xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision 63dc02bd)
1 /*
2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 /***********************\
22 * PHY related functions *
23 \***********************/
24 
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "rfbuffer.h"
32 #include "rfgain.h"
33 #include "../regd.h"
34 
35 
36 /**
37  * DOC: PHY related functions
38  *
39  * Here we handle the low-level functions related to baseband
40  * and analog frontend (RF) parts. This is by far the most complex
41  * part of the hw code so make sure you know what you are doing.
42  *
43  * Here is a list of what this is all about:
44  *
45  * - Channel setting/switching
46  *
47  * - Automatic Gain Control (AGC) calibration
48  *
49  * - Noise Floor calibration
50  *
51  * - I/Q imbalance calibration (QAM correction)
52  *
53  * - Calibration due to thermal changes (gain_F)
54  *
55  * - Spur noise mitigation
56  *
57  * - RF/PHY initialization for the various operating modes and bwmodes
58  *
59  * - Antenna control
60  *
61  * - TX power control per channel/rate/packet type
62  *
63  * Also have in mind we never got documentation for most of these
64  * functions, what we have comes mostly from Atheros's code, reverse
65  * engineering and patent docs/presentations etc.
66  */
67 
68 
69 /******************\
70 * Helper functions *
71 \******************/
72 
73 /**
74  * ath5k_hw_radio_revision() - Get the PHY Chip revision
75  * @ah: The &struct ath5k_hw
76  * @band: One of enum ieee80211_band
77  *
78  * Returns the revision number of a 2GHz, 5GHz or single chip
79  * radio.
80  */
81 u16
82 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
83 {
84 	unsigned int i;
85 	u32 srev;
86 	u16 ret;
87 
88 	/*
89 	 * Set the radio chip access register
90 	 */
91 	switch (band) {
92 	case IEEE80211_BAND_2GHZ:
93 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
94 		break;
95 	case IEEE80211_BAND_5GHZ:
96 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
97 		break;
98 	default:
99 		return 0;
100 	}
101 
102 	usleep_range(2000, 2500);
103 
104 	/* ...wait until PHY is ready and read the selected radio revision */
105 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
106 
107 	for (i = 0; i < 8; i++)
108 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
109 
110 	if (ah->ah_version == AR5K_AR5210) {
111 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
112 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
113 	} else {
114 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
115 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
116 				((srev & 0x0f) << 4), 8);
117 	}
118 
119 	/* Reset to the 5GHz mode */
120 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
121 
122 	return ret;
123 }
124 
125 /**
126  * ath5k_channel_ok() - Check if a channel is supported by the hw
127  * @ah: The &struct ath5k_hw
128  * @channel: The &struct ieee80211_channel
129  *
130  * Note: We don't do any regulatory domain checks here, it's just
131  * a sanity check.
132  */
133 bool
134 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
135 {
136 	u16 freq = channel->center_freq;
137 
138 	/* Check if the channel is in our supported range */
139 	if (channel->band == IEEE80211_BAND_2GHZ) {
140 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
141 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
142 			return true;
143 	} else if (channel->band == IEEE80211_BAND_5GHZ)
144 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
145 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
146 			return true;
147 
148 	return false;
149 }
150 
151 /**
152  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
153  * @ah: The &struct ath5k_hw
154  * @channel: The &struct ieee80211_channel
155  */
156 bool
157 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
158 				struct ieee80211_channel *channel)
159 {
160 	u8 refclk_freq;
161 
162 	if ((ah->ah_radio == AR5K_RF5112) ||
163 	(ah->ah_radio == AR5K_RF5413) ||
164 	(ah->ah_radio == AR5K_RF2413) ||
165 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
166 		refclk_freq = 40;
167 	else
168 		refclk_freq = 32;
169 
170 	if ((channel->center_freq % refclk_freq != 0) &&
171 	((channel->center_freq % refclk_freq < 10) ||
172 	(channel->center_freq % refclk_freq > 22)))
173 		return true;
174 	else
175 		return false;
176 }
177 
178 /**
179  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
180  * @ah: The &struct ath5k_hw
181  * @rf_regs: The struct ath5k_rf_reg
182  * @val: New value
183  * @reg_id: RF register ID
184  * @set: Indicate we need to swap data
185  *
186  * This is an internal function used to modify RF Banks before
187  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
188  * infos.
189  */
190 static unsigned int
191 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
192 					u32 val, u8 reg_id, bool set)
193 {
194 	const struct ath5k_rf_reg *rfreg = NULL;
195 	u8 offset, bank, num_bits, col, position;
196 	u16 entry;
197 	u32 mask, data, last_bit, bits_shifted, first_bit;
198 	u32 *rfb;
199 	s32 bits_left;
200 	int i;
201 
202 	data = 0;
203 	rfb = ah->ah_rf_banks;
204 
205 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
206 		if (rf_regs[i].index == reg_id) {
207 			rfreg = &rf_regs[i];
208 			break;
209 		}
210 	}
211 
212 	if (rfb == NULL || rfreg == NULL) {
213 		ATH5K_PRINTF("Rf register not found!\n");
214 		/* should not happen */
215 		return 0;
216 	}
217 
218 	bank = rfreg->bank;
219 	num_bits = rfreg->field.len;
220 	first_bit = rfreg->field.pos;
221 	col = rfreg->field.col;
222 
223 	/* first_bit is an offset from bank's
224 	 * start. Since we have all banks on
225 	 * the same array, we use this offset
226 	 * to mark each bank's start */
227 	offset = ah->ah_offset[bank];
228 
229 	/* Boundary check */
230 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
231 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
232 		return 0;
233 	}
234 
235 	entry = ((first_bit - 1) / 8) + offset;
236 	position = (first_bit - 1) % 8;
237 
238 	if (set)
239 		data = ath5k_hw_bitswap(val, num_bits);
240 
241 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
242 	     position = 0, entry++) {
243 
244 		last_bit = (position + bits_left > 8) ? 8 :
245 					position + bits_left;
246 
247 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
248 								(col * 8);
249 
250 		if (set) {
251 			rfb[entry] &= ~mask;
252 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
253 			data >>= (8 - position);
254 		} else {
255 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
256 				<< bits_shifted;
257 			bits_shifted += last_bit - position;
258 		}
259 
260 		bits_left -= 8 - position;
261 	}
262 
263 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
264 
265 	return data;
266 }
267 
268 /**
269  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
270  * @ah: the &struct ath5k_hw
271  * @channel: the currently set channel upon reset
272  *
273  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
274  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
275  *
276  * Since delta slope is floating point we split it on its exponent and
277  * mantissa and provide these values on hw.
278  *
279  * For more infos i think this patent is related
280  * "http://www.freepatentsonline.com/7184495.html"
281  */
282 static inline int
283 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
284 				struct ieee80211_channel *channel)
285 {
286 	/* Get exponent and mantissa and set it */
287 	u32 coef_scaled, coef_exp, coef_man,
288 		ds_coef_exp, ds_coef_man, clock;
289 
290 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
291 		(channel->hw_value == AR5K_MODE_11B));
292 
293 	/* Get coefficient
294 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
295 	 * we scale coef by shifting clock value by 24 for
296 	 * better precision since we use integers */
297 	switch (ah->ah_bwmode) {
298 	case AR5K_BWMODE_40MHZ:
299 		clock = 40 * 2;
300 		break;
301 	case AR5K_BWMODE_10MHZ:
302 		clock = 40 / 2;
303 		break;
304 	case AR5K_BWMODE_5MHZ:
305 		clock = 40 / 4;
306 		break;
307 	default:
308 		clock = 40;
309 		break;
310 	}
311 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
312 
313 	/* Get exponent
314 	 * ALGO: coef_exp = 14 - highest set bit position */
315 	coef_exp = ilog2(coef_scaled);
316 
317 	/* Doesn't make sense if it's zero*/
318 	if (!coef_scaled || !coef_exp)
319 		return -EINVAL;
320 
321 	/* Note: we've shifted coef_scaled by 24 */
322 	coef_exp = 14 - (coef_exp - 24);
323 
324 
325 	/* Get mantissa (significant digits)
326 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
327 	coef_man = coef_scaled +
328 		(1 << (24 - coef_exp - 1));
329 
330 	/* Calculate delta slope coefficient exponent
331 	 * and mantissa (remove scaling) and set them on hw */
332 	ds_coef_man = coef_man >> (24 - coef_exp);
333 	ds_coef_exp = coef_exp - 16;
334 
335 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
336 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
337 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
339 
340 	return 0;
341 }
342 
343 /**
344  * ath5k_hw_phy_disable() - Disable PHY
345  * @ah: The &struct ath5k_hw
346  */
347 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
348 {
349 	/*Just a try M.F.*/
350 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
351 
352 	return 0;
353 }
354 
355 /**
356  * ath5k_hw_wait_for_synth() - Wait for synth to settle
357  * @ah: The &struct ath5k_hw
358  * @channel: The &struct ieee80211_channel
359  */
360 static void
361 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
362 			struct ieee80211_channel *channel)
363 {
364 	/*
365 	 * On 5211+ read activation -> rx delay
366 	 * and use it (100ns steps).
367 	 */
368 	if (ah->ah_version != AR5K_AR5210) {
369 		u32 delay;
370 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
371 			AR5K_PHY_RX_DELAY_M;
372 		delay = (channel->hw_value == AR5K_MODE_11B) ?
373 			((delay << 2) / 22) : (delay / 10);
374 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
375 			delay = delay << 1;
376 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
377 			delay = delay << 2;
378 		/* XXX: /2 on turbo ? Let's be safe
379 		 * for now */
380 		usleep_range(100 + delay, 100 + (2 * delay));
381 	} else {
382 		usleep_range(1000, 1500);
383 	}
384 }
385 
386 
387 /**********************\
388 * RF Gain optimization *
389 \**********************/
390 
391 /**
392  * DOC: RF Gain optimization
393  *
394  * This code is used to optimize RF gain on different environments
395  * (temperature mostly) based on feedback from a power detector.
396  *
397  * It's only used on RF5111 and RF5112, later RF chips seem to have
398  * auto adjustment on hw -notice they have a much smaller BANK 7 and
399  * no gain optimization ladder-.
400  *
401  * For more infos check out this patent doc
402  * "http://www.freepatentsonline.com/7400691.html"
403  *
404  * This paper describes power drops as seen on the receiver due to
405  * probe packets
406  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
407  * %20of%20Power%20Control.pdf"
408  *
409  * And this is the MadWiFi bug entry related to the above
410  * "http://madwifi-project.org/ticket/1659"
411  * with various measurements and diagrams
412  */
413 
414 /**
415  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
416  * @ah: The &struct ath5k_hw
417  */
418 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
419 {
420 	/* Initialize the gain optimization values */
421 	switch (ah->ah_radio) {
422 	case AR5K_RF5111:
423 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
424 		ah->ah_gain.g_low = 20;
425 		ah->ah_gain.g_high = 35;
426 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
427 		break;
428 	case AR5K_RF5112:
429 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
430 		ah->ah_gain.g_low = 20;
431 		ah->ah_gain.g_high = 85;
432 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
433 		break;
434 	default:
435 		return -EINVAL;
436 	}
437 
438 	return 0;
439 }
440 
441 /**
442  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
443  * @ah: The &struct ath5k_hw
444  *
445  * Schedules a gain probe check on the next transmitted packet.
446  * That means our next packet is going to be sent with lower
447  * tx power and a Peak to Average Power Detector (PAPD) will try
448  * to measure the gain.
449  *
450  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
451  * just after we enable the probe so that we don't mess with
452  * standard traffic.
453  */
454 static void
455 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
456 {
457 
458 	/* Skip if gain calibration is inactive or
459 	 * we already handle a probe request */
460 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
461 		return;
462 
463 	/* Send the packet with 2dB below max power as
464 	 * patent doc suggest */
465 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
466 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
467 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
468 
469 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
470 
471 }
472 
473 /**
474  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
475  * @ah: The &struct ath5k_hw
476  *
477  * Calculate Gain_F measurement correction
478  * based on the current step for RF5112 rev. 2
479  */
480 static u32
481 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
482 {
483 	u32 mix, step;
484 	u32 *rf;
485 	const struct ath5k_gain_opt *go;
486 	const struct ath5k_gain_opt_step *g_step;
487 	const struct ath5k_rf_reg *rf_regs;
488 
489 	/* Only RF5112 Rev. 2 supports it */
490 	if ((ah->ah_radio != AR5K_RF5112) ||
491 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
492 		return 0;
493 
494 	go = &rfgain_opt_5112;
495 	rf_regs = rf_regs_5112a;
496 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
497 
498 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
499 
500 	if (ah->ah_rf_banks == NULL)
501 		return 0;
502 
503 	rf = ah->ah_rf_banks;
504 	ah->ah_gain.g_f_corr = 0;
505 
506 	/* No VGA (Variable Gain Amplifier) override, skip */
507 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508 		return 0;
509 
510 	/* Mix gain stepping */
511 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
512 
513 	/* Mix gain override */
514 	mix = g_step->gos_param[0];
515 
516 	switch (mix) {
517 	case 3:
518 		ah->ah_gain.g_f_corr = step * 2;
519 		break;
520 	case 2:
521 		ah->ah_gain.g_f_corr = (step - 5) * 2;
522 		break;
523 	case 1:
524 		ah->ah_gain.g_f_corr = step;
525 		break;
526 	default:
527 		ah->ah_gain.g_f_corr = 0;
528 		break;
529 	}
530 
531 	return ah->ah_gain.g_f_corr;
532 }
533 
534 /**
535  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536  * @ah: The &struct ath5k_hw
537  *
538  * Check if current gain_F measurement is in the range of our
539  * power detector windows. If we get a measurement outside range
540  * we know it's not accurate (detectors can't measure anything outside
541  * their detection window) so we must ignore it.
