xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/pcu.c (revision d0b73b48)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 
33 /**
34  * DOC: Protocol Control Unit (PCU) functions
35  *
36  * Protocol control unit is responsible to maintain various protocol
37  * properties before a frame is send and after a frame is received to/from
38  * baseband. To be more specific, PCU handles:
39  *
40  * - Buffering of RX and TX frames (after QCU/DCUs)
41  *
42  * - Encrypting and decrypting (using the built-in engine)
43  *
44  * - Generating ACKs, RTS/CTS frames
45  *
46  * - Maintaining TSF
47  *
48  * - FCS
49  *
50  * - Updating beacon data (with TSF etc)
51  *
52  * - Generating virtual CCA
53  *
54  * - RX/Multicast filtering
55  *
56  * - BSSID filtering
57  *
58  * - Various statistics
59  *
60  * -Different operating modes: AP, STA, IBSS
61  *
62  * Note: Most of these functions can be tweaked/bypassed so you can do
63  * them on sw above for debugging or research. For more infos check out PCU
64  * registers on reg.h.
65  */
66 
67 /**
68  * DOC: ACK rates
69  *
70  * AR5212+ can use higher rates for ack transmission
71  * based on current tx rate instead of the base rate.
72  * It does this to better utilize channel usage.
73  * There is a mapping between G rates (that cover both
74  * CCK and OFDM) and ack rates that we use when setting
75  * rate -> duration table. This mapping is hw-based so
76  * don't change anything.
77  *
78  * To enable this functionality we must set
79  * ah->ah_ack_bitrate_high to true else base rate is
80  * used (1Mb for CCK, 6Mb for OFDM).
81  */
82 static const unsigned int ack_rates_high[] =
83 /* Tx	-> ACK	*/
84 /* 1Mb	-> 1Mb	*/	{ 0,
85 /* 2MB	-> 2Mb	*/	1,
86 /* 5.5Mb -> 2Mb	*/	1,
87 /* 11Mb	-> 2Mb	*/	1,
88 /* 6Mb	-> 6Mb	*/	4,
89 /* 9Mb	-> 6Mb	*/	4,
90 /* 12Mb	-> 12Mb	*/	6,
91 /* 18Mb	-> 12Mb	*/	6,
92 /* 24Mb	-> 24Mb	*/	8,
93 /* 36Mb	-> 24Mb	*/	8,
94 /* 48Mb	-> 24Mb	*/	8,
95 /* 54Mb	-> 24Mb	*/	8 };
96 
97 /*******************\
98 * Helper functions *
99 \*******************/
100 
101 /**
102  * ath5k_hw_get_frame_duration() - Get tx time of a frame
103  * @ah: The &struct ath5k_hw
104  * @len: Frame's length in bytes
105  * @rate: The @struct ieee80211_rate
106  * @shortpre: Indicate short preample
107  *
108  * Calculate tx duration of a frame given it's rate and length
109  * It extends ieee80211_generic_frame_duration for non standard
110  * bwmodes.
111  */
112 int
113 ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band,
114 		int len, struct ieee80211_rate *rate, bool shortpre)
115 {
116 	int sifs, preamble, plcp_bits, sym_time;
117 	int bitrate, bits, symbols, symbol_bits;
118 	int dur;
119 
120 	/* Fallback */
121 	if (!ah->ah_bwmode) {
122 		__le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
123 					NULL, band, len, rate);
124 
125 		/* subtract difference between long and short preamble */
126 		dur = le16_to_cpu(raw_dur);
127 		if (shortpre)
128 			dur -= 96;
129 
130 		return dur;
131 	}
132 
133 	bitrate = rate->bitrate;
134 	preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
135 	plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
136 	sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
137 
138 	switch (ah->ah_bwmode) {
139 	case AR5K_BWMODE_40MHZ:
140 		sifs = AR5K_INIT_SIFS_TURBO;
141 		preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
142 		break;
143 	case AR5K_BWMODE_10MHZ:
144 		sifs = AR5K_INIT_SIFS_HALF_RATE;
145 		preamble *= 2;
146 		sym_time *= 2;
147 		break;
148 	case AR5K_BWMODE_5MHZ:
149 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
150 		preamble *= 4;
151 		sym_time *= 4;
152 		break;
153 	default:
