xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/pcu.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "debug.h"
30 #include "base.h"
31 
32 /*******************\
33 * Generic functions *
34 \*******************/
35 
36 /**
37  * ath5k_hw_set_opmode - Set PCU operating mode
38  *
39  * @ah: The &struct ath5k_hw
40  *
41  * Initialize PCU for the various operating modes (AP/STA etc)
42  *
43  * NOTE: ah->ah_op_mode must be set before calling this.
44  */
45 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
46 {
47 	u32 pcu_reg, beacon_reg, low_id, high_id;
48 
49 
50 	/* Preserve rest settings */
51 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
52 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
53 			| AR5K_STA_ID1_KEYSRCH_MODE
54 			| (ah->ah_version == AR5K_AR5210 ?
55 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
56 
57 	beacon_reg = 0;
58 
59 	ATH5K_TRACE(ah->ah_sc);
60 
61 	switch (ah->ah_op_mode) {
62 	case NL80211_IFTYPE_ADHOC:
63 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
64 		beacon_reg |= AR5K_BCR_ADHOC;
65 		if (ah->ah_version == AR5K_AR5210)
66 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
67 		else
68 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
69 		break;
70 
71 	case NL80211_IFTYPE_AP:
72 	case NL80211_IFTYPE_MESH_POINT:
73 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
74 		beacon_reg |= AR5K_BCR_AP;
75 		if (ah->ah_version == AR5K_AR5210)
76 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
77 		else
78 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
79 		break;
80 
81 	case NL80211_IFTYPE_STATION:
82 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
83 			| (ah->ah_version == AR5K_AR5210 ?
84 				AR5K_STA_ID1_PWR_SV : 0);
85 	case NL80211_IFTYPE_MONITOR:
86 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
87 			| (ah->ah_version == AR5K_AR5210 ?
88 				AR5K_STA_ID1_NO_PSPOLL : 0);
89 		break;
90 
91 	default:
92 		return -EINVAL;
93 	}
94 
95 	/*
96 	 * Set PCU registers
97 	 */
98 	low_id = AR5K_LOW_ID(ah->ah_sta_id);
99 	high_id = AR5K_HIGH_ID(ah->ah_sta_id);
100 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
101 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
102 
103 	/*
104 	 * Set Beacon Control Register on 5210
105 	 */
106 	if (ah->ah_version == AR5K_AR5210)
107 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
108 
109 	return 0;
110 }
111 
112 /**
113  * ath5k_hw_update - Update mib counters (mac layer statistics)
114  *
115  * @ah: The &struct ath5k_hw
116  * @stats: The &struct ieee80211_low_level_stats we use to track
117  * statistics on the driver
118  *
119  * Reads MIB counters from PCU and updates sw statistics. Must be
120  * called after a MIB interrupt.
121  */
122 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
123 		struct ieee80211_low_level_stats  *stats)
124 {
125 	ATH5K_TRACE(ah->ah_sc);
126 
127 	/* Read-And-Clear */
128 	stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
129 	stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
130 	stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
131 	stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
132 
133 	/* XXX: Should we use this to track beacon count ?
134 	 * -we read it anyway to clear the register */
135 	ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
136 
137 	/* Reset profile count registers on 5212*/
138 	if (ah->ah_version == AR5K_AR5212) {
139 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
140 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
141 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
142 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
143 	}
144 
145 	/* TODO: Handle ANI stats */
146 }
147 
148 /**
149  * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
150  *
151  * @ah: The &struct ath5k_hw
152  * @high: Flag to determine if we want to use high transmition rate
153  * for ACKs or not
154  *
155  * If high flag is set, we tell hw to use a set of control rates based on
156  * the current transmition rate (check out control_rates array inside reset.c).