542  *
543  * Returns true if readback was O.K. or false on failure
544  */
545 static bool
546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
547 {
548 	const struct ath5k_rf_reg *rf_regs;
549 	u32 step, mix_ovr, level[4];
550 	u32 *rf;
551 
552 	if (ah->ah_rf_banks == NULL)
553 		return false;
554 
555 	rf = ah->ah_rf_banks;
556 
557 	if (ah->ah_radio == AR5K_RF5111) {
558 
559 		rf_regs = rf_regs_5111;
560 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
561 
562 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
563 			false);
564 
565 		level[0] = 0;
566 		level[1] = (step == 63) ? 50 : step + 4;
567 		level[2] = (step != 63) ? 64 : level[0];
568 		level[3] = level[2] + 50;
569 
570 		ah->ah_gain.g_high = level[3] -
571 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
572 		ah->ah_gain.g_low = level[0] +
573 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
574 	} else {
575 
576 		rf_regs = rf_regs_5112;
577 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
578 
579 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
580 			false);
581 
582 		level[0] = level[2] = 0;
583 
584 		if (mix_ovr == 1) {
585 			level[1] = level[3] = 83;
586 		} else {
587 			level[1] = level[3] = 107;
588 			ah->ah_gain.g_high = 55;
589 		}
590 	}
591 
592 	return (ah->ah_gain.g_current >= level[0] &&
593 			ah->ah_gain.g_current <= level[1]) ||
594 		(ah->ah_gain.g_current >= level[2] &&
595 			ah->ah_gain.g_current <= level[3]);
596 }
597 
598 /**
599  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
600  * @ah: The &struct ath5k_hw
601  *
602  * Choose the right target gain based on current gain
603  * and RF gain optimization ladder
604  */
605 static s8
606 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
607 {
608 	const struct ath5k_gain_opt *go;
609 	const struct ath5k_gain_opt_step *g_step;
610 	int ret = 0;
611 
612 	switch (ah->ah_radio) {
613 	case AR5K_RF5111:
614 		go = &rfgain_opt_5111;
615 		break;
616 	case AR5K_RF5112:
617 		go = &rfgain_opt_5112;
618 		break;
619 	default:
620 		return 0;
621 	}
622 
623 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
624 
625 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
626 
627 		/* Reached maximum */
628 		if (ah->ah_gain.g_step_idx == 0)
629 			return -1;
630 
631 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
632 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
633 				ah->ah_gain.g_step_idx > 0;
634 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
635 			ah->ah_gain.g_target -= 2 *
636 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
637 			    g_step->gos_gain);
638 
639 		ret = 1;
640 		goto done;
641 	}
642 
643 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
644 
645 		/* Reached minimum */
646 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
647 			return -2;
648 
649 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
650 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
651 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
652 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
653 			ah->ah_gain.g_target -= 2 *
654 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
655 			    g_step->gos_gain);
656 
657 		ret = 2;
658 		goto done;
659 	}
660 
661 done:
662 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
663 		"ret %d, gain step %u, current gain %u, target gain %u\n",
664 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
665 		ah->ah_gain.g_target);
666 
667 	return ret;
668 }
669 
670 /**
671  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
672  * @ah: The &struct ath5k_hw
673  *
674  * Main callback for thermal RF gain calibration engine
675  * Check for a new gain reading and schedule an adjustment
676  * if needed.
677  *
678  * Returns one of enum ath5k_rfgain codes
679  */
680 enum ath5k_rfgain
681 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
682 {
683 	u32 data, type;
684 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
685 
686 	if (ah->ah_rf_banks == NULL ||
687 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
688 		return AR5K_RFGAIN_INACTIVE;
689 
690 	/* No check requested, either engine is inactive
691 	 * or an adjustment is already requested */
692 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
693 		goto done;
694 
695 	/* Read the PAPD (Peak to Average Power Detector)
696 	 * register */
697 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
698 
699 	/* No probe is scheduled, read gain_F measurement */
700 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
701 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
702 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
703 
704 		/* If tx packet is CCK correct the gain_F measurement
705 		 * by cck ofdm gain delta */
706 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
707 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
708 				ah->ah_gain.g_current +=
709 					ee->ee_cck_ofdm_gain_delta;
710 			else
711 				ah->ah_gain.g_current +=
712 					AR5K_GAIN_CCK_PROBE_CORR;
713 		}
714 
715 		/* Further correct gain_F measurement for
716 		 * RF5112A radios */
717 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
718 			ath5k_hw_rf_gainf_corr(ah);
719 			ah->ah_gain.g_current =
720 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
721 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
722 				0;
723 		}
724 
725 		/* Check if measurement is ok and if we need
726 		 * to adjust gain, schedule a gain adjustment,
727 		 * else switch back to the active state */
728 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
729 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
730 		ath5k_hw_rf_gainf_adjust(ah)) {
731 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
732 		} else {
733 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
734 		}
735 	}
736 
737 done:
738 	return ah->ah_gain.g_state;
739 }
740 
741 /**
742  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
743  * @ah: The &struct ath5k_hw
744  * @band: One of enum ieee80211_band
745  *
746  * Write initial RF gain table to set the RF sensitivity.
747  *
748  * NOTE: This one works on all RF chips and has nothing to do
749  * with Gain_F calibration
750  */
751 static int
752 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
753 {
754 	const struct ath5k_ini_rfgain *ath5k_rfg;
755 	unsigned int i, size, index;
756 
757 	switch (ah->ah_radio) {
758 	case AR5K_RF5111:
759 		ath5k_rfg = rfgain_5111;
760 		size = ARRAY_SIZE(rfgain_5111);
761 		break;
762 	case AR5K_RF5112:
763 		ath5k_rfg = rfgain_5112;
764 		size = ARRAY_SIZE(rfgain_5112);
765 		break;
766 	case AR5K_RF2413:
767 		ath5k_rfg = rfgain_2413;
768 		size = ARRAY_SIZE(rfgain_2413);
769 		break;
770 	case AR5K_RF2316:
771 		ath5k_rfg = rfgain_2316;
772 		size = ARRAY_SIZE(rfgain_2316);
773 		break;
774 	case AR5K_RF5413:
775 		ath5k_rfg = rfgain_5413;
776 		size = ARRAY_SIZE(rfgain_5413);
777 		break;
778 	case AR5K_RF2317:
779 	case AR5K_RF2425:
780 		ath5k_rfg = rfgain_2425;
781 		size = ARRAY_SIZE(rfgain_2425);
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
788 
789 	for (i = 0; i < size; i++) {
790 		AR5K_REG_WAIT(i);
791 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
792 			(u32)ath5k_rfg[i].rfg_register);
793 	}
794 
795 	return 0;
796 }
797 
798 
799 /********************\
800 * RF Registers setup *
801 \********************/
802 
803 /**
804  * ath5k_hw_rfregs_init() - Initialize RF register settings
805  * @ah: The &struct ath5k_hw
806  * @channel: The &struct ieee80211_channel
807  * @mode: One of enum ath5k_driver_mode
808  *
809  * Setup RF registers by writing RF buffer on hw. For
810  * more infos on this, check out rfbuffer.h
811  */
812 static int
813 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
814 			struct ieee80211_channel *channel,
815 			unsigned int mode)
816 {
817 	const struct ath5k_rf_reg *rf_regs;
818 	const struct ath5k_ini_rfbuffer *ini_rfb;
819 	const struct ath5k_gain_opt *go = NULL;
820 	const struct ath5k_gain_opt_step *g_step;
821 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
822 	u8 ee_mode = 0;
823 	u32 *rfb;
824 	int i, obdb = -1, bank = -1;
825 
826 	switch (ah->ah_radio) {
827 	case AR5K_RF5111:
828 		rf_regs = rf_regs_5111;
829 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
830 		ini_rfb = rfb_5111;
831 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
832 		go = &rfgain_opt_5111;
833 		break;
834 	case AR5K_RF5112:
835 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
836 			rf_regs = rf_regs_5112a;
837 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
838 			ini_rfb = rfb_5112a;
839 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
840 		} else {
841 			rf_regs = rf_regs_5112;
842 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
843 			ini_rfb = rfb_5112;
844 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
845 		}
846 		go = &rfgain_opt_5112;
847 		break;
848 	case AR5K_RF2413:
849 		rf_regs = rf_regs_2413;
850 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
851 		ini_rfb = rfb_2413;
852 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
853 		break;
854 	case AR5K_RF2316:
855 		rf_regs = rf_regs_2316;
856 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
857 		ini_rfb = rfb_2316;
858 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
859 		break;
860 	case AR5K_RF5413:
861 		rf_regs = rf_regs_5413;
862 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
863 		ini_rfb = rfb_5413;
864 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
865 		break;
866 	case AR5K_RF2317:
867 		rf_regs = rf_regs_2425;
868 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
869 		ini_rfb = rfb_2317;
870 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
871 		break;
872 	case AR5K_RF2425:
873 		rf_regs = rf_regs_2425;
874 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
875 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
876 			ini_rfb = rfb_2425;
877 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
878 		} else {
879 			ini_rfb = rfb_2417;
880 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
881 		}
882 		break;
883 	default:
884 		return -EINVAL;
885 	}
886 
887 	/* If it's the first time we set RF buffer, allocate
888 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
889 	 * we set above */
890 	if (ah->ah_rf_banks == NULL) {
891 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
892 								GFP_KERNEL);
893 		if (ah->ah_rf_banks == NULL) {
894 			ATH5K_ERR(ah, "out of memory\n");
895 			return -ENOMEM;
896 		}
897 	}
898 
899 	/* Copy values to modify them */
900 	rfb = ah->ah_rf_banks;
901 
902 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
903 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
904 			ATH5K_ERR(ah, "invalid bank\n");
905 			return -EINVAL;
906 		}
907 
908 		/* Bank changed, write down the offset */
909 		if (bank != ini_rfb[i].rfb_bank) {
910 			bank = ini_rfb[i].rfb_bank;
911 			ah->ah_offset[bank] = i;
912 		}
913 
914 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
915 	}
916 
917 	/* Set Output and Driver bias current (OB/DB) */
918 	if (channel->band == IEEE80211_BAND_2GHZ) {
919 
920 		if (channel->hw_value == AR5K_MODE_11B)
921 			ee_mode = AR5K_EEPROM_MODE_11B;
922 		else
923 			ee_mode = AR5K_EEPROM_MODE_11G;
924 
925 		/* For RF511X/RF211X combination we
926 		 * use b_OB and b_DB parameters stored
927 		 * in eeprom on ee->ee_ob[ee_mode][0]
928 		 *
929 		 * For all other chips we use OB/DB for 2GHz
930 		 * stored in the b/g modal section just like
931 		 * 802.11a on ee->ee_ob[ee_mode][1] */
932 		if ((ah->ah_radio == AR5K_RF5111) ||
933 		(ah->ah_radio == AR5K_RF5112))
934 			obdb = 0;
935 		else
936 			obdb = 1;
937 
938 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
939 						AR5K_RF_OB_2GHZ, true);
940 
941 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
942 						AR5K_RF_DB_2GHZ, true);
943 
944 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
945 	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
946 			(ah->ah_radio == AR5K_RF5111)) {
947 
948 		/* For 11a, Turbo and XR we need to choose
949 		 * OB/DB based on frequency range */
950 		ee_mode = AR5K_EEPROM_MODE_11A;
951 		obdb =	 channel->center_freq >= 5725 ? 3 :
952 			(channel->center_freq >= 5500 ? 2 :
953 			(channel->center_freq >= 5260 ? 1 :
954 			 (channel->center_freq > 4000 ? 0 : -1)));
955 
956 		if (obdb < 0)
957 			return -EINVAL;
958 
959 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
960 						AR5K_RF_OB_5GHZ, true);
961 
962 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
963 						AR5K_RF_DB_5GHZ, true);
964 	}
965 
966 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
967 
968 	/* Set turbo mode (N/A on RF5413) */
969 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
970 	(ah->ah_radio != AR5K_RF5413))
971 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
972 
973 	/* Bank Modifications (chip-specific) */
974 	if (ah->ah_radio == AR5K_RF5111) {
975 
976 		/* Set gain_F settings according to current step */
977 		if (channel->hw_value != AR5K_MODE_11B) {
978 
979 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
980 					AR5K_PHY_FRAME_CTL_TX_CLIP,
981 					g_step->gos_param[0]);
982 
983 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
984 							AR5K_RF_PWD_90, true);
985 
986 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
987 							AR5K_RF_PWD_84, true);
988 
989 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
990 						AR5K_RF_RFGAIN_SEL, true);
991 
992 			/* We programmed gain_F parameters, switch back
993 			 * to active state */
994 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
995 
996 		}
997 
998 		/* Bank 6/7 setup */
999 
1000 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1001 						AR5K_RF_PWD_XPD, true);
1002 
1003 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1004 						AR5K_RF_XPD_GAIN, true);
1005 
1006 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1007 						AR5K_RF_GAIN_I, true);
1008 
1009 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1010 						AR5K_RF_PLO_SEL, true);
1011 
1012 		/* Tweak power detectors for half/quarter rate support */
1013 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015 			u8 wait_i;
1016 
1017 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1018 						AR5K_RF_WAIT_S, true);
1019 
1020 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1021 							0x1f : 0x10;
1022 
1023 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1024 						AR5K_RF_WAIT_I, true);
1025 			ath5k_hw_rfb_op(ah, rf_regs, 3,
1026 						AR5K_RF_MAX_TIME, true);
1027 
1028 		}
1029 	}
1030 
1031 	if (ah->ah_radio == AR5K_RF5112) {
1032 
1033 		/* Set gain_F settings according to current step */
1034 		if (channel->hw_value != AR5K_MODE_11B) {
1035 
1036 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1037 						AR5K_RF_MIXGAIN_OVR, true);
1038 
1039 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1040 						AR5K_RF_PWD_138, true);
1041 
1042 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1043 						AR5K_RF_PWD_137, true);
1044 
1045 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1046 						AR5K_RF_PWD_136, true);
1047 
1048 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1049 						AR5K_RF_PWD_132, true);
1050 
1051 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1052 						AR5K_RF_PWD_131, true);
1053 
1054 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1055 						AR5K_RF_PWD_130, true);
1056 
1057 			/* We programmed gain_F parameters, switch back
1058 			 * to active state */
1059 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1060 		}
1061 
1062 		/* Bank 6/7 setup */
1063 
1064 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1065 						AR5K_RF_XPD_SEL, true);
1066 
1067 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1068 			/* Rev. 1 supports only one xpd */
1069 			ath5k_hw_rfb_op(ah, rf_regs,
1070 						ee->ee_x_gain[ee_mode],
1071 						AR5K_RF_XPD_GAIN, true);
1072 
1073 		} else {
1074 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1075 			if (ee->ee_pd_gains[ee_mode] > 1) {
1076 				ath5k_hw_rfb_op(ah, rf_regs,
1077 						pdg_curve_to_idx[0],
1078 						AR5K_RF_PD_GAIN_LO, true);
1079 				ath5k_hw_rfb_op(ah, rf_regs,
1080 						pdg_curve_to_idx[1],
1081 						AR5K_RF_PD_GAIN_HI, true);
1082 			} else {
1083 				ath5k_hw_rfb_op(ah, rf_regs,
1084 						pdg_curve_to_idx[0],
1085 						AR5K_RF_PD_GAIN_LO, true);
1086 				ath5k_hw_rfb_op(ah, rf_regs,
1087 						pdg_curve_to_idx[0],
1088 						AR5K_RF_PD_GAIN_HI, true);
1089 			}
1090 
1091 			/* Lower synth voltage on Rev 2 */
1092 			if (ah->ah_radio == AR5K_RF5112 &&
1093 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1094 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1095 						AR5K_RF_HIGH_VC_CP, true);
1096 
1097 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1098 						AR5K_RF_MID_VC_CP, true);
1099 
1100 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1101 						AR5K_RF_LOW_VC_CP, true);
1102 
1103 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1104 						AR5K_RF_PUSH_UP, true);
1105 			}
1106 
1107 			/* Decrease power consumption on 5213+ BaseBand */
1108 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1109 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1110 						AR5K_RF_PAD2GND, true);
1111 
1112 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1113 						AR5K_RF_XB2_LVL, true);
1114 
1115 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1116 						AR5K_RF_XB5_LVL, true);
1117 
1118 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1119 						AR5K_RF_PWD_167, true);
1120 
1121 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1122 						AR5K_RF_PWD_166, true);
1123 			}
1124 		}
1125 
1126 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1127 						AR5K_RF_GAIN_I, true);
1128 
1129 		/* Tweak power detector for half/quarter rates */
1130 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1131 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1132 			u8 pd_delay;
1133 
1134 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1135 							0xf : 0x8;
1136 
1137 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1138 						AR5K_RF_PD_PERIOD_A, true);
1139 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1140 						AR5K_RF_PD_DELAY_A, true);
1141 
1142 		}
1143 	}
1144 
1145 	if (ah->ah_radio == AR5K_RF5413 &&
1146 	channel->band == IEEE80211_BAND_2GHZ) {
1147 
1148 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1149 									true);
1150 
1151 		/* Set optimum value for early revisions (on pci-e chips) */
1152 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1153 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1154 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1155 						AR5K_RF_PWD_ICLOBUF_2G, true);
1156 
1157 	}
1158 
1159 	/* Write RF banks on hw */
1160 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1161 		AR5K_REG_WAIT(i);
1162 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 
1169 /**************************\
1170   PHY/RF channel functions
1171 \**************************/
1172 
1173 /**
1174  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1175  * @channel: The &struct ieee80211_channel
1176  *
1177  * Map channel frequency to IEEE channel number and convert it
1178  * to an internal channel value used by the RF5110 chipset.
