xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision 08157984)
1 /*
2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 /***********************\
22 * PHY related functions *
23 \***********************/
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
30 
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "rfbuffer.h"
34 #include "rfgain.h"
35 #include "../regd.h"
36 
37 
38 /**
39  * DOC: PHY related functions
40  *
41  * Here we handle the low-level functions related to baseband
42  * and analog frontend (RF) parts. This is by far the most complex
43  * part of the hw code so make sure you know what you are doing.
44  *
45  * Here is a list of what this is all about:
46  *
47  * - Channel setting/switching
48  *
49  * - Automatic Gain Control (AGC) calibration
50  *
51  * - Noise Floor calibration
52  *
53  * - I/Q imbalance calibration (QAM correction)
54  *
55  * - Calibration due to thermal changes (gain_F)
56  *
57  * - Spur noise mitigation
58  *
59  * - RF/PHY initialization for the various operating modes and bwmodes
60  *
61  * - Antenna control
62  *
63  * - TX power control per channel/rate/packet type
64  *
65  * Also have in mind we never got documentation for most of these
66  * functions, what we have comes mostly from Atheros's code, reverse
67  * engineering and patent docs/presentations etc.
68  */
69 
70 
71 /******************\
72 * Helper functions *
73 \******************/
74 
75 /**
76  * ath5k_hw_radio_revision() - Get the PHY Chip revision
77  * @ah: The &struct ath5k_hw
78  * @band: One of enum ieee80211_band
79  *
80  * Returns the revision number of a 2GHz, 5GHz or single chip
81  * radio.
82  */
83 u16
84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
85 {
86 	unsigned int i;
87 	u32 srev;
88 	u16 ret;
89 
90 	/*
91 	 * Set the radio chip access register
92 	 */
93 	switch (band) {
94 	case IEEE80211_BAND_2GHZ:
95 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96 		break;
97 	case IEEE80211_BAND_5GHZ:
98 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99 		break;
100 	default:
101 		return 0;
102 	}
103 
104 	usleep_range(2000, 2500);
105 
106 	/* ...wait until PHY is ready and read the selected radio revision */
107 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108 
109 	for (i = 0; i < 8; i++)
110 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111 
112 	if (ah->ah_version == AR5K_AR5210) {
113 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
114 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115 	} else {
116 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118 				((srev & 0x0f) << 4), 8);
119 	}
120 
121 	/* Reset to the 5GHz mode */
122 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123 
124 	return ret;
125 }
126 
127 /**
128  * ath5k_channel_ok() - Check if a channel is supported by the hw
129  * @ah: The &struct ath5k_hw
130  * @channel: The &struct ieee80211_channel
131  *
132  * Note: We don't do any regulatory domain checks here, it's just
133  * a sanity check.
134  */
135 bool
136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137 {
138 	u16 freq = channel->center_freq;
139 
140 	/* Check if the channel is in our supported range */
141 	if (channel->band == IEEE80211_BAND_2GHZ) {
142 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144 			return true;
145 	} else if (channel->band == IEEE80211_BAND_5GHZ)
146 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148 			return true;
149 
150 	return false;
151 }
152 
153 /**
154  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155  * @ah: The &struct ath5k_hw
156  * @channel: The &struct ieee80211_channel
157  */
158 bool
159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160 				struct ieee80211_channel *channel)
161 {
162 	u8 refclk_freq;
163 
164 	if ((ah->ah_radio == AR5K_RF5112) ||
165 	(ah->ah_radio == AR5K_RF5413) ||
166 	(ah->ah_radio == AR5K_RF2413) ||
167 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168 		refclk_freq = 40;
169 	else
170 		refclk_freq = 32;
171 
172 	if ((channel->center_freq % refclk_freq != 0) &&
173 	((channel->center_freq % refclk_freq < 10) ||
174 	(channel->center_freq % refclk_freq > 22)))
175 		return true;
176 	else
177 		return false;
178 }
179 
180 /**
181  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182  * @ah: The &struct ath5k_hw
183  * @rf_regs: The struct ath5k_rf_reg
184  * @val: New value
185  * @reg_id: RF register ID
186  * @set: Indicate we need to swap data
187  *
188  * This is an internal function used to modify RF Banks before
189  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190  * infos.
191  */
192 static unsigned int
193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194 					u32 val, u8 reg_id, bool set)
195 {
196 	const struct ath5k_rf_reg *rfreg = NULL;
197 	u8 offset, bank, num_bits, col, position;
198 	u16 entry;
199 	u32 mask, data, last_bit, bits_shifted, first_bit;
200 	u32 *rfb;
201 	s32 bits_left;
202 	int i;
203 
204 	data = 0;
205 	rfb = ah->ah_rf_banks;
206 
207 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
208 		if (rf_regs[i].index == reg_id) {
209 			rfreg = &rf_regs[i];
210 			break;
211 		}
212 	}
213 
214 	if (rfb == NULL || rfreg == NULL) {
215 		ATH5K_PRINTF("Rf register not found!\n");
216 		/* should not happen */
217 		return 0;
218 	}
219 
220 	bank = rfreg->bank;
221 	num_bits = rfreg->field.len;
222 	first_bit = rfreg->field.pos;
223 	col = rfreg->field.col;
224 
225 	/* first_bit is an offset from bank's
226 	 * start. Since we have all banks on
227 	 * the same array, we use this offset
228 	 * to mark each bank's start */
229 	offset = ah->ah_offset[bank];
230 
231 	/* Boundary check */
232 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
234 		return 0;
235 	}
236 
237 	entry = ((first_bit - 1) / 8) + offset;
238 	position = (first_bit - 1) % 8;
239 
240 	if (set)
241 		data = ath5k_hw_bitswap(val, num_bits);
242 
243 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244 	     position = 0, entry++) {
245 
246 		last_bit = (position + bits_left > 8) ? 8 :
247 					position + bits_left;
248 
249 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250 								(col * 8);
251 
252 		if (set) {
253 			rfb[entry] &= ~mask;
254 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
255 			data >>= (8 - position);
256 		} else {
257 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258 				<< bits_shifted;
259 			bits_shifted += last_bit - position;
260 		}
261 
262 		bits_left -= 8 - position;
263 	}
264 
265 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266 
267 	return data;
268 }
269 
270 /**
271  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272  * @ah: the &struct ath5k_hw
273  * @channel: the currently set channel upon reset
274  *
275  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277  *
278  * Since delta slope is floating point we split it on its exponent and
279  * mantissa and provide these values on hw.
280  *
281  * For more infos i think this patent is related
282  * "http://www.freepatentsonline.com/7184495.html"
283  */
284 static inline int
285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286 				struct ieee80211_channel *channel)
287 {
288 	/* Get exponent and mantissa and set it */
289 	u32 coef_scaled, coef_exp, coef_man,
290 		ds_coef_exp, ds_coef_man, clock;
291 
292 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293 		(channel->hw_value == AR5K_MODE_11B));
294 
295 	/* Get coefficient
296 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 	 * we scale coef by shifting clock value by 24 for
298 	 * better precision since we use integers */
299 	switch (ah->ah_bwmode) {
300 	case AR5K_BWMODE_40MHZ:
301 		clock = 40 * 2;
302 		break;
303 	case AR5K_BWMODE_10MHZ:
304 		clock = 40 / 2;
305 		break;
306 	case AR5K_BWMODE_5MHZ:
307 		clock = 40 / 4;
308 		break;
309 	default:
310 		clock = 40;
311 		break;
312 	}
313 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314 
315 	/* Get exponent
316 	 * ALGO: coef_exp = 14 - highest set bit position */
317 	coef_exp = ilog2(coef_scaled);
318 
319 	/* Doesn't make sense if it's zero*/
320 	if (!coef_scaled || !coef_exp)
321 		return -EINVAL;
322 
323 	/* Note: we've shifted coef_scaled by 24 */
324 	coef_exp = 14 - (coef_exp - 24);
325 
326 
327 	/* Get mantissa (significant digits)
328 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 	coef_man = coef_scaled +
330 		(1 << (24 - coef_exp - 1));
331 
332 	/* Calculate delta slope coefficient exponent
333 	 * and mantissa (remove scaling) and set them on hw */
334 	ds_coef_man = coef_man >> (24 - coef_exp);
335 	ds_coef_exp = coef_exp - 16;
336 
337 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341 
342 	return 0;
343 }
344 
345 /**
346  * ath5k_hw_phy_disable() - Disable PHY
347  * @ah: The &struct ath5k_hw
348  */
349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350 {
351 	/*Just a try M.F.*/
352 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353 
354 	return 0;
355 }
356 
357 /**
358  * ath5k_hw_wait_for_synth() - Wait for synth to settle
359  * @ah: The &struct ath5k_hw
360  * @channel: The &struct ieee80211_channel
361  */
362 static void
363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364 			struct ieee80211_channel *channel)
365 {
366 	/*
367 	 * On 5211+ read activation -> rx delay
368 	 * and use it (100ns steps).
369 	 */
370 	if (ah->ah_version != AR5K_AR5210) {
371 		u32 delay;
372 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373 			AR5K_PHY_RX_DELAY_M;
374 		delay = (channel->hw_value == AR5K_MODE_11B) ?
375 			((delay << 2) / 22) : (delay / 10);
376 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377 			delay = delay << 1;
378 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379 			delay = delay << 2;
380 		/* XXX: /2 on turbo ? Let's be safe
381 		 * for now */
382 		usleep_range(100 + delay, 100 + (2 * delay));
383 	} else {
384 		usleep_range(1000, 1500);
385 	}
386 }
387 
388 
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
392 
393 /**
394  * DOC: RF Gain optimization
395  *
396  * This code is used to optimize RF gain on different environments
397  * (temperature mostly) based on feedback from a power detector.
398  *
399  * It's only used on RF5111 and RF5112, later RF chips seem to have
400  * auto adjustment on hw -notice they have a much smaller BANK 7 and
401  * no gain optimization ladder-.
402  *
403  * For more infos check out this patent doc
404  * "http://www.freepatentsonline.com/7400691.html"
405  *
406  * This paper describes power drops as seen on the receiver due to
407  * probe packets
408  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409  * %20of%20Power%20Control.pdf"
410  *
411  * And this is the MadWiFi bug entry related to the above
412  * "http://madwifi-project.org/ticket/1659"
413  * with various measurements and diagrams
414  */
415 
416 /**
417  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418  * @ah: The &struct ath5k_hw
419  */
420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421 {
422 	/* Initialize the gain optimization values */
423 	switch (ah->ah_radio) {
424 	case AR5K_RF5111:
425 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426 		ah->ah_gain.g_low = 20;
427 		ah->ah_gain.g_high = 35;
428 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 		break;
430 	case AR5K_RF5112:
431 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432 		ah->ah_gain.g_low = 20;
433 		ah->ah_gain.g_high = 85;
434 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 		break;
436 	default:
437 		return -EINVAL;
438 	}
439 
440 	return 0;
441 }
442 
443 /**
444  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445  * @ah: The &struct ath5k_hw
446  *
447  * Schedules a gain probe check on the next transmitted packet.
448  * That means our next packet is going to be sent with lower
449  * tx power and a Peak to Average Power Detector (PAPD) will try
450  * to measure the gain.
451  *
452  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453  * just after we enable the probe so that we don't mess with
454  * standard traffic.
455  */
456 static void
457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458 {
459 
460 	/* Skip if gain calibration is inactive or
461 	 * we already handle a probe request */
462 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463 		return;
464 
465 	/* Send the packet with 2dB below max power as
466 	 * patent doc suggest */
467 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
469 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470 
471 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472 
473 }
474 
475 /**
476  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477  * @ah: The &struct ath5k_hw
478  *
479  * Calculate Gain_F measurement correction
480  * based on the current step for RF5112 rev. 2
481  */
482 static u32
483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484 {
485 	u32 mix, step;
486 	u32 *rf;
487 	const struct ath5k_gain_opt *go;
488 	const struct ath5k_gain_opt_step *g_step;
489 	const struct ath5k_rf_reg *rf_regs;
490 
491 	/* Only RF5112 Rev. 2 supports it */
492 	if ((ah->ah_radio != AR5K_RF5112) ||
493 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494 		return 0;
495 
496 	go = &rfgain_opt_5112;
497 	rf_regs = rf_regs_5112a;
498 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499 
500 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
501 
502 	if (ah->ah_rf_banks == NULL)
503 		return 0;
504 
505 	rf = ah->ah_rf_banks;
506 	ah->ah_gain.g_f_corr = 0;
507 
508 	/* No VGA (Variable Gain Amplifier) override, skip */
509 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
510 		return 0;
511 
512 	/* Mix gain stepping */
513 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
514 
515 	/* Mix gain override */
516 	mix = g_step->gos_param[0];
517 
518 	switch (mix) {
519 	case 3:
520 		ah->ah_gain.g_f_corr = step * 2;
521 		break;
522 	case 2:
523 		ah->ah_gain.g_f_corr = (step - 5) * 2;
524 		break;
525 	case 1:
526 		ah->ah_gain.g_f_corr = step;
527 		break;
528 	default:
529 		ah->ah_gain.g_f_corr = 0;
530 		break;
531 	}
532 
533 	return ah->ah_gain.g_f_corr;
534 }
535 
536 /**
537  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538  * @ah: The &struct ath5k_hw
539  *
540  * Check if current gain_F measurement is in the range of our
541  * power detector windows. If we get a measurement outside range
542  * we know it's not accurate (detectors can't measure anything outside
543  * their detection window) so we must ignore it.