154 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
155 		break;
156 	}
157 
158 	bits = plcp_bits + (len << 3);
159 	/* Bit rate is in 100Kbits */
160 	symbol_bits = bitrate * sym_time;
161 	symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
162 
163 	dur = sifs + preamble + (sym_time * symbols);
164 
165 	return dur;
166 }
167 
168 /**
169  * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170  * @ah: The &struct ath5k_hw
171  */
172 unsigned int
173 ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
174 {
175 	struct ieee80211_channel *channel = ah->ah_current_channel;
176 	unsigned int slot_time;
177 
178 	switch (ah->ah_bwmode) {
179 	case AR5K_BWMODE_40MHZ:
180 		slot_time = AR5K_INIT_SLOT_TIME_TURBO;
181 		break;
182 	case AR5K_BWMODE_10MHZ:
183 		slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
184 		break;
185 	case AR5K_BWMODE_5MHZ:
186 		slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
187 		break;
188 	case AR5K_BWMODE_DEFAULT:
189 	default:
190 		slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
191 		if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
192 			slot_time = AR5K_INIT_SLOT_TIME_B;
193 		break;
194 	}
195 
196 	return slot_time;
197 }
198 
199 /**
200  * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201  * @ah: The &struct ath5k_hw
202  */
203 unsigned int
204 ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
205 {
206 	struct ieee80211_channel *channel = ah->ah_current_channel;
207 	unsigned int sifs;
208 
209 	switch (ah->ah_bwmode) {
210 	case AR5K_BWMODE_40MHZ:
211 		sifs = AR5K_INIT_SIFS_TURBO;
212 		break;
213 	case AR5K_BWMODE_10MHZ:
214 		sifs = AR5K_INIT_SIFS_HALF_RATE;
215 		break;
216 	case AR5K_BWMODE_5MHZ:
217 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
218 		break;
219 	case AR5K_BWMODE_DEFAULT:
220 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
221 	default:
222 		if (channel->band == IEEE80211_BAND_5GHZ)
223 			sifs = AR5K_INIT_SIFS_DEFAULT_A;
224 		break;
225 	}
226 
227 	return sifs;
228 }
229 
230 /**
231  * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232  * @ah: The &struct ath5k_hw
233  *
234  * Reads MIB counters from PCU and updates sw statistics. Is called after a
235  * MIB interrupt, because one of these counters might have reached their maximum
236  * and triggered the MIB interrupt, to let us read and clear the counter.
237  *
238  * NOTE: Is called in interrupt context!
239  */
240 void
241 ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
242 {
243 	struct ath5k_statistics *stats = &ah->stats;
244 
245 	/* Read-And-Clear */
246 	stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
247 	stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
248 	stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
249 	stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
250 	stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
251 }
252 
253 
254 /******************\
255 * ACK/CTS Timeouts *
256 \******************/
257 
258 /**
259  * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260  * @ah: The &struct ath5k_hw
261  *
262  * Write the rate code to duration table upon hw reset. This is a helper for
263  * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264  * the hardware, based on current mode, for each rate. The rates which are
265  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266  * different rate code so we write their value twice (one for long preamble
267  * and one for short).
268  *
269  * Note: Band doesn't matter here, if we set the values for OFDM it works
270  * on both a and g modes. So all we have to do is set values for all g rates
271  * that include all OFDM and CCK rates.