1179  */
1180 static u32
1181 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1182 {
1183 	u32 athchan;
1184 
1185 	athchan = (ath5k_hw_bitswap(
1186 			(ieee80211_frequency_to_channel(
1187 				channel->center_freq) - 24) / 2, 5)
1188 				<< 1) | (1 << 6) | 0x1;
1189 	return athchan;
1190 }
1191 
1192 /**
1193  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1194  * @ah: The &struct ath5k_hw
1195  * @channel: The &struct ieee80211_channel
1196  */
1197 static int
1198 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1199 		struct ieee80211_channel *channel)
1200 {
1201 	u32 data;
1202 
1203 	/*
1204 	 * Set the channel and wait
1205 	 */
1206 	data = ath5k_hw_rf5110_chan2athchan(channel);
1207 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1208 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1209 	usleep_range(1000, 1500);
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1216  * @ieee: IEEE channel number
1217  * @athchan: The &struct ath5k_athchan_2ghz
1218  *
1219  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1220  * we need to add some offsets and extra flags to the data values we pass
1221  * on to the PHY. So for every 2GHz channel this function gets called
1222  * to do the conversion.
1223  */
1224 static int
1225 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1226 		struct ath5k_athchan_2ghz *athchan)
1227 {
1228 	int channel;
1229 
1230 	/* Cast this value to catch negative channel numbers (>= -19) */
1231 	channel = (int)ieee;
1232 
1233 	/*
1234 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1235 	 */
1236 	if (channel <= 13) {
1237 		athchan->a2_athchan = 115 + channel;
1238 		athchan->a2_flags = 0x46;
1239 	} else if (channel == 14) {
1240 		athchan->a2_athchan = 124;
1241 		athchan->a2_flags = 0x44;
1242 	} else if (channel >= 15 && channel <= 26) {
1243 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1244 		athchan->a2_flags = 0x46;
1245 	} else
1246 		return -EINVAL;
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1253  * @ah: The &struct ath5k_hw
1254  * @channel: The &struct ieee80211_channel
1255  */
1256 static int
1257 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1258 		struct ieee80211_channel *channel)
1259 {
1260 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1261 	unsigned int ath5k_channel =
1262 		ieee80211_frequency_to_channel(channel->center_freq);
1263 	u32 data0, data1, clock;
1264 	int ret;
1265 
1266 	/*
1267 	 * Set the channel on the RF5111 radio
1268 	 */
1269 	data0 = data1 = 0;
1270 
1271 	if (channel->band == IEEE80211_BAND_2GHZ) {
1272 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1273 		ret = ath5k_hw_rf5111_chan2athchan(
1274 			ieee80211_frequency_to_channel(channel->center_freq),
1275 			&ath5k_channel_2ghz);
1276 		if (ret)
1277 			return ret;
1278 
1279 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1280 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1281 		    << 5) | (1 << 4);
1282 	}
1283 
1284 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1285 		clock = 1;
1286 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1287 			(clock << 1) | (1 << 10) | 1;
1288 	} else {
1289 		clock = 0;
1290 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1291 			<< 2) | (clock << 1) | (1 << 10) | 1;
1292 	}
1293 
1294 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1295 			AR5K_RF_BUFFER);
1296 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1297 			AR5K_RF_BUFFER_CONTROL_3);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1304  * @ah: The &struct ath5k_hw
1305  * @channel: The &struct ieee80211_channel
1306  *
1307  * On RF5112/2112 and newer we don't need to do any conversion.
1308  * We pass the frequency value after a few modifications to the
1309  * chip directly.
1310  *
1311  * NOTE: Make sure channel frequency given is within our range or else
1312  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1313  */
1314 static int
1315 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1316 		struct ieee80211_channel *channel)
1317 {
1318 	u32 data, data0, data1, data2;
1319 	u16 c;
1320 
1321 	data = data0 = data1 = data2 = 0;
1322 	c = channel->center_freq;
1323 
1324 	/* My guess based on code:
1325 	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1326 	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1327 	 * (3040/2). data0 is used to set the PLL divider and data1
1328 	 * selects synth mode. */
1329 	if (c < 4800) {
1330 		/* Channel 14 and all frequencies with 2Hz spacing
1331 		 * below/above (non-standard channels) */
1332 		if (!((c - 2224) % 5)) {
1333 			/* Same as (c - 2224) / 5 */
1334 			data0 = ((2 * (c - 704)) - 3040) / 10;
1335 			data1 = 1;
1336 		/* Channel 1 and all frequencies with 5Hz spacing
1337 		 * below/above (standard channels without channel 14) */
1338 		} else if (!((c - 2192) % 5)) {
1339 			/* Same as (c - 2192) / 5 */
1340 			data0 = ((2 * (c - 672)) - 3040) / 10;
1341 			data1 = 0;
1342 		} else
1343 			return -EINVAL;
1344 
1345 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1346 	/* This is more complex, we have a single synthesizer with
1347 	 * 4 reference clock settings (?) based on frequency spacing
1348 	 * and set using data2. LO is at 4800Hz and data0 is again used
1349 	 * to set some divider.
1350 	 *
1351 	 * NOTE: There is an old atheros presentation at Stanford
1352 	 * that mentions a method called dual direct conversion
1353 	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1354 	 * have here, or an updated version. */
1355 	} else if ((c % 5) != 2 || c > 5435) {
1356 		if (!(c % 20) && c >= 5120) {
1357 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1358 			data2 = ath5k_hw_bitswap(3, 2);
1359 		} else if (!(c % 10)) {
1360 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1361 			data2 = ath5k_hw_bitswap(2, 2);
1362 		} else if (!(c % 5)) {
1363 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1364 			data2 = ath5k_hw_bitswap(1, 2);
1365 		} else
1366 			return -EINVAL;
1367 	} else {
1368 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1369 		data2 = ath5k_hw_bitswap(0, 2);
1370 	}
1371 
1372 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1373 
1374 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1375 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1382  * @ah: The &struct ath5k_hw
1383  * @channel: The &struct ieee80211_channel
1384  *
1385  * AR2425/2417 have a different 2GHz RF so code changes
1386  * a little bit from RF5112.
1387  */
1388 static int
1389 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1390 		struct ieee80211_channel *channel)
1391 {
1392 	u32 data, data0, data2;
1393 	u16 c;
1394 
1395 	data = data0 = data2 = 0;
1396 	c = channel->center_freq;
1397 
1398 	if (c < 4800) {
1399 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1400 		data2 = 0;
1401 	/* ? 5GHz ? */
1402 	} else if ((c % 5) != 2 || c > 5435) {
1403 		if (!(c % 20) && c < 5120)
1404 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1405 		else if (!(c % 10))
1406 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1407 		else if (!(c % 5))
1408 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1409 		else
1410 			return -EINVAL;
1411 		data2 = ath5k_hw_bitswap(1, 2);
1412 	} else {
1413 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1414 		data2 = ath5k_hw_bitswap(0, 2);
1415 	}
1416 
1417 	data = (data0 << 4) | data2 << 2 | 0x1001;
1418 
1419 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1420 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * ath5k_hw_channel() - Set a channel on the radio chip
1427  * @ah: The &struct ath5k_hw
1428  * @channel: The &struct ieee80211_channel
1429  *
1430  * This is the main function called to set a channel on the
1431  * radio chip based on the radio chip version.
1432  */
1433 static int
1434 ath5k_hw_channel(struct ath5k_hw *ah,
1435 		struct ieee80211_channel *channel)
1436 {
1437 	int ret;
1438 	/*
1439 	 * Check bounds supported by the PHY (we don't care about regulatory
1440 	 * restrictions at this point).
1441 	 */
1442 	if (!ath5k_channel_ok(ah, channel)) {
1443 		ATH5K_ERR(ah,
1444 			"channel frequency (%u MHz) out of supported "
1445 			"band range\n",
1446 			channel->center_freq);
1447 			return -EINVAL;
1448 	}
1449 
1450 	/*
1451 	 * Set the channel and wait
1452 	 */
1453 	switch (ah->ah_radio) {
1454 	case AR5K_RF5110:
1455 		ret = ath5k_hw_rf5110_channel(ah, channel);
1456 		break;
1457 	case AR5K_RF5111:
1458 		ret = ath5k_hw_rf5111_channel(ah, channel);
1459 		break;
1460 	case AR5K_RF2317:
1461 	case AR5K_RF2425:
1462 		ret = ath5k_hw_rf2425_channel(ah, channel);
1463 		break;
1464 	default:
1465 		ret = ath5k_hw_rf5112_channel(ah, channel);
1466 		break;
1467 	}
1468 
1469 	if (ret)
1470 		return ret;
1471 
1472 	/* Set JAPAN setting for channel 14 */
1473 	if (channel->center_freq == 2484) {
1474 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1475 				AR5K_PHY_CCKTXCTL_JAPAN);
1476 	} else {
1477 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1478 				AR5K_PHY_CCKTXCTL_WORLD);
1479 	}
1480 
1481 	ah->ah_current_channel = channel;
1482 
1483 	return 0;
1484 }
1485 
1486 
1487 /*****************\
1488   PHY calibration
1489 \*****************/
1490 
1491 /**
1492  * DOC: PHY Calibration routines
1493  *
1494  * Noise floor calibration: When we tell the hardware to
1495  * perform a noise floor calibration by setting the
1496  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1497  * sample-and-hold the minimum noise level seen at the antennas.
1498  * This value is then stored in a ring buffer of recently measured
1499  * noise floor values so we have a moving window of the last few
1500  * samples. The median of the values in the history is then loaded
1501  * into the hardware for its own use for RSSI and CCA measurements.
1502  * This type of calibration doesn't interfere with traffic.
1503  *
1504  * AGC calibration: When we tell the hardware to perform
1505  * an AGC (Automatic Gain Control) calibration by setting the
1506  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1507  * a calibration on the DC offsets of ADCs. During this period
1508  * rx/tx gets disabled so we have to deal with it on the driver
1509  * part.
1510  *
1511  * I/Q calibration: When we tell the hardware to perform
1512  * an I/Q calibration, it tries to correct I/Q imbalance and
1513  * fix QAM constellation by sampling data from rxed frames.
1514  * It doesn't interfere with traffic.
1515  *
1516  * For more infos on AGC and I/Q calibration check out patent doc
1517  * #03/094463.