544  *
545  * Returns true if readback was O.K. or false on failure
546  */
547 static bool
548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
549 {
550 	const struct ath5k_rf_reg *rf_regs;
551 	u32 step, mix_ovr, level[4];
552 	u32 *rf;
553 
554 	if (ah->ah_rf_banks == NULL)
555 		return false;
556 
557 	rf = ah->ah_rf_banks;
558 
559 	if (ah->ah_radio == AR5K_RF5111) {
560 
561 		rf_regs = rf_regs_5111;
562 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
563 
564 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
565 			false);
566 
567 		level[0] = 0;
568 		level[1] = (step == 63) ? 50 : step + 4;
569 		level[2] = (step != 63) ? 64 : level[0];
570 		level[3] = level[2] + 50;
571 
572 		ah->ah_gain.g_high = level[3] -
573 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
574 		ah->ah_gain.g_low = level[0] +
575 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
576 	} else {
577 
578 		rf_regs = rf_regs_5112;
579 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
580 
581 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
582 			false);
583 
584 		level[0] = level[2] = 0;
585 
586 		if (mix_ovr == 1) {
587 			level[1] = level[3] = 83;
588 		} else {
589 			level[1] = level[3] = 107;
590 			ah->ah_gain.g_high = 55;
591 		}
592 	}
593 
594 	return (ah->ah_gain.g_current >= level[0] &&
595 			ah->ah_gain.g_current <= level[1]) ||
596 		(ah->ah_gain.g_current >= level[2] &&
597 			ah->ah_gain.g_current <= level[3]);
598 }
599 
600 /**
601  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602  * @ah: The &struct ath5k_hw
603  *
604  * Choose the right target gain based on current gain
605  * and RF gain optimization ladder
606  */
607 static s8
608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
609 {
610 	const struct ath5k_gain_opt *go;
611 	const struct ath5k_gain_opt_step *g_step;
612 	int ret = 0;
613 
614 	switch (ah->ah_radio) {
615 	case AR5K_RF5111:
616 		go = &rfgain_opt_5111;
617 		break;
618 	case AR5K_RF5112:
619 		go = &rfgain_opt_5112;
620 		break;
621 	default:
622 		return 0;
623 	}
624 
625 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
626 
627 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
628 
629 		/* Reached maximum */
630 		if (ah->ah_gain.g_step_idx == 0)
631 			return -1;
632 
633 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
634 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
635 				ah->ah_gain.g_step_idx > 0;
636 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
637 			ah->ah_gain.g_target -= 2 *
638 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
639 			    g_step->gos_gain);
640 
641 		ret = 1;
642 		goto done;
643 	}
644 
645 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
646 
647 		/* Reached minimum */
648 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
649 			return -2;
650 
651 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
652 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
653 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
654 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
655 			ah->ah_gain.g_target -= 2 *
656 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
657 			    g_step->gos_gain);
658 
659 		ret = 2;
660 		goto done;
661 	}
662 
663 done:
664 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
665 		"ret %d, gain step %u, current gain %u, target gain %u\n",
666 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
667 		ah->ah_gain.g_target);
668 
669 	return ret;
670 }
671 
672 /**
673  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674  * @ah: The &struct ath5k_hw
675  *
676  * Main callback for thermal RF gain calibration engine
677  * Check for a new gain reading and schedule an adjustment
678  * if needed.
679  *
680  * Returns one of enum ath5k_rfgain codes
681  */
682 enum ath5k_rfgain
683 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
684 {
685 	u32 data, type;
686 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
687 
688 	if (ah->ah_rf_banks == NULL ||
689 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
690 		return AR5K_RFGAIN_INACTIVE;
691 
692 	/* No check requested, either engine is inactive
693 	 * or an adjustment is already requested */
694 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
695 		goto done;
696 
697 	/* Read the PAPD (Peak to Average Power Detector)
698 	 * register */
699 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
700 
701 	/* No probe is scheduled, read gain_F measurement */
702 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
703 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
704 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
705 
706 		/* If tx packet is CCK correct the gain_F measurement
707 		 * by cck ofdm gain delta */
708 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
709 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
710 				ah->ah_gain.g_current +=
711 					ee->ee_cck_ofdm_gain_delta;
712 			else
713 				ah->ah_gain.g_current +=
714 					AR5K_GAIN_CCK_PROBE_CORR;
715 		}
716 
717 		/* Further correct gain_F measurement for
718 		 * RF5112A radios */
719 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
720 			ath5k_hw_rf_gainf_corr(ah);
721 			ah->ah_gain.g_current =
722 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
723 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
724 				0;
725 		}
726 
727 		/* Check if measurement is ok and if we need
728 		 * to adjust gain, schedule a gain adjustment,
729 		 * else switch back to the active state */
730 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
731 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
732 		ath5k_hw_rf_gainf_adjust(ah)) {
733 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
734 		} else {
735 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
736 		}
737 	}
738 
739 done:
740 	return ah->ah_gain.g_state;
741 }
742 
743 /**
744  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745  * @ah: The &struct ath5k_hw
746  * @band: One of enum ieee80211_band
747  *
748  * Write initial RF gain table to set the RF sensitivity.
749  *
750  * NOTE: This one works on all RF chips and has nothing to do
751  * with Gain_F calibration
752  */
753 static int
754 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
755 {
756 	const struct ath5k_ini_rfgain *ath5k_rfg;
757 	unsigned int i, size, index;
758 
759 	switch (ah->ah_radio) {
760 	case AR5K_RF5111:
761 		ath5k_rfg = rfgain_5111;
762 		size = ARRAY_SIZE(rfgain_5111);
763 		break;
764 	case AR5K_RF5112:
765 		ath5k_rfg = rfgain_5112;
766 		size = ARRAY_SIZE(rfgain_5112);
767 		break;
768 	case AR5K_RF2413:
769 		ath5k_rfg = rfgain_2413;
770 		size = ARRAY_SIZE(rfgain_2413);
771 		break;
772 	case AR5K_RF2316:
773 		ath5k_rfg = rfgain_2316;
774 		size = ARRAY_SIZE(rfgain_2316);
775 		break;
776 	case AR5K_RF5413:
777 		ath5k_rfg = rfgain_5413;
778 		size = ARRAY_SIZE(rfgain_5413);
779 		break;
780 	case AR5K_RF2317:
781 	case AR5K_RF2425:
782 		ath5k_rfg = rfgain_2425;
783 		size = ARRAY_SIZE(rfgain_2425);
784 		break;
785 	default:
786 		return -EINVAL;
787 	}
788 
789 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
790 
791 	for (i = 0; i < size; i++) {
792 		AR5K_REG_WAIT(i);
793 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
794 			(u32)ath5k_rfg[i].rfg_register);
795 	}
796 
797 	return 0;
798 }
799 
800 
801 /********************\
802 * RF Registers setup *
803 \********************/
804 
805 /**
806  * ath5k_hw_rfregs_init() - Initialize RF register settings
807  * @ah: The &struct ath5k_hw
808  * @channel: The &struct ieee80211_channel
809  * @mode: One of enum ath5k_driver_mode
810  *
811  * Setup RF registers by writing RF buffer on hw. For
812  * more infos on this, check out rfbuffer.h
813  */
814 static int
815 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
816 			struct ieee80211_channel *channel,
817 			unsigned int mode)
818 {
819 	const struct ath5k_rf_reg *rf_regs;
820 	const struct ath5k_ini_rfbuffer *ini_rfb;
821 	const struct ath5k_gain_opt *go = NULL;
822 	const struct ath5k_gain_opt_step *g_step;
823 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
824 	u8 ee_mode = 0;
825 	u32 *rfb;
826 	int i, obdb = -1, bank = -1;
827 
828 	switch (ah->ah_radio) {
829 	case AR5K_RF5111:
830 		rf_regs = rf_regs_5111;
831 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
832 		ini_rfb = rfb_5111;
833 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
834 		go = &rfgain_opt_5111;
835 		break;
836 	case AR5K_RF5112:
837 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
838 			rf_regs = rf_regs_5112a;
839 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
840 			ini_rfb = rfb_5112a;
841 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
842 		} else {
843 			rf_regs = rf_regs_5112;
844 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
845 			ini_rfb = rfb_5112;
846 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
847 		}
848 		go = &rfgain_opt_5112;
849 		break;
850 	case AR5K_RF2413:
851 		rf_regs = rf_regs_2413;
852 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
853 		ini_rfb = rfb_2413;
854 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
855 		break;
856 	case AR5K_RF2316:
857 		rf_regs = rf_regs_2316;
858 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
859 		ini_rfb = rfb_2316;
860 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
861 		break;
862 	case AR5K_RF5413:
863 		rf_regs = rf_regs_5413;
864 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
865 		ini_rfb = rfb_5413;
866 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
867 		break;
868 	case AR5K_RF2317:
869 		rf_regs = rf_regs_2425;
870 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
871 		ini_rfb = rfb_2317;
872 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
873 		break;
874 	case AR5K_RF2425:
875 		rf_regs = rf_regs_2425;
876 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
877 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
878 			ini_rfb = rfb_2425;
879 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
880 		} else {
881 			ini_rfb = rfb_2417;
882 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
883 		}
884 		break;
885 	default:
886 		return -EINVAL;
887 	}
888 
889 	/* If it's the first time we set RF buffer, allocate
890 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
891 	 * we set above */
892 	if (ah->ah_rf_banks == NULL) {
893 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
894 								GFP_KERNEL);
895 		if (ah->ah_rf_banks == NULL) {
896 			ATH5K_ERR(ah, "out of memory\n");
897 			return -ENOMEM;
898 		}
899 	}
900 
901 	/* Copy values to modify them */
902 	rfb = ah->ah_rf_banks;
903 
904 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
905 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
906 			ATH5K_ERR(ah, "invalid bank\n");
907 			return -EINVAL;
908 		}
909 
910 		/* Bank changed, write down the offset */
911 		if (bank != ini_rfb[i].rfb_bank) {
912 			bank = ini_rfb[i].rfb_bank;
913 			ah->ah_offset[bank] = i;
914 		}
915 
916 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
917 	}
918 
919 	/* Set Output and Driver bias current (OB/DB) */
920 	if (channel->band == IEEE80211_BAND_2GHZ) {
921 
922 		if (channel->hw_value == AR5K_MODE_11B)
923 			ee_mode = AR5K_EEPROM_MODE_11B;
924 		else
925 			ee_mode = AR5K_EEPROM_MODE_11G;
926 
927 		/* For RF511X/RF211X combination we
928 		 * use b_OB and b_DB parameters stored
929 		 * in eeprom on ee->ee_ob[ee_mode][0]
930 		 *
931 		 * For all other chips we use OB/DB for 2GHz
932 		 * stored in the b/g modal section just like
933 		 * 802.11a on ee->ee_ob[ee_mode][1] */
934 		if ((ah->ah_radio == AR5K_RF5111) ||
935 		(ah->ah_radio == AR5K_RF5112))
936 			obdb = 0;
937 		else
938 			obdb = 1;
939 
940 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
941 						AR5K_RF_OB_2GHZ, true);
942 
943 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
944 						AR5K_RF_DB_2GHZ, true);
945 
946 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947 	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
948 			(ah->ah_radio == AR5K_RF5111)) {
949 
950 		/* For 11a, Turbo and XR we need to choose
951 		 * OB/DB based on frequency range */
952 		ee_mode = AR5K_EEPROM_MODE_11A;
953 		obdb =	 channel->center_freq >= 5725 ? 3 :
954 			(channel->center_freq >= 5500 ? 2 :
955 			(channel->center_freq >= 5260 ? 1 :
956 			 (channel->center_freq > 4000 ? 0 : -1)));
957 
958 		if (obdb < 0)
959 			return -EINVAL;
960 
961 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
962 						AR5K_RF_OB_5GHZ, true);
963 
964 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
965 						AR5K_RF_DB_5GHZ, true);
966 	}
967 
968 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
969 
970 	/* Set turbo mode (N/A on RF5413) */
971 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
972 	(ah->ah_radio != AR5K_RF5413))
973 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
974 
975 	/* Bank Modifications (chip-specific) */
976 	if (ah->ah_radio == AR5K_RF5111) {
977 
978 		/* Set gain_F settings according to current step */
979 		if (channel->hw_value != AR5K_MODE_11B) {
980 
981 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
982 					AR5K_PHY_FRAME_CTL_TX_CLIP,
983 					g_step->gos_param[0]);
984 
985 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
986 							AR5K_RF_PWD_90, true);
987 
988 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
989 							AR5K_RF_PWD_84, true);
990 
991 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
992 						AR5K_RF_RFGAIN_SEL, true);
993 
994 			/* We programmed gain_F parameters, switch back
995 			 * to active state */
996 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
997 
998 		}
999 
1000 		/* Bank 6/7 setup */
1001 
1002 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003 						AR5K_RF_PWD_XPD, true);
1004 
1005 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006 						AR5K_RF_XPD_GAIN, true);
1007 
1008 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009 						AR5K_RF_GAIN_I, true);
1010 
1011 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012 						AR5K_RF_PLO_SEL, true);
1013 
1014 		/* Tweak power detectors for half/quarter rate support */
1015 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017 			u8 wait_i;
1018 
1019 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020 						AR5K_RF_WAIT_S, true);
1021 
1022 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023 							0x1f : 0x10;
1024 
1025 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026 						AR5K_RF_WAIT_I, true);
1027 			ath5k_hw_rfb_op(ah, rf_regs, 3,
1028 						AR5K_RF_MAX_TIME, true);
1029 
1030 		}
1031 	}
1032 
1033 	if (ah->ah_radio == AR5K_RF5112) {
1034 
1035 		/* Set gain_F settings according to current step */
1036 		if (channel->hw_value != AR5K_MODE_11B) {
1037 
1038 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039 						AR5K_RF_MIXGAIN_OVR, true);
1040 
1041 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042 						AR5K_RF_PWD_138, true);
1043 
1044 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045 						AR5K_RF_PWD_137, true);
1046 
1047 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048 						AR5K_RF_PWD_136, true);
1049 
1050 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051 						AR5K_RF_PWD_132, true);
1052 
1053 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054 						AR5K_RF_PWD_131, true);
1055 
1056 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057 						AR5K_RF_PWD_130, true);
1058 
1059 			/* We programmed gain_F parameters, switch back
1060 			 * to active state */
1061 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1062 		}
1063 
1064 		/* Bank 6/7 setup */
1065 
1066 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067 						AR5K_RF_XPD_SEL, true);
1068 
1069 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070 			/* Rev. 1 supports only one xpd */
1071 			ath5k_hw_rfb_op(ah, rf_regs,
1072 						ee->ee_x_gain[ee_mode],
1073 						AR5K_RF_XPD_GAIN, true);
1074 
1075 		} else {
1076 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077 			if (ee->ee_pd_gains[ee_mode] > 1) {
1078 				ath5k_hw_rfb_op(ah, rf_regs,
1079 						pdg_curve_to_idx[0],
1080 						AR5K_RF_PD_GAIN_LO, true);
1081 				ath5k_hw_rfb_op(ah, rf_regs,
1082 						pdg_curve_to_idx[1],
1083 						AR5K_RF_PD_GAIN_HI, true);
1084 			} else {
1085 				ath5k_hw_rfb_op(ah, rf_regs,
1086 						pdg_curve_to_idx[0],
1087 						AR5K_RF_PD_GAIN_LO, true);
1088 				ath5k_hw_rfb_op(ah, rf_regs,
1089 						pdg_curve_to_idx[0],
1090 						AR5K_RF_PD_GAIN_HI, true);
1091 			}
1092 
1093 			/* Lower synth voltage on Rev 2 */
1094 			if (ah->ah_radio == AR5K_RF5112 &&
1095 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097 						AR5K_RF_HIGH_VC_CP, true);
1098 
1099 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100 						AR5K_RF_MID_VC_CP, true);
1101 
1102 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103 						AR5K_RF_LOW_VC_CP, true);
1104 
1105 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1106 						AR5K_RF_PUSH_UP, true);
1107 			}
1108 
1109 			/* Decrease power consumption on 5213+ BaseBand */
1110 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112 						AR5K_RF_PAD2GND, true);
1113 
1114 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115 						AR5K_RF_XB2_LVL, true);
1116 
1117 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118 						AR5K_RF_XB5_LVL, true);
1119 
1120 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121 						AR5K_RF_PWD_167, true);
1122 
1123 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1124 						AR5K_RF_PWD_166, true);
1125 			}
1126 		}
1127 
1128 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129 						AR5K_RF_GAIN_I, true);
1130 
1131 		/* Tweak power detector for half/quarter rates */
1132 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134 			u8 pd_delay;
1135 
1136 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137 							0xf : 0x8;
1138 
1139 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140 						AR5K_RF_PD_PERIOD_A, true);
1141 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142 						AR5K_RF_PD_DELAY_A, true);
1143 
1144 		}
1145 	}
1146 
1147 	if (ah->ah_radio == AR5K_RF5413 &&
1148 	channel->band == IEEE80211_BAND_2GHZ) {
1149 
1150 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151 									true);
1152 
1153 		/* Set optimum value for early revisions (on pci-e chips) */
1154 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1156 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157 						AR5K_RF_PWD_ICLOBUF_2G, true);
1158 
1159 	}
1160 
1161 	/* Write RF banks on hw */
1162 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163 		AR5K_REG_WAIT(i);
1164 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 
1171 /**************************\
1172   PHY/RF channel functions
1173 \**************************/
1174 
1175 /**
1176  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177  * @channel: The &struct ieee80211_channel
1178  *
1179  * Map channel frequency to IEEE channel number and convert it
1180  * to an internal channel value used by the RF5110 chipset.