272  *
273  */
274 static inline void
275 ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
276 {
277 	struct ieee80211_rate *rate;
278 	unsigned int i;
279 	/* 802.11g covers both OFDM and CCK */
280 	u8 band = IEEE80211_BAND_2GHZ;
281 
282 	/* Write rate duration table */
283 	for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
284 		u32 reg;
285 		u16 tx_time;
286 
287 		if (ah->ah_ack_bitrate_high)
288 			rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
289 		/* CCK -> 1Mb */
290 		else if (i < 4)
291 			rate = &ah->sbands[band].bitrates[0];
292 		/* OFDM -> 6Mb */
293 		else
294 			rate = &ah->sbands[band].bitrates[4];
295 
296 		/* Set ACK timeout */
297 		reg = AR5K_RATE_DUR(rate->hw_value);
298 
299 		/* An ACK frame consists of 10 bytes. If you add the FCS,
300 		 * which ieee80211_generic_frame_duration() adds,
301 		 * its 14 bytes. Note we use the control rate and not the
302 		 * actual rate for this rate. See mac80211 tx.c
303 		 * ieee80211_duration() for a brief description of
304 		 * what rate we should choose to TX ACKs. */
305 		tx_time = ath5k_hw_get_frame_duration(ah, band, 10,
306 					rate, false);
307 
308 		ath5k_hw_reg_write(ah, tx_time, reg);
309 
310 		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
311 			continue;
312 
313 		tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true);
314 		ath5k_hw_reg_write(ah, tx_time,
315 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
316 	}
317 }
318 
319 /**
320  * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
321  * @ah: The &struct ath5k_hw
322  * @timeout: Timeout in usec
323  */
324 static int
325 ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
326 {
327 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
328 			<= timeout)
329 		return -EINVAL;
330 
331 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
332 		ath5k_hw_htoclock(ah, timeout));
333 
334 	return 0;
335 }
336 
337 /**
338  * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
339  * @ah: The &struct ath5k_hw
340  * @timeout: Timeout in usec
341  */
342 static int
343 ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
344 {
345 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
346 			<= timeout)
347 		return -EINVAL;
348 
349 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
350 			ath5k_hw_htoclock(ah, timeout));
351 
352 	return 0;
353 }
354 
355 
356 /*******************\
357 * RX filter Control *
358 \*******************/
359 
360 /**
361  * ath5k_hw_set_lladdr() - Set station id
362  * @ah: The &struct ath5k_hw
363  * @mac: The card's mac address (array of octets)
364  *
365  * Set station id on hw using the provided mac address
366  */
367 int
368 ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
369 {
370 	struct ath_common *common = ath5k_hw_common(ah);
371 	u32 low_id, high_id;
372 	u32 pcu_reg;
373 
374 	/* Set new station ID */
375 	memcpy(common->macaddr, mac, ETH_ALEN);
376 
377 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
378 
379 	low_id = get_unaligned_le32(mac);
380 	high_id = get_unaligned_le16(mac + 4);
381 
382 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
383 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
384 
385 	return 0;
386 }
387 
388 /**
389  * ath5k_hw_set_bssid() - Set current BSSID on hw
390  * @ah: The &struct ath5k_hw
391  *
392  * Sets the current BSSID and BSSID mask we have from the
393  * common struct into the hardware
394  */
395 void
396 ath5k_hw_set_bssid(struct ath5k_hw *ah)
397 {
398 	struct ath_common *common = ath5k_hw_common(ah);
399 	u16 tim_offset = 0;
400 
401 	/*
402 	 * Set BSSID mask on 5212
403 	 */
404 	if (ah->ah_version == AR5K_AR5212)
405 		ath_hw_setbssidmask(common);
406 
407 	/*
408 	 * Set BSSID
409 	 */
410 	ath5k_hw_reg_write(ah,
411 			   get_unaligned_le32(common->curbssid),
412 			   AR5K_BSS_ID0);
413 	ath5k_hw_reg_write(ah,
414 			   get_unaligned_le16(common->curbssid + 4) |
415 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
416 			   AR5K_BSS_ID1);
417 
418 	if (common->curaid == 0) {
419 		ath5k_hw_disable_pspoll(ah);
420 		return;
421 	}
422 
423 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
424 			    tim_offset ? tim_offset + 4 : 0);
425 
426 	ath5k_hw_enable_pspoll(ah, NULL, 0);
427 }
428 
429 /**
430  * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
431  * @ah: The &struct ath5k_hw
432  * @mask: The BSSID mask to set (array of octets)
433  *
434  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
435  * which bits of the interface's MAC address should be looked at when trying
436  * to decide which packets to ACK. In station mode and AP mode with a single
437  * BSS every bit matters since we lock to only one BSS. In AP mode with
438  * multiple BSSes (virtual interfaces) not every bit matters because hw must
439  * accept frames for all BSSes and so we tweak some bits of our mac address
440  * in order to have multiple BSSes.
441  *
442  * For more information check out ../hw.c of the common ath module.