1518  */
1519 
1520 /**
1521  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1522  * @ah: The &struct ath5k_hw
1523  */
1524 static s32
1525 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1526 {
1527 	s32 val;
1528 
1529 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1530 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1531 }
1532 
1533 /**
1534  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1535  * @ah: The &struct ath5k_hw
1536  */
1537 void
1538 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1539 {
1540 	int i;
1541 
1542 	ah->ah_nfcal_hist.index = 0;
1543 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1544 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1545 }
1546 
1547 /**
1548  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1549  * @ah: The &struct ath5k_hw
1550  * @noise_floor: The NF we got from hw
1551  */
1552 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1553 {
1554 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1555 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1556 	hist->nfval[hist->index] = noise_floor;
1557 }
1558 
1559 /**
1560  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1561  * @ah: The &struct ath5k_hw
1562  */
1563 static s16
1564 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1565 {
1566 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1567 	s16 tmp;
1568 	int i, j;
1569 
1570 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1571 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1572 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1573 			if (sort[j] > sort[j - 1]) {
1574 				tmp = sort[j];
1575 				sort[j] = sort[j - 1];
1576 				sort[j - 1] = tmp;
1577 			}
1578 		}
1579 	}
1580 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1581 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1582 			"cal %d:%d\n", i, sort[i]);
1583 	}
1584 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1585 }
1586 
1587 /**
1588  * ath5k_hw_update_noise_floor() - Update NF on hardware
1589  * @ah: The &struct ath5k_hw
1590  *
1591  * This is the main function we call to perform a NF calibration,
1592  * it reads NF from hardware, calculates the median and updates
1593  * NF on hw.
1594  */
1595 void
1596 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1597 {
1598 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1599 	u32 val;
1600 	s16 nf, threshold;
1601 	u8 ee_mode;
1602 
1603 	/* keep last value if calibration hasn't completed */
1604 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1605 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1606 			"NF did not complete in calibration window\n");
1607 
1608 		return;
1609 	}
1610 
1611 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1612 
1613 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1614 
1615 	/* completed NF calibration, test threshold */
1616 	nf = ath5k_hw_read_measured_noise_floor(ah);
1617 	threshold = ee->ee_noise_floor_thr[ee_mode];
1618 
1619 	if (nf > threshold) {
1620 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1621 			"noise floor failure detected; "
1622 			"read %d, threshold %d\n",
1623 			nf, threshold);
1624 
1625 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1626 	}
1627 
1628 	ath5k_hw_update_nfcal_hist(ah, nf);
1629 	nf = ath5k_hw_get_median_noise_floor(ah);
1630 
1631 	/* load noise floor (in .5 dBm) so the hardware will use it */
1632 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1633 	val |= (nf * 2) & AR5K_PHY_NF_M;
1634 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1635 
1636 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1637 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1638 
1639 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1640 		0, false);
1641 
1642 	/*
1643 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1644 	 * so that we're not capped by the median we just loaded.
1645 	 * This will be used as the initial value for the next noise
1646 	 * floor calibration.
1647 	 */
1648 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1649 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1650 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1651 		AR5K_PHY_AGCCTL_NF_EN |
1652 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1653 		AR5K_PHY_AGCCTL_NF);
1654 
1655 	ah->ah_noise_floor = nf;
1656 
1657 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1658 
1659 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1660 		"noise floor calibrated: %d\n", nf);
1661 }
1662 
1663 /**
1664  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1665  * @ah: The &struct ath5k_hw
1666  * @channel: The &struct ieee80211_channel
1667  *
1668  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1669  */
1670 static int
1671 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1672 		struct ieee80211_channel *channel)
1673 {
1674 	u32 phy_sig, phy_agc, phy_sat, beacon;
1675 	int ret;
1676 
1677 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1678 		return 0;
1679 
1680 	/*
1681 	 * Disable beacons and RX/TX queues, wait
1682 	 */
1683 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1684 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1685 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1686 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1687 
1688 	usleep_range(2000, 2500);
1689 
1690 	/*
1691 	 * Set the channel (with AGC turned off)
1692 	 */
1693 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1694 	udelay(10);
1695 	ret = ath5k_hw_channel(ah, channel);
1696 
1697 	/*
1698 	 * Activate PHY and wait
1699 	 */
1700 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1701 	usleep_range(1000, 1500);
1702 
1703 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1704 
1705 	if (ret)
1706 		return ret;
1707 
1708 	/*
1709 	 * Calibrate the radio chip
1710 	 */
1711 
1712 	/* Remember normal state */
1713 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1714 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1715 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1716 
1717 	/* Update radio registers */
1718 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1719 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1720 
1721 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1722 			AR5K_PHY_AGCCOARSE_LO)) |
1723 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1724 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1725 
1726 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1727 			AR5K_PHY_ADCSAT_THR)) |
1728 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1729 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1730 
1731 	udelay(20);
1732 
1733 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1734 	udelay(10);
1735 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1736 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1737 
1738 	usleep_range(1000, 1500);
1739 
1740 	/*
1741 	 * Enable calibration and wait until completion
1742 	 */
1743 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1744 
1745 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1746 			AR5K_PHY_AGCCTL_CAL, 0, false);
1747 
1748 	/* Reset to normal state */
1749 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1750 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1751 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1752 
1753 	if (ret) {
1754 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1755 				channel->center_freq);
1756 		return ret;
1757 	}
1758 
1759 	/*
1760 	 * Re-enable RX/TX and beacons
1761 	 */
1762 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1763 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1764 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1765 
1766 	return 0;
1767 }
1768 
1769 /**
1770  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1771  * @ah: The &struct ath5k_hw
1772  */
1773 static int
1774 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1775 {
1776 	u32 i_pwr, q_pwr;
1777 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1778 	int i;
1779 
1780 	/* Skip if I/Q calibration is not needed or if it's still running */
1781 	if (!ah->ah_iq_cal_needed)
1782 		return -EINVAL;
1783 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1784 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1785 				"I/Q calibration still running");
1786 		return -EBUSY;
1787 	}
1788 
1789 	/* Calibration has finished, get the results and re-run */
1790 
1791 	/* Work around for empty results which can apparently happen on 5212:
1792 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1793 	for (i = 0; i <= 10; i++) {
1794 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1795 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1796 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1797 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1798 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1799 		if (i_pwr && q_pwr)
1800 			break;
1801 	}
1802 
1803 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1804 
1805 	if (ah->ah_version == AR5K_AR5211)
1806 		q_coffd = q_pwr >> 6;
1807 	else
1808 		q_coffd = q_pwr >> 7;
1809 
1810 	/* In case i_coffd became zero, cancel calibration
1811 	 * not only it's too small, it'll also result a divide
1812 	 * by zero later on. */
1813 	if (i_coffd == 0 || q_coffd < 2)
1814 		return -ECANCELED;
1815 
1816 	/* Protect against loss of sign bits */
1817 
1818 	i_coff = (-iq_corr) / i_coffd;
1819 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1820 
1821 	if (ah->ah_version == AR5K_AR5211)
1822 		q_coff = (i_pwr / q_coffd) - 64;
1823 	else
1824 		q_coff = (i_pwr / q_coffd) - 128;
1825 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1826 
1827 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1828 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1829 			i_coff, q_coff, i_coffd, q_coffd);
1830 
1831 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1832 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1833 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1834 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1835 
1836 	/* Re-enable calibration -if we don't we'll commit
1837 	 * the same values again and again */
1838 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1839 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1840 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1847  * @ah: The &struct ath5k_hw
1848  * @channel: The &struct ieee80211_channel
1849  *
1850  * The main function we call from above to perform
1851  * a short or full PHY calibration based on RF chip
1852  * and current channel
1853  */
1854 int
1855 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1856 		struct ieee80211_channel *channel)
1857 {
1858 	int ret;
1859 
1860 	if (ah->ah_radio == AR5K_RF5110)
1861 		return ath5k_hw_rf5110_calibrate(ah, channel);
1862 
1863 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1864 	if (ret) {
1865 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1866 			"No I/Q correction performed (%uMHz)\n",
1867 			channel->center_freq);
1868 
1869 		/* Happens all the time if there is not much
1870 		 * traffic, consider it normal behaviour. */
1871 		ret = 0;
1872 	}
1873 
1874 	/* On full calibration request a PAPD probe for
1875 	 * gainf calibration if needed */
1876 	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1877 	    (ah->ah_radio == AR5K_RF5111 ||
1878 	     ah->ah_radio == AR5K_RF5112) &&
1879 	    channel->hw_value != AR5K_MODE_11B)
1880 		ath5k_hw_request_rfgain_probe(ah);
1881 
1882 	/* Update noise floor */
1883 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1884 		ath5k_hw_update_noise_floor(ah);
1885 
1886 	return ret;
1887 }
1888 
1889 
1890 /***************************\
1891 * Spur mitigation functions *
1892 \***************************/
1893 
1894 /**
1895  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1896  * @ah: The &struct ath5k_hw
1897  * @channel: The &struct ieee80211_channel
1898  *
1899  * This function gets called during PHY initialization to
1900  * configure the spur filter for the given channel. Spur is noise
1901  * generated due to "reflection" effects, for more information on this
1902  * method check out patent US7643810
1903  */
1904 static void
1905 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1906 				struct ieee80211_channel *channel)
1907 {
1908 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1909 	u32 mag_mask[4] = {0, 0, 0, 0};
1910 	u32 pilot_mask[2] = {0, 0};
1911 	/* Note: fbin values are scaled up by 2 */
1912 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1913 	s32 spur_delta_phase, spur_freq_sigma_delta;
1914 	s32 spur_offset, num_symbols_x16;
1915 	u8 num_symbol_offsets, i, freq_band;
1916 
1917 	/* Convert current frequency to fbin value (the same way channels
1918 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1919 	 * up by 2 so we can compare it later */
1920 	if (channel->band == IEEE80211_BAND_2GHZ) {
1921 		chan_fbin = (channel->center_freq - 2300) * 10;
1922 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1923 	} else {
1924 		chan_fbin = (channel->center_freq - 4900) * 10;
1925 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1926 	}
1927 
1928 	/* Check if any spur_chan_fbin from EEPROM is
1929 	 * within our current channel's spur detection range */
1930 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1931 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1932 	/* XXX: Half/Quarter channels ?*/
1933 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1934 		spur_detection_window *= 2;
1935 
1936 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1937 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1938 
1939 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1940 		 * so it's zero if we got nothing from EEPROM */
1941 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1942 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1943 			break;
1944 		}
1945 
1946 		if ((chan_fbin - spur_detection_window <=
1947 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1948 		(chan_fbin + spur_detection_window >=
1949 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1950 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1951 			break;
1952 		}
1953 	}
1954 
1955 	/* We need to enable spur filter for this channel */
1956 	if (spur_chan_fbin) {
1957 		spur_offset = spur_chan_fbin - chan_fbin;
1958 		/*
1959 		 * Calculate deltas:
1960 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1961 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1962 		 * Note: Both values have 100Hz resolution
1963 		 */
1964 		switch (ah->ah_bwmode) {
1965 		case AR5K_BWMODE_40MHZ:
1966 			/* Both sample_freq and chip_freq are 80MHz */
1967 			spur_delta_phase = (spur_offset << 16) / 25;
1968 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1969 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1970 			break;
1971 		case AR5K_BWMODE_10MHZ:
1972 			/* Both sample_freq and chip_freq are 20MHz (?) */
1973 			spur_delta_phase = (spur_offset << 18) / 25;
1974 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1975 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1976 		case AR5K_BWMODE_5MHZ:
1977 			/* Both sample_freq and chip_freq are 10MHz (?) */
1978 			spur_delta_phase = (spur_offset << 19) / 25;
1979 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1980 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1981 		default:
1982 			if (channel->band == IEEE80211_BAND_5GHZ) {
1983 				/* Both sample_freq and chip_freq are 40MHz */
1984 				spur_delta_phase = (spur_offset << 17) / 25;
1985 				spur_freq_sigma_delta =
1986 						(spur_delta_phase >> 10);
1987 				symbol_width =
1988 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989 			} else {
1990 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1991 				 * (for b compatibility) */
1992 				spur_delta_phase = (spur_offset << 17) / 25;
1993 				spur_freq_sigma_delta =
1994 						(spur_offset << 8) / 55;
1995 				symbol_width =
1996 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997 			}
1998 			break;
1999 		}
2000 
2001 		/* Calculate pilot and magnitude masks */
2002 
2003 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004 		 * and divide by symbol_width to find how many symbols we have
2005 		 * Note: number of symbols is scaled up by 16 */
2006 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007 
2008 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009 		if (!(num_symbols_x16 & 0xF))
2010 			/* _X_ */
2011 			num_symbol_offsets = 3;
2012 		else
2013 			/* _xx_ */
2014 			num_symbol_offsets = 4;
2015 
2016 		for (i = 0; i < num_symbol_offsets; i++) {
2017 
2018 			/* Calculate pilot mask */
2019 			s32 curr_sym_off =
2020 				(num_symbols_x16 / 16) + i + 25;
2021 
2022 			/* Pilot magnitude mask seems to be a way to
2023 			 * declare the boundaries for our detection
2024 			 * window or something, it's 2 for the middle
2025 			 * value(s) where the symbol is expected to be
2026 			 * and 1 on the boundary values */
2027 			u8 plt_mag_map =
2028 				(i == 0 || i == (num_symbol_offsets - 1))
2029 								? 1 : 2;
2030 
2031 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032 				if (curr_sym_off <= 25)
2033 					pilot_mask[0] |= 1 << curr_sym_off;
2034 				else if (curr_sym_off >= 27)
2035 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038 
2039 			/* Calculate magnitude mask (for viterbi decoder) */
2040 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041 				mag_mask[0] |=
2042 					plt_mag_map << (curr_sym_off + 1) * 2;
2043 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044 				mag_mask[1] |=
2045 					plt_mag_map << (curr_sym_off - 15) * 2;
2046 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047 				mag_mask[2] |=
2048 					plt_mag_map << (curr_sym_off - 31) * 2;
2049 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050 				mag_mask[3] |=
2051 					plt_mag_map << (curr_sym_off - 47) * 2;
2052 
2053 		}
2054 
2055 		/* Write settings on hw to enable spur filter */
2056 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058 		/* XXX: Self correlator also ? */
2059 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060 					AR5K_PHY_IQ_PILOT_MASK_EN |
2061 					AR5K_PHY_IQ_CHAN_MASK_EN |
2062 					AR5K_PHY_IQ_SPUR_FILT_EN);
2063 
2064 		/* Set delta phase and freq sigma delta */
2065 		ath5k_hw_reg_write(ah,
2066 				AR5K_REG_SM(spur_delta_phase,
2067 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068 				AR5K_REG_SM(spur_freq_sigma_delta,
2069 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071 				AR5K_PHY_TIMING_11);
2072 
2073 		/* Write pilot masks */
2074 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077 					pilot_mask[1]);
2078 
2079 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082 					pilot_mask[1]);
2083 
2084 		/* Write magnitude masks */
2085 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090 					mag_mask[3]);
2091 
2092 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2097 					mag_mask[3]);
2098 
2099 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100 	AR5K_PHY_IQ_SPUR_FILT_EN) {
2101 		/* Clean up spur mitigation settings and disable filter */
2102 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105 					AR5K_PHY_IQ_PILOT_MASK_EN |
2106 					AR5K_PHY_IQ_CHAN_MASK_EN |
2107 					AR5K_PHY_IQ_SPUR_FILT_EN);
2108 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109 
2110 		/* Clear pilot masks */
2111 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114 					0);
2115 
2116 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119 					0);
2120 
2121 		/* Clear magnitude masks */
2122 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127 					0);
2128 
2129 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2134 					0);
2135 	}
2136 }
2137 
2138 
2139 /*****************\
2140 * Antenna control *
2141 \*****************/
2142 
2143 /**
2144  * DOC: Antenna control
2145  *
2146  * Hw supports up to 14 antennas ! I haven't found any card that implements
2147  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150  *
2151  * We can have a single antenna for RX and multiple antennas for TX.