157  * If not hw just uses the lowest rate available for the current modulation
158  * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
159  */
160 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
161 {
162 	if (ah->ah_version != AR5K_AR5212)
163 		return;
164 	else {
165 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
166 		if (high)
167 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
168 		else
169 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
170 	}
171 }
172 
173 
174 /******************\
175 * ACK/CTS Timeouts *
176 \******************/
177 
178 /**
179  * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
180  *
181  * @ah: The &struct ath5k_hw
182  */
183 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
184 {
185 	ATH5K_TRACE(ah->ah_sc);
186 
187 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
188 			AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
189 }
190 
191 /**
192  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
193  *
194  * @ah: The &struct ath5k_hw
195  * @timeout: Timeout in usec
196  */
197 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
198 {
199 	ATH5K_TRACE(ah->ah_sc);
200 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
201 			ah->ah_turbo) <= timeout)
202 		return -EINVAL;
203 
204 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
205 		ath5k_hw_htoclock(timeout, ah->ah_turbo));
206 
207 	return 0;
208 }
209 
210 /**
211  * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
212  *
213  * @ah: The &struct ath5k_hw
214  */
215 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
216 {
217 	ATH5K_TRACE(ah->ah_sc);
218 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
219 			AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
220 }
221 
222 /**
223  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
224  *
225  * @ah: The &struct ath5k_hw
226  * @timeout: Timeout in usec
227  */
228 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
229 {
230 	ATH5K_TRACE(ah->ah_sc);
231 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
232 			ah->ah_turbo) <= timeout)
233 		return -EINVAL;
234 
235 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
236 			ath5k_hw_htoclock(timeout, ah->ah_turbo));
237 
238 	return 0;
239 }
240 
241 
242 /****************\
243 * BSSID handling *
244 \****************/
245 
246 /**
247  * ath5k_hw_get_lladdr - Get station id
248  *
249  * @ah: The &struct ath5k_hw
250  * @mac: The card's mac address
251  *
252  * Initialize ah->ah_sta_id using the mac address provided
253  * (just a memcpy).
254  *
255  * TODO: Remove it once we merge ath5k_softc and ath5k_hw
256  */
257 void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
258 {
259 	ATH5K_TRACE(ah->ah_sc);
260 	memcpy(mac, ah->ah_sta_id, ETH_ALEN);
261 }
262 
263 /**
264  * ath5k_hw_set_lladdr - Set station id
265  *
266  * @ah: The &struct ath5k_hw
267  * @mac: The card's mac address
268  *
269  * Set station id on hw using the provided mac address
270  */
271 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
272 {
273 	u32 low_id, high_id;
274 	u32 pcu_reg;
275 
276 	ATH5K_TRACE(ah->ah_sc);
277 	/* Set new station ID */
278 	memcpy(ah->ah_sta_id, mac, ETH_ALEN);
279 
280 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
281 
282 	low_id = AR5K_LOW_ID(mac);
283 	high_id = AR5K_HIGH_ID(mac);
284 
285 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
286 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
287 
288 	return 0;
289 }
290 
291 /**
292  * ath5k_hw_set_associd - Set BSSID for association
293  *
294  * @ah: The &struct ath5k_hw
295  * @bssid: BSSID
296  * @assoc_id: Assoc id
297  *
298  * Sets the BSSID which trigers the "SME Join" operation
299  */
300 void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
301 {
302 	u32 low_id, high_id;
303 	u16 tim_offset = 0;
304 
305 	/*
306 	 * Set simple BSSID mask on 5212
307 	 */
308 	if (ah->ah_version == AR5K_AR5212) {
309 		ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
310 							AR5K_BSS_IDM0);
311 		ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
312 							AR5K_BSS_IDM1);
313 	}
314 
315 	/*
316 	 * Set BSSID which triggers the "SME Join" operation
317 	 */
318 	low_id = AR5K_LOW_ID(bssid);
319 	high_id = AR5K_HIGH_ID(bssid);
320 	ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
321 	ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
322 				AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
323 
324 	if (assoc_id == 0) {
325 		ath5k_hw_disable_pspoll(ah);
326 		return;
327 	}
328 
329 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
330 			tim_offset ? tim_offset + 4 : 0);
331 
332 	ath5k_hw_enable_pspoll(ah, NULL, 0);
333 }
334 
335 /**
336  * ath5k_hw_set_bssid_mask - filter out bssids we listen
337  *
338  * @ah: the &struct ath5k_hw
339  * @mask: the bssid_mask, a u8 array of size ETH_ALEN
340  *
341  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
342  * which bits of the interface's MAC address should be looked at when trying
343  * to decide which packets to ACK. In station mode and AP mode with a single
344  * BSS every bit matters since we lock to only one BSS. In AP mode with
345  * multiple BSSes (virtual interfaces) not every bit matters because hw must
346  * accept frames for all BSSes and so we tweak some bits of our mac address
347  * in order to have multiple BSSes.