443  */
444 void
445 ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
446 {
447 	struct ath_common *common = ath5k_hw_common(ah);
448 
449 	/* Cache bssid mask so that we can restore it
450 	 * on reset */
451 	memcpy(common->bssidmask, mask, ETH_ALEN);
452 	if (ah->ah_version == AR5K_AR5212)
453 		ath_hw_setbssidmask(common);
454 }
455 
456 /**
457  * ath5k_hw_set_mcast_filter() - Set multicast filter
458  * @ah: The &struct ath5k_hw
459  * @filter0: Lower 32bits of muticast filter
460  * @filter1: Higher 16bits of multicast filter
461  */
462 void
463 ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
464 {
465 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
466 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
467 }
468 
469 /**
470  * ath5k_hw_get_rx_filter() - Get current rx filter
471  * @ah: The &struct ath5k_hw
472  *
473  * Returns the RX filter by reading rx filter and
474  * phy error filter registers. RX filter is used
475  * to set the allowed frame types that PCU will accept
476  * and pass to the driver. For a list of frame types
477  * check out reg.h.
478  */
479 u32
480 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
481 {
482 	u32 data, filter = 0;
483 
484 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
485 
486 	/*Radar detection for 5212*/
487 	if (ah->ah_version == AR5K_AR5212) {
488 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
489 
490 		if (data & AR5K_PHY_ERR_FIL_RADAR)
491 			filter |= AR5K_RX_FILTER_RADARERR;
492 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
493 			filter |= AR5K_RX_FILTER_PHYERR;
494 	}
495 
496 	return filter;
497 }
498 
499 /**
500  * ath5k_hw_set_rx_filter() - Set rx filter
501  * @ah: The &struct ath5k_hw
502  * @filter: RX filter mask (see reg.h)
503  *
504  * Sets RX filter register and also handles PHY error filter
505  * register on 5212 and newer chips so that we have proper PHY
506  * error reporting.
507  */
508 void
509 ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
510 {
511 	u32 data = 0;
512 
513 	/* Set PHY error filter register on 5212*/
514 	if (ah->ah_version == AR5K_AR5212) {
515 		if (filter & AR5K_RX_FILTER_RADARERR)
516 			data |= AR5K_PHY_ERR_FIL_RADAR;
517 		if (filter & AR5K_RX_FILTER_PHYERR)
518 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
519 	}
520 
521 	/*
522 	 * The AR5210 uses promiscuous mode to detect radar activity
523 	 */
524 	if (ah->ah_version == AR5K_AR5210 &&
525 			(filter & AR5K_RX_FILTER_RADARERR)) {
526 		filter &= ~AR5K_RX_FILTER_RADARERR;
527 		filter |= AR5K_RX_FILTER_PROM;
528 	}
529 
530 	/*Zero length DMA (phy error reporting) */
531 	if (data)
532 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
533 	else
534 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
535 
536 	/*Write RX Filter register*/
537 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
538 
539 	/*Write PHY error filter register on 5212*/
540 	if (ah->ah_version == AR5K_AR5212)
541 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
542 
543 }
544 
545 
546 /****************\
547 * Beacon control *
548 \****************/
549 
550 #define ATH5K_MAX_TSF_READ 10
551 
552 /**
553  * ath5k_hw_get_tsf64() - Get the full 64bit TSF
554  * @ah: The &struct ath5k_hw
555  *
556  * Returns the current TSF
557  */
558 u64
559 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
560 {
561 	u32 tsf_lower, tsf_upper1, tsf_upper2;
562 	int i;
563 	unsigned long flags;
564 
565 	/* This code is time critical - we don't want to be interrupted here */
566 	local_irq_save(flags);
567 
568 	/*
569 	 * While reading TSF upper and then lower part, the clock is still
570 	 * counting (or jumping in case of IBSS merge) so we might get
571 	 * inconsistent values. To avoid this, we read the upper part again
572 	 * and check it has not been changed. We make the hypothesis that a
573 	 * maximum of 3 changes can happens in a row (we use 10 as a safe
574 	 * value).
575 	 *
576 	 * Impact on performance is pretty small, since in most cases, only
577 	 * 3 register reads are needed.
