/* If it's the first time we set RF buffer, allocate
886 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
887 	 * we set above */
888 	if (ah->ah_rf_banks == NULL) {
889 		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
890 								sizeof(u32),
891 								GFP_KERNEL);
892 		if (ah->ah_rf_banks == NULL) {
893 			ATH5K_ERR(ah, "out of memory\n");
894 			return -ENOMEM;
895 		}
896 	}
897 
898 	/* Copy values to modify them */
899 	rfb = ah->ah_rf_banks;
900 
901 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
902 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
903 			ATH5K_ERR(ah, "invalid bank\n");
904 			return -EINVAL;
905 		}
906 
907 		/* Bank changed, write down the offset */
908 		if (bank != ini_rfb[i].rfb_bank) {
909 			bank = ini_rfb[i].rfb_bank;
910 			ah->ah_offset[bank] = i;
911 		}
912 
913 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
914 	}
915 
916 	/* Set Output and Driver bias current (OB/DB) */
917 	if (channel->band == NL80211_BAND_2GHZ) {
918 
919 		if (channel->hw_value == AR5K_MODE_11B)
920 			ee_mode = AR5K_EEPROM_MODE_11B;
921 		else
922 			ee_mode = AR5K_EEPROM_MODE_11G;
923 
924 		/* For RF511X/RF211X combination we
925 		 * use b_OB and b_DB parameters stored
926 		 * in eeprom on ee->ee_ob[ee_mode][0]
927 		 *
928 		 * For all other chips we use OB/DB for 2GHz
929 		 * stored in the b/g modal section just like
930 		 * 802.11a on ee->ee_ob[ee_mode][1] */
931 		if ((ah->ah_radio == AR5K_RF5111) ||
932 		(ah->ah_radio == AR5K_RF5112))
933 			obdb = 0;
934 		else
935 			obdb = 1;
936 
937 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
938 						AR5K_RF_OB_2GHZ, true);
939 
940 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
941 						AR5K_RF_DB_2GHZ, true);
942 
943 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
944 	} else if ((channel->band == NL80211_BAND_5GHZ) ||
945 			(ah->ah_radio == AR5K_RF5111)) {
946 
947 		/* For 11a, Turbo and XR we need to choose
948 		 * OB/DB based on frequency range */
949 		ee_mode = AR5K_EEPROM_MODE_11A;
950 		obdb =	 channel->center_freq >= 5725 ? 3 :
951 			(channel->center_freq >= 5500 ? 2 :
952 			(channel->center_freq >= 5260 ? 1 :
953 			 (channel->center_freq > 4000 ? 0 : -1)));
954 
955 		if (obdb < 0)
956 			return -EINVAL;
957 
958 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
959 						AR5K_RF_OB_5GHZ, true);
960 
961 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
962 						AR5K_RF_DB_5GHZ, true);
963 	}
964 
965 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
966 
967 	/* Set turbo mode (N/A on RF5413) */
968 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
969 	(ah->ah_radio != AR5K_RF5413))
970 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
971 
972 	/* Bank Modifications (chip-specific) */
973 	if (ah->ah_radio == AR5K_RF5111) {
974 
975 		/* Set gain_F settings according to current step */
976 		if (channel->hw_value != AR5K_MODE_11B) {
977 
978 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
979 					AR5K_PHY_FRAME_CTL_TX_CLIP,
980 					g_step->gos_param[0]);
981 
982 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
983 							AR5K_RF_PWD_90, true);
984 
985 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
986 							AR5K_RF_PWD_84, true);
987 
988 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
989 						AR5K_RF_RFGAIN_SEL, true);
990 
991 			/* We programmed gain_F parameters, switch back
992 			 * to active state */
993 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
994 
995 		}
996 
997 		/* Bank 6/7 setup */
998 
999 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1000 						AR5K_RF_PWD_XPD, true);
1001 
1002 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1003 						AR5K_RF_XPD_GAIN, true);
1004 
1005 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1006 						AR5K_RF_GAIN_I, true);
1007 
1008 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1009 						AR5K_RF_PLO_SEL, true);
1010 
1011 		/* Tweak power detectors for half/quarter rate support */
1012 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1013 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1014 			u8 wait_i;
1015 
1016 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1017 						AR5K_RF_WAIT_S, true);
1018 
1019 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020 							0x1f : 0x10;
1021 
1022 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1023 						AR5K_RF_WAIT_I, true);
1024 			ath5k_hw_rfb_op(ah, rf_regs, 3,
1025 						AR5K_RF_MAX_TIME, true);
1026 
1027 		}
1028 	}
1029 
1030 	if (ah->ah_radio == AR5K_RF5112) {
1031 
1032 		/* Set gain_F settings according to current step */
1033 		if (channel->hw_value != AR5K_MODE_11B) {
1034 
1035 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1036 						AR5K_RF_MIXGAIN_OVR, true);
1037 
1038 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1039 						AR5K_RF_PWD_138, true);
1040 
1041 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1042 						AR5K_RF_PWD_137, true);
1043 
1044 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1045 						AR5K_RF_PWD_136, true);
1046 
1047 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1048 						AR5K_RF_PWD_132, true);
1049 
1050 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1051 						AR5K_RF_PWD_131, true);
1052 
1053 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1054 						AR5K_RF_PWD_130, true);
1055 
1056 			/* We programmed gain_F parameters, switch back
1057 			 * to active state */
1058 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1059 		}
1060 
1061 		/* Bank 6/7 setup */
1062 
1063 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1064 						AR5K_RF_XPD_SEL, true);
1065 
1066 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1067 			/* Rev. 1 supports only one xpd */
1068 			ath5k_hw_rfb_op(ah, rf_regs,
1069 						ee->ee_x_gain[ee_mode],
1070 						AR5K_RF_XPD_GAIN, true);
1071 
1072 		} else {
1073 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1074 			if (ee->ee_pd_gains[ee_mode] > 1) {
1075 				ath5k_hw_rfb_op(ah, rf_regs,
1076 						pdg_curve_to_idx[0],
1077 						AR5K_RF_PD_GAIN_LO, true);
1078 				ath5k_hw_rfb_op(ah, rf_regs,
1079 						pdg_curve_to_idx[1],
1080 						AR5K_RF_PD_GAIN_HI, true);
1081 			} else {
1082 				ath5k_hw_rfb_op(ah, rf_regs,
1083 						pdg_curve_to_idx[0],
1084 						AR5K_RF_PD_GAIN_LO, true);
1085 				ath5k_hw_rfb_op(ah, rf_regs,
1086 						pdg_curve_to_idx[0],
1087 						AR5K_RF_PD_GAIN_HI, true);
1088 			}
1089 
1090 			/* Lower synth voltage on Rev 2 */
1091 			if (ah->ah_radio == AR5K_RF5112 &&
1092 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1093 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1094 						AR5K_RF_HIGH_VC_CP, true);
1095 
1096 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097 						AR5K_RF_MID_VC_CP, true);
1098 
1099 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100 						AR5K_RF_LOW_VC_CP, true);
1101 
1102 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103 						AR5K_RF_PUSH_UP, true);
1104 			}
1105 
1106 			/* Decrease power consumption on 5213+ BaseBand */
1107 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1108 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1109 						AR5K_RF_PAD2GND, true);
1110 
1111 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112 						AR5K_RF_XB2_LVL, true);
1113 
1114 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115 						AR5K_RF_XB5_LVL, true);
1116 
1117 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118 						AR5K_RF_PWD_167, true);
1119 
1120 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121 						AR5K_RF_PWD_166, true);
1122 			}
1123 		}
1124 
1125 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1126 						AR5K_RF_GAIN_I, true);
1127 
1128 		/* Tweak power detector for half/quarter rates */
1129 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1130 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1131 			u8 pd_delay;
1132 
1133 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1134 							0xf : 0x8;
1135 
1136 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1137 						AR5K_RF_PD_PERIOD_A, true);
1138 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1139 						AR5K_RF_PD_DELAY_A, true);
1140 
1141 		}
1142 	}
1143 
1144 	if (ah->ah_radio == AR5K_RF5413 &&
1145 	channel->band == NL80211_BAND_2GHZ) {
1146 
1147 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1148 									true);
1149 
1150 		/* Set optimum value for early revisions (on pci-e chips) */
1151 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1152 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1153 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1154 						AR5K_RF_PWD_ICLOBUF_2G, true);
1155 
1156 	}
1157 
1158 	/* Write RF banks on hw */
1159 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1160 		AR5K_REG_WAIT(i);
1161 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 
1168 /**************************\
1169   PHY/RF channel functions
1170 \**************************/
1171 
1172 /**
1173  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1174  * @channel: The &struct ieee80211_channel
1175  *
1176  * Map channel frequency to IEEE channel number and convert it
1177  * to an internal channel value used by the RF5110 chipset.
1178  */
1179 static u32
1180 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1181 {
1182 	u32 athchan;
1183 
1184 	athchan = (ath5k_hw_bitswap(
1185 			(ieee80211_frequency_to_channel(
1186 				channel->center_freq) - 24) / 2, 5)
1187 				<< 1) | (1 << 6) | 0x1;
1188 	return athchan;
1189 }
1190 
1191 /**
1192  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1193  * @ah: The &struct ath5k_hw
1194  * @channel: The &struct ieee80211_channel
1195  */
1196 static int
1197 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1198 		struct ieee80211_channel *channel)
1199 {
1200 	u32 data;
1201 
1202 	/*
1203 	 * Set the channel and wait
1204 	 */
1205 	data = ath5k_hw_rf5110_chan2athchan(channel);
1206 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1207 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1208 	usleep_range(1000, 1500);
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1215  * @ieee: IEEE channel number
1216  * @athchan: The &struct ath5k_athchan_2ghz
1217  *
1218  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1219  * we need to add some offsets and extra flags to the data values we pass
1220  * on to the PHY. So for every 2GHz channel this function gets called
1221  * to do the conversion.
1222  */
1223 static int
1224 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1225 		struct ath5k_athchan_2ghz *athchan)
1226 {
1227 	int channel;
1228 
1229 	/* Cast this value to catch negative channel numbers (>= -19) */
1230 	channel = (int)ieee;
1231 
1232 	/*
1233 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1234 	 */
1235 	if (channel <= 13) {
1236 		athchan->a2_athchan = 115 + channel;
1237 		athchan->a2_flags = 0x46;
1238 	} else if (channel == 14) {
1239 		athchan->a2_athchan = 124;
1240 		athchan->a2_flags = 0x44;
1241 	} else if (channel >= 15 && channel <= 26) {
1242 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1243 		athchan->a2_flags = 0x46;
1244 	} else
1245 		return -EINVAL;
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1252  * @ah: The &struct ath5k_hw
1253  * @channel: The &struct ieee80211_channel
1254  */
1255 static int
1256 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1257 		struct ieee80211_channel *channel)
1258 {
1259 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1260 	unsigned int ath5k_channel =
1261 		ieee80211_frequency_to_channel(channel->center_freq);
1262 	u32 data0, data1, clock;
1263 	int ret;
1264 
1265 	/*
1266 	 * Set the channel on the RF5111 radio
1267 	 */
1268 	data0 = data1 = 0;
1269 
1270 	if (channel->band == NL80211_BAND_2GHZ) {
1271 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1272 		ret = ath5k_hw_rf5111_chan2athchan(
1273 			ieee80211_frequency_to_channel(channel->center_freq),
1274 			&ath5k_channel_2ghz);
1275 		if (ret)
1276 			return ret;
1277 
1278 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1279 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1280 		    << 5) | (1 << 4);
1281 	}
1282 
1283 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1284 		clock = 1;
1285 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1286 			(clock << 1) | (1 << 10) | 1;
1287 	} else {
1288 		clock = 0;
1289 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1290 			<< 2) | (clock << 1) | (1 << 10) | 1;
1291 	}
1292 
1293 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1294 			AR5K_RF_BUFFER);
1295 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1296 			AR5K_RF_BUFFER_CONTROL_3);
1297 
1298 	return 0;
1299 }
1300 
1301 /**
1302  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1303  * @ah: The &struct ath5k_hw
1304  * @channel: The &struct ieee80211_channel
1305  *
1306  * On RF5112/2112 and newer we don't need to do any conversion.