2152  * RX antenna is our "default" antenna (usually antenna 1) set on
2153  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154  * (0 for automatic selection, 1 - 14 antenna number).
2155  *
2156  * We can let hw do all the work doing fast antenna diversity for both
2157  * tx and rx or we can do things manually. Here are the options we have
2158  * (all are bits of STA_ID1 register):
2159  *
2160  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161  * control descriptor, use the default antenna to transmit or else use the last
2162  * antenna on which we received an ACK.
2163  *
2164  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165  * the antenna on which we got the ACK for that frame.
2166  *
2167  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168  * one on the TX descriptor.
2169  *
2170  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171  * (ACKs etc), or else use current antenna (the one we just used for TX).
2172  *
2173  * Using the above we support the following scenarios:
2174  *
2175  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176  *
2177  * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2178  *
2179  * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2180  *
2181  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182  *
2183  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184  *
2185  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186  *
2187  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188  *
2189  * Also note that when setting antenna to F on tx descriptor card inverts
2190  * current tx antenna.
2191  */
2192 
2193 /**
2194  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195  * @ah: The &struct ath5k_hw
2196  * @ant: Antenna number
2197  */
2198 static void
2199 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200 {
2201 	if (ah->ah_version != AR5K_AR5210)
2202 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203 }
2204 
2205 /**
2206  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207  * @ah: The &struct ath5k_hw
2208  * @ee_mode: One of enum ath5k_driver_mode
2209  * @enable: True to enable, false to disable
2210  */
2211 static void
2212 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213 {
2214 	switch (ee_mode) {
2215 	case AR5K_EEPROM_MODE_11G:
2216 		/* XXX: This is set to
2217 		 * disabled on initvals !!! */
2218 	case AR5K_EEPROM_MODE_11A:
2219 		if (enable)
2220 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222 		else
2223 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225 		break;
2226 	case AR5K_EEPROM_MODE_11B:
2227 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229 		break;
2230 	default:
2231 		return;
2232 	}
2233 
2234 	if (enable) {
2235 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236 				AR5K_PHY_RESTART_DIV_GC, 4);
2237 
2238 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239 					AR5K_PHY_FAST_ANT_DIV_EN);
2240 	} else {
2241 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242 				AR5K_PHY_RESTART_DIV_GC, 0);
2243 
2244 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245 					AR5K_PHY_FAST_ANT_DIV_EN);
2246 	}
2247 }
2248 
2249 /**
2250  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251  * @ah: The &struct ath5k_hw
2252  * @ee_mode: One of enum ath5k_driver_mode
2253  *
2254  * Switch table comes from EEPROM and includes information on controlling
2255  * the 2 antenna RX attenuators
2256  */
2257 void
2258 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259 {
2260 	u8 ant0, ant1;
2261 
2262 	/*
2263 	 * In case a fixed antenna was set as default
2264 	 * use the same switch table twice.
2265 	 */
2266 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270 	else {
2271 		ant0 = AR5K_ANT_SWTABLE_A;
2272 		ant1 = AR5K_ANT_SWTABLE_B;
2273 	}
2274 
2275 	/* Set antenna idle switch table */
2276 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279 			AR5K_PHY_ANT_CTL_TXRX_EN));
2280 
2281 	/* Set antenna switch tables */
2282 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283 		AR5K_PHY_ANT_SWITCH_TABLE_0);
2284 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285 		AR5K_PHY_ANT_SWITCH_TABLE_1);
2286 }
2287 
2288 /**
2289  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290  * @ah: The &struct ath5k_hw
2291  * @ant_mode: One of enum ath5k_ant_mode
2292  */
2293 void
2294 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295 {
2296 	struct ieee80211_channel *channel = ah->ah_current_channel;
2297 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298 	bool use_def_for_sg;
2299 	int ee_mode;
2300 	u8 def_ant, tx_ant;
2301 	u32 sta_id1 = 0;
2302 
2303 	/* if channel is not initialized yet we can't set the antennas
2304 	 * so just store the mode. it will be set on the next reset */
2305 	if (channel == NULL) {
2306 		ah->ah_ant_mode = ant_mode;
2307 		return;
2308 	}
2309 
2310 	def_ant = ah->ah_def_ant;
2311 
2312 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
2313 	if (ee_mode < 0) {
2314 		ATH5K_ERR(ah,
2315 			"invalid channel: %d\n", channel->center_freq);
2316 		return;
2317 	}
2318 
2319 	switch (ant_mode) {
2320 	case AR5K_ANTMODE_DEFAULT:
2321 		tx_ant = 0;
2322 		use_def_for_tx = false;
2323 		update_def_on_tx = false;
2324 		use_def_for_rts = false;
2325 		use_def_for_sg = false;
2326 		fast_div = true;
2327 		break;
2328 	case AR5K_ANTMODE_FIXED_A:
2329 		def_ant = 1;
2330 		tx_ant = 1;
2331 		use_def_for_tx = true;
2332 		update_def_on_tx = false;
2333 		use_def_for_rts = true;
2334 		use_def_for_sg = true;
2335 		fast_div = false;
2336 		break;
2337 	case AR5K_ANTMODE_FIXED_B:
2338 		def_ant = 2;
2339 		tx_ant = 2;
2340 		use_def_for_tx = true;
2341 		update_def_on_tx = false;
2342 		use_def_for_rts = true;
2343 		use_def_for_sg = true;
2344 		fast_div = false;
2345 		break;
2346 	case AR5K_ANTMODE_SINGLE_AP:
2347 		def_ant = 1;	/* updated on tx */
2348 		tx_ant = 0;
2349 		use_def_for_tx = true;
2350 		update_def_on_tx = true;
2351 		use_def_for_rts = true;
2352 		use_def_for_sg = true;
2353 		fast_div = true;
2354 		break;
2355 	case AR5K_ANTMODE_SECTOR_AP:
2356 		tx_ant = 1;	/* variable */
2357 		use_def_for_tx = false;
2358 		update_def_on_tx = false;
2359 		use_def_for_rts = true;
2360 		use_def_for_sg = false;
2361 		fast_div = false;
2362 		break;
2363 	case AR5K_ANTMODE_SECTOR_STA:
2364 		tx_ant = 1;	/* variable */
2365 		use_def_for_tx = true;
2366 		update_def_on_tx = false;
2367 		use_def_for_rts = true;
2368 		use_def_for_sg = false;
2369 		fast_div = true;
2370 		break;
2371 	case AR5K_ANTMODE_DEBUG:
2372 		def_ant = 1;
2373 		tx_ant = 2;
2374 		use_def_for_tx = false;
2375 		update_def_on_tx = false;
2376 		use_def_for_rts = false;
2377 		use_def_for_sg = false;
2378 		fast_div = false;
2379 		break;
2380 	default:
2381 		return;
2382 	}
2383 
2384 	ah->ah_tx_ant = tx_ant;
2385 	ah->ah_ant_mode = ant_mode;
2386 	ah->ah_def_ant = def_ant;
2387 
2388 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2389 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2390 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2391 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2392 
2393 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2394 
2395 	if (sta_id1)
2396 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2397 
2398 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2399 	/* Note: set diversity before default antenna
2400 	 * because it won't work correctly */
2401 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2402 	ath5k_hw_set_def_antenna(ah, def_ant);
2403 }
2404 
2405 
2406 /****************\
2407 * TX power setup *
2408 \****************/
2409 
2410 /*
2411  * Helper functions
2412  */
2413 
2414 /**
2415  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2416  * @target: X value of the middle point
2417  * @x_left: X value of the left point
2418  * @x_right: X value of the right point
2419  * @y_left: Y value of the left point
2420  * @y_right: Y value of the right point
2421  */
2422 static s16
2423 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2424 					s16 y_left, s16 y_right)
2425 {
2426 	s16 ratio, result;
2427 
2428 	/* Avoid divide by zero and skip interpolation
2429 	 * if we have the same point */
2430 	if ((x_left == x_right) || (y_left == y_right))
2431 		return y_left;
2432 
2433 	/*
2434 	 * Since we use ints and not fps, we need to scale up in
2435 	 * order to get a sane ratio value (or else we 'll eg. get
2436 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2437 	 * to have some accuracy both for 0.5 and 0.25 steps.
2438 	 */
2439 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2440 
2441 	/* Now scale down to be in range */
2442 	result = y_left + (ratio * (target - x_left) / 100);
2443 
2444 	return result;
2445 }
2446 
2447 /**
2448  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2449  * linear PCDAC curve
2450  * @stepL: Left array with y values (pcdac steps)
2451  * @stepR: Right array with y values (pcdac steps)
2452  * @pwrL: Left array with x values (power steps)
2453  * @pwrR: Right array with x values (power steps)
2454  *
2455  * Since we have the top of the curve and we draw the line below
2456  * until we reach 1 (1 pcdac step) we need to know which point
2457  * (x value) that is so that we don't go below x axis and have negative
2458  * pcdac values when creating the curve, or fill the table with zeros.
2459  */
2460 static s16
2461 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2462 				const s16 *pwrL, const s16 *pwrR)
2463 {
2464 	s8 tmp;
2465 	s16 min_pwrL, min_pwrR;
2466 	s16 pwr_i;
2467 
2468 	/* Some vendors write the same pcdac value twice !!! */
2469 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2470 		return max(pwrL[0], pwrR[0]);
2471 
2472 	if (pwrL[0] == pwrL[1])
2473 		min_pwrL = pwrL[0];
2474 	else {
2475 		pwr_i = pwrL[0];
2476 		do {
2477 			pwr_i--;
2478 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2479 							pwrL[0], pwrL[1],
2480 							stepL[0], stepL[1]);
2481 		} while (tmp > 1);
2482 
2483 		min_pwrL = pwr_i;
2484 	}
2485 
2486 	if (pwrR[0] == pwrR[1])
2487 		min_pwrR = pwrR[0];
2488 	else {
2489 		pwr_i = pwrR[0];
2490 		do {
2491 			pwr_i--;
2492 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2493 							pwrR[0], pwrR[1],
2494 							stepR[0], stepR[1]);
2495 		} while (tmp > 1);
2496 
2497 		min_pwrR = pwr_i;
2498 	}
2499 
2500 	/* Keep the right boundary so that it works for both curves */
2501 	return max(min_pwrL, min_pwrR);
2502 }
2503 
2504 /**
2505  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2506  * @pmin: Minimum power value (xmin)
2507  * @pmax: Maximum power value (xmax)
2508  * @pwr: Array of power steps (x values)
2509  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2510  * @num_points: Number of provided points
2511  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2512  * @type: One of enum ath5k_powertable_type (eeprom.h)
2513  *
2514  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2515  * Power to PCDAC curve.
2516  *
2517  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2518  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2519  * PCDAC/PDADC step for each curve is 64 but we can write more than
2520  * one curves on hw so we can go up to 128 (which is the max step we
2521  * can write on the final table).
2522  *
2523  * We write y values (PCDAC/PDADC steps) on hw.
2524  */
2525 static void
2526 ath5k_create_power_curve(s16 pmin, s16 pmax,
2527 			const s16 *pwr, const u8 *vpd,
2528 			u8 num_points,
2529 			u8 *vpd_table, u8 type)
2530 {
2531 	u8 idx[2] = { 0, 1 };
2532 	s16 pwr_i = 2 * pmin;
2533 	int i;
2534 
2535 	if (num_points < 2)
2536 		return;
2537 
2538 	/* We want the whole line, so adjust boundaries
2539 	 * to cover the entire power range. Note that
2540 	 * power values are already 0.25dB so no need
2541 	 * to multiply pwr_i by 2 */
2542 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2543 		pwr_i = pmin;
2544 		pmin = 0;
2545 		pmax = 63;
2546 	}
2547 
2548 	/* Find surrounding turning points (TPs)
2549 	 * and interpolate between them */
2550 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2551 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2552 
2553 		/* We passed the right TP, move to the next set of TPs
2554 		 * if we pass the last TP, extrapolate above using the last
2555 		 * two TPs for ratio */
2556 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2557 			idx[0]++;
2558 			idx[1]++;
2559 		}
2560 
2561 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2562 						pwr[idx[0]], pwr[idx[1]],
2563 						vpd[idx[0]], vpd[idx[1]]);
2564 
2565 		/* Increase by 0.5dB
2566 		 * (0.25 dB units) */
2567 		pwr_i += 2;
2568 	}
2569 }
2570 
2571 /**
2572  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2573  * for a given channel.
2574  * @ah: The &struct ath5k_hw
2575  * @channel: The &struct ieee80211_channel
2576  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2577  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2578  *
2579  * Get the surrounding per-channel power calibration piers
2580  * for a given frequency so that we can interpolate between
2581  * them and come up with an appropriate dataset for our current
2582  * channel.