1181  */
1182 static u32
1183 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1184 {
1185 	u32 athchan;
1186 
1187 	athchan = (ath5k_hw_bitswap(
1188 			(ieee80211_frequency_to_channel(
1189 				channel->center_freq) - 24) / 2, 5)
1190 				<< 1) | (1 << 6) | 0x1;
1191 	return athchan;
1192 }
1193 
1194 /**
1195  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196  * @ah: The &struct ath5k_hw
1197  * @channel: The &struct ieee80211_channel
1198  */
1199 static int
1200 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201 		struct ieee80211_channel *channel)
1202 {
1203 	u32 data;
1204 
1205 	/*
1206 	 * Set the channel and wait
1207 	 */
1208 	data = ath5k_hw_rf5110_chan2athchan(channel);
1209 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211 	usleep_range(1000, 1500);
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218  * @ieee: IEEE channel number
1219  * @athchan: The &struct ath5k_athchan_2ghz
1220  *
1221  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222  * we need to add some offsets and extra flags to the data values we pass
1223  * on to the PHY. So for every 2GHz channel this function gets called
1224  * to do the conversion.
1225  */
1226 static int
1227 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228 		struct ath5k_athchan_2ghz *athchan)
1229 {
1230 	int channel;
1231 
1232 	/* Cast this value to catch negative channel numbers (>= -19) */
1233 	channel = (int)ieee;
1234 
1235 	/*
1236 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1237 	 */
1238 	if (channel <= 13) {
1239 		athchan->a2_athchan = 115 + channel;
1240 		athchan->a2_flags = 0x46;
1241 	} else if (channel == 14) {
1242 		athchan->a2_athchan = 124;
1243 		athchan->a2_flags = 0x44;
1244 	} else if (channel >= 15 && channel <= 26) {
1245 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246 		athchan->a2_flags = 0x46;
1247 	} else
1248 		return -EINVAL;
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255  * @ah: The &struct ath5k_hw
1256  * @channel: The &struct ieee80211_channel
1257  */
1258 static int
1259 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260 		struct ieee80211_channel *channel)
1261 {
1262 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263 	unsigned int ath5k_channel =
1264 		ieee80211_frequency_to_channel(channel->center_freq);
1265 	u32 data0, data1, clock;
1266 	int ret;
1267 
1268 	/*
1269 	 * Set the channel on the RF5111 radio
1270 	 */
1271 	data0 = data1 = 0;
1272 
1273 	if (channel->band == IEEE80211_BAND_2GHZ) {
1274 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1275 		ret = ath5k_hw_rf5111_chan2athchan(
1276 			ieee80211_frequency_to_channel(channel->center_freq),
1277 			&ath5k_channel_2ghz);
1278 		if (ret)
1279 			return ret;
1280 
1281 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283 		    << 5) | (1 << 4);
1284 	}
1285 
1286 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287 		clock = 1;
1288 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289 			(clock << 1) | (1 << 10) | 1;
1290 	} else {
1291 		clock = 0;
1292 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293 			<< 2) | (clock << 1) | (1 << 10) | 1;
1294 	}
1295 
1296 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297 			AR5K_RF_BUFFER);
1298 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299 			AR5K_RF_BUFFER_CONTROL_3);
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306  * @ah: The &struct ath5k_hw
1307  * @channel: The &struct ieee80211_channel
1308  *
1309  * On RF5112/2112 and newer we don't need to do any conversion.
1310  * We pass the frequency value after a few modifications to the
1311  * chip directly.
1312  *
1313  * NOTE: Make sure channel frequency given is within our range or else
1314  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1315  */
1316 static int
1317 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318 		struct ieee80211_channel *channel)
1319 {
1320 	u32 data, data0, data1, data2;
1321 	u16 c;
1322 
1323 	data = data0 = data1 = data2 = 0;
1324 	c = channel->center_freq;
1325 
1326 	/* My guess based on code:
1327 	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328 	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329 	 * (3040/2). data0 is used to set the PLL divider and data1
1330 	 * selects synth mode. */
1331 	if (c < 4800) {
1332 		/* Channel 14 and all frequencies with 2Hz spacing
1333 		 * below/above (non-standard channels) */
1334 		if (!((c - 2224) % 5)) {
1335 			/* Same as (c - 2224) / 5 */
1336 			data0 = ((2 * (c - 704)) - 3040) / 10;
1337 			data1 = 1;
1338 		/* Channel 1 and all frequencies with 5Hz spacing
1339 		 * below/above (standard channels without channel 14) */
1340 		} else if (!((c - 2192) % 5)) {
1341 			/* Same as (c - 2192) / 5 */
1342 			data0 = ((2 * (c - 672)) - 3040) / 10;
1343 			data1 = 0;
1344 		} else
1345 			return -EINVAL;
1346 
1347 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348 	/* This is more complex, we have a single synthesizer with
1349 	 * 4 reference clock settings (?) based on frequency spacing
1350 	 * and set using data2. LO is at 4800Hz and data0 is again used
1351 	 * to set some divider.
1352 	 *
1353 	 * NOTE: There is an old atheros presentation at Stanford
1354 	 * that mentions a method called dual direct conversion
1355 	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356 	 * have here, or an updated version. */
1357 	} else if ((c % 5) != 2 || c > 5435) {
1358 		if (!(c % 20) && c >= 5120) {
1359 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360 			data2 = ath5k_hw_bitswap(3, 2);
1361 		} else if (!(c % 10)) {
1362 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363 			data2 = ath5k_hw_bitswap(2, 2);
1364 		} else if (!(c % 5)) {
1365 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366 			data2 = ath5k_hw_bitswap(1, 2);
1367 		} else
1368 			return -EINVAL;
1369 	} else {
1370 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371 		data2 = ath5k_hw_bitswap(0, 2);
1372 	}
1373 
1374 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1375 
1376 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1378 
1379 	return 0;
1380 }
1381 
1382 /**
1383  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384  * @ah: The &struct ath5k_hw
1385  * @channel: The &struct ieee80211_channel
1386  *
1387  * AR2425/2417 have a different 2GHz RF so code changes
1388  * a little bit from RF5112.
1389  */
1390 static int
1391 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392 		struct ieee80211_channel *channel)
1393 {
1394 	u32 data, data0, data2;
1395 	u16 c;
1396 
1397 	data = data0 = data2 = 0;
1398 	c = channel->center_freq;
1399 
1400 	if (c < 4800) {
1401 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1402 		data2 = 0;
1403 	/* ? 5GHz ? */
1404 	} else if ((c % 5) != 2 || c > 5435) {
1405 		if (!(c % 20) && c < 5120)
1406 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407 		else if (!(c % 10))
1408 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409 		else if (!(c % 5))
1410 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411 		else
1412 			return -EINVAL;
1413 		data2 = ath5k_hw_bitswap(1, 2);
1414 	} else {
1415 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416 		data2 = ath5k_hw_bitswap(0, 2);
1417 	}
1418 
1419 	data = (data0 << 4) | data2 << 2 | 0x1001;
1420 
1421 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * ath5k_hw_channel() - Set a channel on the radio chip
1429  * @ah: The &struct ath5k_hw
1430  * @channel: The &struct ieee80211_channel
1431  *
1432  * This is the main function called to set a channel on the
1433  * radio chip based on the radio chip version.
1434  */
1435 static int
1436 ath5k_hw_channel(struct ath5k_hw *ah,
1437 		struct ieee80211_channel *channel)
1438 {
1439 	int ret;
1440 	/*
1441 	 * Check bounds supported by the PHY (we don't care about regulatory
1442 	 * restrictions at this point).
1443 	 */
1444 	if (!ath5k_channel_ok(ah, channel)) {
1445 		ATH5K_ERR(ah,
1446 			"channel frequency (%u MHz) out of supported "
1447 			"band range\n",
1448 			channel->center_freq);
1449 			return -EINVAL;
1450 	}
1451 
1452 	/*
1453 	 * Set the channel and wait
1454 	 */
1455 	switch (ah->ah_radio) {
1456 	case AR5K_RF5110:
1457 		ret = ath5k_hw_rf5110_channel(ah, channel);
1458 		break;
1459 	case AR5K_RF5111:
1460 		ret = ath5k_hw_rf5111_channel(ah, channel);
1461 		break;
1462 	case AR5K_RF2317:
1463 	case AR5K_RF2425:
1464 		ret = ath5k_hw_rf2425_channel(ah, channel);
1465 		break;
1466 	default:
1467 		ret = ath5k_hw_rf5112_channel(ah, channel);
1468 		break;
1469 	}
1470 
1471 	if (ret)
1472 		return ret;
1473 
1474 	/* Set JAPAN setting for channel 14 */
1475 	if (channel->center_freq == 2484) {
1476 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477 				AR5K_PHY_CCKTXCTL_JAPAN);
1478 	} else {
1479 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480 				AR5K_PHY_CCKTXCTL_WORLD);
1481 	}
1482 
1483 	ah->ah_current_channel = channel;
1484 
1485 	return 0;
1486 }
1487 
1488 
1489 /*****************\
1490   PHY calibration
1491 \*****************/
1492 
1493 /**
1494  * DOC: PHY Calibration routines
1495  *
1496  * Noise floor calibration: When we tell the hardware to
1497  * perform a noise floor calibration by setting the
1498  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499  * sample-and-hold the minimum noise level seen at the antennas.
1500  * This value is then stored in a ring buffer of recently measured
1501  * noise floor values so we have a moving window of the last few
1502  * samples. The median of the values in the history is then loaded
1503  * into the hardware for its own use for RSSI and CCA measurements.
1504  * This type of calibration doesn't interfere with traffic.
1505  *
1506  * AGC calibration: When we tell the hardware to perform
1507  * an AGC (Automatic Gain Control) calibration by setting the
1508  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509  * a calibration on the DC offsets of ADCs. During this period
1510  * rx/tx gets disabled so we have to deal with it on the driver
1511  * part.
1512  *
1513  * I/Q calibration: When we tell the hardware to perform
1514  * an I/Q calibration, it tries to correct I/Q imbalance and
1515  * fix QAM constellation by sampling data from rxed frames.
1516  * It doesn't interfere with traffic.
1517  *
1518  * For more infos on AGC and I/Q calibration check out patent doc
1519  * #03/094463.
1520  */
1521 
1522 /**
1523  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524  * @ah: The &struct ath5k_hw
1525  */
1526 static s32
1527 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1528 {
1529 	s32 val;
1530 
1531 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1533 }
1534 
1535 /**
1536  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537  * @ah: The &struct ath5k_hw
1538  */
1539 void
1540 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1541 {
1542 	int i;
1543 
1544 	ah->ah_nfcal_hist.index = 0;
1545 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1547 }
1548 
1549 /**
1550  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551  * @ah: The &struct ath5k_hw
1552  * @noise_floor: The NF we got from hw
1553  */
1554 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1555 {
1556 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558 	hist->nfval[hist->index] = noise_floor;
1559 }
1560 
1561 /**
1562  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563  * @ah: The &struct ath5k_hw
1564  */
1565 static s16
1566 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1567 {
1568 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569 	s16 tmp;
1570 	int i, j;
1571 
1572 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575 			if (sort[j] > sort[j - 1]) {
1576 				tmp = sort[j];
1577 				sort[j] = sort[j - 1];
1578 				sort[j - 1] = tmp;
1579 			}
1580 		}
1581 	}
1582 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584 			"cal %d:%d\n", i, sort[i]);
1585 	}
1586 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1587 }
1588 
1589 /**
1590  * ath5k_hw_update_noise_floor() - Update NF on hardware
1591  * @ah: The &struct ath5k_hw
1592  *
1593  * This is the main function we call to perform a NF calibration,
1594  * it reads NF from hardware, calculates the median and updates
1595  * NF on hw.