1307  * We pass the frequency value after a few modifications to the
1308  * chip directly.
1309  *
1310  * NOTE: Make sure channel frequency given is within our range or else
1311  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1312  */
1313 static int
1314 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1315 		struct ieee80211_channel *channel)
1316 {
1317 	u32 data, data0, data1, data2;
1318 	u16 c;
1319 
1320 	data = data0 = data1 = data2 = 0;
1321 	c = channel->center_freq;
1322 
1323 	/* My guess based on code:
1324 	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1325 	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1326 	 * (3040/2). data0 is used to set the PLL divider and data1
1327 	 * selects synth mode. */
1328 	if (c < 4800) {
1329 		/* Channel 14 and all frequencies with 2Hz spacing
1330 		 * below/above (non-standard channels) */
1331 		if (!((c - 2224) % 5)) {
1332 			/* Same as (c - 2224) / 5 */
1333 			data0 = ((2 * (c - 704)) - 3040) / 10;
1334 			data1 = 1;
1335 		/* Channel 1 and all frequencies with 5Hz spacing
1336 		 * below/above (standard channels without channel 14) */
1337 		} else if (!((c - 2192) % 5)) {
1338 			/* Same as (c - 2192) / 5 */
1339 			data0 = ((2 * (c - 672)) - 3040) / 10;
1340 			data1 = 0;
1341 		} else
1342 			return -EINVAL;
1343 
1344 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1345 	/* This is more complex, we have a single synthesizer with
1346 	 * 4 reference clock settings (?) based on frequency spacing
1347 	 * and set using data2. LO is at 4800Hz and data0 is again used
1348 	 * to set some divider.
1349 	 *
1350 	 * NOTE: There is an old atheros presentation at Stanford
1351 	 * that mentions a method called dual direct conversion
1352 	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1353 	 * have here, or an updated version. */
1354 	} else if ((c % 5) != 2 || c > 5435) {
1355 		if (!(c % 20) && c >= 5120) {
1356 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1357 			data2 = ath5k_hw_bitswap(3, 2);
1358 		} else if (!(c % 10)) {
1359 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1360 			data2 = ath5k_hw_bitswap(2, 2);
1361 		} else if (!(c % 5)) {
1362 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1363 			data2 = ath5k_hw_bitswap(1, 2);
1364 		} else
1365 			return -EINVAL;
1366 	} else {
1367 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1368 		data2 = ath5k_hw_bitswap(0, 2);
1369 	}
1370 
1371 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1372 
1373 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1374 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1375 
1376 	return 0;
1377 }
1378 
1379 /**
1380  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1381  * @ah: The &struct ath5k_hw
1382  * @channel: The &struct ieee80211_channel
1383  *
1384  * AR2425/2417 have a different 2GHz RF so code changes
1385  * a little bit from RF5112.
1386  */
1387 static int
1388 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1389 		struct ieee80211_channel *channel)
1390 {
1391 	u32 data, data0, data2;
1392 	u16 c;
1393 
1394 	data = data0 = data2 = 0;
1395 	c = channel->center_freq;
1396 
1397 	if (c < 4800) {
1398 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1399 		data2 = 0;
1400 	/* ? 5GHz ? */
1401 	} else if ((c % 5) != 2 || c > 5435) {
1402 		if (!(c % 20) && c < 5120)
1403 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1404 		else if (!(c % 10))
1405 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1406 		else if (!(c % 5))
1407 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1408 		else
1409 			return -EINVAL;
1410 		data2 = ath5k_hw_bitswap(1, 2);
1411 	} else {
1412 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1413 		data2 = ath5k_hw_bitswap(0, 2);
1414 	}
1415 
1416 	data = (data0 << 4) | data2 << 2 | 0x1001;
1417 
1418 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1419 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * ath5k_hw_channel() - Set a channel on the radio chip
1426  * @ah: The &struct ath5k_hw
1427  * @channel: The &struct ieee80211_channel
1428  *
1429  * This is the main function called to set a channel on the
1430  * radio chip based on the radio chip version.
1431  */
1432 static int
1433 ath5k_hw_channel(struct ath5k_hw *ah,
1434 		struct ieee80211_channel *channel)
1435 {
1436 	int ret;
1437 	/*
1438 	 * Check bounds supported by the PHY (we don't care about regulatory
1439 	 * restrictions at this point).
1440 	 */
1441 	if (!ath5k_channel_ok(ah, channel)) {
1442 		ATH5K_ERR(ah,
1443 			"channel frequency (%u MHz) out of supported "
1444 			"band range\n",
1445 			channel->center_freq);
1446 		return -EINVAL;
1447 	}
1448 
1449 	/*
1450 	 * Set the channel and wait
1451 	 */
1452 	switch (ah->ah_radio) {
1453 	case AR5K_RF5110:
1454 		ret = ath5k_hw_rf5110_channel(ah, channel);
1455 		break;
1456 	case AR5K_RF5111:
1457 		ret = ath5k_hw_rf5111_channel(ah, channel);
1458 		break;
1459 	case AR5K_RF2317:
1460 	case AR5K_RF2425:
1461 		ret = ath5k_hw_rf2425_channel(ah, channel);
1462 		break;
1463 	default:
1464 		ret = ath5k_hw_rf5112_channel(ah, channel);
1465 		break;
1466 	}
1467 
1468 	if (ret)
1469 		return ret;
1470 
1471 	/* Set JAPAN setting for channel 14 */
1472 	if (channel->center_freq == 2484) {
1473 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1474 				AR5K_PHY_CCKTXCTL_JAPAN);
1475 	} else {
1476 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477 				AR5K_PHY_CCKTXCTL_WORLD);
1478 	}
1479 
1480 	ah->ah_current_channel = channel;
1481 
1482 	return 0;
1483 }
1484 
1485 
1486 /*****************\
1487   PHY calibration
1488 \*****************/
1489 
1490 /**
1491  * DOC: PHY Calibration routines
1492  *
1493  * Noise floor calibration: When we tell the hardware to
1494  * perform a noise floor calibration by setting the
1495  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1496  * sample-and-hold the minimum noise level seen at the antennas.
1497  * This value is then stored in a ring buffer of recently measured
1498  * noise floor values so we have a moving window of the last few
1499  * samples. The median of the values in the history is then loaded
1500  * into the hardware for its own use for RSSI and CCA measurements.
1501  * This type of calibration doesn't interfere with traffic.
1502  *
1503  * AGC calibration: When we tell the hardware to perform
1504  * an AGC (Automatic Gain Control) calibration by setting the
1505  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1506  * a calibration on the DC offsets of ADCs. During this period
1507  * rx/tx gets disabled so we have to deal with it on the driver
1508  * part.
1509  *
1510  * I/Q calibration: When we tell the hardware to perform
1511  * an I/Q calibration, it tries to correct I/Q imbalance and
1512  * fix QAM constellation by sampling data from rxed frames.
1513  * It doesn't interfere with traffic.
1514  *
1515  * For more infos on AGC and I/Q calibration check out patent doc
1516  * #03/094463.
1517  */
1518 
1519 /**
1520  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1521  * @ah: The &struct ath5k_hw
1522  */
1523 static s32
1524 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1525 {
1526 	s32 val;
1527 
1528 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1529 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1530 }
1531 
1532 /**
1533  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1534  * @ah: The &struct ath5k_hw
1535  */
1536 void
1537 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1538 {
1539 	int i;
1540 
1541 	ah->ah_nfcal_hist.index = 0;
1542 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1543 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1544 }
1545 
1546 /**
1547  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1548  * @ah: The &struct ath5k_hw
1549  * @noise_floor: The NF we got from hw
1550  */
1551 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1552 {
1553 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1554 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1555 	hist->nfval[hist->index] = noise_floor;
1556 }
1557 
1558 static int cmps16(const void *a, const void *b)
1559 {
1560 	return *(s16 *)a - *(s16 *)b;
1561 }
1562 
1563 /**
1564  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1565  * @ah: The &struct ath5k_hw
1566  */
1567 static s16
1568 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1569 {
1570 	s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX];
1571 	int i;
1572 
1573 	memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval));
1574 	sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL);
1575 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1576 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1577 			"cal %d:%d\n", i, sorted_nfval[i]);
1578 	}
1579 	return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1580 }
1581 
1582 /**
1583  * ath5k_hw_update_noise_floor() - Update NF on hardware
1584  * @ah: The &struct ath5k_hw
1585  *
1586  * This is the main function we call to perform a NF calibration,
1587  * it reads NF from hardware, calculates the median and updates
1588  * NF on hw.
1589  */
1590 void
1591 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1592 {
1593 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594 	u32 val;
1595 	s16 nf, threshold;
1596 	u8 ee_mode;
1597 
1598 	/* keep last value if calibration hasn't completed */
1599 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1600 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1601 			"NF did not complete in calibration window\n");
1602 
1603 		return;
1604 	}
1605 
1606 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1607 
1608 	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1609 
1610 	/* completed NF calibration, test threshold */
1611 	nf = ath5k_hw_read_measured_noise_floor(ah);
1612 	threshold = ee->ee_noise_floor_thr[ee_mode];
1613 
1614 	if (nf > threshold) {
1615 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1616 			"noise floor failure detected; "
1617 			"read %d, threshold %d\n",
1618 			nf, threshold);
1619 
1620 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1621 	}
1622 
1623 	ath5k_hw_update_nfcal_hist(ah, nf);
1624 	nf = ath5k_hw_get_median_noise_floor(ah);
1625 
1626 	/* load noise floor (in .5 dBm) so the hardware will use it */
1627 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1628 	val |= (nf * 2) & AR5K_PHY_NF_M;
1629 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1630 
1631 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1632 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1633 
1634 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635 		0, false);
1636 
1637 	/*
1638 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1639 	 * so that we're not capped by the median we just loaded.
1640 	 * This will be used as the initial value for the next noise
1641 	 * floor calibration.