348  *
349  * NOTE: This is a simple filter and does *not* filter out all
350  * relevant frames. Some frames that are not for us might get ACKed from us
351  * by PCU because they just match the mask.
352  *
353  * When handling multiple BSSes you can get the BSSID mask by computing the
354  * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
355  *
356  * When you do this you are essentially computing the common bits of all your
357  * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
358  * the MAC address to obtain the relevant bits and compare the result with
359  * (frame's BSSID & mask) to see if they match.
360  */
361 /*
362  * Simple example: on your card you have have two BSSes you have created with
363  * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
364  * There is another BSSID-03 but you are not part of it. For simplicity's sake,
365  * assuming only 4 bits for a mac address and for BSSIDs you can then have:
366  *
367  *                  \
368  * MAC:                0001 |
369  * BSSID-01:   0100 | --> Belongs to us
370  * BSSID-02:   1001 |
371  *                  /
372  * -------------------
373  * BSSID-03:   0110  | --> External
374  * -------------------
375  *
376  * Our bssid_mask would then be:
377  *
378  *             On loop iteration for BSSID-01:
379  *             ~(0001 ^ 0100)  -> ~(0101)
380  *                             ->   1010
381  *             bssid_mask      =    1010
382  *
383  *             On loop iteration for BSSID-02:
384  *             bssid_mask &= ~(0001   ^   1001)
385  *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
386  *             bssid_mask =   (1010)  & ~(1001)
387  *             bssid_mask =   (1010)  &  (0110)
388  *             bssid_mask =   0010
389  *
390  * A bssid_mask of 0010 means "only pay attention to the second least
391  * significant bit". This is because its the only bit common
392  * amongst the MAC and all BSSIDs we support. To findout what the real
393  * common bit is we can simply "&" the bssid_mask now with any BSSID we have
394  * or our MAC address (we assume the hardware uses the MAC address).
395  *
396  * Now, suppose there's an incoming frame for BSSID-03:
397  *
398  * IFRAME-01:  0110
399  *
400  * An easy eye-inspeciton of this already should tell you that this frame
401  * will not pass our check. This is beacuse the bssid_mask tells the
402  * hardware to only look at the second least significant bit and the
403  * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
404  * as 1, which does not match 0.
405  *
406  * So with IFRAME-01 we *assume* the hardware will do:
407  *
408  *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
409  *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
410  *  --> allow = (0010) == 0000 ? 1 : 0;
411  *  --> allow = 0
412  *
413  *  Lets now test a frame that should work:
414  *
415  * IFRAME-02:  0001 (we should allow)
416  *
417  *     allow = (0001 & 1010) == 1010
418  *
419  *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
420  *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
421  *  --> allow = (0010) == (0010)
422  *  --> allow = 1
423  *
424  * Other examples:
425  *
426  * IFRAME-03:  0100 --> allowed
427  * IFRAME-04:  1001 --> allowed
428  * IFRAME-05:  1101 --> allowed but its not for us!!!
429  *
430  */
431 int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
432 {
433 	u32 low_id, high_id;
434 	ATH5K_TRACE(ah->ah_sc);
435 
436 	/* Cache bssid mask so that we can restore it
437 	 * on reset */
438 	memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
439 	if (ah->ah_version == AR5K_AR5212) {
440 		low_id = AR5K_LOW_ID(mask);
441 		high_id = AR5K_HIGH_ID(mask);
442 
443 		ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
444 		ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
445 
446 		return 0;
447 	}
448 
449 	return -EIO;
450 }
451 
452 
453 /************\
454 * RX Control *
455 \************/
456 
457 /**
458  * ath5k_hw_start_rx_pcu - Start RX engine
459  *
460  * @ah: The &struct ath5k_hw
461  *
462  * Starts RX engine on PCU so that hw can process RXed frames
463  * (ACK etc).