1596  */
1597 void
1598 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1599 {
1600 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 	u32 val;
1602 	s16 nf, threshold;
1603 	u8 ee_mode;
1604 
1605 	/* keep last value if calibration hasn't completed */
1606 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608 			"NF did not complete in calibration window\n");
1609 
1610 		return;
1611 	}
1612 
1613 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1614 
1615 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1616 
1617 	/* completed NF calibration, test threshold */
1618 	nf = ath5k_hw_read_measured_noise_floor(ah);
1619 	threshold = ee->ee_noise_floor_thr[ee_mode];
1620 
1621 	if (nf > threshold) {
1622 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623 			"noise floor failure detected; "
1624 			"read %d, threshold %d\n",
1625 			nf, threshold);
1626 
1627 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1628 	}
1629 
1630 	ath5k_hw_update_nfcal_hist(ah, nf);
1631 	nf = ath5k_hw_get_median_noise_floor(ah);
1632 
1633 	/* load noise floor (in .5 dBm) so the hardware will use it */
1634 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635 	val |= (nf * 2) & AR5K_PHY_NF_M;
1636 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1637 
1638 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1640 
1641 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642 		0, false);
1643 
1644 	/*
1645 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646 	 * so that we're not capped by the median we just loaded.
1647 	 * This will be used as the initial value for the next noise
1648 	 * floor calibration.
1649 	 */
1650 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653 		AR5K_PHY_AGCCTL_NF_EN |
1654 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655 		AR5K_PHY_AGCCTL_NF);
1656 
1657 	ah->ah_noise_floor = nf;
1658 
1659 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1660 
1661 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662 		"noise floor calibrated: %d\n", nf);
1663 }
1664 
1665 /**
1666  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667  * @ah: The &struct ath5k_hw
1668  * @channel: The &struct ieee80211_channel
1669  *
1670  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1671  */
1672 static int
1673 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674 		struct ieee80211_channel *channel)
1675 {
1676 	u32 phy_sig, phy_agc, phy_sat, beacon;
1677 	int ret;
1678 
1679 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680 		return 0;
1681 
1682 	/*
1683 	 * Disable beacons and RX/TX queues, wait
1684 	 */
1685 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1689 
1690 	usleep_range(2000, 2500);
1691 
1692 	/*
1693 	 * Set the channel (with AGC turned off)
1694 	 */
1695 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696 	udelay(10);
1697 	ret = ath5k_hw_channel(ah, channel);
1698 
1699 	/*
1700 	 * Activate PHY and wait
1701 	 */
1702 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703 	usleep_range(1000, 1500);
1704 
1705 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1706 
1707 	if (ret)
1708 		return ret;
1709 
1710 	/*
1711 	 * Calibrate the radio chip
1712 	 */
1713 
1714 	/* Remember normal state */
1715 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1718 
1719 	/* Update radio registers */
1720 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1722 
1723 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724 			AR5K_PHY_AGCCOARSE_LO)) |
1725 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1727 
1728 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729 			AR5K_PHY_ADCSAT_THR)) |
1730 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1732 
1733 	udelay(20);
1734 
1735 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736 	udelay(10);
1737 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1739 
1740 	usleep_range(1000, 1500);
1741 
1742 	/*
1743 	 * Enable calibration and wait until completion
1744 	 */
1745 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1746 
1747 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748 			AR5K_PHY_AGCCTL_CAL, 0, false);
1749 
1750 	/* Reset to normal state */
1751 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1754 
1755 	if (ret) {
1756 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757 				channel->center_freq);
1758 		return ret;
1759 	}
1760 
1761 	/*
1762 	 * Re-enable RX/TX and beacons
1763 	 */
1764 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1767 
1768 	return 0;
1769 }
1770 
1771 /**
1772  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773  * @ah: The &struct ath5k_hw
1774  */
1775 static int
1776 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1777 {
1778 	u32 i_pwr, q_pwr;
1779 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780 	int i;
1781 
1782 	/* Skip if I/Q calibration is not needed or if it's still running */
1783 	if (!ah->ah_iq_cal_needed)
1784 		return -EINVAL;
1785 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787 				"I/Q calibration still running");
1788 		return -EBUSY;
1789 	}
1790 
1791 	/* Calibration has finished, get the results and re-run */
1792 
1793 	/* Work around for empty results which can apparently happen on 5212:
1794 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795 	for (i = 0; i <= 10; i++) {
1796 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801 		if (i_pwr && q_pwr)
1802 			break;
1803 	}
1804 
1805 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1806 
1807 	if (ah->ah_version == AR5K_AR5211)
1808 		q_coffd = q_pwr >> 6;
1809 	else
1810 		q_coffd = q_pwr >> 7;
1811 
1812 	/* In case i_coffd became zero, cancel calibration
1813 	 * not only it's too small, it'll also result a divide
1814 	 * by zero later on. */
1815 	if (i_coffd == 0 || q_coffd < 2)
1816 		return -ECANCELED;
1817 
1818 	/* Protect against loss of sign bits */
1819 
1820 	i_coff = (-iq_corr) / i_coffd;
1821 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1822 
1823 	if (ah->ah_version == AR5K_AR5211)
1824 		q_coff = (i_pwr / q_coffd) - 64;
1825 	else
1826 		q_coff = (i_pwr / q_coffd) - 128;
1827 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1828 
1829 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831 			i_coff, q_coff, i_coffd, q_coffd);
1832 
1833 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1834 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1837 
1838 	/* Re-enable calibration -if we don't we'll commit
1839 	 * the same values again and again */
1840 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849  * @ah: The &struct ath5k_hw
1850  * @channel: The &struct ieee80211_channel
1851  *
1852  * The main function we call from above to perform
1853  * a short or full PHY calibration based on RF chip
1854  * and current channel
1855  */
1856 int
1857 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858 		struct ieee80211_channel *channel)
1859 {
1860 	int ret;
1861 
1862 	if (ah->ah_radio == AR5K_RF5110)
1863 		return ath5k_hw_rf5110_calibrate(ah, channel);
1864 
1865 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866 	if (ret) {
1867 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868 			"No I/Q correction performed (%uMHz)\n",
1869 			channel->center_freq);
1870 
1871 		/* Happens all the time if there is not much
1872 		 * traffic, consider it normal behaviour. */
1873 		ret = 0;
1874 	}
1875 
1876 	/* On full calibration request a PAPD probe for
1877 	 * gainf calibration if needed */
1878 	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879 	    (ah->ah_radio == AR5K_RF5111 ||
1880 	     ah->ah_radio == AR5K_RF5112) &&
1881 	    channel->hw_value != AR5K_MODE_11B)
1882 		ath5k_hw_request_rfgain_probe(ah);
1883 
1884 	/* Update noise floor */
1885 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886 		ath5k_hw_update_noise_floor(ah);
1887 
1888 	return ret;
1889 }
1890 
1891 
1892 /***************************\
1893 * Spur mitigation functions *
1894 \***************************/
1895 
1896 /**
1897  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898  * @ah: The &struct ath5k_hw
1899  * @channel: The &struct ieee80211_channel
1900  *
1901  * This function gets called during PHY initialization to
1902  * configure the spur filter for the given channel. Spur is noise
1903  * generated due to "reflection" effects, for more information on this
1904  * method check out patent US7643810
1905  */
1906 static void
1907 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908 				struct ieee80211_channel *channel)
1909 {
1910 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911 	u32 mag_mask[4] = {0, 0, 0, 0};
1912 	u32 pilot_mask[2] = {0, 0};
1913 	/* Note: fbin values are scaled up by 2 */
1914 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915 	s32 spur_delta_phase, spur_freq_sigma_delta;
1916 	s32 spur_offset, num_symbols_x16;
1917 	u8 num_symbol_offsets, i, freq_band;
1918 
1919 	/* Convert current frequency to fbin value (the same way channels
1920 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921 	 * up by 2 so we can compare it later */
1922 	if (channel->band == IEEE80211_BAND_2GHZ) {
1923 		chan_fbin = (channel->center_freq - 2300) * 10;
1924 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1925 	} else {
1926 		chan_fbin = (channel->center_freq - 4900) * 10;
1927 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1928 	}
1929 
1930 	/* Check if any spur_chan_fbin from EEPROM is
1931 	 * within our current channel's spur detection range */
1932 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934 	/* XXX: Half/Quarter channels ?*/
1935 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936 		spur_detection_window *= 2;
1937 
1938 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1940 
1941 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942 		 * so it's zero if we got nothing from EEPROM */
1943 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945 			break;
1946 		}
1947 
1948 		if ((chan_fbin - spur_detection_window <=
1949 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950 		(chan_fbin + spur_detection_window >=
1951 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953 			break;
1954 		}
1955 	}
1956 
1957 	/* We need to enable spur filter for this channel */
1958 	if (spur_chan_fbin) {
1959 		spur_offset = spur_chan_fbin - chan_fbin;
1960 		/*
1961 		 * Calculate deltas:
1962 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1964 		 * Note: Both values have 100Hz resolution
1965 		 */
1966 		switch (ah->ah_bwmode) {
1967 		case AR5K_BWMODE_40MHZ:
1968 			/* Both sample_freq and chip_freq are 80MHz */
1969 			spur_delta_phase = (spur_offset << 16) / 25;
1970 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972 			break;
1973 		case AR5K_BWMODE_10MHZ:
1974 			/* Both sample_freq and chip_freq are 20MHz (?) */
1975 			spur_delta_phase = (spur_offset << 18) / 25;
1976 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978 		case AR5K_BWMODE_5MHZ:
1979 			/* Both sample_freq and chip_freq are 10MHz (?) */
1980 			spur_delta_phase = (spur_offset << 19) / 25;
1981 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1982 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1983 		default:
1984 			if (channel->band == IEEE80211_BAND_5GHZ) {
1985 				/* Both sample_freq and chip_freq are 40MHz */
1986 				spur_delta_phase = (spur_offset << 17) / 25;
1987 				spur_freq_sigma_delta =
1988 						(spur_delta_phase >> 10);
1989 				symbol_width =
1990 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1991 			} else {
1992 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1993 				 * (for b compatibility) */
1994 				spur_delta_phase = (spur_offset << 17) / 25;
1995 				spur_freq_sigma_delta =
1996 						(spur_offset << 8) / 55;
1997 				symbol_width =
1998 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1999 			}
2000 			break;
2001 		}
2002 
2003 		/* Calculate pilot and magnitude masks */
2004 
2005 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2006 		 * and divide by symbol_width to find how many symbols we have
2007 		 * Note: number of symbols is scaled up by 16 */
2008 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2009 
2010 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2011 		if (!(num_symbols_x16 & 0xF))
2012 			/* _X_ */
2013 			num_symbol_offsets = 3;
2014 		else
2015 			/* _xx_ */
2016 			num_symbol_offsets = 4;
2017 
2018 		for (i = 0; i < num_symbol_offsets; i++) {
2019 
2020 			/* Calculate pilot mask */
2021 			s32 curr_sym_off =
2022 				(num_symbols_x16 / 16) + i + 25;
2023 
2024 			/* Pilot magnitude mask seems to be a way to
2025 			 * declare the boundaries for our detection
2026 			 * window or something, it's 2 for the middle
2027 			 * value(s) where the symbol is expected to be
2028 			 * and 1 on the boundary values */
2029 			u8 plt_mag_map =
2030 				(i == 0 || i == (num_symbol_offsets - 1))
2031 								? 1 : 2;
2032 
2033 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2034 				if (curr_sym_off <= 25)
2035 					pilot_mask[0] |= 1 << curr_sym_off;
2036 				else if (curr_sym_off >= 27)
2037 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2038 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2039 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2040 
2041 			/* Calculate magnitude mask (for viterbi decoder) */
2042 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2043 				mag_mask[0] |=
2044 					plt_mag_map << (curr_sym_off + 1) * 2;
2045 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2046 				mag_mask[1] |=
2047 					plt_mag_map << (curr_sym_off - 15) * 2;
2048 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2049 				mag_mask[2] |=
2050 					plt_mag_map << (curr_sym_off - 31) * 2;
2051 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2052 				mag_mask[3] |=
2053 					plt_mag_map << (curr_sym_off - 47) * 2;
2054 
2055 		}
2056 
2057 		/* Write settings on hw to enable spur filter */
2058 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2059 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2060 		/* XXX: Self correlator also ? */
2061 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2062 					AR5K_PHY_IQ_PILOT_MASK_EN |
2063 					AR5K_PHY_IQ_CHAN_MASK_EN |
2064 					AR5K_PHY_IQ_SPUR_FILT_EN);
2065 
2066 		/* Set delta phase and freq sigma delta */
2067 		ath5k_hw_reg_write(ah,
2068 				AR5K_REG_SM(spur_delta_phase,
2069 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2070 				AR5K_REG_SM(spur_freq_sigma_delta,
2071 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2072 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2073 				AR5K_PHY_TIMING_11);
2074 
2075 		/* Write pilot masks */
2076 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2077 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2078 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2079 					pilot_mask[1]);
2080 
2081 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2082 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2083 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2084 					pilot_mask[1]);
2085 
2086 		/* Write magnitude masks */
2087 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2088 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2089 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2090 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2091 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2092 					mag_mask[3]);
2093 
2094 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2095 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2096 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2097 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2098 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2099 					mag_mask[3]);
2100 
2101 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2102 	AR5K_PHY_IQ_SPUR_FILT_EN) {
2103 		/* Clean up spur mitigation settings and disable filter */
2104 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2105 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2106 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2107 					AR5K_PHY_IQ_PILOT_MASK_EN |
2108 					AR5K_PHY_IQ_CHAN_MASK_EN |
2109 					AR5K_PHY_IQ_SPUR_FILT_EN);
2110 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2111 
2112 		/* Clear pilot masks */
2113 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2114 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2115 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2116 					0);
2117 
2118 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2119 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2120 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2121 					0);
2122 
2123 		/* Clear magnitude masks */
2124 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2125 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2126 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2127 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2128 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2129 					0);
2130 
2131 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2132 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2133 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2134 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2135 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2136 					0);
2137 	}
2138 }
2139 
2140 
2141 /*****************\
2142 * Antenna control *
2143 \*****************/
2144 
2145 /**
2146  * DOC: Antenna control
2147  *
2148  * Hw supports up to 14 antennas ! I haven't found any card that implements
2149  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2150  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2151  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2152  *
2153  * We can have a single antenna for RX and multiple antennas for TX.