1642 	 */
1643 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1644 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1645 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1646 		AR5K_PHY_AGCCTL_NF_EN |
1647 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1648 		AR5K_PHY_AGCCTL_NF);
1649 
1650 	ah->ah_noise_floor = nf;
1651 
1652 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1653 
1654 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1655 		"noise floor calibrated: %d\n", nf);
1656 }
1657 
1658 /**
1659  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1660  * @ah: The &struct ath5k_hw
1661  * @channel: The &struct ieee80211_channel
1662  *
1663  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1664  */
1665 static int
1666 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1667 		struct ieee80211_channel *channel)
1668 {
1669 	u32 phy_sig, phy_agc, phy_sat, beacon;
1670 	int ret;
1671 
1672 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1673 		return 0;
1674 
1675 	/*
1676 	 * Disable beacons and RX/TX queues, wait
1677 	 */
1678 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1679 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1680 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1681 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1682 
1683 	usleep_range(2000, 2500);
1684 
1685 	/*
1686 	 * Set the channel (with AGC turned off)
1687 	 */
1688 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1689 	udelay(10);
1690 	ret = ath5k_hw_channel(ah, channel);
1691 
1692 	/*
1693 	 * Activate PHY and wait
1694 	 */
1695 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1696 	usleep_range(1000, 1500);
1697 
1698 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1699 
1700 	if (ret)
1701 		return ret;
1702 
1703 	/*
1704 	 * Calibrate the radio chip
1705 	 */
1706 
1707 	/* Remember normal state */
1708 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1709 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1710 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1711 
1712 	/* Update radio registers */
1713 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1714 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1715 
1716 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1717 			AR5K_PHY_AGCCOARSE_LO)) |
1718 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1719 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1720 
1721 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1722 			AR5K_PHY_ADCSAT_THR)) |
1723 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1724 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1725 
1726 	udelay(20);
1727 
1728 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1729 	udelay(10);
1730 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1731 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732 
1733 	usleep_range(1000, 1500);
1734 
1735 	/*
1736 	 * Enable calibration and wait until completion
1737 	 */
1738 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1739 
1740 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1741 			AR5K_PHY_AGCCTL_CAL, 0, false);
1742 
1743 	/* Reset to normal state */
1744 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1745 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1746 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1747 
1748 	if (ret) {
1749 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1750 				channel->center_freq);
1751 		return ret;
1752 	}
1753 
1754 	/*
1755 	 * Re-enable RX/TX and beacons
1756 	 */
1757 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1758 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1759 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1760 
1761 	return 0;
1762 }
1763 
1764 /**
1765  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1766  * @ah: The &struct ath5k_hw
1767  */
1768 static int
1769 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1770 {
1771 	u32 i_pwr, q_pwr;
1772 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1773 	int i;
1774 
1775 	/* Skip if I/Q calibration is not needed or if it's still running */
1776 	if (!ah->ah_iq_cal_needed)
1777 		return -EINVAL;
1778 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1779 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1780 				"I/Q calibration still running");
1781 		return -EBUSY;
1782 	}
1783 
1784 	/* Calibration has finished, get the results and re-run */
1785 
1786 	/* Work around for empty results which can apparently happen on 5212:
1787 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1788 	for (i = 0; i <= 10; i++) {
1789 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1790 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1791 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1792 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1793 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1794 		if (i_pwr && q_pwr)
1795 			break;
1796 	}
1797 
1798 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1799 
1800 	if (ah->ah_version == AR5K_AR5211)
1801 		q_coffd = q_pwr >> 6;
1802 	else
1803 		q_coffd = q_pwr >> 7;
1804 
1805 	/* In case i_coffd became zero, cancel calibration
1806 	 * not only it's too small, it'll also result a divide
1807 	 * by zero later on. */
1808 	if (i_coffd == 0 || q_coffd < 2)
1809 		return -ECANCELED;
1810 
1811 	/* Protect against loss of sign bits */
1812 
1813 	i_coff = (-iq_corr) / i_coffd;
1814 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1815 
1816 	if (ah->ah_version == AR5K_AR5211)
1817 		q_coff = (i_pwr / q_coffd) - 64;
1818 	else
1819 		q_coff = (i_pwr / q_coffd) - 128;
1820 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1821 
1822 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1823 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1824 			i_coff, q_coff, i_coffd, q_coffd);
1825 
1826 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1827 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1828 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1829 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1830 
1831 	/* Re-enable calibration -if we don't we'll commit
1832 	 * the same values again and again */
1833 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1834 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1835 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1842  * @ah: The &struct ath5k_hw
1843  * @channel: The &struct ieee80211_channel
1844  *
1845  * The main function we call from above to perform
1846  * a short or full PHY calibration based on RF chip
1847  * and current channel
1848  */
1849 int
1850 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1851 		struct ieee80211_channel *channel)
1852 {
1853 	int ret;
1854 
1855 	if (ah->ah_radio == AR5K_RF5110)
1856 		return ath5k_hw_rf5110_calibrate(ah, channel);
1857 
1858 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1859 	if (ret) {
1860 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1861 			"No I/Q correction performed (%uMHz)\n",
1862 			channel->center_freq);
1863 
1864 		/* Happens all the time if there is not much
1865 		 * traffic, consider it normal behaviour. */
1866 		ret = 0;
1867 	}
1868 
1869 	/* On full calibration request a PAPD probe for
1870 	 * gainf calibration if needed */
1871 	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1872 	    (ah->ah_radio == AR5K_RF5111 ||
1873 	     ah->ah_radio == AR5K_RF5112) &&
1874 	    channel->hw_value != AR5K_MODE_11B)
1875 		ath5k_hw_request_rfgain_probe(ah);
1876 
1877 	/* Update noise floor */
1878 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1879 		ath5k_hw_update_noise_floor(ah);
1880 
1881 	return ret;
1882 }
1883 
1884 
1885 /***************************\
1886 * Spur mitigation functions *
1887 \***************************/
1888 
1889 /**
1890  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1891  * @ah: The &struct ath5k_hw
1892  * @channel: The &struct ieee80211_channel
1893  *
1894  * This function gets called during PHY initialization to
1895  * configure the spur filter for the given channel. Spur is noise
1896  * generated due to "reflection" effects, for more information on this
1897  * method check out patent US7643810
1898  */
1899 static void
1900 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1901 				struct ieee80211_channel *channel)
1902 {
1903 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1904 	u32 mag_mask[4] = {0, 0, 0, 0};
1905 	u32 pilot_mask[2] = {0, 0};
1906 	/* Note: fbin values are scaled up by 2 */
1907 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1908 	s32 spur_delta_phase, spur_freq_sigma_delta;
1909 	s32 spur_offset, num_symbols_x16;
1910 	u8 num_symbol_offsets, i, freq_band;
1911 
1912 	/* Convert current frequency to fbin value (the same way channels
1913 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1914 	 * up by 2 so we can compare it later */
1915 	if (channel->band == NL80211_BAND_2GHZ) {
1916 		chan_fbin = (channel->center_freq - 2300) * 10;
1917 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1918 	} else {
1919 		chan_fbin = (channel->center_freq - 4900) * 10;
1920 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1921 	}
1922 
1923 	/* Check if any spur_chan_fbin from EEPROM is
1924 	 * within our current channel's spur detection range */
1925 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1926 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1927 	/* XXX: Half/Quarter channels ?*/
1928 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1929 		spur_detection_window *= 2;
1930 
1931 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1932 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1933 
1934 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1935 		 * so it's zero if we got nothing from EEPROM */
1936 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1937 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1938 			break;
1939 		}
1940 
1941 		if ((chan_fbin - spur_detection_window <=
1942 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1943 		(chan_fbin + spur_detection_window >=
1944 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1945 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1946 			break;
1947 		}
1948 	}
1949 
1950 	/* We need to enable spur filter for this channel */
1951 	if (spur_chan_fbin) {
1952 		spur_offset = spur_chan_fbin - chan_fbin;
1953 		/*
1954 		 * Calculate deltas:
1955 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1956 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1957 		 * Note: Both values have 100Hz resolution
1958 		 */
1959 		switch (ah->ah_bwmode) {
1960 		case AR5K_BWMODE_40MHZ:
1961 			/* Both sample_freq and chip_freq are 80MHz */
1962 			spur_delta_phase = (spur_offset << 16) / 25;
1963 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1964 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1965 			break;
1966 		case AR5K_BWMODE_10MHZ:
1967 			/* Both sample_freq and chip_freq are 20MHz (?) */
1968 			spur_delta_phase = (spur_offset << 18) / 25;
1969 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1970 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1971 			break;
1972 		case AR5K_BWMODE_5MHZ:
1973 			/* Both sample_freq and chip_freq are 10MHz (?) */
1974 			spur_delta_phase = (spur_offset << 19) / 25;
1975 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1976 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1977 			break;
1978 		default:
1979 			if (channel->band == NL80211_BAND_5GHZ) {
1980 				/* Both sample_freq and chip_freq are 40MHz */
1981 				spur_delta_phase = (spur_offset << 17) / 25;
1982 				spur_freq_sigma_delta =
1983 						(spur_delta_phase >> 10);
1984 				symbol_width =
1985 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1986 			} else {
1987 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1988 				 * (for b compatibility) */
1989 				spur_delta_phase = (spur_offset << 17) / 25;
1990 				spur_freq_sigma_delta =
1991 						(spur_offset << 8) / 55;
1992 				symbol_width =
1993 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1994 			}
1995 			break;
1996 		}
1997 
1998 		/* Calculate pilot and magnitude masks */
1999 
2000 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2001 		 * and divide by symbol_width to find how many symbols we have
2002 		 * Note: number of symbols is scaled up by 16 */
2003 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2004 
2005 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2006 		if (!(num_symbols_x16 & 0xF))
2007 			/* _X_ */
2008 			num_symbol_offsets = 3;
2009 		else
2010 			/* _xx_ */
2011 			num_symbol_offsets = 4;
2012 
2013 		for (i = 0; i < num_symbol_offsets; i++) {
2014 
2015 			/* Calculate pilot mask */
2016 			s32 curr_sym_off =
2017 				(num_symbols_x16 / 16) + i + 25;
2018 
2019 			/* Pilot magnitude mask seems to be a way to
2020 			 * declare the boundaries for our detection
2021 			 * window or something, it's 2 for the middle
2022 			 * value(s) where the symbol is expected to be
2023 			 * and 1 on the boundary values */
2024 			u8 plt_mag_map =
2025 				(i == 0 || i == (num_symbol_offsets - 1))
2026 								? 1 : 2;
2027 
2028 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2029 				if (curr_sym_off <= 25)
2030 					pilot_mask[0] |= 1 << curr_sym_off;
2031 				else if (curr_sym_off >= 27)
2032 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2033 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2034 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2035 
2036 			/* Calculate magnitude mask (for viterbi decoder) */
2037 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2038 				mag_mask[0] |=
2039 					plt_mag_map << (curr_sym_off + 1) * 2;
2040 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2041 				mag_mask[1] |=
2042 					plt_mag_map << (curr_sym_off - 15) * 2;
2043 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2044 				mag_mask[2] |=
2045 					plt_mag_map << (curr_sym_off - 31) * 2;
2046 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2047 				mag_mask[3] |=
2048 					plt_mag_map << (curr_sym_off - 47) * 2;
2049 
2050 		}
2051 
2052 		/* Write settings on hw to enable spur filter */
2053 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2054 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2055 		/* XXX: Self correlator also ? */
2056 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2057 					AR5K_PHY_IQ_PILOT_MASK_EN |
2058 					AR5K_PHY_IQ_CHAN_MASK_EN |
2059 					AR5K_PHY_IQ_SPUR_FILT_EN);
2060 
2061 		/* Set delta phase and freq sigma delta */
2062 		ath5k_hw_reg_write(ah,
2063 				AR5K_REG_SM(spur_delta_phase,
2064 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2065 				AR5K_REG_SM(spur_freq_sigma_delta,
2066 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2067 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2068 				AR5K_PHY_TIMING_11);
2069 
2070 		/* Write pilot masks */
2071 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2072 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2073 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2074 					pilot_mask[1]);
2075 
2076 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2077 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2078 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2079 					pilot_mask[1]);
2080 
2081 		/* Write magnitude masks */
2082 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2083 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2084 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2085 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2086 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2087 					mag_mask[3]);
2088 
2089 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2090 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2091 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2092 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2093 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2094 					mag_mask[3]);
2095 
2096 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2097 	AR5K_PHY_IQ_SPUR_FILT_EN) {
2098 		/* Clean up spur mitigation settings and disable filter */
2099 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2100 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2101 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2102 					AR5K_PHY_IQ_PILOT_MASK_EN |
2103 					AR5K_PHY_IQ_CHAN_MASK_EN |
2104 					AR5K_PHY_IQ_SPUR_FILT_EN);
2105 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2106 
2107 		/* Clear pilot masks */
2108 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2109 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2110 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2111 					0);
2112 
2113 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2114 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2115 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2116 					0);
2117 
2118 		/* Clear magnitude masks */
2119 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2120 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2121 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2122 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2123 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2124 					0);
2125 
2126 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2127 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2128 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2129 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2130 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2131 					0);
2132 	}
2133 }
2134 
2135 
2136 /*****************\
2137 * Antenna control *
2138 \*****************/
2139 
2140 /**
2141  * DOC: Antenna control
2142  *
2143  * Hw supports up to 14 antennas ! I haven't found any card that implements
2144  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2145  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2146  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2147  *
2148  * We can have a single antenna for RX and multiple antennas for TX.