464  *
465  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
466  * TODO: Init ANI here
467  */
468 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
469 {
470 	ATH5K_TRACE(ah->ah_sc);
471 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
472 }
473 
474 /**
475  * at5k_hw_stop_rx_pcu - Stop RX engine
476  *
477  * @ah: The &struct ath5k_hw
478  *
479  * Stops RX engine on PCU
480  *
481  * TODO: Detach ANI here
482  */
483 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
484 {
485 	ATH5K_TRACE(ah->ah_sc);
486 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
487 }
488 
489 /*
490  * Set multicast filter
491  */
492 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
493 {
494 	ATH5K_TRACE(ah->ah_sc);
495 	/* Set the multicat filter */
496 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
497 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
498 }
499 
500 /*
501  * Set multicast filter by index
502  */
503 int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
504 {
505 
506 	ATH5K_TRACE(ah->ah_sc);
507 	if (index >= 64)
508 		return -EINVAL;
509 	else if (index >= 32)
510 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
511 				(1 << (index - 32)));
512 	else
513 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
514 
515 	return 0;
516 }
517 
518 /*
519  * Clear Multicast filter by index
520  */
521 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
522 {
523 
524 	ATH5K_TRACE(ah->ah_sc);
525 	if (index >= 64)
526 		return -EINVAL;
527 	else if (index >= 32)
528 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
529 				(1 << (index - 32)));
530 	else
531 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
532 
533 	return 0;
534 }
535 
536 /**
537  * ath5k_hw_get_rx_filter - Get current rx filter
538  *
539  * @ah: The &struct ath5k_hw
540  *
541  * Returns the RX filter by reading rx filter and
542  * phy error filter registers. RX filter is used
543  * to set the allowed frame types that PCU will accept
544  * and pass to the driver. For a list of frame types
545  * check out reg.h.
546  */
547 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
548 {
549 	u32 data, filter = 0;
550 
551 	ATH5K_TRACE(ah->ah_sc);
552 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
553 
554 	/*Radar detection for 5212*/
555 	if (ah->ah_version == AR5K_AR5212) {
556 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
557 
558 		if (data & AR5K_PHY_ERR_FIL_RADAR)
559 			filter |= AR5K_RX_FILTER_RADARERR;
560 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
561 			filter |= AR5K_RX_FILTER_PHYERR;
562 	}
563 
564 	return filter;
565 }
566 
567 /**
568  * ath5k_hw_set_rx_filter - Set rx filter
569  *
570  * @ah: The &struct ath5k_hw
571  * @filter: RX filter mask (see reg.h)
572  *
573  * Sets RX filter register and also handles PHY error filter
574  * register on 5212 and newer chips so that we have proper PHY
575  * error reporting.