2583  */
2584 static void
2585 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2586 			struct ieee80211_channel *channel,
2587 			struct ath5k_chan_pcal_info **pcinfo_l,
2588 			struct ath5k_chan_pcal_info **pcinfo_r)
2589 {
2590 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2591 	struct ath5k_chan_pcal_info *pcinfo;
2592 	u8 idx_l, idx_r;
2593 	u8 mode, max, i;
2594 	u32 target = channel->center_freq;
2595 
2596 	idx_l = 0;
2597 	idx_r = 0;
2598 
2599 	switch (channel->hw_value) {
2600 	case AR5K_EEPROM_MODE_11A:
2601 		pcinfo = ee->ee_pwr_cal_a;
2602 		mode = AR5K_EEPROM_MODE_11A;
2603 		break;
2604 	case AR5K_EEPROM_MODE_11B:
2605 		pcinfo = ee->ee_pwr_cal_b;
2606 		mode = AR5K_EEPROM_MODE_11B;
2607 		break;
2608 	case AR5K_EEPROM_MODE_11G:
2609 	default:
2610 		pcinfo = ee->ee_pwr_cal_g;
2611 		mode = AR5K_EEPROM_MODE_11G;
2612 		break;
2613 	}
2614 	max = ee->ee_n_piers[mode] - 1;
2615 
2616 	/* Frequency is below our calibrated
2617 	 * range. Use the lowest power curve
2618 	 * we have */
2619 	if (target < pcinfo[0].freq) {
2620 		idx_l = idx_r = 0;
2621 		goto done;
2622 	}
2623 
2624 	/* Frequency is above our calibrated
2625 	 * range. Use the highest power curve
2626 	 * we have */
2627 	if (target > pcinfo[max].freq) {
2628 		idx_l = idx_r = max;
2629 		goto done;
2630 	}
2631 
2632 	/* Frequency is inside our calibrated
2633 	 * channel range. Pick the surrounding
2634 	 * calibration piers so that we can
2635 	 * interpolate */
2636 	for (i = 0; i <= max; i++) {
2637 
2638 		/* Frequency matches one of our calibration
2639 		 * piers, no need to interpolate, just use
2640 		 * that calibration pier */
2641 		if (pcinfo[i].freq == target) {
2642 			idx_l = idx_r = i;
2643 			goto done;
2644 		}
2645 
2646 		/* We found a calibration pier that's above
2647 		 * frequency, use this pier and the previous
2648 		 * one to interpolate */
2649 		if (target < pcinfo[i].freq) {
2650 			idx_r = i;
2651 			idx_l = idx_r - 1;
2652 			goto done;
2653 		}
2654 	}
2655 
2656 done:
2657 	*pcinfo_l = &pcinfo[idx_l];
2658 	*pcinfo_r = &pcinfo[idx_r];
2659 }
2660 
2661 /**
2662  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2663  * calibration data
2664  * @ah: The &struct ath5k_hw *ah,
2665  * @channel: The &struct ieee80211_channel
2666  * @rates: The &struct ath5k_rate_pcal_info to fill
2667  *
2668  * Get the surrounding per-rate power calibration data
2669  * for a given frequency and interpolate between power
2670  * values to set max target power supported by hw for
2671  * each rate on this frequency.
2672  */
2673 static void
2674 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2675 			struct ieee80211_channel *channel,
2676 			struct ath5k_rate_pcal_info *rates)
2677 {
2678 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2679 	struct ath5k_rate_pcal_info *rpinfo;
2680 	u8 idx_l, idx_r;
2681 	u8 mode, max, i;
2682 	u32 target = channel->center_freq;
2683 
2684 	idx_l = 0;
2685 	idx_r = 0;
2686 
2687 	switch (channel->hw_value) {
2688 	case AR5K_MODE_11A:
2689 		rpinfo = ee->ee_rate_tpwr_a;
2690 		mode = AR5K_EEPROM_MODE_11A;
2691 		break;
2692 	case AR5K_MODE_11B:
2693 		rpinfo = ee->ee_rate_tpwr_b;
2694 		mode = AR5K_EEPROM_MODE_11B;
2695 		break;
2696 	case AR5K_MODE_11G:
2697 	default:
2698 		rpinfo = ee->ee_rate_tpwr_g;
2699 		mode = AR5K_EEPROM_MODE_11G;
2700 		break;
2701 	}
2702 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2703 
2704 	/* Get the surrounding calibration
2705 	 * piers - same as above */
2706 	if (target < rpinfo[0].freq) {
2707 		idx_l = idx_r = 0;
2708 		goto done;
2709 	}
2710 
2711 	if (target > rpinfo[max].freq) {
2712 		idx_l = idx_r = max;
2713 		goto done;
2714 	}
2715 
2716 	for (i = 0; i <= max; i++) {
2717 
2718 		if (rpinfo[i].freq == target) {
2719 			idx_l = idx_r = i;
2720 			goto done;
2721 		}
2722 
2723 		if (target < rpinfo[i].freq) {
2724 			idx_r = i;
2725 			idx_l = idx_r - 1;
2726 			goto done;
2727 		}
2728 	}
2729 
2730 done:
2731 	/* Now interpolate power value, based on the frequency */
2732 	rates->freq = target;
2733 
2734 	rates->target_power_6to24 =
2735 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2736 					rpinfo[idx_r].freq,
2737 					rpinfo[idx_l].target_power_6to24,
2738 					rpinfo[idx_r].target_power_6to24);
2739 
2740 	rates->target_power_36 =
2741 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2742 					rpinfo[idx_r].freq,
2743 					rpinfo[idx_l].target_power_36,
2744 					rpinfo[idx_r].target_power_36);
2745 
2746 	rates->target_power_48 =
2747 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2748 					rpinfo[idx_r].freq,
2749 					rpinfo[idx_l].target_power_48,
2750 					rpinfo[idx_r].target_power_48);
2751 
2752 	rates->target_power_54 =
2753 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2754 					rpinfo[idx_r].freq,
2755 					rpinfo[idx_l].target_power_54,
2756 					rpinfo[idx_r].target_power_54);
2757 }
2758 
2759 /**
2760  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2761  * @ah: the &struct ath5k_hw
2762  * @channel: The &struct ieee80211_channel
2763  *
2764  * Get the max edge power for this channel if
2765  * we have such data from EEPROM's Conformance Test
2766  * Limits (CTL), and limit max power if needed.
2767  */
2768 static void
2769 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2770 			struct ieee80211_channel *channel)
2771 {
2772 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2773 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2774 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2775 	u8 *ctl_val = ee->ee_ctl;
2776 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2777 	s16 edge_pwr = 0;
2778 	u8 rep_idx;
2779 	u8 i, ctl_mode;
2780 	u8 ctl_idx = 0xFF;
2781 	u32 target = channel->center_freq;
2782 
2783 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2784 
2785 	switch (channel->hw_value) {
2786 	case AR5K_MODE_11A:
2787 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2788 			ctl_mode |= AR5K_CTL_TURBO;
2789 		else
2790 			ctl_mode |= AR5K_CTL_11A;
2791 		break;
2792 	case AR5K_MODE_11G:
2793 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2794 			ctl_mode |= AR5K_CTL_TURBOG;
2795 		else
2796 			ctl_mode |= AR5K_CTL_11G;
2797 		break;
2798 	case AR5K_MODE_11B:
2799 		ctl_mode |= AR5K_CTL_11B;
2800 		break;
2801 	default:
2802 		return;
2803 	}
2804 
2805 	for (i = 0; i < ee->ee_ctls; i++) {
2806 		if (ctl_val[i] == ctl_mode) {
2807 			ctl_idx = i;
2808 			break;
2809 		}
2810 	}
2811 
2812 	/* If we have a CTL dataset available grab it and find the
2813 	 * edge power for our frequency */
2814 	if (ctl_idx == 0xFF)
2815 		return;
2816 
2817 	/* Edge powers are sorted by frequency from lower
2818 	 * to higher. Each CTL corresponds to 8 edge power
2819 	 * measurements. */
2820 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2821 
2822 	/* Don't do boundaries check because we
2823 	 * might have more that one bands defined
2824 	 * for this mode */
2825 
2826 	/* Get the edge power that's closer to our
2827 	 * frequency */
2828 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2829 		rep_idx += i;
2830 		if (target <= rep[rep_idx].freq)
2831 			edge_pwr = (s16) rep[rep_idx].edge;
2832 	}
2833 
2834 	if (edge_pwr)
2835 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2836 }
2837 
2838 
2839 /*
2840  * Power to PCDAC table functions
2841  */
2842 
2843 /**
2844  * DOC: Power to PCDAC table functions
2845  *
2846  * For RF5111 we have an XPD -eXternal Power Detector- curve
2847  * for each calibrated channel. Each curve has 0,5dB Power steps
2848  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2849  * exponential function. To recreate the curve we read 11 points
2850  * from eeprom (eeprom.c) and interpolate here.
2851  *
2852  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2853  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2854  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2855  * power steps on x axis and PCDAC steps on y axis and looks like a
2856  * linear function. To recreate the curve and pass the power values
2857  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2858  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2859  * and interpolate here.
2860  *
2861  * For a given channel we get the calibrated points (piers) for it or
2862  * -if we don't have calibration data for this specific channel- from the
2863  * available surrounding channels we have calibration data for, after we do a
2864  * linear interpolation between them. Then since we have our calibrated points
2865  * for this channel, we do again a linear interpolation between them to get the
2866  * whole curve.
2867  *
2868  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2869  */
2870 
2871 /**
2872  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2873  * @ah: The &struct ath5k_hw
2874  * @table_min: Minimum power (x min)
2875  * @table_max: Maximum power (x max)
2876  *
2877  * No further processing is needed for RF5111, the only thing we have to
2878  * do is fill the values below and above calibration range since eeprom data
2879  * may not cover the entire PCDAC table.
2880  */
2881 static void
2882 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2883 							s16 *table_max)
2884 {
2885 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2886 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2887 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2888 	s16	min_pwr, max_pwr;
2889 
2890 	/* Get table boundaries */
2891 	min_pwr = table_min[0];
2892 	pcdac_0 = pcdac_tmp[0];
2893 
2894 	max_pwr = table_max[0];
2895 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2896 
2897 	/* Extrapolate below minimum using pcdac_0 */
2898 	pcdac_i = 0;
2899 	for (i = 0; i < min_pwr; i++)
2900 		pcdac_out[pcdac_i++] = pcdac_0;
2901 
2902 	/* Copy values from pcdac_tmp */
2903 	pwr_idx = min_pwr;
2904 	for (i = 0; pwr_idx <= max_pwr &&
2905 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2906 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2907 		pwr_idx++;
2908 	}
2909 
2910 	/* Extrapolate above maximum */
2911 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2912 		pcdac_out[pcdac_i++] = pcdac_n;
2913 
2914 }
2915 
2916 /**
2917  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2918  * @ah: The &struct ath5k_hw
2919  * @table_min: Minimum power (x min)
2920  * @table_max: Maximum power (x max)
2921  * @pdcurves: Number of pd curves
2922  *
2923  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2924  * RFX112 can have up to 2 curves (one for low txpower range and one for
2925  * higher txpower range). We need to put them both on pcdac_out and place
2926  * them in the correct location. In case we only have one curve available
2927  * just fit it on pcdac_out (it's supposed to cover the entire range of
2928  * available pwr levels since it's always the higher power curve). Extrapolate
2929  * below and above final table if needed.
2930  */
2931 static void
2932 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2933 						s16 *table_max, u8 pdcurves)
2934 {
2935 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2936 	u8	*pcdac_low_pwr;
2937 	u8	*pcdac_high_pwr;
2938 	u8	*pcdac_tmp;
2939 	u8	pwr;
2940 	s16	max_pwr_idx;
2941 	s16	min_pwr_idx;
2942 	s16	mid_pwr_idx = 0;
2943 	/* Edge flag turns on the 7nth bit on the PCDAC
2944 	 * to declare the higher power curve (force values
2945 	 * to be greater than 64). If we only have one curve
2946 	 * we don't need to set this, if we have 2 curves and
2947 	 * fill the table backwards this can also be used to
2948 	 * switch from higher power curve to lower power curve */
2949 	u8	edge_flag;
2950 	int	i;
2951 
2952 	/* When we have only one curve available
2953 	 * that's the higher power curve. If we have
2954 	 * two curves the first is the high power curve
2955 	 * and the next is the low power curve. */
2956 	if (pdcurves > 1) {
2957 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2958 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2959 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2960 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2961 
2962 		/* If table size goes beyond 31.5dB, keep the
2963 		 * upper 31.5dB range when setting tx power.
2964 		 * Note: 126 = 31.5 dB in quarter dB steps */
2965 		if (table_max[0] - table_min[1] > 126)
2966 			min_pwr_idx = table_max[0] - 126;
2967 		else
2968 			min_pwr_idx = table_min[1];
2969 
2970 		/* Since we fill table backwards
2971 		 * start from high power curve */
2972 		pcdac_tmp = pcdac_high_pwr;
2973 
2974 		edge_flag = 0x40;
2975 	} else {
2976 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2977 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2978 		min_pwr_idx = table_min[0];
2979 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2980 		pcdac_tmp = pcdac_high_pwr;
2981 		edge_flag = 0;
2982 	}
2983 
2984 	/* This is used when setting tx power*/
2985 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2986 
2987 	/* Fill Power to PCDAC table backwards */
2988 	pwr = max_pwr_idx;
2989 	for (i = 63; i >= 0; i--) {
2990 		/* Entering lower power range, reset
2991 		 * edge flag and set pcdac_tmp to lower
2992 		 * power curve.*/
2993 		if (edge_flag == 0x40 &&
2994 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2995 			edge_flag = 0x00;
2996 			pcdac_tmp = pcdac_low_pwr;
2997 			pwr = mid_pwr_idx / 2;
2998 		}
2999 
3000 		/* Don't go below 1, extrapolate below if we have
3001 		 * already switched to the lower power curve -or
3002 		 * we only have one curve and edge_flag is zero
3003 		 * anyway */
3004 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3005 			while (i >= 0) {
3006 				pcdac_out[i] = pcdac_out[i + 1];
3007 				i--;
3008 			}
3009 			break;
3010 		}
3011 
3012 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3013 
3014 		/* Extrapolate above if pcdac is greater than
3015 		 * 126 -this can happen because we OR pcdac_out
3016 		 * value with edge_flag on high power curve */
3017 		if (pcdac_out[i] > 126)
3018 			pcdac_out[i] = 126;
3019 
3020 		/* Decrease by a 0.5dB step */
3021 		pwr--;
3022 	}
3023 }
3024 
3025 /**
3026  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3027  * @ah: The &struct ath5k_hw
3028  */
3029 static void
3030 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3031 {
3032 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3033 	int	i;
3034 
3035 	/*
3036 	 * Write TX power values
3037 	 */
3038 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3039 		ath5k_hw_reg_write(ah,
3040 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3041 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3042 			AR5K_PHY_PCDAC_TXPOWER(i));
3043 	}
3044 }
3045 
3046 
3047 /*
3048  * Power to PDADC table functions
3049  */
3050 
3051 /**
3052  * DOC: Power to PDADC table functions
3053  *
3054  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3055  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3056  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3057  * PDADC steps on y axis and looks like an exponential function like the
3058  * RF5111 curve.