2149  * RX antenna is our "default" antenna (usually antenna 1) set on
2150  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2151  * (0 for automatic selection, 1 - 14 antenna number).
2152  *
2153  * We can let hw do all the work doing fast antenna diversity for both
2154  * tx and rx or we can do things manually. Here are the options we have
2155  * (all are bits of STA_ID1 register):
2156  *
2157  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2158  * control descriptor, use the default antenna to transmit or else use the last
2159  * antenna on which we received an ACK.
2160  *
2161  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2162  * the antenna on which we got the ACK for that frame.
2163  *
2164  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2165  * one on the TX descriptor.
2166  *
2167  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2168  * (ACKs etc), or else use current antenna (the one we just used for TX).
2169  *
2170  * Using the above we support the following scenarios:
2171  *
2172  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2173  *
2174  * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2175  *
2176  * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2177  *
2178  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2179  *
2180  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2181  *
2182  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2183  *
2184  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2185  *
2186  * Also note that when setting antenna to F on tx descriptor card inverts
2187  * current tx antenna.
2188  */
2189 
2190 /**
2191  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2192  * @ah: The &struct ath5k_hw
2193  * @ant: Antenna number
2194  */
2195 static void
2196 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2197 {
2198 	if (ah->ah_version != AR5K_AR5210)
2199 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2200 }
2201 
2202 /**
2203  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2204  * @ah: The &struct ath5k_hw
2205  * @ee_mode: One of enum ath5k_driver_mode
2206  * @enable: True to enable, false to disable
2207  */
2208 static void
2209 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2210 {
2211 	switch (ee_mode) {
2212 	case AR5K_EEPROM_MODE_11G:
2213 		/* XXX: This is set to
2214 		 * disabled on initvals !!! */
2215 	case AR5K_EEPROM_MODE_11A:
2216 		if (enable)
2217 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2218 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2219 		else
2220 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222 		break;
2223 	case AR5K_EEPROM_MODE_11B:
2224 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226 		break;
2227 	default:
2228 		return;
2229 	}
2230 
2231 	if (enable) {
2232 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2233 				AR5K_PHY_RESTART_DIV_GC, 4);
2234 
2235 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2236 					AR5K_PHY_FAST_ANT_DIV_EN);
2237 	} else {
2238 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2239 				AR5K_PHY_RESTART_DIV_GC, 0);
2240 
2241 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2242 					AR5K_PHY_FAST_ANT_DIV_EN);
2243 	}
2244 }
2245 
2246 /**
2247  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2248  * @ah: The &struct ath5k_hw
2249  * @ee_mode: One of enum ath5k_driver_mode
2250  *
2251  * Switch table comes from EEPROM and includes information on controlling
2252  * the 2 antenna RX attenuators
2253  */
2254 void
2255 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2256 {
2257 	u8 ant0, ant1;
2258 
2259 	/*
2260 	 * In case a fixed antenna was set as default
2261 	 * use the same switch table twice.
2262 	 */
2263 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2264 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2265 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2266 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2267 	else {
2268 		ant0 = AR5K_ANT_SWTABLE_A;
2269 		ant1 = AR5K_ANT_SWTABLE_B;
2270 	}
2271 
2272 	/* Set antenna idle switch table */
2273 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2274 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2275 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2276 			AR5K_PHY_ANT_CTL_TXRX_EN));
2277 
2278 	/* Set antenna switch tables */
2279 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2280 		AR5K_PHY_ANT_SWITCH_TABLE_0);
2281 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2282 		AR5K_PHY_ANT_SWITCH_TABLE_1);
2283 }
2284 
2285 /**
2286  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2287  * @ah: The &struct ath5k_hw
2288  * @ant_mode: One of enum ath5k_ant_mode
2289  */
2290 void
2291 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2292 {
2293 	struct ieee80211_channel *channel = ah->ah_current_channel;
2294 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2295 	bool use_def_for_sg;
2296 	int ee_mode;
2297 	u8 def_ant, tx_ant;
2298 	u32 sta_id1 = 0;
2299 
2300 	/* if channel is not initialized yet we can't set the antennas
2301 	 * so just store the mode. it will be set on the next reset */
2302 	if (channel == NULL) {
2303 		ah->ah_ant_mode = ant_mode;
2304 		return;
2305 	}
2306 
2307 	def_ant = ah->ah_def_ant;
2308 
2309 	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2310 
2311 	switch (ant_mode) {
2312 	case AR5K_ANTMODE_DEFAULT:
2313 		tx_ant = 0;
2314 		use_def_for_tx = false;
2315 		update_def_on_tx = false;
2316 		use_def_for_rts = false;
2317 		use_def_for_sg = false;
2318 		fast_div = true;
2319 		break;
2320 	case AR5K_ANTMODE_FIXED_A:
2321 		def_ant = 1;
2322 		tx_ant = 1;
2323 		use_def_for_tx = true;
2324 		update_def_on_tx = false;
2325 		use_def_for_rts = true;
2326 		use_def_for_sg = true;
2327 		fast_div = false;
2328 		break;
2329 	case AR5K_ANTMODE_FIXED_B:
2330 		def_ant = 2;
2331 		tx_ant = 2;
2332 		use_def_for_tx = true;
2333 		update_def_on_tx = false;
2334 		use_def_for_rts = true;
2335 		use_def_for_sg = true;
2336 		fast_div = false;
2337 		break;
2338 	case AR5K_ANTMODE_SINGLE_AP:
2339 		def_ant = 1;	/* updated on tx */
2340 		tx_ant = 0;
2341 		use_def_for_tx = true;
2342 		update_def_on_tx = true;
2343 		use_def_for_rts = true;
2344 		use_def_for_sg = true;
2345 		fast_div = true;
2346 		break;
2347 	case AR5K_ANTMODE_SECTOR_AP:
2348 		tx_ant = 1;	/* variable */
2349 		use_def_for_tx = false;
2350 		update_def_on_tx = false;
2351 		use_def_for_rts = true;
2352 		use_def_for_sg = false;
2353 		fast_div = false;
2354 		break;
2355 	case AR5K_ANTMODE_SECTOR_STA:
2356 		tx_ant = 1;	/* variable */
2357 		use_def_for_tx = true;
2358 		update_def_on_tx = false;
2359 		use_def_for_rts = true;
2360 		use_def_for_sg = false;
2361 		fast_div = true;
2362 		break;
2363 	case AR5K_ANTMODE_DEBUG:
2364 		def_ant = 1;
2365 		tx_ant = 2;
2366 		use_def_for_tx = false;
2367 		update_def_on_tx = false;
2368 		use_def_for_rts = false;
2369 		use_def_for_sg = false;
2370 		fast_div = false;
2371 		break;
2372 	default:
2373 		return;
2374 	}
2375 
2376 	ah->ah_tx_ant = tx_ant;
2377 	ah->ah_ant_mode = ant_mode;
2378 	ah->ah_def_ant = def_ant;
2379 
2380 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2381 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2382 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2383 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2384 
2385 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2386 
2387 	if (sta_id1)
2388 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2389 
2390 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2391 	/* Note: set diversity before default antenna
2392 	 * because it won't work correctly */
2393 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2394 	ath5k_hw_set_def_antenna(ah, def_ant);
2395 }
2396 
2397 
2398 /****************\
2399 * TX power setup *
2400 \****************/
2401 
2402 /*
2403  * Helper functions
2404  */
2405 
2406 /**
2407  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2408  * @target: X value of the middle point
2409  * @x_left: X value of the left point
2410  * @x_right: X value of the right point
2411  * @y_left: Y value of the left point
2412  * @y_right: Y value of the right point
2413  */
2414 static s16
2415 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2416 					s16 y_left, s16 y_right)
2417 {
2418 	s16 ratio, result;
2419 
2420 	/* Avoid divide by zero and skip interpolation
2421 	 * if we have the same point */
2422 	if ((x_left == x_right) || (y_left == y_right))
2423 		return y_left;
2424 
2425 	/*
2426 	 * Since we use ints and not fps, we need to scale up in
2427 	 * order to get a sane ratio value (or else we 'll eg. get
2428 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2429 	 * to have some accuracy both for 0.5 and 0.25 steps.
2430 	 */
2431 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2432 
2433 	/* Now scale down to be in range */
2434 	result = y_left + (ratio * (target - x_left) / 100);
2435 
2436 	return result;
2437 }
2438 
2439 /**
2440  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2441  * linear PCDAC curve
2442  * @stepL: Left array with y values (pcdac steps)
2443  * @stepR: Right array with y values (pcdac steps)
2444  * @pwrL: Left array with x values (power steps)
2445  * @pwrR: Right array with x values (power steps)
2446  *
2447  * Since we have the top of the curve and we draw the line below
2448  * until we reach 1 (1 pcdac step) we need to know which point
2449  * (x value) that is so that we don't go below x axis and have negative
2450  * pcdac values when creating the curve, or fill the table with zeros.
2451  */
2452 static s16
2453 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2454 				const s16 *pwrL, const s16 *pwrR)
2455 {
2456 	s8 tmp;
2457 	s16 min_pwrL, min_pwrR;
2458 	s16 pwr_i;
2459 
2460 	/* Some vendors write the same pcdac value twice !!! */
2461 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2462 		return max(pwrL[0], pwrR[0]);
2463 
2464 	if (pwrL[0] == pwrL[1])
2465 		min_pwrL = pwrL[0];
2466 	else {
2467 		pwr_i = pwrL[0];
2468 		do {
2469 			pwr_i--;
2470 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2471 							pwrL[0], pwrL[1],
2472 							stepL[0], stepL[1]);
2473 		} while (tmp > 1);
2474 
2475 		min_pwrL = pwr_i;
2476 	}
2477 
2478 	if (pwrR[0] == pwrR[1])
2479 		min_pwrR = pwrR[0];
2480 	else {
2481 		pwr_i = pwrR[0];
2482 		do {
2483 			pwr_i--;
2484 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2485 							pwrR[0], pwrR[1],
2486 							stepR[0], stepR[1]);
2487 		} while (tmp > 1);
2488 
2489 		min_pwrR = pwr_i;
2490 	}
2491 
2492 	/* Keep the right boundary so that it works for both curves */
2493 	return max(min_pwrL, min_pwrR);
2494 }
2495 
2496 /**
2497  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2498  * @pmin: Minimum power value (xmin)
2499  * @pmax: Maximum power value (xmax)
2500  * @pwr: Array of power steps (x values)
2501  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2502  * @num_points: Number of provided points
2503  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2504  * @type: One of enum ath5k_powertable_type (eeprom.h)
2505  *
2506  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2507  * Power to PCDAC curve.