576  */
577 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
578 {
579 	u32 data = 0;
580 
581 	ATH5K_TRACE(ah->ah_sc);
582 
583 	/* Set PHY error filter register on 5212*/
584 	if (ah->ah_version == AR5K_AR5212) {
585 		if (filter & AR5K_RX_FILTER_RADARERR)
586 			data |= AR5K_PHY_ERR_FIL_RADAR;
587 		if (filter & AR5K_RX_FILTER_PHYERR)
588 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
589 	}
590 
591 	/*
592 	 * The AR5210 uses promiscous mode to detect radar activity
593 	 */
594 	if (ah->ah_version == AR5K_AR5210 &&
595 			(filter & AR5K_RX_FILTER_RADARERR)) {
596 		filter &= ~AR5K_RX_FILTER_RADARERR;
597 		filter |= AR5K_RX_FILTER_PROM;
598 	}
599 
600 	/*Zero length DMA (phy error reporting) */
601 	if (data)
602 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
603 	else
604 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
605 
606 	/*Write RX Filter register*/
607 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
608 
609 	/*Write PHY error filter register on 5212*/
610 	if (ah->ah_version == AR5K_AR5212)
611 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
612 
613 }
614 
615 
616 /****************\
617 * Beacon control *
618 \****************/
619 
620 /**
621  * ath5k_hw_get_tsf32 - Get a 32bit TSF
622  *
623  * @ah: The &struct ath5k_hw
624  *
625  * Returns lower 32 bits of current TSF
626  */
627 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
628 {
629 	ATH5K_TRACE(ah->ah_sc);
630 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
631 }
632 
633 /**
634  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
635  *
636  * @ah: The &struct ath5k_hw
637  *
638  * Returns the current TSF
639  */
640 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
641 {
642 	u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
643 	ATH5K_TRACE(ah->ah_sc);
644 
645 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
646 }
647 
648 /**
649  * ath5k_hw_set_tsf64 - Set a new 64bit TSF
650  *
651  * @ah: The &struct ath5k_hw
652  * @tsf64: The new 64bit TSF
653  *
654  * Sets the new TSF
655  */
656 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
657 {
658 	ATH5K_TRACE(ah->ah_sc);
659 
660 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
661 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
662 }
663 
664 /**
665  * ath5k_hw_reset_tsf - Force a TSF reset
666  *
667  * @ah: The &struct ath5k_hw
668  *
669  * Forces a TSF reset on PCU
670  */
671 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
672 {
673 	u32 val;
674 
675 	ATH5K_TRACE(ah->ah_sc);
676 
677 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
678 
679 	/*
680 	 * Each write to the RESET_TSF bit toggles a hardware internal
681 	 * signal to reset TSF, but if left high it will cause a TSF reset
682 	 * on the next chip reset as well.  Thus we always write the value
683 	 * twice to clear the signal.
684 	 */
685 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
686 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
687 }
688 
689 /*
690  * Initialize beacon timers
691  */
692 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
693 {
694 	u32 timer1, timer2, timer3;
695 
696 	ATH5K_TRACE(ah->ah_sc);
697 	/*
698 	 * Set the additional timers by mode
699 	 */
700 	switch (ah->ah_op_mode) {
701 	case NL80211_IFTYPE_MONITOR:
702 	case NL80211_IFTYPE_STATION:
703 		/* In STA mode timer1 is used as next wakeup
704 		 * timer and timer2 as next CFP duration start
705 		 * timer. Both in 1/8TUs. */
706 		/* TODO: PCF handling */
707 		if (ah->ah_version == AR5K_AR5210) {
708 			timer1 = 0xffffffff;
709 			timer2 = 0xffffffff;
710 		} else {
711 			timer1 = 0x0000ffff;
712 			timer2 = 0x0007ffff;
713 		}
714 		/* Mark associated AP as PCF incapable for now */
715 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
716 		break;
717 	case NL80211_IFTYPE_ADHOC:
718 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
719 	default:
720 		/* On non-STA modes timer1 is used as next DMA
721 		 * beacon alert (DBA) timer and timer2 as next
722 		 * software beacon alert. Both in 1/8TUs. */
723 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
724 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
725 		break;
726 	}
727 
728 	/* Timer3 marks the end of our ATIM window
729 	 * a zero length window is not allowed because
730 	 * we 'll get no beacons */
731 	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
732 
733 	/*
734 	 * Set the beacon register and enable all timers.