578 	 */
579 
580 	tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
581 	for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
582 		tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
583 		tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
584 		if (tsf_upper2 == tsf_upper1)
585 			break;
586 		tsf_upper1 = tsf_upper2;
587 	}
588 
589 	local_irq_restore(flags);
590 
591 	WARN_ON(i == ATH5K_MAX_TSF_READ);
592 
593 	return ((u64)tsf_upper1 << 32) | tsf_lower;
594 }
595 
596 #undef ATH5K_MAX_TSF_READ
597 
598 /**
599  * ath5k_hw_set_tsf64() - Set a new 64bit TSF
600  * @ah: The &struct ath5k_hw
601  * @tsf64: The new 64bit TSF
602  *
603  * Sets the new TSF
604  */
605 void
606 ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
607 {
608 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
609 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
610 }
611 
612 /**
613  * ath5k_hw_reset_tsf() - Force a TSF reset
614  * @ah: The &struct ath5k_hw
615  *
616  * Forces a TSF reset on PCU
617  */
618 void
619 ath5k_hw_reset_tsf(struct ath5k_hw *ah)
620 {
621 	u32 val;
622 
623 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
624 
625 	/*
626 	 * Each write to the RESET_TSF bit toggles a hardware internal
627 	 * signal to reset TSF, but if left high it will cause a TSF reset
628 	 * on the next chip reset as well.  Thus we always write the value
629 	 * twice to clear the signal.
630 	 */
631 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
632 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
633 }
634 
635 /**
636  * ath5k_hw_init_beacon_timers() - Initialize beacon timers
637  * @ah: The &struct ath5k_hw
638  * @next_beacon: Next TBTT
639  * @interval: Current beacon interval
640  *
641  * This function is used to initialize beacon timers based on current
642  * operation mode and settings.
643  */
644 void
645 ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
646 {
647 	u32 timer1, timer2, timer3;
648 
649 	/*
650 	 * Set the additional timers by mode
651 	 */
652 	switch (ah->opmode) {
653 	case NL80211_IFTYPE_MONITOR:
654 	case NL80211_IFTYPE_STATION:
655 		/* In STA mode timer1 is used as next wakeup
656 		 * timer and timer2 as next CFP duration start
657 		 * timer. Both in 1/8TUs. */
658 		/* TODO: PCF handling */
659 		if (ah->ah_version == AR5K_AR5210) {
660 			timer1 = 0xffffffff;
661 			timer2 = 0xffffffff;
662 		} else {
663 			timer1 = 0x0000ffff;
664 			timer2 = 0x0007ffff;
665 		}
666 		/* Mark associated AP as PCF incapable for now */
667 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
668 		break;
669 	case NL80211_IFTYPE_ADHOC:
670 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
671 	default:
672 		/* On non-STA modes timer1 is used as next DMA
673 		 * beacon alert (DBA) timer and timer2 as next
674 		 * software beacon alert. Both in 1/8TUs. */
675 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
676 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
677 		break;
678 	}
679 
680 	/* Timer3 marks the end of our ATIM window
681 	 * a zero length window is not allowed because
682 	 * we 'll get no beacons */
683 	timer3 = next_beacon + 1;
684 
685 	/*
686 	 * Set the beacon register and enable all timers.
687 	 */
688 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
689 	if (ah->opmode == NL80211_IFTYPE_AP ||
690 	    ah->opmode == NL80211_IFTYPE_MESH_POINT)
691 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
692 
693 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
694 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
695 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
696 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
697 
698 	/* Force a TSF reset if requested and enable beacons */
699 	if (interval & AR5K_BEACON_RESET_TSF)
700 		ath5k_hw_reset_tsf(ah);
701 
702 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
703 					AR5K_BEACON_ENABLE),
704 						AR5K_BEACON);
705 
706 	/* Flush any pending BMISS interrupts on ISR by
707 	 * performing a clear-on-write operation on PISR
708 	 * register for the BMISS bit (writing a bit on
709 	 * ISR toggles a reset for that bit and leaves
710 	 * the remaining bits intact) */
711 	if (ah->ah_version == AR5K_AR5210)
712 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
713 	else
714 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
715 
716 	/* TODO: Set enhanced sleep registers on AR5212
717 	 * based on vif->bss_conf params, until then
718 	 * disable power save reporting.*/
719 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
720 
721 }
722 
723 /**
724  * ath5k_check_timer_win() - Check if timer B is timer A + window
725  * @a: timer a (before b)
726  * @b: timer b (after a)
727  * @window: difference between a and b
728  * @intval: timers are increased by this interval
729  *
730  * This helper function checks if timer B is timer A + window and covers
731  * cases where timer A or B might have already been updated or wrapped
732  * around (Timers are 16 bit).
733  *
734  * Returns true if O.K.