2508  *
2509  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2510  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2511  * PCDAC/PDADC step for each curve is 64 but we can write more than
2512  * one curves on hw so we can go up to 128 (which is the max step we
2513  * can write on the final table).
2514  *
2515  * We write y values (PCDAC/PDADC steps) on hw.
2516  */
2517 static void
2518 ath5k_create_power_curve(s16 pmin, s16 pmax,
2519 			const s16 *pwr, const u8 *vpd,
2520 			u8 num_points,
2521 			u8 *vpd_table, u8 type)
2522 {
2523 	u8 idx[2] = { 0, 1 };
2524 	s16 pwr_i = 2 * pmin;
2525 	int i;
2526 
2527 	if (num_points < 2)
2528 		return;
2529 
2530 	/* We want the whole line, so adjust boundaries
2531 	 * to cover the entire power range. Note that
2532 	 * power values are already 0.25dB so no need
2533 	 * to multiply pwr_i by 2 */
2534 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2535 		pwr_i = pmin;
2536 		pmin = 0;
2537 		pmax = 63;
2538 	}
2539 
2540 	/* Find surrounding turning points (TPs)
2541 	 * and interpolate between them */
2542 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2543 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2544 
2545 		/* We passed the right TP, move to the next set of TPs
2546 		 * if we pass the last TP, extrapolate above using the last
2547 		 * two TPs for ratio */
2548 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2549 			idx[0]++;
2550 			idx[1]++;
2551 		}
2552 
2553 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2554 						pwr[idx[0]], pwr[idx[1]],
2555 						vpd[idx[0]], vpd[idx[1]]);
2556 
2557 		/* Increase by 0.5dB
2558 		 * (0.25 dB units) */
2559 		pwr_i += 2;
2560 	}
2561 }
2562 
2563 /**
2564  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2565  * for a given channel.
2566  * @ah: The &struct ath5k_hw
2567  * @channel: The &struct ieee80211_channel
2568  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2569  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2570  *
2571  * Get the surrounding per-channel power calibration piers
2572  * for a given frequency so that we can interpolate between
2573  * them and come up with an appropriate dataset for our current
2574  * channel.
2575  */
2576 static void
2577 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2578 			struct ieee80211_channel *channel,
2579 			struct ath5k_chan_pcal_info **pcinfo_l,
2580 			struct ath5k_chan_pcal_info **pcinfo_r)
2581 {
2582 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2583 	struct ath5k_chan_pcal_info *pcinfo;
2584 	u8 idx_l, idx_r;
2585 	u8 mode, max, i;
2586 	u32 target = channel->center_freq;
2587 
2588 	idx_l = 0;
2589 	idx_r = 0;
2590 
2591 	switch (channel->hw_value) {
2592 	case AR5K_EEPROM_MODE_11A:
2593 		pcinfo = ee->ee_pwr_cal_a;
2594 		mode = AR5K_EEPROM_MODE_11A;
2595 		break;
2596 	case AR5K_EEPROM_MODE_11B:
2597 		pcinfo = ee->ee_pwr_cal_b;
2598 		mode = AR5K_EEPROM_MODE_11B;
2599 		break;
2600 	case AR5K_EEPROM_MODE_11G:
2601 	default:
2602 		pcinfo = ee->ee_pwr_cal_g;
2603 		mode = AR5K_EEPROM_MODE_11G;
2604 		break;
2605 	}
2606 	max = ee->ee_n_piers[mode] - 1;
2607 
2608 	/* Frequency is below our calibrated
2609 	 * range. Use the lowest power curve
2610 	 * we have */
2611 	if (target < pcinfo[0].freq) {
2612 		idx_l = idx_r = 0;
2613 		goto done;
2614 	}
2615 
2616 	/* Frequency is above our calibrated
2617 	 * range. Use the highest power curve
2618 	 * we have */
2619 	if (target > pcinfo[max].freq) {
2620 		idx_l = idx_r = max;
2621 		goto done;
2622 	}
2623 
2624 	/* Frequency is inside our calibrated
2625 	 * channel range. Pick the surrounding
2626 	 * calibration piers so that we can
2627 	 * interpolate */
2628 	for (i = 0; i <= max; i++) {
2629 
2630 		/* Frequency matches one of our calibration
2631 		 * piers, no need to interpolate, just use
2632 		 * that calibration pier */
2633 		if (pcinfo[i].freq == target) {
2634 			idx_l = idx_r = i;
2635 			goto done;
2636 		}
2637 
2638 		/* We found a calibration pier that's above
2639 		 * frequency, use this pier and the previous
2640 		 * one to interpolate */
2641 		if (target < pcinfo[i].freq) {
2642 			idx_r = i;
2643 			idx_l = idx_r - 1;
2644 			goto done;
2645 		}
2646 	}
2647 
2648 done:
2649 	*pcinfo_l = &pcinfo[idx_l];
2650 	*pcinfo_r = &pcinfo[idx_r];
2651 }
2652 
2653 /**
2654  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2655  * calibration data
2656  * @ah: The &struct ath5k_hw *ah,
2657  * @channel: The &struct ieee80211_channel
2658  * @rates: The &struct ath5k_rate_pcal_info to fill
2659  *
2660  * Get the surrounding per-rate power calibration data
2661  * for a given frequency and interpolate between power
2662  * values to set max target power supported by hw for
2663  * each rate on this frequency.
2664  */
2665 static void
2666 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2667 			struct ieee80211_channel *channel,
2668 			struct ath5k_rate_pcal_info *rates)
2669 {
2670 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2671 	struct ath5k_rate_pcal_info *rpinfo;
2672 	u8 idx_l, idx_r;
2673 	u8 mode, max, i;
2674 	u32 target = channel->center_freq;
2675 
2676 	idx_l = 0;
2677 	idx_r = 0;
2678 
2679 	switch (channel->hw_value) {
2680 	case AR5K_MODE_11A:
2681 		rpinfo = ee->ee_rate_tpwr_a;
2682 		mode = AR5K_EEPROM_MODE_11A;
2683 		break;
2684 	case AR5K_MODE_11B:
2685 		rpinfo = ee->ee_rate_tpwr_b;
2686 		mode = AR5K_EEPROM_MODE_11B;
2687 		break;
2688 	case AR5K_MODE_11G:
2689 	default:
2690 		rpinfo = ee->ee_rate_tpwr_g;
2691 		mode = AR5K_EEPROM_MODE_11G;
2692 		break;
2693 	}
2694 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2695 
2696 	/* Get the surrounding calibration
2697 	 * piers - same as above */
2698 	if (target < rpinfo[0].freq) {
2699 		idx_l = idx_r = 0;
2700 		goto done;
2701 	}
2702 
2703 	if (target > rpinfo[max].freq) {
2704 		idx_l = idx_r = max;
2705 		goto done;
2706 	}
2707 
2708 	for (i = 0; i <= max; i++) {
2709 
2710 		if (rpinfo[i].freq == target) {
2711 			idx_l = idx_r = i;
2712 			goto done;
2713 		}
2714 
2715 		if (target < rpinfo[i].freq) {
2716 			idx_r = i;
2717 			idx_l = idx_r - 1;
2718 			goto done;
2719 		}
2720 	}
2721 
2722 done:
2723 	/* Now interpolate power value, based on the frequency */
2724 	rates->freq = target;
2725 
2726 	rates->target_power_6to24 =
2727 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2728 					rpinfo[idx_r].freq,
2729 					rpinfo[idx_l].target_power_6to24,
2730 					rpinfo[idx_r].target_power_6to24);
2731 
2732 	rates->target_power_36 =
2733 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2734 					rpinfo[idx_r].freq,
2735 					rpinfo[idx_l].target_power_36,
2736 					rpinfo[idx_r].target_power_36);
2737 
2738 	rates->target_power_48 =
2739 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2740 					rpinfo[idx_r].freq,
2741 					rpinfo[idx_l].target_power_48,
2742 					rpinfo[idx_r].target_power_48);
2743 
2744 	rates->target_power_54 =
2745 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2746 					rpinfo[idx_r].freq,
2747 					rpinfo[idx_l].target_power_54,
2748 					rpinfo[idx_r].target_power_54);
2749 }
2750 
2751 /**
2752  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2753  * @ah: the &struct ath5k_hw
2754  * @channel: The &struct ieee80211_channel
2755  *
2756  * Get the max edge power for this channel if
2757  * we have such data from EEPROM's Conformance Test
2758  * Limits (CTL), and limit max power if needed.
2759  */
2760 static void
2761 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2762 			struct ieee80211_channel *channel)
2763 {
2764 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2765 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2766 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2767 	u8 *ctl_val = ee->ee_ctl;
2768 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2769 	s16 edge_pwr = 0;
2770 	u8 rep_idx;
2771 	u8 i, ctl_mode;
2772 	u8 ctl_idx = 0xFF;
2773 	u32 target = channel->center_freq;
2774 
2775 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2776 
2777 	switch (channel->hw_value) {
2778 	case AR5K_MODE_11A:
2779 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2780 			ctl_mode |= AR5K_CTL_TURBO;
2781 		else
2782 			ctl_mode |= AR5K_CTL_11A;
2783 		break;
2784 	case AR5K_MODE_11G:
2785 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2786 			ctl_mode |= AR5K_CTL_TURBOG;
2787 		else
2788 			ctl_mode |= AR5K_CTL_11G;
2789 		break;
2790 	case AR5K_MODE_11B:
2791 		ctl_mode |= AR5K_CTL_11B;
2792 		break;
2793 	default:
2794 		return;
2795 	}
2796 
2797 	for (i = 0; i < ee->ee_ctls; i++) {
2798 		if (ctl_val[i] == ctl_mode) {
2799 			ctl_idx = i;
2800 			break;
2801 		}
2802 	}
2803 
2804 	/* If we have a CTL dataset available grab it and find the
2805 	 * edge power for our frequency */
2806 	if (ctl_idx == 0xFF)
2807 		return;
2808 
2809 	/* Edge powers are sorted by frequency from lower
2810 	 * to higher. Each CTL corresponds to 8 edge power
2811 	 * measurements. */
2812 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2813 
2814 	/* Don't do boundaries check because we
2815 	 * might have more that one bands defined
2816 	 * for this mode */
2817 
2818 	/* Get the edge power that's closer to our
2819 	 * frequency */
2820 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2821 		rep_idx += i;
2822 		if (target <= rep[rep_idx].freq)
2823 			edge_pwr = (s16) rep[rep_idx].edge;
2824 	}
2825 
2826 	if (edge_pwr)
2827 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2828 }
2829 
2830 
2831 /*
2832  * Power to PCDAC table functions
2833  */
2834 
2835 /**
2836  * DOC: Power to PCDAC table functions
2837  *
2838  * For RF5111 we have an XPD -eXternal Power Detector- curve
2839  * for each calibrated channel. Each curve has 0,5dB Power steps
2840  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2841  * exponential function. To recreate the curve we read 11 points
2842  * from eeprom (eeprom.c) and interpolate here.
2843  *
2844  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2845  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2846  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2847  * power steps on x axis and PCDAC steps on y axis and looks like a
2848  * linear function. To recreate the curve and pass the power values
2849  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2850  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2851  * and interpolate here.