2154  * RX antenna is our "default" antenna (usually antenna 1) set on
2155  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2156  * (0 for automatic selection, 1 - 14 antenna number).
2157  *
2158  * We can let hw do all the work doing fast antenna diversity for both
2159  * tx and rx or we can do things manually. Here are the options we have
2160  * (all are bits of STA_ID1 register):
2161  *
2162  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2163  * control descriptor, use the default antenna to transmit or else use the last
2164  * antenna on which we received an ACK.
2165  *
2166  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2167  * the antenna on which we got the ACK for that frame.
2168  *
2169  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2170  * one on the TX descriptor.
2171  *
2172  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2173  * (ACKs etc), or else use current antenna (the one we just used for TX).
2174  *
2175  * Using the above we support the following scenarios:
2176  *
2177  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2178  *
2179  * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2180  *
2181  * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2182  *
2183  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2184  *
2185  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2186  *
2187  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2188  *
2189  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2190  *
2191  * Also note that when setting antenna to F on tx descriptor card inverts
2192  * current tx antenna.
2193  */
2194 
2195 /**
2196  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2197  * @ah: The &struct ath5k_hw
2198  * @ant: Antenna number
2199  */
2200 static void
2201 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2202 {
2203 	if (ah->ah_version != AR5K_AR5210)
2204 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2205 }
2206 
2207 /**
2208  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2209  * @ah: The &struct ath5k_hw
2210  * @ee_mode: One of enum ath5k_driver_mode
2211  * @enable: True to enable, false to disable
2212  */
2213 static void
2214 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2215 {
2216 	switch (ee_mode) {
2217 	case AR5K_EEPROM_MODE_11G:
2218 		/* XXX: This is set to
2219 		 * disabled on initvals !!! */
2220 	case AR5K_EEPROM_MODE_11A:
2221 		if (enable)
2222 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2223 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2224 		else
2225 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2226 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2227 		break;
2228 	case AR5K_EEPROM_MODE_11B:
2229 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2230 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2231 		break;
2232 	default:
2233 		return;
2234 	}
2235 
2236 	if (enable) {
2237 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2238 				AR5K_PHY_RESTART_DIV_GC, 4);
2239 
2240 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2241 					AR5K_PHY_FAST_ANT_DIV_EN);
2242 	} else {
2243 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2244 				AR5K_PHY_RESTART_DIV_GC, 0);
2245 
2246 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2247 					AR5K_PHY_FAST_ANT_DIV_EN);
2248 	}
2249 }
2250 
2251 /**
2252  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2253  * @ah: The &struct ath5k_hw
2254  * @ee_mode: One of enum ath5k_driver_mode
2255  *
2256  * Switch table comes from EEPROM and includes information on controlling
2257  * the 2 antenna RX attenuators
2258  */
2259 void
2260 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2261 {
2262 	u8 ant0, ant1;
2263 
2264 	/*
2265 	 * In case a fixed antenna was set as default
2266 	 * use the same switch table twice.
2267 	 */
2268 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2269 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2270 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2271 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2272 	else {
2273 		ant0 = AR5K_ANT_SWTABLE_A;
2274 		ant1 = AR5K_ANT_SWTABLE_B;
2275 	}
2276 
2277 	/* Set antenna idle switch table */
2278 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2279 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2280 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2281 			AR5K_PHY_ANT_CTL_TXRX_EN));
2282 
2283 	/* Set antenna switch tables */
2284 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2285 		AR5K_PHY_ANT_SWITCH_TABLE_0);
2286 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2287 		AR5K_PHY_ANT_SWITCH_TABLE_1);
2288 }
2289 
2290 /**
2291  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2292  * @ah: The &struct ath5k_hw
2293  * @ant_mode: One of enum ath5k_ant_mode
2294  */
2295 void
2296 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2297 {
2298 	struct ieee80211_channel *channel = ah->ah_current_channel;
2299 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2300 	bool use_def_for_sg;
2301 	int ee_mode;
2302 	u8 def_ant, tx_ant;
2303 	u32 sta_id1 = 0;
2304 
2305 	/* if channel is not initialized yet we can't set the antennas
2306 	 * so just store the mode. it will be set on the next reset */
2307 	if (channel == NULL) {
2308 		ah->ah_ant_mode = ant_mode;
2309 		return;
2310 	}
2311 
2312 	def_ant = ah->ah_def_ant;
2313 
2314 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
2315 	if (ee_mode < 0) {
2316 		ATH5K_ERR(ah,
2317 			"invalid channel: %d\n", channel->center_freq);
2318 		return;
2319 	}
2320 
2321 	switch (ant_mode) {
2322 	case AR5K_ANTMODE_DEFAULT:
2323 		tx_ant = 0;
2324 		use_def_for_tx = false;
2325 		update_def_on_tx = false;
2326 		use_def_for_rts = false;
2327 		use_def_for_sg = false;
2328 		fast_div = true;
2329 		break;
2330 	case AR5K_ANTMODE_FIXED_A:
2331 		def_ant = 1;
2332 		tx_ant = 1;
2333 		use_def_for_tx = true;
2334 		update_def_on_tx = false;
2335 		use_def_for_rts = true;
2336 		use_def_for_sg = true;
2337 		fast_div = false;
2338 		break;
2339 	case AR5K_ANTMODE_FIXED_B:
2340 		def_ant = 2;
2341 		tx_ant = 2;
2342 		use_def_for_tx = true;
2343 		update_def_on_tx = false;
2344 		use_def_for_rts = true;
2345 		use_def_for_sg = true;
2346 		fast_div = false;
2347 		break;
2348 	case AR5K_ANTMODE_SINGLE_AP:
2349 		def_ant = 1;	/* updated on tx */
2350 		tx_ant = 0;
2351 		use_def_for_tx = true;
2352 		update_def_on_tx = true;
2353 		use_def_for_rts = true;
2354 		use_def_for_sg = true;
2355 		fast_div = true;
2356 		break;
2357 	case AR5K_ANTMODE_SECTOR_AP:
2358 		tx_ant = 1;	/* variable */
2359 		use_def_for_tx = false;
2360 		update_def_on_tx = false;
2361 		use_def_for_rts = true;
2362 		use_def_for_sg = false;
2363 		fast_div = false;
2364 		break;
2365 	case AR5K_ANTMODE_SECTOR_STA:
2366 		tx_ant = 1;	/* variable */
2367 		use_def_for_tx = true;
2368 		update_def_on_tx = false;
2369 		use_def_for_rts = true;
2370 		use_def_for_sg = false;
2371 		fast_div = true;
2372 		break;
2373 	case AR5K_ANTMODE_DEBUG:
2374 		def_ant = 1;
2375 		tx_ant = 2;
2376 		use_def_for_tx = false;
2377 		update_def_on_tx = false;
2378 		use_def_for_rts = false;
2379 		use_def_for_sg = false;
2380 		fast_div = false;
2381 		break;
2382 	default:
2383 		return;
2384 	}
2385 
2386 	ah->ah_tx_ant = tx_ant;
2387 	ah->ah_ant_mode = ant_mode;
2388 	ah->ah_def_ant = def_ant;
2389 
2390 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2391 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2392 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2393 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2394 
2395 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2396 
2397 	if (sta_id1)
2398 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2399 
2400 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2401 	/* Note: set diversity before default antenna
2402 	 * because it won't work correctly */
2403 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2404 	ath5k_hw_set_def_antenna(ah, def_ant);
2405 }
2406 
2407 
2408 /****************\
2409 * TX power setup *
2410 \****************/
2411 
2412 /*
2413  * Helper functions
2414  */
2415 
2416 /**
2417  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2418  * @target: X value of the middle point
2419  * @x_left: X value of the left point
2420  * @x_right: X value of the right point
2421  * @y_left: Y value of the left point
2422  * @y_right: Y value of the right point
2423  */
2424 static s16
2425 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2426 					s16 y_left, s16 y_right)
2427 {
2428 	s16 ratio, result;
2429 
2430 	/* Avoid divide by zero and skip interpolation
2431 	 * if we have the same point */
2432 	if ((x_left == x_right) || (y_left == y_right))
2433 		return y_left;
2434 
2435 	/*
2436 	 * Since we use ints and not fps, we need to scale up in
2437 	 * order to get a sane ratio value (or else we 'll eg. get
2438 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2439 	 * to have some accuracy both for 0.5 and 0.25 steps.
2440 	 */
2441 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2442 
2443 	/* Now scale down to be in range */
2444 	result = y_left + (ratio * (target - x_left) / 100);
2445 
2446 	return result;
2447 }
2448 
2449 /**
2450  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2451  * linear PCDAC curve
2452  * @stepL: Left array with y values (pcdac steps)
2453  * @stepR: Right array with y values (pcdac steps)
2454  * @pwrL: Left array with x values (power steps)
2455  * @pwrR: Right array with x values (power steps)
2456  *
2457  * Since we have the top of the curve and we draw the line below
2458  * until we reach 1 (1 pcdac step) we need to know which point
2459  * (x value) that is so that we don't go below x axis and have negative
2460  * pcdac values when creating the curve, or fill the table with zeros.
2461  */
2462 static s16
2463 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2464 				const s16 *pwrL, const s16 *pwrR)
2465 {
2466 	s8 tmp;
2467 	s16 min_pwrL, min_pwrR;
2468 	s16 pwr_i;
2469 
2470 	/* Some vendors write the same pcdac value twice !!! */
2471 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2472 		return max(pwrL[0], pwrR[0]);
2473 
2474 	if (pwrL[0] == pwrL[1])
2475 		min_pwrL = pwrL[0];
2476 	else {
2477 		pwr_i = pwrL[0];
2478 		do {
2479 			pwr_i--;
2480 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2481 							pwrL[0], pwrL[1],
2482 							stepL[0], stepL[1]);
2483 		} while (tmp > 1);
2484 
2485 		min_pwrL = pwr_i;
2486 	}
2487 
2488 	if (pwrR[0] == pwrR[1])
2489 		min_pwrR = pwrR[0];
2490 	else {
2491 		pwr_i = pwrR[0];
2492 		do {
2493 			pwr_i--;
2494 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2495 							pwrR[0], pwrR[1],
2496 							stepR[0], stepR[1]);
2497 		} while (tmp > 1);
2498 
2499 		min_pwrR = pwr_i;
2500 	}
2501 
2502 	/* Keep the right boundary so that it works for both curves */
2503 	return max(min_pwrL, min_pwrR);
2504 }
2505 
2506 /**
2507  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2508  * @pmin: Minimum power value (xmin)
2509  * @pmax: Maximum power value (xmax)
2510  * @pwr: Array of power steps (x values)
2511  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2512  * @num_points: Number of provided points
2513  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2514  * @type: One of enum ath5k_powertable_type (eeprom.h)
2515  *
2516  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2517  * Power to PCDAC curve.
2518  *
2519  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2520  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2521  * PCDAC/PDADC step for each curve is 64 but we can write more than
2522  * one curves on hw so we can go up to 128 (which is the max step we
2523  * can write on the final table).
2524  *
2525  * We write y values (PCDAC/PDADC steps) on hw.
2526  */
2527 static void
2528 ath5k_create_power_curve(s16 pmin, s16 pmax,
2529 			const s16 *pwr, const u8 *vpd,
2530 			u8 num_points,
2531 			u8 *vpd_table, u8 type)
2532 {
2533 	u8 idx[2] = { 0, 1 };
2534 	s16 pwr_i = 2 * pmin;
2535 	int i;
2536 
2537 	if (num_points < 2)
2538 		return;
2539 
2540 	/* We want the whole line, so adjust boundaries
2541 	 * to cover the entire power range. Note that
2542 	 * power values are already 0.25dB so no need
2543 	 * to multiply pwr_i by 2 */
2544 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2545 		pwr_i = pmin;
2546 		pmin = 0;
2547 		pmax = 63;
2548 	}
2549 
2550 	/* Find surrounding turning points (TPs)
2551 	 * and interpolate between them */
2552 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2553 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2554 
2555 		/* We passed the right TP, move to the next set of TPs
2556 		 * if we pass the last TP, extrapolate above using the last
2557 		 * two TPs for ratio */
2558 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2559 			idx[0]++;
2560 			idx[1]++;
2561 		}
2562 
2563 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2564 						pwr[idx[0]], pwr[idx[1]],
2565 						vpd[idx[0]], vpd[idx[1]]);
2566 
2567 		/* Increase by 0.5dB
2568 		 * (0.25 dB units) */
2569 		pwr_i += 2;
2570 	}
2571 }
2572 
2573 /**
2574  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2575  * for a given channel.
2576  * @ah: The &struct ath5k_hw
2577  * @channel: The &struct ieee80211_channel
2578  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2579  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2580  *
2581  * Get the surrounding per-channel power calibration piers
2582  * for a given frequency so that we can interpolate between
2583  * them and come up with an appropriate dataset for our current
2584  * channel.