735  */
736 static inline bool
737 ath5k_check_timer_win(int a, int b, int window, int intval)
738 {
739 	/*
740 	 * 1.) usually B should be A + window
741 	 * 2.) A already updated, B not updated yet
742 	 * 3.) A already updated and has wrapped around
743 	 * 4.) B has wrapped around
744 	 */
745 	if ((b - a == window) ||				/* 1.) */
746 	    (a - b == intval - window) ||			/* 2.) */
747 	    ((a | 0x10000) - b == intval - window) ||		/* 3.) */
748 	    ((b | 0x10000) - a == window))			/* 4.) */
749 		return true; /* O.K. */
750 	return false;
751 }
752 
753 /**
754  * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
755  * @ah: The &struct ath5k_hw
756  * @intval: beacon interval
757  *
758  * This is a workaround for IBSS mode
759  *
760  * The need for this function arises from the fact that we have 4 separate
761  * HW timer registers (TIMER0 - TIMER3), which are closely related to the
762  * next beacon target time (NBTT), and that the HW updates these timers
763  * separately based on the current TSF value. The hardware increments each
764  * timer by the beacon interval, when the local TSF converted to TU is equal
765  * to the value stored in the timer.
766  *
767  * The reception of a beacon with the same BSSID can update the local HW TSF
768  * at any time - this is something we can't avoid. If the TSF jumps to a
769  * time which is later than the time stored in a timer, this timer will not
770  * be updated until the TSF in TU wraps around at 16 bit (the size of the
771  * timers) and reaches the time which is stored in the timer.
772  *
773  * The problem is that these timers are closely related to TIMER0 (NBTT) and
774  * that they define a time "window". When the TSF jumps between two timers
775  * (e.g. ATIM and NBTT), the one in the past will be left behind (not
776  * updated), while the one in the future will be updated every beacon
777  * interval. This causes the window to get larger, until the TSF wraps
778  * around as described above and the timer which was left behind gets
779  * updated again. But - because the beacon interval is usually not an exact
780  * divisor of the size of the timers (16 bit), an unwanted "window" between
781  * these timers has developed!
782  *
783  * This is especially important with the ATIM window, because during
784  * the ATIM window only ATIM frames and no data frames are allowed to be
785  * sent, which creates transmission pauses after each beacon. This symptom
786  * has been described as "ramping ping" because ping times increase linearly
787  * for some time and then drop down again. A wrong window on the DMA beacon
788  * timer has the same effect, so we check for these two conditions.
789  *
790  * Returns true if O.K.
791  */
792 bool
793 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
794 {
795 	unsigned int nbtt, atim, dma;
796 
797 	nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
798 	atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
799 	dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
800 
801 	/* NOTE: SWBA is different. Having a wrong window there does not
802 	 * stop us from sending data and this condition is caught by
803 	 * other means (SWBA interrupt) */
804 
805 	if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
806 	    ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
807 				  intval))
808 		return true; /* O.K. */
809 	return false;
810 }
811 
812 /**
813  * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
814  * @ah: The &struct ath5k_hw
815  * @coverage_class: IEEE 802.11 coverage class number
816  *
817  * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
818  */
819 void
820 ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
821 {
822 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
823 	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
824 	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
825 	int cts_timeout = ack_timeout;
826 
827 	ath5k_hw_set_ifs_intervals(ah, slot_time);
828 	ath5k_hw_set_ack_timeout(ah, ack_timeout);
829 	ath5k_hw_set_cts_timeout(ah, cts_timeout);
830 
831 	ah->ah_coverage_class = coverage_class;
832 }
833 
834 /***************************\
835 * Init/Start/Stop functions *
836 \***************************/
837 
838 /**
839  * ath5k_hw_start_rx_pcu() - Start RX engine
840  * @ah: The &struct ath5k_hw
841  *
842  * Starts RX engine on PCU so that hw can process RXed frames
843  * (ACK etc).