2852  *
2853  * For a given channel we get the calibrated points (piers) for it or
2854  * -if we don't have calibration data for this specific channel- from the
2855  * available surrounding channels we have calibration data for, after we do a
2856  * linear interpolation between them. Then since we have our calibrated points
2857  * for this channel, we do again a linear interpolation between them to get the
2858  * whole curve.
2859  *
2860  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2861  */
2862 
2863 /**
2864  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2865  * @ah: The &struct ath5k_hw
2866  * @table_min: Minimum power (x min)
2867  * @table_max: Maximum power (x max)
2868  *
2869  * No further processing is needed for RF5111, the only thing we have to
2870  * do is fill the values below and above calibration range since eeprom data
2871  * may not cover the entire PCDAC table.
2872  */
2873 static void
2874 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2875 							s16 *table_max)
2876 {
2877 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2878 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2879 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2880 	s16	min_pwr, max_pwr;
2881 
2882 	/* Get table boundaries */
2883 	min_pwr = table_min[0];
2884 	pcdac_0 = pcdac_tmp[0];
2885 
2886 	max_pwr = table_max[0];
2887 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2888 
2889 	/* Extrapolate below minimum using pcdac_0 */
2890 	pcdac_i = 0;
2891 	for (i = 0; i < min_pwr; i++)
2892 		pcdac_out[pcdac_i++] = pcdac_0;
2893 
2894 	/* Copy values from pcdac_tmp */
2895 	pwr_idx = min_pwr;
2896 	for (i = 0; pwr_idx <= max_pwr &&
2897 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2898 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2899 		pwr_idx++;
2900 	}
2901 
2902 	/* Extrapolate above maximum */
2903 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2904 		pcdac_out[pcdac_i++] = pcdac_n;
2905 
2906 }
2907 
2908 /**
2909  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2910  * @ah: The &struct ath5k_hw
2911  * @table_min: Minimum power (x min)
2912  * @table_max: Maximum power (x max)
2913  * @pdcurves: Number of pd curves
2914  *
2915  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2916  * RFX112 can have up to 2 curves (one for low txpower range and one for
2917  * higher txpower range). We need to put them both on pcdac_out and place
2918  * them in the correct location. In case we only have one curve available
2919  * just fit it on pcdac_out (it's supposed to cover the entire range of
2920  * available pwr levels since it's always the higher power curve). Extrapolate
2921  * below and above final table if needed.
2922  */
2923 static void
2924 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2925 						s16 *table_max, u8 pdcurves)
2926 {
2927 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2928 	u8	*pcdac_low_pwr;
2929 	u8	*pcdac_high_pwr;
2930 	u8	*pcdac_tmp;
2931 	u8	pwr;
2932 	s16	max_pwr_idx;
2933 	s16	min_pwr_idx;
2934 	s16	mid_pwr_idx = 0;
2935 	/* Edge flag turns on the 7nth bit on the PCDAC
2936 	 * to declare the higher power curve (force values
2937 	 * to be greater than 64). If we only have one curve
2938 	 * we don't need to set this, if we have 2 curves and
2939 	 * fill the table backwards this can also be used to
2940 	 * switch from higher power curve to lower power curve */
2941 	u8	edge_flag;
2942 	int	i;
2943 
2944 	/* When we have only one curve available
2945 	 * that's the higher power curve. If we have
2946 	 * two curves the first is the high power curve
2947 	 * and the next is the low power curve. */
2948 	if (pdcurves > 1) {
2949 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2950 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2951 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2952 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2953 
2954 		/* If table size goes beyond 31.5dB, keep the
2955 		 * upper 31.5dB range when setting tx power.
2956 		 * Note: 126 = 31.5 dB in quarter dB steps */
2957 		if (table_max[0] - table_min[1] > 126)
2958 			min_pwr_idx = table_max[0] - 126;
2959 		else
2960 			min_pwr_idx = table_min[1];
2961 
2962 		/* Since we fill table backwards
2963 		 * start from high power curve */
2964 		pcdac_tmp = pcdac_high_pwr;
2965 
2966 		edge_flag = 0x40;
2967 	} else {
2968 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2969 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2970 		min_pwr_idx = table_min[0];
2971 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2972 		pcdac_tmp = pcdac_high_pwr;
2973 		edge_flag = 0;
2974 	}
2975 
2976 	/* This is used when setting tx power*/
2977 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2978 
2979 	/* Fill Power to PCDAC table backwards */
2980 	pwr = max_pwr_idx;
2981 	for (i = 63; i >= 0; i--) {
2982 		/* Entering lower power range, reset
2983 		 * edge flag and set pcdac_tmp to lower
2984 		 * power curve.*/
2985 		if (edge_flag == 0x40 &&
2986 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2987 			edge_flag = 0x00;
2988 			pcdac_tmp = pcdac_low_pwr;
2989 			pwr = mid_pwr_idx / 2;
2990 		}
2991 
2992 		/* Don't go below 1, extrapolate below if we have
2993 		 * already switched to the lower power curve -or
2994 		 * we only have one curve and edge_flag is zero
2995 		 * anyway */
2996 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2997 			while (i >= 0) {
2998 				pcdac_out[i] = pcdac_out[i + 1];
2999 				i--;
3000 			}
3001 			break;
3002 		}
3003 
3004 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3005 
3006 		/* Extrapolate above if pcdac is greater than
3007 		 * 126 -this can happen because we OR pcdac_out
3008 		 * value with edge_flag on high power curve */
3009 		if (pcdac_out[i] > 126)
3010 			pcdac_out[i] = 126;
3011 
3012 		/* Decrease by a 0.5dB step */
3013 		pwr--;
3014 	}
3015 }
3016 
3017 /**
3018  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3019  * @ah: The &struct ath5k_hw
3020  */
3021 static void
3022 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3023 {
3024 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3025 	int	i;
3026 
3027 	/*
3028 	 * Write TX power values
3029 	 */
3030 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3031 		ath5k_hw_reg_write(ah,
3032 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3033 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3034 			AR5K_PHY_PCDAC_TXPOWER(i));
3035 	}
3036 }
3037 
3038 
3039 /*
3040  * Power to PDADC table functions
3041  */
3042 
3043 /**
3044  * DOC: Power to PDADC table functions
3045  *
3046  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3047  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3048  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3049  * PDADC steps on y axis and looks like an exponential function like the
3050  * RF5111 curve.
3051  *
3052  * To recreate the curves we read the points from eeprom (eeprom.c)
3053  * and interpolate here. Note that in most cases only 2 (higher and lower)
3054  * curves are used (like RF5112) but vendors have the opportunity to include
3055  * all 4 curves on eeprom. The final curve (higher power) has an extra
3056  * point for better accuracy like RF5112.
3057  *
3058  * The process is similar to what we do above for RF5111/5112
3059  */
3060 
3061 /**
3062  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3063  * @ah: The &struct ath5k_hw
3064  * @pwr_min: Minimum power (x min)
3065  * @pwr_max: Maximum power (x max)
3066  * @pdcurves: Number of available curves
3067  *
3068  * Combine the various pd curves and create the final Power to PDADC table
3069  * We can have up to 4 pd curves, we need to do a similar process
3070  * as we do for RF5112. This time we don't have an edge_flag but we
3071  * set the gain boundaries on a separate register.
3072  */
3073 static void
3074 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3075 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3076 {
3077 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3078 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3079 	u8 *pdadc_tmp;
3080 	s16 pdadc_0;
3081 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3082 	u8 pd_gain_overlap;
3083 
3084 	/* Note: Register value is initialized on initvals
3085 	 * there is no feedback from hw.
3086 	 * XXX: What about pd_gain_overlap from EEPROM ? */
3087 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3088 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3089 
3090 	/* Create final PDADC table */
3091 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3092 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3093 
3094 		if (pdg == pdcurves - 1)
3095 			/* 2 dB boundary stretch for last
3096 			 * (higher power) curve */
3097 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3098 		else
3099 			/* Set gain boundary in the middle
3100 			 * between this curve and the next one */
3101 			gain_boundaries[pdg] =
3102 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3103 
3104 		/* Sanity check in case our 2 db stretch got out of
3105 		 * range. */
3106 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3107 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3108 
3109 		/* For the first curve (lower power)
3110 		 * start from 0 dB */
3111 		if (pdg == 0)
3112 			pdadc_0 = 0;
3113 		else
3114 			/* For the other curves use the gain overlap */
3115 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3116 							pd_gain_overlap;
3117 
3118 		/* Force each power step to be at least 0.5 dB */
3119 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3120 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3121 		else
3122 			pwr_step = 1;
3123 
3124 		/* If pdadc_0 is negative, we need to extrapolate
3125 		 * below this pdgain by a number of pwr_steps */
3126 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3127 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3128 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3129 			pdadc_0++;
3130 		}
3131 
3132 		/* Set last pwr level, using gain boundaries */
3133 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3134 		/* Limit it to be inside pwr range */
3135 		table_size = pwr_max[pdg] - pwr_min[pdg];
3136 		max_idx = min(pdadc_n, table_size);
3137 
3138 		/* Fill pdadc_out table */
3139 		while (pdadc_0 < max_idx && pdadc_i < 128)
3140 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3141 
3142 		/* Need to extrapolate above this pdgain? */
3143 		if (pdadc_n <= max_idx)
3144 			continue;
3145 
3146 		/* Force each power step to be at least 0.5 dB */
3147 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3148 			pwr_step = pdadc_tmp[table_size - 1] -
3149 						pdadc_tmp[table_size - 2];
3150 		else
3151 			pwr_step = 1;
3152 
3153 		/* Extrapolate above */
3154 		while ((pdadc_0 < (s16) pdadc_n) &&
3155 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3156 			s16 tmp = pdadc_tmp[table_size - 1] +
3157 					(pdadc_0 - max_idx) * pwr_step;
3158 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3159 			pdadc_0++;
3160 		}
3161 	}
3162 
3163 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3164 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3165 		pdg++;
3166 	}
3167 
3168 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3169 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3170 		pdadc_i++;
3171 	}
3172 
3173 	/* Set gain boundaries */
3174 	ath5k_hw_reg_write(ah,
3175 		AR5K_REG_SM(pd_gain_overlap,
3176 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3177 		AR5K_REG_SM(gain_boundaries[0],
3178 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3179 		AR5K_REG_SM(gain_boundaries[1],
3180 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3181 		AR5K_REG_SM(gain_boundaries[2],
3182 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3183 		AR5K_REG_SM(gain_boundaries[3],
3184 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3185 		AR5K_PHY_TPC_RG5);
3186 
3187 	/* Used for setting rate power table */
3188 	ah->ah_txpower.txp_min_idx = pwr_min[0];
3189 
3190 }
3191 
3192 /**
3193  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3194  * @ah: The &struct ath5k_hw
3195  * @ee_mode: One of enum ath5k_driver_mode
3196  */
3197 static void
3198 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3199 {
3200 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3201 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3202 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3203 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3204 	u32 reg;
3205 	u8 i;
3206 
3207 	/* Select the right pdgain curves */
3208 
3209 	/* Clear current settings */
3210 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3211 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3212 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3213 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3214 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3215 
3216 	/*
3217 	 * Use pd_gains curve from eeprom
3218 	 *
3219 	 * This overrides the default setting from initvals
3220 	 * in case some vendors (e.g. Zcomax) don't use the default
3221 	 * curves. If we don't honor their settings we 'll get a
3222 	 * 5dB (1 * gain overlap ?) drop.