3059  *
3060  * To recreate the curves we read the points from eeprom (eeprom.c)
3061  * and interpolate here. Note that in most cases only 2 (higher and lower)
3062  * curves are used (like RF5112) but vendors have the opportunity to include
3063  * all 4 curves on eeprom. The final curve (higher power) has an extra
3064  * point for better accuracy like RF5112.
3065  *
3066  * The process is similar to what we do above for RF5111/5112
3067  */
3068 
3069 /**
3070  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3071  * @ah: The &struct ath5k_hw
3072  * @pwr_min: Minimum power (x min)
3073  * @pwr_max: Maximum power (x max)
3074  * @pdcurves: Number of available curves
3075  *
3076  * Combine the various pd curves and create the final Power to PDADC table
3077  * We can have up to 4 pd curves, we need to do a similar process
3078  * as we do for RF5112. This time we don't have an edge_flag but we
3079  * set the gain boundaries on a separate register.
3080  */
3081 static void
3082 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3083 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3084 {
3085 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3086 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3087 	u8 *pdadc_tmp;
3088 	s16 pdadc_0;
3089 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3090 	u8 pd_gain_overlap;
3091 
3092 	/* Note: Register value is initialized on initvals
3093 	 * there is no feedback from hw.
3094 	 * XXX: What about pd_gain_overlap from EEPROM ? */
3095 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3096 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3097 
3098 	/* Create final PDADC table */
3099 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3100 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3101 
3102 		if (pdg == pdcurves - 1)
3103 			/* 2 dB boundary stretch for last
3104 			 * (higher power) curve */
3105 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3106 		else
3107 			/* Set gain boundary in the middle
3108 			 * between this curve and the next one */
3109 			gain_boundaries[pdg] =
3110 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3111 
3112 		/* Sanity check in case our 2 db stretch got out of
3113 		 * range. */
3114 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3115 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3116 
3117 		/* For the first curve (lower power)
3118 		 * start from 0 dB */
3119 		if (pdg == 0)
3120 			pdadc_0 = 0;
3121 		else
3122 			/* For the other curves use the gain overlap */
3123 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3124 							pd_gain_overlap;
3125 
3126 		/* Force each power step to be at least 0.5 dB */
3127 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3128 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3129 		else
3130 			pwr_step = 1;
3131 
3132 		/* If pdadc_0 is negative, we need to extrapolate
3133 		 * below this pdgain by a number of pwr_steps */
3134 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3135 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3136 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3137 			pdadc_0++;
3138 		}
3139 
3140 		/* Set last pwr level, using gain boundaries */
3141 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3142 		/* Limit it to be inside pwr range */
3143 		table_size = pwr_max[pdg] - pwr_min[pdg];
3144 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3145 
3146 		/* Fill pdadc_out table */
3147 		while (pdadc_0 < max_idx && pdadc_i < 128)
3148 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3149 
3150 		/* Need to extrapolate above this pdgain? */
3151 		if (pdadc_n <= max_idx)
3152 			continue;
3153 
3154 		/* Force each power step to be at least 0.5 dB */
3155 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3156 			pwr_step = pdadc_tmp[table_size - 1] -
3157 						pdadc_tmp[table_size - 2];
3158 		else
3159 			pwr_step = 1;
3160 
3161 		/* Extrapolate above */
3162 		while ((pdadc_0 < (s16) pdadc_n) &&
3163 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3164 			s16 tmp = pdadc_tmp[table_size - 1] +
3165 					(pdadc_0 - max_idx) * pwr_step;
3166 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3167 			pdadc_0++;
3168 		}
3169 	}
3170 
3171 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3172 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3173 		pdg++;
3174 	}
3175 
3176 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3177 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3178 		pdadc_i++;
3179 	}
3180 
3181 	/* Set gain boundaries */
3182 	ath5k_hw_reg_write(ah,
3183 		AR5K_REG_SM(pd_gain_overlap,
3184 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3185 		AR5K_REG_SM(gain_boundaries[0],
3186 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3187 		AR5K_REG_SM(gain_boundaries[1],
3188 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3189 		AR5K_REG_SM(gain_boundaries[2],
3190 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3191 		AR5K_REG_SM(gain_boundaries[3],
3192 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3193 		AR5K_PHY_TPC_RG5);
3194 
3195 	/* Used for setting rate power table */
3196 	ah->ah_txpower.txp_min_idx = pwr_min[0];
3197 
3198 }
3199 
3200 /**
3201  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3202  * @ah: The &struct ath5k_hw
3203  * @ee_mode: One of enum ath5k_driver_mode
3204  */
3205 static void
3206 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3207 {
3208 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3209 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3210 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3211 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3212 	u32 reg;
3213 	u8 i;
3214 
3215 	/* Select the right pdgain curves */
3216 
3217 	/* Clear current settings */
3218 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3219 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3220 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3221 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3222 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3223 
3224 	/*
3225 	 * Use pd_gains curve from eeprom
3226 	 *
3227 	 * This overrides the default setting from initvals
3228 	 * in case some vendors (e.g. Zcomax) don't use the default
3229 	 * curves. If we don't honor their settings we 'll get a
3230 	 * 5dB (1 * gain overlap ?) drop.
3231 	 */
3232 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3233 
3234 	switch (pdcurves) {
3235 	case 3:
3236 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3237 		/* Fall through */
3238 	case 2:
3239 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3240 		/* Fall through */
3241 	case 1:
3242 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3243 		break;
3244 	}
3245 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3246 
3247 	/*
3248 	 * Write TX power values
3249 	 */
3250 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3251 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3252 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3253 	}
3254 }
3255 
3256 
3257 /*
3258  * Common code for PCDAC/PDADC tables
3259  */
3260 
3261 /**
3262  * ath5k_setup_channel_powertable() - Set up power table for this channel
3263  * @ah: The &struct ath5k_hw
3264  * @channel: The &struct ieee80211_channel
3265  * @ee_mode: One of enum ath5k_driver_mode
3266  * @type: One of enum ath5k_powertable_type (eeprom.h)
3267  *
3268  * This is the main function that uses all of the above
3269  * to set PCDAC/PDADC table on hw for the current channel.
3270  * This table is used for tx power calibration on the baseband,
3271  * without it we get weird tx power levels and in some cases
3272  * distorted spectral mask
3273  */
3274 static int
3275 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3276 			struct ieee80211_channel *channel,
3277 			u8 ee_mode, u8 type)
3278 {
3279 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3280 	struct ath5k_chan_pcal_info *pcinfo_L;
3281 	struct ath5k_chan_pcal_info *pcinfo_R;
3282 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3283 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3284 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3285 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3286 	u8 *tmpL;
3287 	u8 *tmpR;
3288 	u32 target = channel->center_freq;
3289 	int pdg, i;
3290 
3291 	/* Get surrounding freq piers for this channel */
3292 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3293 						&pcinfo_L,
3294 						&pcinfo_R);
3295 
3296 	/* Loop over pd gain curves on
3297 	 * surrounding freq piers by index */
3298 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3299 
3300 		/* Fill curves in reverse order
3301 		 * from lower power (max gain)
3302 		 * to higher power. Use curve -> idx
3303 		 * backmapping we did on eeprom init */
3304 		u8 idx = pdg_curve_to_idx[pdg];
3305 
3306 		/* Grab the needed curves by index */
3307 		pdg_L = &pcinfo_L->pd_curves[idx];
3308 		pdg_R = &pcinfo_R->pd_curves[idx];
3309 
3310 		/* Initialize the temp tables */
3311 		tmpL = ah->ah_txpower.tmpL[pdg];
3312 		tmpR = ah->ah_txpower.tmpR[pdg];
3313 
3314 		/* Set curve's x boundaries and create
3315 		 * curves so that they cover the same
3316 		 * range (if we don't do that one table
3317 		 * will have values on some range and the
3318 		 * other one won't have any so interpolation
3319 		 * will fail) */
3320 		table_min[pdg] = min(pdg_L->pd_pwr[0],
3321 					pdg_R->pd_pwr[0]) / 2;
3322 
3323 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3324 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3325 
3326 		/* Now create the curves on surrounding channels
3327 		 * and interpolate if needed to get the final
3328 		 * curve for this gain on this channel */
3329 		switch (type) {
3330 		case AR5K_PWRTABLE_LINEAR_PCDAC:
3331 			/* Override min/max so that we don't loose
3332 			 * accuracy (don't divide by 2) */
3333 			table_min[pdg] = min(pdg_L->pd_pwr[0],
3334 						pdg_R->pd_pwr[0]);
3335 
3336 			table_max[pdg] =
3337 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3338 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3339 
3340 			/* Override minimum so that we don't get
3341 			 * out of bounds while extrapolating
3342 			 * below. Don't do this when we have 2
3343 			 * curves and we are on the high power curve
3344 			 * because table_min is ok in this case */
3345 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3346 
3347 				table_min[pdg] =
3348 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3349 								pdg_R->pd_step,
3350 								pdg_L->pd_pwr,
3351 								pdg_R->pd_pwr);
3352 
3353 				/* Don't go too low because we will
3354 				 * miss the upper part of the curve.
3355 				 * Note: 126 = 31.5dB (max power supported)
3356 				 * in 0.25dB units */
3357 				if (table_max[pdg] - table_min[pdg] > 126)
3358 					table_min[pdg] = table_max[pdg] - 126;
3359 			}
3360 
3361 			/* Fall through */
3362 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3363 		case AR5K_PWRTABLE_PWR_TO_PDADC:
3364 
3365 			ath5k_create_power_curve(table_min[pdg],
3366 						table_max[pdg],
3367 						pdg_L->pd_pwr,
3368 						pdg_L->pd_step,
3369 						pdg_L->pd_points, tmpL, type);
3370 
3371 			/* We are in a calibration
3372 			 * pier, no need to interpolate
3373 			 * between freq piers */
3374 			if (pcinfo_L == pcinfo_R)
3375 				continue;
3376 
3377 			ath5k_create_power_curve(table_min[pdg],
3378 						table_max[pdg],
3379 						pdg_R->pd_pwr,
3380 						pdg_R->pd_step,
3381 						pdg_R->pd_points, tmpR, type);
3382 			break;
3383 		default:
3384 			return -EINVAL;
3385 		}
3386 
3387 		/* Interpolate between curves
3388 		 * of surrounding freq piers to
3389 		 * get the final curve for this
3390 		 * pd gain. Re-use tmpL for interpolation
3391 		 * output */
3392 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3393 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3394 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3395 							(s16) pcinfo_L->freq,
3396 							(s16) pcinfo_R->freq,
3397 							(s16) tmpL[i],
3398 							(s16) tmpR[i]);
3399 		}
3400 	}
3401 
3402 	/* Now we have a set of curves for this
3403 	 * channel on tmpL (x range is table_max - table_min
3404 	 * and y values are tmpL[pdg][]) sorted in the same
3405 	 * order as EEPROM (because we've used the backmapping).
3406 	 * So for RF5112 it's from higher power to lower power
3407 	 * and for RF2413 it's from lower power to higher power.
3408 	 * For RF5111 we only have one curve. */
3409 
3410 	/* Fill min and max power levels for this
3411 	 * channel by interpolating the values on
3412 	 * surrounding channels to complete the dataset */
3413 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3414 					(s16) pcinfo_L->freq,
3415 					(s16) pcinfo_R->freq,
3416 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3417 
3418 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3419 					(s16) pcinfo_L->freq,
3420 					(s16) pcinfo_R->freq,
3421 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3422 
3423 	/* Fill PCDAC/PDADC table */
3424 	switch (type) {
3425 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3426 		/* For RF5112 we can have one or two curves
3427 		 * and each curve covers a certain power lvl
3428 		 * range so we need to do some more processing */
3429 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3430 						ee->ee_pd_gains[ee_mode]);
3431 
3432 		/* Set txp.offset so that we can
3433 		 * match max power value with max
3434 		 * table index */
3435 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3436 		break;
3437 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3438 		/* We are done for RF5111 since it has only
3439 		 * one curve, just fit the curve on the table */
3440 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3441 
3442 		/* No rate powertable adjustment for RF5111 */
3443 		ah->ah_txpower.txp_min_idx = 0;
3444 		ah->ah_txpower.txp_offset = 0;
3445 		break;
3446 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3447 		/* Set PDADC boundaries and fill
3448 		 * final PDADC table */
3449 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3450 						ee->ee_pd_gains[ee_mode]);
3451 
3452 		/* Set txp.offset, note that table_min
3453 		 * can be negative */
3454 		ah->ah_txpower.txp_offset = table_min[0];
3455 		break;
3456 	default:
3457 		return -EINVAL;
3458 	}
3459 
3460 	ah->ah_txpower.txp_setup = true;
3461 
3462 	return 0;
3463 }
3464 
3465 /**
3466  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3467  * @ah: The &struct ath5k_hw
3468  * @ee_mode: One of enum ath5k_driver_mode
3469  * @type: One of enum ath5k_powertable_type (eeprom.h)
3470  */
3471 static void
3472 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3473 {
3474 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3475 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3476 	else
3477 		ath5k_write_pcdac_table(ah);
3478 }
3479 
3480 
3481 /**
3482  * DOC: Per-rate tx power setting
3483  *
3484  * This is the code that sets the desired tx power limit (below
3485  * maximum) on hw for each rate (we also have TPC that sets
3486  * power per packet type). We do that by providing an index on the
3487  * PCDAC/PDADC table we set up above, for each rate.
