xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/pcu.c (revision 7dd65feb)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 #include "base.h"
33 
34 /*******************\
35 * Generic functions *
36 \*******************/
37 
38 /**
39  * ath5k_hw_set_opmode - Set PCU operating mode
40  *
41  * @ah: The &struct ath5k_hw
42  *
43  * Initialize PCU for the various operating modes (AP/STA etc)
44  *
45  * NOTE: ah->ah_op_mode must be set before calling this.
46  */
47 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
48 {
49 	struct ath_common *common = ath5k_hw_common(ah);
50 	u32 pcu_reg, beacon_reg, low_id, high_id;
51 
52 
53 	/* Preserve rest settings */
54 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
55 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
56 			| AR5K_STA_ID1_KEYSRCH_MODE
57 			| (ah->ah_version == AR5K_AR5210 ?
58 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
59 
60 	beacon_reg = 0;
61 
62 	ATH5K_TRACE(ah->ah_sc);
63 
64 	switch (ah->ah_op_mode) {
65 	case NL80211_IFTYPE_ADHOC:
66 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
67 		beacon_reg |= AR5K_BCR_ADHOC;
68 		if (ah->ah_version == AR5K_AR5210)
69 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
70 		else
71 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
72 		break;
73 
74 	case NL80211_IFTYPE_AP:
75 	case NL80211_IFTYPE_MESH_POINT:
76 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
77 		beacon_reg |= AR5K_BCR_AP;
78 		if (ah->ah_version == AR5K_AR5210)
79 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
80 		else
81 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
82 		break;
83 
84 	case NL80211_IFTYPE_STATION:
85 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
86 			| (ah->ah_version == AR5K_AR5210 ?
87 				AR5K_STA_ID1_PWR_SV : 0);
88 	case NL80211_IFTYPE_MONITOR:
89 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
90 			| (ah->ah_version == AR5K_AR5210 ?
91 				AR5K_STA_ID1_NO_PSPOLL : 0);
92 		break;
93 
94 	default:
95 		return -EINVAL;
96 	}
97 
98 	/*
99 	 * Set PCU registers
100 	 */
101 	low_id = get_unaligned_le32(common->macaddr);
102 	high_id = get_unaligned_le16(common->macaddr + 4);
103 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
104 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
105 
106 	/*
107 	 * Set Beacon Control Register on 5210
108 	 */
109 	if (ah->ah_version == AR5K_AR5210)
110 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
111 
112 	return 0;
113 }
114 
115 /**
116  * ath5k_hw_update - Update mib counters (mac layer statistics)
117  *
118  * @ah: The &struct ath5k_hw
119  * @stats: The &struct ieee80211_low_level_stats we use to track
120  * statistics on the driver
121  *
122  * Reads MIB counters from PCU and updates sw statistics. Must be
123  * called after a MIB interrupt.
124  */
125 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
126 		struct ieee80211_low_level_stats  *stats)
127 {
128 	ATH5K_TRACE(ah->ah_sc);
129 
130 	/* Read-And-Clear */
131 	stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
132 	stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
133 	stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
134 	stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
135 
136 	/* XXX: Should we use this to track beacon count ?
137 	 * -we read it anyway to clear the register */
138 	ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
139 
140 	/* Reset profile count registers on 5212*/
141 	if (ah->ah_version == AR5K_AR5212) {
142 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
143 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
144 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
145 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
146 	}
147 
148 	/* TODO: Handle ANI stats */
149 }
150 
151 /**
152  * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
153  *
154  * @ah: The &struct ath5k_hw
155  * @high: Flag to determine if we want to use high transmition rate
156  * for ACKs or not
157  *
158  * If high flag is set, we tell hw to use a set of control rates based on
159  * the current transmition rate (check out control_rates array inside reset.c).