2585  */
2586 static void
2587 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2588 			struct ieee80211_channel *channel,
2589 			struct ath5k_chan_pcal_info **pcinfo_l,
2590 			struct ath5k_chan_pcal_info **pcinfo_r)
2591 {
2592 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2593 	struct ath5k_chan_pcal_info *pcinfo;
2594 	u8 idx_l, idx_r;
2595 	u8 mode, max, i;
2596 	u32 target = channel->center_freq;
2597 
2598 	idx_l = 0;
2599 	idx_r = 0;
2600 
2601 	switch (channel->hw_value) {
2602 	case AR5K_EEPROM_MODE_11A:
2603 		pcinfo = ee->ee_pwr_cal_a;
2604 		mode = AR5K_EEPROM_MODE_11A;
2605 		break;
2606 	case AR5K_EEPROM_MODE_11B:
2607 		pcinfo = ee->ee_pwr_cal_b;
2608 		mode = AR5K_EEPROM_MODE_11B;
2609 		break;
2610 	case AR5K_EEPROM_MODE_11G:
2611 	default:
2612 		pcinfo = ee->ee_pwr_cal_g;
2613 		mode = AR5K_EEPROM_MODE_11G;
2614 		break;
2615 	}
2616 	max = ee->ee_n_piers[mode] - 1;
2617 
2618 	/* Frequency is below our calibrated
2619 	 * range. Use the lowest power curve
2620 	 * we have */
2621 	if (target < pcinfo[0].freq) {
2622 		idx_l = idx_r = 0;
2623 		goto done;
2624 	}
2625 
2626 	/* Frequency is above our calibrated
2627 	 * range. Use the highest power curve
2628 	 * we have */
2629 	if (target > pcinfo[max].freq) {
2630 		idx_l = idx_r = max;
2631 		goto done;
2632 	}
2633 
2634 	/* Frequency is inside our calibrated
2635 	 * channel range. Pick the surrounding
2636 	 * calibration piers so that we can
2637 	 * interpolate */
2638 	for (i = 0; i <= max; i++) {
2639 
2640 		/* Frequency matches one of our calibration
2641 		 * piers, no need to interpolate, just use
2642 		 * that calibration pier */
2643 		if (pcinfo[i].freq == target) {
2644 			idx_l = idx_r = i;
2645 			goto done;
2646 		}
2647 
2648 		/* We found a calibration pier that's above
2649 		 * frequency, use this pier and the previous
2650 		 * one to interpolate */
2651 		if (target < pcinfo[i].freq) {
2652 			idx_r = i;
2653 			idx_l = idx_r - 1;
2654 			goto done;
2655 		}
2656 	}
2657 
2658 done:
2659 	*pcinfo_l = &pcinfo[idx_l];
2660 	*pcinfo_r = &pcinfo[idx_r];
2661 }
2662 
2663 /**
2664  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2665  * calibration data
2666  * @ah: The &struct ath5k_hw *ah,
2667  * @channel: The &struct ieee80211_channel
2668  * @rates: The &struct ath5k_rate_pcal_info to fill
2669  *
2670  * Get the surrounding per-rate power calibration data
2671  * for a given frequency and interpolate between power
2672  * values to set max target power supported by hw for
2673  * each rate on this frequency.
2674  */
2675 static void
2676 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2677 			struct ieee80211_channel *channel,
2678 			struct ath5k_rate_pcal_info *rates)
2679 {
2680 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2681 	struct ath5k_rate_pcal_info *rpinfo;
2682 	u8 idx_l, idx_r;
2683 	u8 mode, max, i;
2684 	u32 target = channel->center_freq;
2685 
2686 	idx_l = 0;
2687 	idx_r = 0;
2688 
2689 	switch (channel->hw_value) {
2690 	case AR5K_MODE_11A:
2691 		rpinfo = ee->ee_rate_tpwr_a;
2692 		mode = AR5K_EEPROM_MODE_11A;
2693 		break;
2694 	case AR5K_MODE_11B:
2695 		rpinfo = ee->ee_rate_tpwr_b;
2696 		mode = AR5K_EEPROM_MODE_11B;
2697 		break;
2698 	case AR5K_MODE_11G:
2699 	default:
2700 		rpinfo = ee->ee_rate_tpwr_g;
2701 		mode = AR5K_EEPROM_MODE_11G;
2702 		break;
2703 	}
2704 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2705 
2706 	/* Get the surrounding calibration
2707 	 * piers - same as above */
2708 	if (target < rpinfo[0].freq) {
2709 		idx_l = idx_r = 0;
2710 		goto done;
2711 	}
2712 
2713 	if (target > rpinfo[max].freq) {
2714 		idx_l = idx_r = max;
2715 		goto done;
2716 	}
2717 
2718 	for (i = 0; i <= max; i++) {
2719 
2720 		if (rpinfo[i].freq == target) {
2721 			idx_l = idx_r = i;
2722 			goto done;
2723 		}
2724 
2725 		if (target < rpinfo[i].freq) {
2726 			idx_r = i;
2727 			idx_l = idx_r - 1;
2728 			goto done;
2729 		}
2730 	}
2731 
2732 done:
2733 	/* Now interpolate power value, based on the frequency */
2734 	rates->freq = target;
2735 
2736 	rates->target_power_6to24 =
2737 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2738 					rpinfo[idx_r].freq,
2739 					rpinfo[idx_l].target_power_6to24,
2740 					rpinfo[idx_r].target_power_6to24);
2741 
2742 	rates->target_power_36 =
2743 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2744 					rpinfo[idx_r].freq,
2745 					rpinfo[idx_l].target_power_36,
2746 					rpinfo[idx_r].target_power_36);
2747 
2748 	rates->target_power_48 =
2749 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2750 					rpinfo[idx_r].freq,
2751 					rpinfo[idx_l].target_power_48,
2752 					rpinfo[idx_r].target_power_48);
2753 
2754 	rates->target_power_54 =
2755 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2756 					rpinfo[idx_r].freq,
2757 					rpinfo[idx_l].target_power_54,
2758 					rpinfo[idx_r].target_power_54);
2759 }
2760 
2761 /**
2762  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2763  * @ah: the &struct ath5k_hw
2764  * @channel: The &struct ieee80211_channel
2765  *
2766  * Get the max edge power for this channel if
2767  * we have such data from EEPROM's Conformance Test
2768  * Limits (CTL), and limit max power if needed.
2769  */
2770 static void
2771 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2772 			struct ieee80211_channel *channel)
2773 {
2774 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2775 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2776 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2777 	u8 *ctl_val = ee->ee_ctl;
2778 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2779 	s16 edge_pwr = 0;
2780 	u8 rep_idx;
2781 	u8 i, ctl_mode;
2782 	u8 ctl_idx = 0xFF;
2783 	u32 target = channel->center_freq;
2784 
2785 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2786 
2787 	switch (channel->hw_value) {
2788 	case AR5K_MODE_11A:
2789 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2790 			ctl_mode |= AR5K_CTL_TURBO;
2791 		else
2792 			ctl_mode |= AR5K_CTL_11A;
2793 		break;
2794 	case AR5K_MODE_11G:
2795 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2796 			ctl_mode |= AR5K_CTL_TURBOG;
2797 		else
2798 			ctl_mode |= AR5K_CTL_11G;
2799 		break;
2800 	case AR5K_MODE_11B:
2801 		ctl_mode |= AR5K_CTL_11B;
2802 		break;
2803 	default:
2804 		return;
2805 	}
2806 
2807 	for (i = 0; i < ee->ee_ctls; i++) {
2808 		if (ctl_val[i] == ctl_mode) {
2809 			ctl_idx = i;
2810 			break;
2811 		}
2812 	}
2813 
2814 	/* If we have a CTL dataset available grab it and find the
2815 	 * edge power for our frequency */
2816 	if (ctl_idx == 0xFF)
2817 		return;
2818 
2819 	/* Edge powers are sorted by frequency from lower
2820 	 * to higher. Each CTL corresponds to 8 edge power
2821 	 * measurements. */
2822 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2823 
2824 	/* Don't do boundaries check because we
2825 	 * might have more that one bands defined
2826 	 * for this mode */
2827 
2828 	/* Get the edge power that's closer to our
2829 	 * frequency */
2830 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2831 		rep_idx += i;
2832 		if (target <= rep[rep_idx].freq)
2833 			edge_pwr = (s16) rep[rep_idx].edge;
2834 	}
2835 
2836 	if (edge_pwr)
2837 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2838 }
2839 
2840 
2841 /*
2842  * Power to PCDAC table functions
2843  */
2844 
2845 /**
2846  * DOC: Power to PCDAC table functions
2847  *
2848  * For RF5111 we have an XPD -eXternal Power Detector- curve
2849  * for each calibrated channel. Each curve has 0,5dB Power steps
2850  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2851  * exponential function. To recreate the curve we read 11 points
2852  * from eeprom (eeprom.c) and interpolate here.
2853  *
2854  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2855  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2856  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2857  * power steps on x axis and PCDAC steps on y axis and looks like a
2858  * linear function. To recreate the curve and pass the power values
2859  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2860  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2861  * and interpolate here.
2862  *
2863  * For a given channel we get the calibrated points (piers) for it or
2864  * -if we don't have calibration data for this specific channel- from the
2865  * available surrounding channels we have calibration data for, after we do a
2866  * linear interpolation between them. Then since we have our calibrated points
2867  * for this channel, we do again a linear interpolation between them to get the
2868  * whole curve.
2869  *
2870  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2871  */
2872 
2873 /**
2874  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2875  * @ah: The &struct ath5k_hw
2876  * @table_min: Minimum power (x min)
2877  * @table_max: Maximum power (x max)
2878  *
2879  * No further processing is needed for RF5111, the only thing we have to
2880  * do is fill the values below and above calibration range since eeprom data
2881  * may not cover the entire PCDAC table.
2882  */
2883 static void
2884 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2885 							s16 *table_max)
2886 {
2887 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2888 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2889 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2890 	s16	min_pwr, max_pwr;
2891 
2892 	/* Get table boundaries */
2893 	min_pwr = table_min[0];
2894 	pcdac_0 = pcdac_tmp[0];
2895 
2896 	max_pwr = table_max[0];
2897 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2898 
2899 	/* Extrapolate below minimum using pcdac_0 */
2900 	pcdac_i = 0;
2901 	for (i = 0; i < min_pwr; i++)
2902 		pcdac_out[pcdac_i++] = pcdac_0;
2903 
2904 	/* Copy values from pcdac_tmp */
2905 	pwr_idx = min_pwr;
2906 	for (i = 0; pwr_idx <= max_pwr &&
2907 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2908 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2909 		pwr_idx++;
2910 	}
2911 
2912 	/* Extrapolate above maximum */
2913 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2914 		pcdac_out[pcdac_i++] = pcdac_n;
2915 
2916 }
2917 
2918 /**
2919  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2920  * @ah: The &struct ath5k_hw
2921  * @table_min: Minimum power (x min)
2922  * @table_max: Maximum power (x max)
2923  * @pdcurves: Number of pd curves
2924  *
2925  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2926  * RFX112 can have up to 2 curves (one for low txpower range and one for
2927  * higher txpower range). We need to put them both on pcdac_out and place
2928  * them in the correct location. In case we only have one curve available
2929  * just fit it on pcdac_out (it's supposed to cover the entire range of
2930  * available pwr levels since it's always the higher power curve). Extrapolate
2931  * below and above final table if needed.
2932  */
2933 static void
2934 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2935 						s16 *table_max, u8 pdcurves)
2936 {
2937 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2938 	u8	*pcdac_low_pwr;
2939 	u8	*pcdac_high_pwr;
2940 	u8	*pcdac_tmp;
2941 	u8	pwr;
2942 	s16	max_pwr_idx;
2943 	s16	min_pwr_idx;
2944 	s16	mid_pwr_idx = 0;
2945 	/* Edge flag turns on the 7nth bit on the PCDAC
2946 	 * to declare the higher power curve (force values
2947 	 * to be greater than 64). If we only have one curve
2948 	 * we don't need to set this, if we have 2 curves and
2949 	 * fill the table backwards this can also be used to
2950 	 * switch from higher power curve to lower power curve */
2951 	u8	edge_flag;
2952 	int	i;
2953 
2954 	/* When we have only one curve available
2955 	 * that's the higher power curve. If we have
2956 	 * two curves the first is the high power curve
2957 	 * and the next is the low power curve. */
2958 	if (pdcurves > 1) {
2959 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2960 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2961 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2962 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2963 
2964 		/* If table size goes beyond 31.5dB, keep the
2965 		 * upper 31.5dB range when setting tx power.
2966 		 * Note: 126 = 31.5 dB in quarter dB steps */
2967 		if (table_max[0] - table_min[1] > 126)
2968 			min_pwr_idx = table_max[0] - 126;
2969 		else
2970 			min_pwr_idx = table_min[1];
2971 
2972 		/* Since we fill table backwards
2973 		 * start from high power curve */
2974 		pcdac_tmp = pcdac_high_pwr;
2975 
2976 		edge_flag = 0x40;
2977 	} else {
2978 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2979 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2980 		min_pwr_idx = table_min[0];
2981 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2982 		pcdac_tmp = pcdac_high_pwr;
2983 		edge_flag = 0;
2984 	}
2985 
2986 	/* This is used when setting tx power*/
2987 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2988 
2989 	/* Fill Power to PCDAC table backwards */
2990 	pwr = max_pwr_idx;
2991 	for (i = 63; i >= 0; i--) {
2992 		/* Entering lower power range, reset
2993 		 * edge flag and set pcdac_tmp to lower
2994 		 * power curve.*/
2995 		if (edge_flag == 0x40 &&
2996 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2997 			edge_flag = 0x00;
2998 			pcdac_tmp = pcdac_low_pwr;
2999 			pwr = mid_pwr_idx / 2;
3000 		}
3001 
3002 		/* Don't go below 1, extrapolate below if we have
3003 		 * already switched to the lower power curve -or
3004 		 * we only have one curve and edge_flag is zero
3005 		 * anyway */
3006 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3007 			while (i >= 0) {
3008 				pcdac_out[i] = pcdac_out[i + 1];
3009 				i--;
3010 			}
3011 			break;
3012 		}
3013 
3014 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3015 
3016 		/* Extrapolate above if pcdac is greater than
3017 		 * 126 -this can happen because we OR pcdac_out
3018 		 * value with edge_flag on high power curve */
3019 		if (pcdac_out[i] > 126)
3020 			pcdac_out[i] = 126;
3021 
3022 		/* Decrease by a 0.5dB step */
3023 		pwr--;
3024 	}
3025 }
3026 
3027 /**
3028  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3029  * @ah: The &struct ath5k_hw
3030  */
3031 static void
3032 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3033 {
3034 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3035 	int	i;
3036 
3037 	/*
3038 	 * Write TX power values
3039 	 */
3040 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3041 		ath5k_hw_reg_write(ah,
3042 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3043 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3044 			AR5K_PHY_PCDAC_TXPOWER(i));
3045 	}
3046 }
3047 
3048 
3049 /*
3050  * Power to PDADC table functions
3051  */
3052 
3053 /**
3054  * DOC: Power to PDADC table functions
3055  *
3056  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3057  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3058  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3059  * PDADC steps on y axis and looks like an exponential function like the
3060  * RF5111 curve.