844  *
845  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
846  */
847 void
848 ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
849 {
850 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
851 }
852 
853 /**
854  * at5k_hw_stop_rx_pcu() - Stop RX engine
855  * @ah: The &struct ath5k_hw
856  *
857  * Stops RX engine on PCU
858  */
859 void
860 ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
861 {
862 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
863 }
864 
865 /**
866  * ath5k_hw_set_opmode() - Set PCU operating mode
867  * @ah: The &struct ath5k_hw
868  * @op_mode: One of enum nl80211_iftype
869  *
870  * Configure PCU for the various operating modes (AP/STA etc)
871  */
872 int
873 ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
874 {
875 	struct ath_common *common = ath5k_hw_common(ah);
876 	u32 pcu_reg, beacon_reg, low_id, high_id;
877 
878 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
879 
880 	/* Preserve rest settings */
881 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
882 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
883 			| AR5K_STA_ID1_KEYSRCH_MODE
884 			| (ah->ah_version == AR5K_AR5210 ?
885 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
886 
887 	beacon_reg = 0;
888 
889 	switch (op_mode) {
890 	case NL80211_IFTYPE_ADHOC:
891 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
892 		beacon_reg |= AR5K_BCR_ADHOC;
893 		if (ah->ah_version == AR5K_AR5210)
894 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
895 		else
896 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
897 		break;
898 
899 	case NL80211_IFTYPE_AP:
900 	case NL80211_IFTYPE_MESH_POINT:
901 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
902 		beacon_reg |= AR5K_BCR_AP;
903 		if (ah->ah_version == AR5K_AR5210)
904 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
905 		else
906 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
907 		break;
908 
909 	case NL80211_IFTYPE_STATION:
910 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
911 			| (ah->ah_version == AR5K_AR5210 ?
912 				AR5K_STA_ID1_PWR_SV : 0);
913 	case NL80211_IFTYPE_MONITOR:
914 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
915 			| (ah->ah_version == AR5K_AR5210 ?
916 				AR5K_STA_ID1_NO_PSPOLL : 0);
917 		break;
918 
919 	default:
920 		return -EINVAL;
921 	}
922 
923 	/*
924 	 * Set PCU registers
925 	 */
926 	low_id = get_unaligned_le32(common->macaddr);
927 	high_id = get_unaligned_le16(common->macaddr + 4);
928 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
929 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
930 
931 	/*
932 	 * Set Beacon Control Register on 5210
933 	 */
934 	if (ah->ah_version == AR5K_AR5210)
935 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
936 
937 	return 0;
938 }
939 
940 /**
941  * ath5k_hw_pcu_init() - Initialize PCU
942  * @ah: The &struct ath5k_hw
943  * @op_mode: One of enum nl80211_iftype
944  * @mode: One of enum ath5k_driver_mode
945  *
946  * This function is used to initialize PCU by setting current
947  * operation mode and various other settings.
948  */
949 void
950 ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
951 {
952 	/* Set bssid and bssid mask */
953 	ath5k_hw_set_bssid(ah);
954 
955 	/* Set PCU config */
956 	ath5k_hw_set_opmode(ah, op_mode);
957 
958 	/* Write rate duration table only on AR5212 and if
959 	 * virtual interface has already been brought up
960 	 * XXX: rethink this after new mode changes to
961 	 * mac80211 are integrated */
962 	if (ah->ah_version == AR5K_AR5212 &&
963 		ah->nvifs)
964 		ath5k_hw_write_rate_duration(ah);
965 
966 	/* Set RSSI/BRSSI thresholds
967 	 *
968 	 * Note: If we decide to set this value
969 	 * dynamically, have in mind that when AR5K_RSSI_THR
970 	 * register is read it might return 0x40 if we haven't
971 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
972 	 * So doing a save/restore procedure here isn't the right
973 	 * choice. Instead store it on ath5k_hw */
974 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
975 				AR5K_TUNE_BMISS_THRES <<
976 				AR5K_RSSI_THR_BMISS_S),
977 				AR5K_RSSI_THR);
978 
979 	/* MIC QoS support */
980 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
981 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
982 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
983 	}
984 
985 	/* QoS NOACK Policy */
986 	if (ah->ah_version == AR5K_AR5212) {
987 		ath5k_hw_reg_write(ah,
988 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
989 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
990 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
991 			AR5K_QOS_NOACK);
992 	}
993 
994 	/* Restore slot time and ACK timeouts */
995 	if (ah->ah_coverage_class > 0)
996 		ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
997 
998 	/* Set ACK bitrate mode (see ack_rates_high) */
999 	if (ah->ah_version == AR5K_AR5212) {
1000 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1001 		if (ah->ah_ack_bitrate_high)
1002 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1003 		else
1004 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1005 	}
1006 	return;
1007 }
1008