3223 	 */
3224 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3225 
3226 	switch (pdcurves) {
3227 	case 3:
3228 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3229 		fallthrough;
3230 	case 2:
3231 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3232 		fallthrough;
3233 	case 1:
3234 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3235 		break;
3236 	}
3237 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3238 
3239 	/*
3240 	 * Write TX power values
3241 	 */
3242 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3243 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3244 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3245 	}
3246 }
3247 
3248 
3249 /*
3250  * Common code for PCDAC/PDADC tables
3251  */
3252 
3253 /**
3254  * ath5k_setup_channel_powertable() - Set up power table for this channel
3255  * @ah: The &struct ath5k_hw
3256  * @channel: The &struct ieee80211_channel
3257  * @ee_mode: One of enum ath5k_driver_mode
3258  * @type: One of enum ath5k_powertable_type (eeprom.h)
3259  *
3260  * This is the main function that uses all of the above
3261  * to set PCDAC/PDADC table on hw for the current channel.
3262  * This table is used for tx power calibration on the baseband,
3263  * without it we get weird tx power levels and in some cases
3264  * distorted spectral mask
3265  */
3266 static int
3267 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3268 			struct ieee80211_channel *channel,
3269 			u8 ee_mode, u8 type)
3270 {
3271 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3272 	struct ath5k_chan_pcal_info *pcinfo_L;
3273 	struct ath5k_chan_pcal_info *pcinfo_R;
3274 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3275 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3276 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3277 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3278 	u8 *tmpL;
3279 	u8 *tmpR;
3280 	u32 target = channel->center_freq;
3281 	int pdg, i;
3282 
3283 	/* Get surrounding freq piers for this channel */
3284 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3285 						&pcinfo_L,
3286 						&pcinfo_R);
3287 
3288 	/* Loop over pd gain curves on
3289 	 * surrounding freq piers by index */
3290 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3291 
3292 		/* Fill curves in reverse order
3293 		 * from lower power (max gain)
3294 		 * to higher power. Use curve -> idx
3295 		 * backmapping we did on eeprom init */
3296 		u8 idx = pdg_curve_to_idx[pdg];
3297 
3298 		/* Grab the needed curves by index */
3299 		pdg_L = &pcinfo_L->pd_curves[idx];
3300 		pdg_R = &pcinfo_R->pd_curves[idx];
3301 
3302 		/* Initialize the temp tables */
3303 		tmpL = ah->ah_txpower.tmpL[pdg];
3304 		tmpR = ah->ah_txpower.tmpR[pdg];
3305 
3306 		/* Set curve's x boundaries and create
3307 		 * curves so that they cover the same
3308 		 * range (if we don't do that one table
3309 		 * will have values on some range and the
3310 		 * other one won't have any so interpolation
3311 		 * will fail) */
3312 		table_min[pdg] = min(pdg_L->pd_pwr[0],
3313 					pdg_R->pd_pwr[0]) / 2;
3314 
3315 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3316 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3317 
3318 		/* Now create the curves on surrounding channels
3319 		 * and interpolate if needed to get the final
3320 		 * curve for this gain on this channel */
3321 		switch (type) {
3322 		case AR5K_PWRTABLE_LINEAR_PCDAC:
3323 			/* Override min/max so that we don't loose
3324 			 * accuracy (don't divide by 2) */
3325 			table_min[pdg] = min(pdg_L->pd_pwr[0],
3326 						pdg_R->pd_pwr[0]);
3327 
3328 			table_max[pdg] =
3329 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3330 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3331 
3332 			/* Override minimum so that we don't get
3333 			 * out of bounds while extrapolating
3334 			 * below. Don't do this when we have 2
3335 			 * curves and we are on the high power curve
3336 			 * because table_min is ok in this case */
3337 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3338 
3339 				table_min[pdg] =
3340 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3341 								pdg_R->pd_step,
3342 								pdg_L->pd_pwr,
3343 								pdg_R->pd_pwr);
3344 
3345 				/* Don't go too low because we will
3346 				 * miss the upper part of the curve.
3347 				 * Note: 126 = 31.5dB (max power supported)
3348 				 * in 0.25dB units */
3349 				if (table_max[pdg] - table_min[pdg] > 126)
3350 					table_min[pdg] = table_max[pdg] - 126;
3351 			}
3352 
3353 			fallthrough;
3354 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3355 		case AR5K_PWRTABLE_PWR_TO_PDADC:
3356 
3357 			ath5k_create_power_curve(table_min[pdg],
3358 						table_max[pdg],
3359 						pdg_L->pd_pwr,
3360 						pdg_L->pd_step,
3361 						pdg_L->pd_points, tmpL, type);
3362 
3363 			/* We are in a calibration
3364 			 * pier, no need to interpolate
3365 			 * between freq piers */
3366 			if (pcinfo_L == pcinfo_R)
3367 				continue;
3368 
3369 			ath5k_create_power_curve(table_min[pdg],
3370 						table_max[pdg],
3371 						pdg_R->pd_pwr,
3372 						pdg_R->pd_step,
3373 						pdg_R->pd_points, tmpR, type);
3374 			break;
3375 		default:
3376 			return -EINVAL;
3377 		}
3378 
3379 		/* Interpolate between curves
3380 		 * of surrounding freq piers to
3381 		 * get the final curve for this
3382 		 * pd gain. Re-use tmpL for interpolation
3383 		 * output */
3384 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3385 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3386 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3387 							(s16) pcinfo_L->freq,
3388 							(s16) pcinfo_R->freq,
3389 							(s16) tmpL[i],
3390 							(s16) tmpR[i]);
3391 		}
3392 	}
3393 
3394 	/* Now we have a set of curves for this
3395 	 * channel on tmpL (x range is table_max - table_min
3396 	 * and y values are tmpL[pdg][]) sorted in the same
3397 	 * order as EEPROM (because we've used the backmapping).
3398 	 * So for RF5112 it's from higher power to lower power
3399 	 * and for RF2413 it's from lower power to higher power.
3400 	 * For RF5111 we only have one curve. */
3401 
3402 	/* Fill min and max power levels for this
3403 	 * channel by interpolating the values on
3404 	 * surrounding channels to complete the dataset */
3405 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3406 					(s16) pcinfo_L->freq,
3407 					(s16) pcinfo_R->freq,
3408 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3409 
3410 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3411 					(s16) pcinfo_L->freq,
3412 					(s16) pcinfo_R->freq,
3413 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3414 
3415 	/* Fill PCDAC/PDADC table */
3416 	switch (type) {
3417 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3418 		/* For RF5112 we can have one or two curves
3419 		 * and each curve covers a certain power lvl
3420 		 * range so we need to do some more processing */
3421 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3422 						ee->ee_pd_gains[ee_mode]);
3423 
3424 		/* Set txp.offset so that we can
3425 		 * match max power value with max
3426 		 * table index */
3427 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3428 		break;
3429 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3430 		/* We are done for RF5111 since it has only
3431 		 * one curve, just fit the curve on the table */
3432 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3433 
3434 		/* No rate powertable adjustment for RF5111 */
3435 		ah->ah_txpower.txp_min_idx = 0;
3436 		ah->ah_txpower.txp_offset = 0;
3437 		break;
3438 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3439 		/* Set PDADC boundaries and fill
3440 		 * final PDADC table */
3441 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3442 						ee->ee_pd_gains[ee_mode]);
3443 
3444 		/* Set txp.offset, note that table_min
3445 		 * can be negative */
3446 		ah->ah_txpower.txp_offset = table_min[0];
3447 		break;
3448 	default:
3449 		return -EINVAL;
3450 	}
3451 
3452 	ah->ah_txpower.txp_setup = true;
3453 
3454 	return 0;
3455 }
3456 
3457 /**
3458  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3459  * @ah: The &struct ath5k_hw
3460  * @ee_mode: One of enum ath5k_driver_mode
3461  * @type: One of enum ath5k_powertable_type (eeprom.h)
3462  */
3463 static void
3464 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3465 {
3466 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3467 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3468 	else
3469 		ath5k_write_pcdac_table(ah);
3470 }
3471 
3472 
3473 /**
3474  * DOC: Per-rate tx power setting
3475  *
3476  * This is the code that sets the desired tx power limit (below
3477  * maximum) on hw for each rate (we also have TPC that sets
3478  * power per packet type). We do that by providing an index on the
3479  * PCDAC/PDADC table we set up above, for each rate.
3480  *
3481  * For now we only limit txpower based on maximum tx power
3482  * supported by hw (what's inside rate_info) + conformance test
3483  * limits. We need to limit this even more, based on regulatory domain
3484  * etc to be safe. Normally this is done from above so we don't care
3485  * here, all we care is that the tx power we set will be O.K.
3486  * for the hw (e.g. won't create noise on PA etc).
3487  *
3488  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3489  * x values) and is indexed as follows:
3490  * rates[0] - rates[7] -> OFDM rates
3491  * rates[8] - rates[14] -> CCK rates
3492  * rates[15] -> XR rates (they all have the same power)
3493  */
3494 
3495 /**
3496  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3497  * @ah: The &struct ath5k_hw
3498  * @max_pwr: The maximum tx power requested in 0.5dB steps
3499  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3500  * @ee_mode: One of enum ath5k_driver_mode
3501  */
3502 static void
3503 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3504 			struct ath5k_rate_pcal_info *rate_info,
3505 			u8 ee_mode)
3506 {
3507 	unsigned int i;
3508 	u16 *rates;
3509 	s16 rate_idx_scaled = 0;
3510 
3511 	/* max_pwr is power level we got from driver/user in 0.5dB
3512 	 * units, switch to 0.25dB units so we can compare */
3513 	max_pwr *= 2;
3514 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3515 
3516 	/* apply rate limits */
3517 	rates = ah->ah_txpower.txp_rates_power_table;
3518 
3519 	/* OFDM rates 6 to 24Mb/s */
3520 	for (i = 0; i < 5; i++)
3521 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3522 
3523 	/* Rest OFDM rates */
3524 	rates[5] = min(rates[0], rate_info->target_power_36);
3525 	rates[6] = min(rates[0], rate_info->target_power_48);
3526 	rates[7] = min(rates[0], rate_info->target_power_54);
3527 
3528 	/* CCK rates */
3529 	/* 1L */
3530 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3531 	/* 2L */
3532 	rates[9] = min(rates[0], rate_info->target_power_36);
3533 	/* 2S */
3534 	rates[10] = min(rates[0], rate_info->target_power_36);
3535 	/* 5L */
3536 	rates[11] = min(rates[0], rate_info->target_power_48);
3537 	/* 5S */
3538 	rates[12] = min(rates[0], rate_info->target_power_48);
3539 	/* 11L */
3540 	rates[13] = min(rates[0], rate_info->target_power_54);
3541 	/* 11S */
3542 	rates[14] = min(rates[0], rate_info->target_power_54);
3543 
3544 	/* XR rates */
3545 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3546 
3547 	/* CCK rates have different peak to average ratio
3548 	 * so we have to tweak their power so that gainf
3549 	 * correction works ok. For this we use OFDM to
3550 	 * CCK delta from eeprom */
3551 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3552 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3553 		for (i = 8; i <= 15; i++)
3554 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3555 
3556 	/* Save min/max and current tx power for this channel
3557 	 * in 0.25dB units.