3061  *
3062  * To recreate the curves we read the points from eeprom (eeprom.c)
3063  * and interpolate here. Note that in most cases only 2 (higher and lower)
3064  * curves are used (like RF5112) but vendors have the opportunity to include
3065  * all 4 curves on eeprom. The final curve (higher power) has an extra
3066  * point for better accuracy like RF5112.
3067  *
3068  * The process is similar to what we do above for RF5111/5112
3069  */
3070 
3071 /**
3072  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3073  * @ah: The &struct ath5k_hw
3074  * @pwr_min: Minimum power (x min)
3075  * @pwr_max: Maximum power (x max)
3076  * @pdcurves: Number of available curves
3077  *
3078  * Combine the various pd curves and create the final Power to PDADC table
3079  * We can have up to 4 pd curves, we need to do a similar process
3080  * as we do for RF5112. This time we don't have an edge_flag but we
3081  * set the gain boundaries on a separate register.
3082  */
3083 static void
3084 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3085 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3086 {
3087 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3088 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3089 	u8 *pdadc_tmp;
3090 	s16 pdadc_0;
3091 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3092 	u8 pd_gain_overlap;
3093 
3094 	/* Note: Register value is initialized on initvals
3095 	 * there is no feedback from hw.
3096 	 * XXX: What about pd_gain_overlap from EEPROM ? */
3097 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3098 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3099 
3100 	/* Create final PDADC table */
3101 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3102 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3103 
3104 		if (pdg == pdcurves - 1)
3105 			/* 2 dB boundary stretch for last
3106 			 * (higher power) curve */
3107 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3108 		else
3109 			/* Set gain boundary in the middle
3110 			 * between this curve and the next one */
3111 			gain_boundaries[pdg] =
3112 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3113 
3114 		/* Sanity check in case our 2 db stretch got out of
3115 		 * range. */
3116 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3117 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3118 
3119 		/* For the first curve (lower power)
3120 		 * start from 0 dB */
3121 		if (pdg == 0)
3122 			pdadc_0 = 0;
3123 		else
3124 			/* For the other curves use the gain overlap */
3125 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3126 							pd_gain_overlap;
3127 
3128 		/* Force each power step to be at least 0.5 dB */
3129 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3130 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3131 		else
3132 			pwr_step = 1;
3133 
3134 		/* If pdadc_0 is negative, we need to extrapolate
3135 		 * below this pdgain by a number of pwr_steps */
3136 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3137 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3138 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3139 			pdadc_0++;
3140 		}
3141 
3142 		/* Set last pwr level, using gain boundaries */
3143 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3144 		/* Limit it to be inside pwr range */
3145 		table_size = pwr_max[pdg] - pwr_min[pdg];
3146 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3147 
3148 		/* Fill pdadc_out table */
3149 		while (pdadc_0 < max_idx && pdadc_i < 128)
3150 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3151 
3152 		/* Need to extrapolate above this pdgain? */
3153 		if (pdadc_n <= max_idx)
3154 			continue;
3155 
3156 		/* Force each power step to be at least 0.5 dB */
3157 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3158 			pwr_step = pdadc_tmp[table_size - 1] -
3159 						pdadc_tmp[table_size - 2];
3160 		else
3161 			pwr_step = 1;
3162 
3163 		/* Extrapolate above */
3164 		while ((pdadc_0 < (s16) pdadc_n) &&
3165 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3166 			s16 tmp = pdadc_tmp[table_size - 1] +
3167 					(pdadc_0 - max_idx) * pwr_step;
3168 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3169 			pdadc_0++;
3170 		}
3171 	}
3172 
3173 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3174 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3175 		pdg++;
3176 	}
3177 
3178 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3179 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3180 		pdadc_i++;
3181 	}
3182 
3183 	/* Set gain boundaries */
3184 	ath5k_hw_reg_write(ah,
3185 		AR5K_REG_SM(pd_gain_overlap,
3186 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3187 		AR5K_REG_SM(gain_boundaries[0],
3188 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3189 		AR5K_REG_SM(gain_boundaries[1],
3190 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3191 		AR5K_REG_SM(gain_boundaries[2],
3192 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3193 		AR5K_REG_SM(gain_boundaries[3],
3194 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3195 		AR5K_PHY_TPC_RG5);
3196 
3197 	/* Used for setting rate power table */
3198 	ah->ah_txpower.txp_min_idx = pwr_min[0];
3199 
3200 }
3201 
3202 /**
3203  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3204  * @ah: The &struct ath5k_hw
3205  * @ee_mode: One of enum ath5k_driver_mode
3206  */
3207 static void
3208 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3209 {
3210 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3211 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3212 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3213 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3214 	u32 reg;
3215 	u8 i;
3216 
3217 	/* Select the right pdgain curves */
3218 
3219 	/* Clear current settings */
3220 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3221 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3222 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3223 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3224 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3225 
3226 	/*
3227 	 * Use pd_gains curve from eeprom
3228 	 *
3229 	 * This overrides the default setting from initvals
3230 	 * in case some vendors (e.g. Zcomax) don't use the default
3231 	 * curves. If we don't honor their settings we 'll get a
3232 	 * 5dB (1 * gain overlap ?) drop.
3233 	 */
3234 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3235 
3236 	switch (pdcurves) {
3237 	case 3:
3238 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3239 		/* Fall through */
3240 	case 2:
3241 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3242 		/* Fall through */
3243 	case 1:
3244 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3245 		break;
3246 	}
3247 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3248 
3249 	/*
3250 	 * Write TX power values
3251 	 */
3252 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3253 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3254 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3255 	}
3256 }
3257 
3258 
3259 /*
3260  * Common code for PCDAC/PDADC tables
3261  */
3262 
3263 /**
3264  * ath5k_setup_channel_powertable() - Set up power table for this channel
3265  * @ah: The &struct ath5k_hw
3266  * @channel: The &struct ieee80211_channel
3267  * @ee_mode: One of enum ath5k_driver_mode
3268  * @type: One of enum ath5k_powertable_type (eeprom.h)
3269  *
3270  * This is the main function that uses all of the above
3271  * to set PCDAC/PDADC table on hw for the current channel.
3272  * This table is used for tx power calibration on the baseband,
3273  * without it we get weird tx power levels and in some cases
3274  * distorted spectral mask
3275  */
3276 static int
3277 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3278 			struct ieee80211_channel *channel,
3279 			u8 ee_mode, u8 type)
3280 {
3281 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3282 	struct ath5k_chan_pcal_info *pcinfo_L;
3283 	struct ath5k_chan_pcal_info *pcinfo_R;
3284 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3285 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3286 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3287 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3288 	u8 *tmpL;
3289 	u8 *tmpR;
3290 	u32 target = channel->center_freq;
3291 	int pdg, i;
3292 
3293 	/* Get surrounding freq piers for this channel */
3294 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3295 						&pcinfo_L,
3296 						&pcinfo_R);
3297 
3298 	/* Loop over pd gain curves on
3299 	 * surrounding freq piers by index */
3300 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3301 
3302 		/* Fill curves in reverse order
3303 		 * from lower power (max gain)
3304 		 * to higher power. Use curve -> idx
3305 		 * backmapping we did on eeprom init */
3306 		u8 idx = pdg_curve_to_idx[pdg];
3307 
3308 		/* Grab the needed curves by index */
3309 		pdg_L = &pcinfo_L->pd_curves[idx];
3310 		pdg_R = &pcinfo_R->pd_curves[idx];
3311 
3312 		/* Initialize the temp tables */
3313 		tmpL = ah->ah_txpower.tmpL[pdg];
3314 		tmpR = ah->ah_txpower.tmpR[pdg];
3315 
3316 		/* Set curve's x boundaries and create
3317 		 * curves so that they cover the same
3318 		 * range (if we don't do that one table
3319 		 * will have values on some range and the
3320 		 * other one won't have any so interpolation
3321 		 * will fail) */
3322 		table_min[pdg] = min(pdg_L->pd_pwr[0],
3323 					pdg_R->pd_pwr[0]) / 2;
3324 
3325 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3326 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3327 
3328 		/* Now create the curves on surrounding channels
3329 		 * and interpolate if needed to get the final
3330 		 * curve for this gain on this channel */
3331 		switch (type) {
3332 		case AR5K_PWRTABLE_LINEAR_PCDAC:
3333 			/* Override min/max so that we don't loose
3334 			 * accuracy (don't divide by 2) */
3335 			table_min[pdg] = min(pdg_L->pd_pwr[0],
3336 						pdg_R->pd_pwr[0]);
3337 
3338 			table_max[pdg] =
3339 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3340 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3341 
3342 			/* Override minimum so that we don't get
3343 			 * out of bounds while extrapolating
3344 			 * below. Don't do this when we have 2
3345 			 * curves and we are on the high power curve
3346 			 * because table_min is ok in this case */
3347 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3348 
3349 				table_min[pdg] =
3350 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3351 								pdg_R->pd_step,
3352 								pdg_L->pd_pwr,
3353 								pdg_R->pd_pwr);
3354 
3355 				/* Don't go too low because we will
3356 				 * miss the upper part of the curve.
3357 				 * Note: 126 = 31.5dB (max power supported)
3358 				 * in 0.25dB units */
3359 				if (table_max[pdg] - table_min[pdg] > 126)
3360 					table_min[pdg] = table_max[pdg] - 126;
3361 			}
3362 
3363 			/* Fall through */
3364 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3365 		case AR5K_PWRTABLE_PWR_TO_PDADC:
3366 
3367 			ath5k_create_power_curve(table_min[pdg],
3368 						table_max[pdg],
3369 						pdg_L->pd_pwr,
3370 						pdg_L->pd_step,
3371 						pdg_L->pd_points, tmpL, type);
3372 
3373 			/* We are in a calibration
3374 			 * pier, no need to interpolate
3375 			 * between freq piers */
3376 			if (pcinfo_L == pcinfo_R)
3377 				continue;
3378 
3379 			ath5k_create_power_curve(table_min[pdg],
3380 						table_max[pdg],
3381 						pdg_R->pd_pwr,
3382 						pdg_R->pd_step,
3383 						pdg_R->pd_points, tmpR, type);
3384 			break;
3385 		default:
3386 			return -EINVAL;
3387 		}
3388 
3389 		/* Interpolate between curves
3390 		 * of surrounding freq piers to
3391 		 * get the final curve for this
3392 		 * pd gain. Re-use tmpL for interpolation
3393 		 * output */
3394 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3395 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3396 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3397 							(s16) pcinfo_L->freq,
3398 							(s16) pcinfo_R->freq,
3399 							(s16) tmpL[i],
3400 							(s16) tmpR[i]);
3401 		}
3402 	}
3403 
3404 	/* Now we have a set of curves for this
3405 	 * channel on tmpL (x range is table_max - table_min
3406 	 * and y values are tmpL[pdg][]) sorted in the same
3407 	 * order as EEPROM (because we've used the backmapping).
3408 	 * So for RF5112 it's from higher power to lower power
3409 	 * and for RF2413 it's from lower power to higher power.
3410 	 * For RF5111 we only have one curve. */
3411 
3412 	/* Fill min and max power levels for this
3413 	 * channel by interpolating the values on
3414 	 * surrounding channels to complete the dataset */
3415 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3416 					(s16) pcinfo_L->freq,
3417 					(s16) pcinfo_R->freq,
3418 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3419 
3420 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3421 					(s16) pcinfo_L->freq,
3422 					(s16) pcinfo_R->freq,
3423 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3424 
3425 	/* Fill PCDAC/PDADC table */
3426 	switch (type) {
3427 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3428 		/* For RF5112 we can have one or two curves
3429 		 * and each curve covers a certain power lvl
3430 		 * range so we need to do some more processing */
3431 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3432 						ee->ee_pd_gains[ee_mode]);
3433 
3434 		/* Set txp.offset so that we can
3435 		 * match max power value with max
3436 		 * table index */
3437 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3438 		break;
3439 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3440 		/* We are done for RF5111 since it has only
3441 		 * one curve, just fit the curve on the table */
3442 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3443 
3444 		/* No rate powertable adjustment for RF5111 */
3445 		ah->ah_txpower.txp_min_idx = 0;
3446 		ah->ah_txpower.txp_offset = 0;
3447 		break;
3448 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3449 		/* Set PDADC boundaries and fill
3450 		 * final PDADC table */
3451 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3452 						ee->ee_pd_gains[ee_mode]);
3453 
3454 		/* Set txp.offset, note that table_min
3455 		 * can be negative */
3456 		ah->ah_txpower.txp_offset = table_min[0];
3457 		break;
3458 	default:
3459 		return -EINVAL;
3460 	}
3461 
3462 	ah->ah_txpower.txp_setup = true;
3463 
3464 	return 0;
3465 }
3466 
3467 /**
3468  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3469  * @ah: The &struct ath5k_hw
3470  * @ee_mode: One of enum ath5k_driver_mode
3471  * @type: One of enum ath5k_powertable_type (eeprom.h)
3472  */
3473 static void
3474 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3475 {
3476 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3477 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3478 	else
3479 		ath5k_write_pcdac_table(ah);
3480 }
3481 
3482 
3483 /**
3484  * DOC: Per-rate tx power setting
3485  *
3486  * This is the code that sets the desired tx power limit (below
3487  * maximum) on hw for each rate (we also have TPC that sets
3488  * power per packet type). We do that by providing an index on the
3489  * PCDAC/PDADC table we set up above, for each rate.