735 	 */
736 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
737 	if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
738 	    ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
739 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
740 
741 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
742 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
743 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
744 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
745 
746 	/* Force a TSF reset if requested and enable beacons */
747 	if (interval & AR5K_BEACON_RESET_TSF)
748 		ath5k_hw_reset_tsf(ah);
749 
750 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
751 					AR5K_BEACON_ENABLE),
752 						AR5K_BEACON);
753 
754 	/* Flush any pending BMISS interrupts on ISR by
755 	 * performing a clear-on-write operation on PISR
756 	 * register for the BMISS bit (writing a bit on
757 	 * ISR togles a reset for that bit and leaves
758 	 * the rest bits intact) */
759 	if (ah->ah_version == AR5K_AR5210)
760 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
761 	else
762 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
763 
764 	/* TODO: Set enchanced sleep registers on AR5212
765 	 * based on vif->bss_conf params, until then
766 	 * disable power save reporting.*/
767 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
768 
769 }
770 
771 #if 0
772 /*
773  * Set beacon timers
774  */
775 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
776 		const struct ath5k_beacon_state *state)
777 {
778 	u32 cfp_period, next_cfp, dtim, interval, next_beacon;
779 
780 	/*
781 	 * TODO: should be changed through *state
782 	 * review struct ath5k_beacon_state struct
783 	 *
784 	 * XXX: These are used for cfp period bellow, are they
785 	 * ok ? Is it O.K. for tsf here to be 0 or should we use
786 	 * get_tsf ?
787 	 */
788 	u32 dtim_count = 0; /* XXX */
789 	u32 cfp_count = 0; /* XXX */
790 	u32 tsf = 0; /* XXX */
791 
792 	ATH5K_TRACE(ah->ah_sc);
793 	/* Return on an invalid beacon state */
794 	if (state->bs_interval < 1)
795 		return -EINVAL;
796 
797 	interval = state->bs_interval;
798 	dtim = state->bs_dtim_period;
799 
800 	/*
801 	 * PCF support?
802 	 */
803 	if (state->bs_cfp_period > 0) {
804 		/*
805 		 * Enable PCF mode and set the CFP
806 		 * (Contention Free Period) and timer registers
807 		 */
808 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
809 			state->bs_interval;
810 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
811 			state->bs_interval;
812 
813 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
814 				AR5K_STA_ID1_DEFAULT_ANTENNA |
815 				AR5K_STA_ID1_PCF);
816 		ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
817 		ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
818 				AR5K_CFP_DUR);
819 		ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
820 						next_cfp)) << 3, AR5K_TIMER2);
821 	} else {
822 		/* Disable PCF mode */
823 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
824 				AR5K_STA_ID1_DEFAULT_ANTENNA |
825 				AR5K_STA_ID1_PCF);
826 	}
827 
828 	/*
829 	 * Enable the beacon timer register
830 	 */
831 	ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
832 
833 	/*
834 	 * Start the beacon timers
835 	 */
836 	ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
837 		~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
838 		AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
839 		AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
840 		AR5K_BEACON_PERIOD), AR5K_BEACON);
841 
842 	/*
843 	 * Write new beacon miss threshold, if it appears to be valid
844 	 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
845 	 * and return if its not in range. We can test this by reading value and
846 	 * setting value to a largest value and seeing which values register.
847 	 */
848 
849 	AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
850 			state->bs_bmiss_threshold);
851 
852 	/*
853 	 * Set sleep control register
854 	 * XXX: Didn't find this in 5210 code but since this register
855 	 * exists also in ar5k's 5210 headers i leave it as common code.
856 	 */
857 	AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
858 			(state->bs_sleep_duration - 3) << 3);
859 
860 	/*
861 	 * Set enhanced sleep registers on 5212
862 	 */
863 	if (ah->ah_version == AR5K_AR5212) {
864 		if (state->bs_sleep_duration > state->bs_interval &&
865 				roundup(state->bs_sleep_duration, interval) ==
866 				state->bs_sleep_duration)
867 			interval = state->bs_sleep_duration;
868 
869 		if (state->bs_sleep_duration > dtim && (dtim == 0 ||
870 				roundup(state->bs_sleep_duration, dtim) ==
871 				state->bs_sleep_duration))
872 			dtim = state->bs_sleep_duration;
873 
874 		if (interval > dtim)
875 			return -EINVAL;
876 
877 		next_beacon = interval == dtim ? state->bs_next_dtim :
878 			state->bs_next_beacon;
879 
880 		ath5k_hw_reg_write(ah,
881 			AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
882 			AR5K_SLEEP0_NEXT_DTIM) |
883 			AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
884 			AR5K_SLEEP0_ENH_SLEEP_EN |
885 			AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
886 
887 		ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
888 			AR5K_SLEEP1_NEXT_TIM) |
889 			AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
890 
891 		ath5k_hw_reg_write(ah,
892 			AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
893 			AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * Reset beacon timers
901  */
902 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
903 {
904 	ATH5K_TRACE(ah->ah_sc);
905 	/*
906 	 * Disable beacon timer
907 	 */
908 	ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
909 
910 	/*
911 	 * Disable some beacon register values
912 	 */
913 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
914 			AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
915 	ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
916 }
917 
918 /*
919  * Wait for beacon queue to finish
920  */
921 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
922 {
923 	unsigned int i;
924 	int ret;
925 
926 	ATH5K_TRACE(ah->ah_sc);
927 
928 	/* 5210 doesn't have QCU*/
929 	if (ah->ah_version == AR5K_AR5210) {
930 		/*
931 		 * Wait for beaconn queue to finish by checking
932 		 * Control Register and Beacon Status Register.