3558 	 *
3559 	 * Note: We use rates[0] for current tx power because
3560 	 * it covers most of the rates, in most cases. It's our
3561 	 * tx power limit and what the user expects to see. */
3562 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3563 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3564 
3565 	/* Set max txpower for correct OFDM operation on all rates
3566 	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3567 	 * gain probe and it's in 0.5dB units */
3568 	ah->ah_txpower.txp_ofdm = rates[7];
3569 
3570 	/* Now that we have all rates setup use table offset to
3571 	 * match the power range set by user with the power indices
3572 	 * on PCDAC/PDADC table */
3573 	for (i = 0; i < 16; i++) {
3574 		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3575 		/* Don't get out of bounds */
3576 		if (rate_idx_scaled > 63)
3577 			rate_idx_scaled = 63;
3578 		if (rate_idx_scaled < 0)
3579 			rate_idx_scaled = 0;
3580 		rates[i] = rate_idx_scaled;
3581 	}
3582 }
3583 
3584 
3585 /**
3586  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3587  * @ah: The &struct ath5k_hw
3588  * @channel: The &struct ieee80211_channel
3589  * @txpower: Requested tx power in 0.5dB steps
3590  *
3591  * Combines all of the above to set the requested tx power limit
3592  * on hw.
3593  */
3594 static int
3595 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3596 		 u8 txpower)
3597 {
3598 	struct ath5k_rate_pcal_info rate_info;
3599 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3600 	int ee_mode;
3601 	u8 type;
3602 	int ret;
3603 
3604 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3605 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3606 		return -EINVAL;
3607 	}
3608 
3609 	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3610 
3611 	/* Initialize TX power table */
3612 	switch (ah->ah_radio) {
3613 	case AR5K_RF5110:
3614 		/* TODO */
3615 		return 0;
3616 	case AR5K_RF5111:
3617 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3618 		break;
3619 	case AR5K_RF5112:
3620 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3621 		break;
3622 	case AR5K_RF2413:
3623 	case AR5K_RF5413:
3624 	case AR5K_RF2316:
3625 	case AR5K_RF2317:
3626 	case AR5K_RF2425:
3627 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3628 		break;
3629 	default:
3630 		return -EINVAL;
3631 	}
3632 
3633 	/*
3634 	 * If we don't change channel/mode skip tx powertable calculation
3635 	 * and use the cached one.
3636 	 */
3637 	if (!ah->ah_txpower.txp_setup ||
3638 	    (channel->hw_value != curr_channel->hw_value) ||
3639 	    (channel->center_freq != curr_channel->center_freq)) {
3640 		/* Reset TX power values but preserve requested
3641 		 * tx power from above */
3642 		int requested_txpower = ah->ah_txpower.txp_requested;
3643 
3644 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3645 
3646 		/* Restore TPC setting and requested tx power */
3647 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3648 
3649 		ah->ah_txpower.txp_requested = requested_txpower;
3650 
3651 		/* Calculate the powertable */
3652 		ret = ath5k_setup_channel_powertable(ah, channel,
3653 							ee_mode, type);
3654 		if (ret)
3655 			return ret;
3656 	}
3657 
3658 	/* Write table on hw */
3659 	ath5k_write_channel_powertable(ah, ee_mode, type);
3660 
3661 	/* Limit max power if we have a CTL available */
3662 	ath5k_get_max_ctl_power(ah, channel);
3663 
3664 	/* FIXME: Antenna reduction stuff */
3665 
3666 	/* FIXME: Limit power on turbo modes */
3667 
3668 	/* FIXME: TPC scale reduction */
3669 
3670 	/* Get surrounding channels for per-rate power table
3671 	 * calibration */
3672 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3673 
3674 	/* Setup rate power table */
3675 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3676 
3677 	/* Write rate power table on hw */
3678 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3679 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3680 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3681 
3682 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3683 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3684 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3685 
3686 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3687 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3688 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3689 
3690 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3691 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3692 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3693 
3694 	/* FIXME: TPC support */
3695 	if (ah->ah_txpower.txp_tpc) {
3696 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3697 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3698 
3699 		ath5k_hw_reg_write(ah,
3700 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3701 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3702 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3703 			AR5K_TPC);
3704 	} else {
3705 		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3706 			AR5K_PHY_TXPOWER_RATE_MAX);
3707 	}
3708 
3709 	return 0;
3710 }
3711 
3712 /**
3713  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3714  * @ah: The &struct ath5k_hw
3715  * @txpower: The requested tx power limit in 0.5dB steps
3716  *
3717  * This function provides access to ath5k_hw_txpower to the driver in
3718  * case user or an application changes it while PHY is running.
3719  */
3720 int
3721 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3722 {
3723 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3724 		"changing txpower to %d\n", txpower);
3725 
3726 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3727 }
3728 
3729 
3730 /*************\
3731  Init function
3732 \*************/
3733 
3734 /**
3735  * ath5k_hw_phy_init() - Initialize PHY
3736  * @ah: The &struct ath5k_hw
3737  * @channel: The @struct ieee80211_channel
3738  * @mode: One of enum ath5k_driver_mode
3739  * @fast: Try a fast channel switch instead
3740  *
3741  * This is the main function used during reset to initialize PHY
3742  * or do a fast channel change if possible.
3743  *
3744  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3745  * warm reset state !
3746  */
3747 int
3748 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3749 		      u8 mode, bool fast)
3750 {
3751 	struct ieee80211_channel *curr_channel;
3752 	int ret, i;
3753 	u32 phy_tst1;
3754 	ret = 0;
3755 
3756 	/*
3757 	 * Sanity check for fast flag
3758 	 * Don't try fast channel change when changing modulation
3759 	 * mode/band. We check for chip compatibility on
3760 	 * ath5k_hw_reset.
3761 	 */
3762 	curr_channel = ah->ah_current_channel;
3763 	if (fast && (channel->hw_value != curr_channel->hw_value))
3764 		return -EINVAL;
3765 
3766 	/*
3767 	 * On fast channel change we only set the synth parameters
3768 	 * while PHY is running, enable calibration and skip the rest.
3769 	 */
3770 	if (fast) {
3771 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3772 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3773 		for (i = 0; i < 100; i++) {
3774 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3775 				break;
3776 			udelay(5);
3777 		}
3778 		/* Failed */
3779 		if (i >= 100)
3780 			return -EIO;
3781 
3782 		/* Set channel and wait for synth */
3783 		ret = ath5k_hw_channel(ah, channel);
3784 		if (ret)
3785 			return ret;
3786 
3787 		ath5k_hw_wait_for_synth(ah, channel);
3788 	}
3789 
3790 	/*
3791 	 * Set TX power
3792 	 *
3793 	 * Note: We need to do that before we set
3794 	 * RF buffer settings on 5211/5212+ so that we
3795 	 * properly set curve indices.
3796 	 */
3797 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3798 					ah->ah_txpower.txp_requested * 2 :
3799 					AR5K_TUNE_MAX_TXPOWER);
3800 	if (ret)
3801 		return ret;
3802 
3803 	/* Write OFDM timings on 5212*/
3804 	if (ah->ah_version == AR5K_AR5212 &&
3805 		channel->hw_value != AR5K_MODE_11B) {
3806 
3807 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3808 		if (ret)
3809 			return ret;
3810 
3811 		/* Spur info is available only from EEPROM versions
3812 		 * greater than 5.3, but the EEPROM routines will use
3813 		 * static values for older versions */
3814 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3815 			ath5k_hw_set_spur_mitigation_filter(ah,
3816 							    channel);
3817 	}
3818 
3819 	/* If we used fast channel switching
3820 	 * we are done, release RF bus and
3821 	 * fire up NF calibration.
3822 	 *
3823 	 * Note: Only NF calibration due to
3824 	 * channel change, not AGC calibration
3825 	 * since AGC is still running !
3826 	 */
3827 	if (fast) {
3828 		/*
3829 		 * Release RF Bus grant
3830 		 */
3831 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3832 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3833 
3834 		/*
3835 		 * Start NF calibration
3836 		 */
3837 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3838 					AR5K_PHY_AGCCTL_NF);
3839 
3840 		return ret;
3841 	}
3842 
3843 	/*
3844 	 * For 5210 we do all initialization using
3845 	 * initvals, so we don't have to modify
3846 	 * any settings (5210 also only supports
3847 	 * a/aturbo modes)
3848 	 */
3849 	if (ah->ah_version != AR5K_AR5210) {
3850 
3851 		/*
3852 		 * Write initial RF gain settings
3853 		 * This should work for both 5111/5112
3854 		 */
3855 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3856 		if (ret)
3857 			return ret;
3858 
3859 		usleep_range(1000, 1500);
3860 
3861 		/*
3862 		 * Write RF buffer
3863 		 */
3864 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3865 		if (ret)
3866 			return ret;
3867 
3868 		/*Enable/disable 802.11b mode on 5111
3869 		(enable 2111 frequency converter + CCK)*/
3870 		if (ah->ah_radio == AR5K_RF5111) {
3871 			if (mode == AR5K_MODE_11B)
3872 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3873 				    AR5K_TXCFG_B_MODE);
3874 			else
3875 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3876 				    AR5K_TXCFG_B_MODE);
3877 		}
3878 
3879 	} else if (ah->ah_version == AR5K_AR5210) {
3880 		usleep_range(1000, 1500);
3881 		/* Disable phy and wait */
3882 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3883 		usleep_range(1000, 1500);
3884 	}
3885 
3886 	/* Set channel on PHY */
3887 	ret = ath5k_hw_channel(ah, channel);
3888 	if (ret)
3889 		return ret;
3890 
3891 	/*
3892 	 * Enable the PHY and wait until completion
3893 	 * This includes BaseBand and Synthesizer
3894 	 * activation.
3895 	 */
3896 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3897 
3898 	ath5k_hw_wait_for_synth(ah, channel);
3899 
3900 	/*
3901 	 * Perform ADC test to see if baseband is ready
3902 	 * Set tx hold and check adc test register
3903 	 */
3904 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3905 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3906 	for (i = 0; i <= 20; i++) {
3907 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3908 			break;
3909 		usleep_range(200, 250);
3910 	}
3911 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3912 
3913 	/*
3914 	 * Start automatic gain control calibration
3915 	 *
3916 	 * During AGC calibration RX path is re-routed to
3917 	 * a power detector so we don't receive anything.
3918 	 *
3919 	 * This method is used to calibrate some static offsets
3920 	 * used together with on-the fly I/Q calibration (the
3921 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3922 	 * interrupt rx path.
3923 	 *
3924 	 * While rx path is re-routed to the power detector we also
3925 	 * start a noise floor calibration to measure the
3926 	 * card's noise floor (the noise we measure when we are not
3927 	 * transmitting or receiving anything).
3928 	 *
3929 	 * If we are in a noisy environment, AGC calibration may time
3930 	 * out and/or noise floor calibration might timeout.
3931 	 */
3932 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3933 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3934 
3935 	/* At the same time start I/Q calibration for QAM constellation
3936 	 * -no need for CCK- */
3937 	ah->ah_iq_cal_needed = false;
3938 	if (!(mode == AR5K_MODE_11B)) {
3939 		ah->ah_iq_cal_needed = true;
3940 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3941 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3942 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3943 				AR5K_PHY_IQ_RUN);
3944 	}
3945 
3946 	/* Wait for gain calibration to finish (we check for I/Q calibration
3947 	 * during ath5k_phy_calibrate) */
3948 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3949 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3950 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3951 			channel->center_freq);
3952 	}
3953 
3954 	/* Restore antenna mode */
3955 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3956 
3957 	return ret;
3958 }
3959