3490  *
3491  * For now we only limit txpower based on maximum tx power
3492  * supported by hw (what's inside rate_info) + conformance test
3493  * limits. We need to limit this even more, based on regulatory domain
3494  * etc to be safe. Normally this is done from above so we don't care
3495  * here, all we care is that the tx power we set will be O.K.
3496  * for the hw (e.g. won't create noise on PA etc).
3497  *
3498  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3499  * x values) and is indexed as follows:
3500  * rates[0] - rates[7] -> OFDM rates
3501  * rates[8] - rates[14] -> CCK rates
3502  * rates[15] -> XR rates (they all have the same power)
3503  */
3504 
3505 /**
3506  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3507  * @ah: The &struct ath5k_hw
3508  * @max_pwr: The maximum tx power requested in 0.5dB steps
3509  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3510  * @ee_mode: One of enum ath5k_driver_mode
3511  */
3512 static void
3513 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3514 			struct ath5k_rate_pcal_info *rate_info,
3515 			u8 ee_mode)
3516 {
3517 	unsigned int i;
3518 	u16 *rates;
3519 
3520 	/* max_pwr is power level we got from driver/user in 0.5dB
3521 	 * units, switch to 0.25dB units so we can compare */
3522 	max_pwr *= 2;
3523 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3524 
3525 	/* apply rate limits */
3526 	rates = ah->ah_txpower.txp_rates_power_table;
3527 
3528 	/* OFDM rates 6 to 24Mb/s */
3529 	for (i = 0; i < 5; i++)
3530 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3531 
3532 	/* Rest OFDM rates */
3533 	rates[5] = min(rates[0], rate_info->target_power_36);
3534 	rates[6] = min(rates[0], rate_info->target_power_48);
3535 	rates[7] = min(rates[0], rate_info->target_power_54);
3536 
3537 	/* CCK rates */
3538 	/* 1L */
3539 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3540 	/* 2L */
3541 	rates[9] = min(rates[0], rate_info->target_power_36);
3542 	/* 2S */
3543 	rates[10] = min(rates[0], rate_info->target_power_36);
3544 	/* 5L */
3545 	rates[11] = min(rates[0], rate_info->target_power_48);
3546 	/* 5S */
3547 	rates[12] = min(rates[0], rate_info->target_power_48);
3548 	/* 11L */
3549 	rates[13] = min(rates[0], rate_info->target_power_54);
3550 	/* 11S */
3551 	rates[14] = min(rates[0], rate_info->target_power_54);
3552 
3553 	/* XR rates */
3554 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3555 
3556 	/* CCK rates have different peak to average ratio
3557 	 * so we have to tweak their power so that gainf
3558 	 * correction works ok. For this we use OFDM to
3559 	 * CCK delta from eeprom */
3560 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3561 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3562 		for (i = 8; i <= 15; i++)
3563 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3564 
3565 	/* Now that we have all rates setup use table offset to
3566 	 * match the power range set by user with the power indices
3567 	 * on PCDAC/PDADC table */
3568 	for (i = 0; i < 16; i++) {
3569 		rates[i] += ah->ah_txpower.txp_offset;
3570 		/* Don't get out of bounds */
3571 		if (rates[i] > 63)
3572 			rates[i] = 63;
3573 	}
3574 
3575 	/* Min/max in 0.25dB units */
3576 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3577 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3578 	ah->ah_txpower.txp_ofdm = rates[7];
3579 }
3580 
3581 
3582 /**
3583  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3584  * @ah: The &struct ath5k_hw
3585  * @channel: The &struct ieee80211_channel
3586  * @txpower: Requested tx power in 0.5dB steps
3587  *
3588  * Combines all of the above to set the requested tx power limit
3589  * on hw.
3590  */
3591 static int
3592 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3593 		 u8 txpower)
3594 {
3595 	struct ath5k_rate_pcal_info rate_info;
3596 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3597 	int ee_mode;
3598 	u8 type;
3599 	int ret;
3600 
3601 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3602 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3603 		return -EINVAL;
3604 	}
3605 
3606 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3607 	if (ee_mode < 0) {
3608 		ATH5K_ERR(ah,
3609 			"invalid channel: %d\n", channel->center_freq);
3610 		return -EINVAL;
3611 	}
3612 
3613 	/* Initialize TX power table */
3614 	switch (ah->ah_radio) {
3615 	case AR5K_RF5110:
3616 		/* TODO */
3617 		return 0;
3618 	case AR5K_RF5111:
3619 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3620 		break;
3621 	case AR5K_RF5112:
3622 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3623 		break;
3624 	case AR5K_RF2413:
3625 	case AR5K_RF5413:
3626 	case AR5K_RF2316:
3627 	case AR5K_RF2317:
3628 	case AR5K_RF2425:
3629 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3630 		break;
3631 	default:
3632 		return -EINVAL;
3633 	}
3634 
3635 	/*
3636 	 * If we don't change channel/mode skip tx powertable calculation
3637 	 * and use the cached one.
3638 	 */
3639 	if (!ah->ah_txpower.txp_setup ||
3640 	    (channel->hw_value != curr_channel->hw_value) ||
3641 	    (channel->center_freq != curr_channel->center_freq)) {
3642 		/* Reset TX power values */
3643 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3644 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3645 
3646 		/* Calculate the powertable */
3647 		ret = ath5k_setup_channel_powertable(ah, channel,
3648 							ee_mode, type);
3649 		if (ret)
3650 			return ret;
3651 	}
3652 
3653 	/* Write table on hw */
3654 	ath5k_write_channel_powertable(ah, ee_mode, type);
3655 
3656 	/* Limit max power if we have a CTL available */
3657 	ath5k_get_max_ctl_power(ah, channel);
3658 
3659 	/* FIXME: Antenna reduction stuff */
3660 
3661 	/* FIXME: Limit power on turbo modes */
3662 
3663 	/* FIXME: TPC scale reduction */
3664 
3665 	/* Get surrounding channels for per-rate power table
3666 	 * calibration */
3667 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3668 
3669 	/* Setup rate power table */
3670 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3671 
3672 	/* Write rate power table on hw */
3673 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3674 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3675 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3676 
3677 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3678 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3679 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3680 
3681 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3682 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3683 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3684 
3685 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3686 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3687 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3688 
3689 	/* FIXME: TPC support */
3690 	if (ah->ah_txpower.txp_tpc) {
3691 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3692 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3693 
3694 		ath5k_hw_reg_write(ah,
3695 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3696 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3697 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3698 			AR5K_TPC);
3699 	} else {
3700 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3701 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3702 	}
3703 
3704 	return 0;
3705 }
3706 
3707 /**
3708  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3709  * @ah: The &struct ath5k_hw
3710  * @txpower: The requested tx power limit in 0.5dB steps
3711  *
3712  * This function provides access to ath5k_hw_txpower to the driver in
3713  * case user or an application changes it while PHY is running.
3714  */
3715 int
3716 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3717 {
3718 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3719 		"changing txpower to %d\n", txpower);
3720 
3721 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3722 }
3723 
3724 
3725 /*************\
3726  Init function
3727 \*************/
3728 
3729 /**
3730  * ath5k_hw_phy_init() - Initialize PHY
3731  * @ah: The &struct ath5k_hw
3732  * @channel: The @struct ieee80211_channel
3733  * @mode: One of enum ath5k_driver_mode
3734  * @fast: Try a fast channel switch instead
3735  *
3736  * This is the main function used during reset to initialize PHY
3737  * or do a fast channel change if possible.
3738  *
3739  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3740  * warm reset state !
3741  */
3742 int
3743 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3744 		      u8 mode, bool fast)
3745 {
3746 	struct ieee80211_channel *curr_channel;
3747 	int ret, i;
3748 	u32 phy_tst1;
3749 	ret = 0;
3750 
3751 	/*
3752 	 * Sanity check for fast flag
3753 	 * Don't try fast channel change when changing modulation
3754 	 * mode/band. We check for chip compatibility on
3755 	 * ath5k_hw_reset.
3756 	 */
3757 	curr_channel = ah->ah_current_channel;
3758 	if (fast && (channel->hw_value != curr_channel->hw_value))
3759 		return -EINVAL;
3760 
3761 	/*
3762 	 * On fast channel change we only set the synth parameters
3763 	 * while PHY is running, enable calibration and skip the rest.
3764 	 */
3765 	if (fast) {
3766 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3767 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3768 		for (i = 0; i < 100; i++) {
3769 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3770 				break;
3771 			udelay(5);
3772 		}
3773 		/* Failed */
3774 		if (i >= 100)
3775 			return -EIO;
3776 
3777 		/* Set channel and wait for synth */
3778 		ret = ath5k_hw_channel(ah, channel);
3779 		if (ret)
3780 			return ret;
3781 
3782 		ath5k_hw_wait_for_synth(ah, channel);
3783 	}
3784 
3785 	/*
3786 	 * Set TX power
3787 	 *
3788 	 * Note: We need to do that before we set
3789 	 * RF buffer settings on 5211/5212+ so that we
3790 	 * properly set curve indices.
3791 	 */
3792 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3793 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3794 	if (ret)
3795 		return ret;
3796 
3797 	/* Write OFDM timings on 5212*/
3798 	if (ah->ah_version == AR5K_AR5212 &&
3799 		channel->hw_value != AR5K_MODE_11B) {
3800 
3801 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3802 		if (ret)
3803 			return ret;
3804 
3805 		/* Spur info is available only from EEPROM versions
3806 		 * greater than 5.3, but the EEPROM routines will use
3807 		 * static values for older versions */
3808 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3809 			ath5k_hw_set_spur_mitigation_filter(ah,
3810 							    channel);
3811 	}
3812 
3813 	/* If we used fast channel switching
3814 	 * we are done, release RF bus and
3815 	 * fire up NF calibration.
3816 	 *
3817 	 * Note: Only NF calibration due to
3818 	 * channel change, not AGC calibration
3819 	 * since AGC is still running !
3820 	 */
3821 	if (fast) {
3822 		/*
3823 		 * Release RF Bus grant
3824 		 */
3825 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3826 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3827 
3828 		/*
3829 		 * Start NF calibration
3830 		 */
3831 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3832 					AR5K_PHY_AGCCTL_NF);
3833 
3834 		return ret;
3835 	}
3836 
3837 	/*
3838 	 * For 5210 we do all initialization using
3839 	 * initvals, so we don't have to modify
3840 	 * any settings (5210 also only supports
3841 	 * a/aturbo modes)
3842 	 */
3843 	if (ah->ah_version != AR5K_AR5210) {
3844 
3845 		/*
3846 		 * Write initial RF gain settings
3847 		 * This should work for both 5111/5112
3848 		 */
3849 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3850 		if (ret)
3851 			return ret;
3852 
3853 		usleep_range(1000, 1500);
3854 
3855 		/*
3856 		 * Write RF buffer
3857 		 */
3858 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3859 		if (ret)
3860 			return ret;
3861 
3862 		/*Enable/disable 802.11b mode on 5111
3863 		(enable 2111 frequency converter + CCK)*/
3864 		if (ah->ah_radio == AR5K_RF5111) {
3865 			if (mode == AR5K_MODE_11B)
3866 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3867 				    AR5K_TXCFG_B_MODE);
3868 			else
3869 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3870 				    AR5K_TXCFG_B_MODE);
3871 		}
3872 
3873 	} else if (ah->ah_version == AR5K_AR5210) {
3874 		usleep_range(1000, 1500);
3875 		/* Disable phy and wait */
3876 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3877 		usleep_range(1000, 1500);
3878 	}
3879 
3880 	/* Set channel on PHY */
3881 	ret = ath5k_hw_channel(ah, channel);
3882 	if (ret)
3883 		return ret;
3884 
3885 	/*
3886 	 * Enable the PHY and wait until completion
3887 	 * This includes BaseBand and Synthesizer
3888 	 * activation.
3889 	 */
3890 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3891 
3892 	ath5k_hw_wait_for_synth(ah, channel);
3893 
3894 	/*
3895 	 * Perform ADC test to see if baseband is ready
3896 	 * Set tx hold and check adc test register
3897 	 */
3898 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3899 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3900 	for (i = 0; i <= 20; i++) {
3901 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3902 			break;
3903 		usleep_range(200, 250);
3904 	}
3905 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3906 
3907 	/*
3908 	 * Start automatic gain control calibration
3909 	 *
3910 	 * During AGC calibration RX path is re-routed to
3911 	 * a power detector so we don't receive anything.
3912 	 *
3913 	 * This method is used to calibrate some static offsets
3914 	 * used together with on-the fly I/Q calibration (the
3915 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3916 	 * interrupt rx path.
3917 	 *
3918 	 * While rx path is re-routed to the power detector we also
3919 	 * start a noise floor calibration to measure the
3920 	 * card's noise floor (the noise we measure when we are not
3921 	 * transmitting or receiving anything).
3922 	 *
3923 	 * If we are in a noisy environment, AGC calibration may time
3924 	 * out and/or noise floor calibration might timeout.
3925 	 */
3926 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3927 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3928 
3929 	/* At the same time start I/Q calibration for QAM constellation
3930 	 * -no need for CCK- */
3931 	ah->ah_iq_cal_needed = false;
3932 	if (!(mode == AR5K_MODE_11B)) {
3933 		ah->ah_iq_cal_needed = true;
3934 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3935 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3936 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3937 				AR5K_PHY_IQ_RUN);
3938 	}
3939 
3940 	/* Wait for gain calibration to finish (we check for I/Q calibration
3941 	 * during ath5k_phy_calibrate) */
3942 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3943 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3944 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3945 			channel->center_freq);
3946 	}
3947 
3948 	/* Restore antenna mode */
3949 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3950 
3951 	return ret;
3952 }
3953