3488  *
3489  * For now we only limit txpower based on maximum tx power
3490  * supported by hw (what's inside rate_info) + conformance test
3491  * limits. We need to limit this even more, based on regulatory domain
3492  * etc to be safe. Normally this is done from above so we don't care
3493  * here, all we care is that the tx power we set will be O.K.
3494  * for the hw (e.g. won't create noise on PA etc).
3495  *
3496  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3497  * x values) and is indexed as follows:
3498  * rates[0] - rates[7] -> OFDM rates
3499  * rates[8] - rates[14] -> CCK rates
3500  * rates[15] -> XR rates (they all have the same power)
3501  */
3502 
3503 /**
3504  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3505  * @ah: The &struct ath5k_hw
3506  * @max_pwr: The maximum tx power requested in 0.5dB steps
3507  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3508  * @ee_mode: One of enum ath5k_driver_mode
3509  */
3510 static void
3511 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3512 			struct ath5k_rate_pcal_info *rate_info,
3513 			u8 ee_mode)
3514 {
3515 	unsigned int i;
3516 	u16 *rates;
3517 
3518 	/* max_pwr is power level we got from driver/user in 0.5dB
3519 	 * units, switch to 0.25dB units so we can compare */
3520 	max_pwr *= 2;
3521 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3522 
3523 	/* apply rate limits */
3524 	rates = ah->ah_txpower.txp_rates_power_table;
3525 
3526 	/* OFDM rates 6 to 24Mb/s */
3527 	for (i = 0; i < 5; i++)
3528 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3529 
3530 	/* Rest OFDM rates */
3531 	rates[5] = min(rates[0], rate_info->target_power_36);
3532 	rates[6] = min(rates[0], rate_info->target_power_48);
3533 	rates[7] = min(rates[0], rate_info->target_power_54);
3534 
3535 	/* CCK rates */
3536 	/* 1L */
3537 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3538 	/* 2L */
3539 	rates[9] = min(rates[0], rate_info->target_power_36);
3540 	/* 2S */
3541 	rates[10] = min(rates[0], rate_info->target_power_36);
3542 	/* 5L */
3543 	rates[11] = min(rates[0], rate_info->target_power_48);
3544 	/* 5S */
3545 	rates[12] = min(rates[0], rate_info->target_power_48);
3546 	/* 11L */
3547 	rates[13] = min(rates[0], rate_info->target_power_54);
3548 	/* 11S */
3549 	rates[14] = min(rates[0], rate_info->target_power_54);
3550 
3551 	/* XR rates */
3552 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3553 
3554 	/* CCK rates have different peak to average ratio
3555 	 * so we have to tweak their power so that gainf
3556 	 * correction works ok. For this we use OFDM to
3557 	 * CCK delta from eeprom */
3558 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3559 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3560 		for (i = 8; i <= 15; i++)
3561 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3562 
3563 	/* Now that we have all rates setup use table offset to
3564 	 * match the power range set by user with the power indices
3565 	 * on PCDAC/PDADC table */
3566 	for (i = 0; i < 16; i++) {
3567 		rates[i] += ah->ah_txpower.txp_offset;
3568 		/* Don't get out of bounds */
3569 		if (rates[i] > 63)
3570 			rates[i] = 63;
3571 	}
3572 
3573 	/* Min/max in 0.25dB units */
3574 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3575 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3576 	ah->ah_txpower.txp_ofdm = rates[7];
3577 }
3578 
3579 
3580 /**
3581  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3582  * @ah: The &struct ath5k_hw
3583  * @channel: The &struct ieee80211_channel
3584  * @txpower: Requested tx power in 0.5dB steps
3585  *
3586  * Combines all of the above to set the requested tx power limit
3587  * on hw.
3588  */
3589 static int
3590 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3591 		 u8 txpower)
3592 {
3593 	struct ath5k_rate_pcal_info rate_info;
3594 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3595 	int ee_mode;
3596 	u8 type;
3597 	int ret;
3598 
3599 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3600 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3601 		return -EINVAL;
3602 	}
3603 
3604 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3605 	if (ee_mode < 0) {
3606 		ATH5K_ERR(ah,
3607 			"invalid channel: %d\n", channel->center_freq);
3608 		return -EINVAL;
3609 	}
3610 
3611 	/* Initialize TX power table */
3612 	switch (ah->ah_radio) {
3613 	case AR5K_RF5110:
3614 		/* TODO */
3615 		return 0;
3616 	case AR5K_RF5111:
3617 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3618 		break;
3619 	case AR5K_RF5112:
3620 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3621 		break;
3622 	case AR5K_RF2413:
3623 	case AR5K_RF5413:
3624 	case AR5K_RF2316:
3625 	case AR5K_RF2317:
3626 	case AR5K_RF2425:
3627 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3628 		break;
3629 	default:
3630 		return -EINVAL;
3631 	}
3632 
3633 	/*
3634 	 * If we don't change channel/mode skip tx powertable calculation
3635 	 * and use the cached one.
3636 	 */
3637 	if (!ah->ah_txpower.txp_setup ||
3638 	    (channel->hw_value != curr_channel->hw_value) ||
3639 	    (channel->center_freq != curr_channel->center_freq)) {
3640 		/* Reset TX power values */
3641 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3642 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3643 
3644 		/* Calculate the powertable */
3645 		ret = ath5k_setup_channel_powertable(ah, channel,
3646 							ee_mode, type);
3647 		if (ret)
3648 			return ret;
3649 	}
3650 
3651 	/* Write table on hw */
3652 	ath5k_write_channel_powertable(ah, ee_mode, type);
3653 
3654 	/* Limit max power if we have a CTL available */
3655 	ath5k_get_max_ctl_power(ah, channel);
3656 
3657 	/* FIXME: Antenna reduction stuff */
3658 
3659 	/* FIXME: Limit power on turbo modes */
3660 
3661 	/* FIXME: TPC scale reduction */
3662 
3663 	/* Get surrounding channels for per-rate power table
3664 	 * calibration */
3665 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3666 
3667 	/* Setup rate power table */
3668 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3669 
3670 	/* Write rate power table on hw */
3671 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3672 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3673 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3674 
3675 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3676 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3677 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3678 
3679 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3680 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3681 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3682 
3683 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3684 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3685 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3686 
3687 	/* FIXME: TPC support */
3688 	if (ah->ah_txpower.txp_tpc) {
3689 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3690 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3691 
3692 		ath5k_hw_reg_write(ah,
3693 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3694 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3695 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3696 			AR5K_TPC);
3697 	} else {
3698 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3699 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 /**
3706  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3707  * @ah: The &struct ath5k_hw
3708  * @txpower: The requested tx power limit in 0.5dB steps
3709  *
3710  * This function provides access to ath5k_hw_txpower to the driver in
3711  * case user or an application changes it while PHY is running.
3712  */
3713 int
3714 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3715 {
3716 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3717 		"changing txpower to %d\n", txpower);
3718 
3719 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3720 }
3721 
3722 
3723 /*************\
3724  Init function
3725 \*************/
3726 
3727 /**
3728  * ath5k_hw_phy_init() - Initialize PHY
3729  * @ah: The &struct ath5k_hw
3730  * @channel: The @struct ieee80211_channel
3731  * @mode: One of enum ath5k_driver_mode
3732  * @fast: Try a fast channel switch instead
3733  *
3734  * This is the main function used during reset to initialize PHY
3735  * or do a fast channel change if possible.
3736  *
3737  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3738  * warm reset state !
3739  */
3740 int
3741 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3742 		      u8 mode, bool fast)
3743 {
3744 	struct ieee80211_channel *curr_channel;
3745 	int ret, i;
3746 	u32 phy_tst1;
3747 	ret = 0;
3748 
3749 	/*
3750 	 * Sanity check for fast flag
3751 	 * Don't try fast channel change when changing modulation
3752 	 * mode/band. We check for chip compatibility on
3753 	 * ath5k_hw_reset.
3754 	 */
3755 	curr_channel = ah->ah_current_channel;
3756 	if (fast && (channel->hw_value != curr_channel->hw_value))
3757 		return -EINVAL;
3758 
3759 	/*
3760 	 * On fast channel change we only set the synth parameters
3761 	 * while PHY is running, enable calibration and skip the rest.
3762 	 */
3763 	if (fast) {
3764 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3765 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3766 		for (i = 0; i < 100; i++) {
3767 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3768 				break;
3769 			udelay(5);
3770 		}
3771 		/* Failed */
3772 		if (i >= 100)
3773 			return -EIO;
3774 
3775 		/* Set channel and wait for synth */
3776 		ret = ath5k_hw_channel(ah, channel);
3777 		if (ret)
3778 			return ret;
3779 
3780 		ath5k_hw_wait_for_synth(ah, channel);
3781 	}
3782 
3783 	/*
3784 	 * Set TX power
3785 	 *
3786 	 * Note: We need to do that before we set
3787 	 * RF buffer settings on 5211/5212+ so that we
3788 	 * properly set curve indices.
3789 	 */
3790 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3791 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3792 	if (ret)
3793 		return ret;
3794 
3795 	/* Write OFDM timings on 5212*/
3796 	if (ah->ah_version == AR5K_AR5212 &&
3797 		channel->hw_value != AR5K_MODE_11B) {
3798 
3799 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3800 		if (ret)
3801 			return ret;
3802 
3803 		/* Spur info is available only from EEPROM versions
3804 		 * greater than 5.3, but the EEPROM routines will use
3805 		 * static values for older versions */
3806 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3807 			ath5k_hw_set_spur_mitigation_filter(ah,
3808 							    channel);
3809 	}
3810 
3811 	/* If we used fast channel switching
3812 	 * we are done, release RF bus and
3813 	 * fire up NF calibration.
3814 	 *
3815 	 * Note: Only NF calibration due to
3816 	 * channel change, not AGC calibration
3817 	 * since AGC is still running !
3818 	 */
3819 	if (fast) {
3820 		/*
3821 		 * Release RF Bus grant
3822 		 */
3823 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3824 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3825 
3826 		/*
3827 		 * Start NF calibration
3828 		 */
3829 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3830 					AR5K_PHY_AGCCTL_NF);
3831 
3832 		return ret;
3833 	}
3834 
3835 	/*
3836 	 * For 5210 we do all initialization using
3837 	 * initvals, so we don't have to modify
3838 	 * any settings (5210 also only supports
3839 	 * a/aturbo modes)
3840 	 */
3841 	if (ah->ah_version != AR5K_AR5210) {
3842 
3843 		/*
3844 		 * Write initial RF gain settings
3845 		 * This should work for both 5111/5112
3846 		 */
3847 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3848 		if (ret)
3849 			return ret;
3850 
3851 		usleep_range(1000, 1500);
3852 
3853 		/*
3854 		 * Write RF buffer
3855 		 */
3856 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3857 		if (ret)
3858 			return ret;
3859 
3860 		/*Enable/disable 802.11b mode on 5111
3861 		(enable 2111 frequency converter + CCK)*/
3862 		if (ah->ah_radio == AR5K_RF5111) {
3863 			if (mode == AR5K_MODE_11B)
3864 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3865 				    AR5K_TXCFG_B_MODE);
3866 			else
3867 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3868 				    AR5K_TXCFG_B_MODE);
3869 		}
3870 
3871 	} else if (ah->ah_version == AR5K_AR5210) {
3872 		usleep_range(1000, 1500);
3873 		/* Disable phy and wait */
3874 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3875 		usleep_range(1000, 1500);
3876 	}
3877 
3878 	/* Set channel on PHY */
3879 	ret = ath5k_hw_channel(ah, channel);
3880 	if (ret)
3881 		return ret;
3882 
3883 	/*
3884 	 * Enable the PHY and wait until completion
3885 	 * This includes BaseBand and Synthesizer
3886 	 * activation.
3887 	 */
3888 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3889 
3890 	ath5k_hw_wait_for_synth(ah, channel);
3891 
3892 	/*
3893 	 * Perform ADC test to see if baseband is ready
3894 	 * Set tx hold and check adc test register
3895 	 */
3896 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3897 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3898 	for (i = 0; i <= 20; i++) {
3899 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3900 			break;
3901 		usleep_range(200, 250);
3902 	}
3903 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3904 
3905 	/*
3906 	 * Start automatic gain control calibration
3907 	 *
3908 	 * During AGC calibration RX path is re-routed to
3909 	 * a power detector so we don't receive anything.
3910 	 *
3911 	 * This method is used to calibrate some static offsets
3912 	 * used together with on-the fly I/Q calibration (the
3913 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3914 	 * interrupt rx path.
3915 	 *
3916 	 * While rx path is re-routed to the power detector we also
3917 	 * start a noise floor calibration to measure the
3918 	 * card's noise floor (the noise we measure when we are not
3919 	 * transmitting or receiving anything).
3920 	 *
3921 	 * If we are in a noisy environment, AGC calibration may time
3922 	 * out and/or noise floor calibration might timeout.
3923 	 */
3924 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3925 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3926 
3927 	/* At the same time start I/Q calibration for QAM constellation
3928 	 * -no need for CCK- */
3929 	ah->ah_iq_cal_needed = false;
3930 	if (!(mode == AR5K_MODE_11B)) {
3931 		ah->ah_iq_cal_needed = true;
3932 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3933 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3934 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3935 				AR5K_PHY_IQ_RUN);
3936 	}
3937 
3938 	/* Wait for gain calibration to finish (we check for I/Q calibration
3939 	 * during ath5k_phy_calibrate) */
3940 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3941 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3942 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3943 			channel->center_freq);
3944 	}
3945 
3946 	/* Restore antenna mode */
3947 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3948 
3949 	return ret;
3950 }
3951