933 		 */
934 		for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
935 			if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
936 					||
937 			    !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
938 				break;
939 			udelay(10);
940 		}
941 
942 		/* Timeout... */
943 		if (i <= 0) {
944 			/*
945 			 * Re-schedule the beacon queue
946 			 */
947 			ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
948 			ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
949 					AR5K_BCR);
950 
951 			return -EIO;
952 		}
953 		ret = 0;
954 	} else {
955 	/*5211/5212*/
956 		ret = ath5k_hw_register_timeout(ah,
957 			AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
958 			AR5K_QCU_STS_FRMPENDCNT, 0, false);
959 
960 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
961 			return -EIO;
962 	}
963 
964 	return ret;
965 }
966 #endif
967 
968 
969 /*********************\
970 * Key table functions *
971 \*********************/
972 
973 /*
974  * Reset a key entry on the table
975  */
976 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
977 {
978 	unsigned int i, type;
979 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
980 
981 	ATH5K_TRACE(ah->ah_sc);
982 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
983 
984 	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
985 
986 	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
987 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
988 
989 	/* Reset associated MIC entry if TKIP
990 	 * is enabled located at offset (entry + 64) */
991 	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
992 		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
993 		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
994 			ath5k_hw_reg_write(ah, 0,
995 				AR5K_KEYTABLE_OFF(micentry, i));
996 	}
997 
998 	/*
999 	 * Set NULL encryption on AR5212+
1000 	 *
1001 	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
1002 	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
1003 	 *
1004 	 * Note2: Windows driver (ndiswrapper) sets this to
1005 	 *        0x00000714 instead of 0x00000007
1006 	 */
1007 	if (ah->ah_version >= AR5K_AR5211) {
1008 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1009 				AR5K_KEYTABLE_TYPE(entry));
1010 
1011 		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
1012 			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1013 				AR5K_KEYTABLE_TYPE(micentry));
1014 		}
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * Check if a table entry is valid
1022  */
1023 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
1024 {
1025 	ATH5K_TRACE(ah->ah_sc);
1026 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1027 
1028 	/* Check the validation flag at the end of the entry */
1029 	return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
1030 		AR5K_KEYTABLE_VALID;
1031 }
1032 
1033 static
1034 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
1035 {
1036 	switch (key->alg) {
1037 	case ALG_TKIP:
1038 		return AR5K_KEYTABLE_TYPE_TKIP;
1039 	case ALG_CCMP:
1040 		return AR5K_KEYTABLE_TYPE_CCM;
1041 	case ALG_WEP:
1042 		if (key->keylen == WLAN_KEY_LEN_WEP40)
1043 			return AR5K_KEYTABLE_TYPE_40;
1044 		else if (key->keylen == WLAN_KEY_LEN_WEP104)
1045 			return AR5K_KEYTABLE_TYPE_104;
1046 		return -EINVAL;
1047 	default:
1048 		return -EINVAL;
1049 	}
1050 	return -EINVAL;
1051 }
1052 
1053 /*
1054  * Set a key entry on the table
1055  */
1056 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1057 		const struct ieee80211_key_conf *key, const u8 *mac)
1058 {
1059 	unsigned int i;
1060 	int keylen;
1061 	__le32 key_v[5] = {};
1062 	__le32 key0 = 0, key1 = 0;
1063 	__le32 *rxmic, *txmic;
1064 	int keytype;
1065 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
1066 	bool is_tkip;
1067 	const u8 *key_ptr;
1068 
1069 	ATH5K_TRACE(ah->ah_sc);
1070 
1071 	is_tkip = (key->alg == ALG_TKIP);
1072 
1073 	/*
1074 	 * key->keylen comes in from mac80211 in bytes.
1075 	 * TKIP is 128 bit + 128 bit mic
1076 	 */
1077 	keylen = (is_tkip) ? (128 / 8) : key->keylen;
1078 
1079 	if (entry > AR5K_KEYTABLE_SIZE ||
1080 		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
1081 		return -EOPNOTSUPP;
1082 
1083 	if (unlikely(keylen > 16))
1084 		return -EOPNOTSUPP;
1085 
1086 	keytype = ath5k_keycache_type(key);
1087 	if (keytype < 0)
1088 		return keytype;
1089 
1090 	/*
1091 	 * each key block is 6 bytes wide, written as pairs of
1092 	 * alternating 32 and 16 bit le values.
1093 	 */
1094 	key_ptr = key->key;
1095 	for (i = 0; keylen >= 6; keylen -= 6) {
1096 		memcpy(&key_v[i], key_ptr, 6);
1097 		i += 2;
1098 		key_ptr += 6;
1099 	}
1100 	if (keylen)
1101 		memcpy(&key_v[i], key_ptr, keylen);
1102 
1103 	/* intentionally corrupt key until mic is installed */
1104 	if (is_tkip) {
1105 		key0 = key_v[0] = ~key_v[0];
1106 		key1 = key_v[1] = ~key_v[1];
1107 	}
1108 
1109 	for (i = 0; i < ARRAY_SIZE(key_v); i++)
1110 		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1111 				AR5K_KEYTABLE_OFF(entry, i));
1112 
1113 	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1114 
1115 	if (is_tkip) {
1116 		/* Install rx/tx MIC */
1117 		rxmic = (__le32 *) &key->key[16];
1118 		txmic = (__le32 *) &key->key[24];
1119 
1120 		if (ah->ah_combined_mic) {
1121 			key_v[0] = rxmic[0];
1122 			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
1123 			key_v[2] = rxmic[1];
1124 			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
1125 			key_v[4] = txmic[1];
1126 		} else {
1127 			key_v[0] = rxmic[0];
1128 			key_v[1] = 0;
1129 			key_v[2] = rxmic[1];
1130 			key_v[3] = 0;
1131 			key_v[4] = 0;
1132 		}
1133 		for (i = 0; i < ARRAY_SIZE(key_v); i++)
1134 			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1135 				AR5K_KEYTABLE_OFF(micentry, i));
1136 
1137 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1138 			AR5K_KEYTABLE_TYPE(micentry));
1139 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1140 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1141 
1142 		/* restore first 2 words of key */
1143 		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1144 			AR5K_KEYTABLE_OFF(entry, 0));
1145 		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1146 			AR5K_KEYTABLE_OFF(entry, 1));
1147 	}
1148 
1149 	return ath5k_hw_set_key_lladdr(ah, entry, mac);
1150 }
1151 
1152 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1153 {
1154 	u32 low_id, high_id;
1155 
1156 	ATH5K_TRACE(ah->ah_sc);
1157 	 /* Invalid entry (key table overflow) */
1158 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1159 
1160 	/* MAC may be NULL if it's a broadcast key. In this case no need to
1161 	 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
1162 	if (!mac) {
1163 		low_id = 0xffffffff;
1164 		high_id = 0xffff | AR5K_KEYTABLE_VALID;
1165 	} else {
1166 		low_id = AR5K_LOW_ID(mac);
1167 		high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
1168 	}
1169 
1170 	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1171 	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1172 
1173 	return 0;
1174 }
1175 
1176