160  * If not hw just uses the lowest rate available for the current modulation
161  * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
162  */
163 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
164 {
165 	if (ah->ah_version != AR5K_AR5212)
166 		return;
167 	else {
168 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
169 		if (high)
170 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
171 		else
172 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
173 	}
174 }
175 
176 
177 /******************\
178 * ACK/CTS Timeouts *
179 \******************/
180 
181 /**
182  * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
183  *
184  * @ah: The &struct ath5k_hw
185  */
186 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
187 {
188 	ATH5K_TRACE(ah->ah_sc);
189 
190 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
191 			AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
192 }
193 
194 /**
195  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
196  *
197  * @ah: The &struct ath5k_hw
198  * @timeout: Timeout in usec
199  */
200 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
201 {
202 	ATH5K_TRACE(ah->ah_sc);
203 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
204 			ah->ah_turbo) <= timeout)
205 		return -EINVAL;
206 
207 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
208 		ath5k_hw_htoclock(timeout, ah->ah_turbo));
209 
210 	return 0;
211 }
212 
213 /**
214  * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
215  *
216  * @ah: The &struct ath5k_hw
217  */
218 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
219 {
220 	ATH5K_TRACE(ah->ah_sc);
221 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
222 			AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
223 }
224 
225 /**
226  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
227  *
228  * @ah: The &struct ath5k_hw
229  * @timeout: Timeout in usec
230  */
231 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
232 {
233 	ATH5K_TRACE(ah->ah_sc);
234 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
235 			ah->ah_turbo) <= timeout)
236 		return -EINVAL;
237 
238 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
239 			ath5k_hw_htoclock(timeout, ah->ah_turbo));
240 
241 	return 0;
242 }
243 
244 /**
245  * ath5k_hw_set_lladdr - Set station id
246  *
247  * @ah: The &struct ath5k_hw
248  * @mac: The card's mac address
249  *
250  * Set station id on hw using the provided mac address
251  */
252 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
253 {
254 	struct ath_common *common = ath5k_hw_common(ah);
255 	u32 low_id, high_id;
256 	u32 pcu_reg;
257 
258 	ATH5K_TRACE(ah->ah_sc);
259 	/* Set new station ID */
260 	memcpy(common->macaddr, mac, ETH_ALEN);
261 
262 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
263 
264 	low_id = get_unaligned_le32(mac);
265 	high_id = get_unaligned_le16(mac + 4);
266 
267 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
268 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
269 
270 	return 0;
271 }
272 
273 /**
274  * ath5k_hw_set_associd - Set BSSID for association
275  *
276  * @ah: The &struct ath5k_hw
277  * @bssid: BSSID
278  * @assoc_id: Assoc id
279  *
280  * Sets the BSSID which trigers the "SME Join" operation
281  */
282 void ath5k_hw_set_associd(struct ath5k_hw *ah)
283 {
284 	struct ath_common *common = ath5k_hw_common(ah);
285 	u16 tim_offset = 0;
286 
287 	/*
288 	 * Set simple BSSID mask on 5212
289 	 */
290 	if (ah->ah_version == AR5K_AR5212)
291 		ath_hw_setbssidmask(common);
292 
293 	/*
294 	 * Set BSSID which triggers the "SME Join" operation
295 	 */
296 	ath5k_hw_reg_write(ah,
297 			   get_unaligned_le32(common->curbssid),
298 			   AR5K_BSS_ID0);
299 	ath5k_hw_reg_write(ah,
300 			   get_unaligned_le16(common->curbssid + 4) |
301 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
302 			   AR5K_BSS_ID1);
303 
304 	if (common->curaid == 0) {
305 		ath5k_hw_disable_pspoll(ah);
306 		return;
307 	}
308 
309 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
310 			    tim_offset ? tim_offset + 4 : 0);
311 
312 	ath5k_hw_enable_pspoll(ah, NULL, 0);
313 }
314 
315 void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
316 {
317 	struct ath_common *common = ath5k_hw_common(ah);
318 	ATH5K_TRACE(ah->ah_sc);
319 
320 	/* Cache bssid mask so that we can restore it
321 	 * on reset */
322 	memcpy(common->bssidmask, mask, ETH_ALEN);
323 	if (ah->ah_version == AR5K_AR5212)
324 		ath_hw_setbssidmask(common);
325 }
326 
327 /************\
328 * RX Control *
329 \************/
330 
331 /**
332  * ath5k_hw_start_rx_pcu - Start RX engine
333  *
334  * @ah: The &struct ath5k_hw
335  *
336  * Starts RX engine on PCU so that hw can process RXed frames
337  * (ACK etc).
338  *
339  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
340  * TODO: Init ANI here
341  */
342 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
343 {
344 	ATH5K_TRACE(ah->ah_sc);
345 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
346 }
347 
348 /**
349  * at5k_hw_stop_rx_pcu - Stop RX engine
350  *
351  * @ah: The &struct ath5k_hw
352  *
353  * Stops RX engine on PCU
354  *
355  * TODO: Detach ANI here
356  */
357 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
358 {
359 	ATH5K_TRACE(ah->ah_sc);
360 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
361 }
362 
363 /*
364  * Set multicast filter
365  */
366 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
367 {
368 	ATH5K_TRACE(ah->ah_sc);
369 	/* Set the multicat filter */
370 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
371 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
372 }
373 
374 /*
375  * Set multicast filter by index
376  */
377 int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
378 {
379 
380 	ATH5K_TRACE(ah->ah_sc);
381 	if (index >= 64)
382 		return -EINVAL;
383 	else if (index >= 32)
384 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
385 				(1 << (index - 32)));
386 	else
387 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
388 
389 	return 0;
390 }
391 
392 /*
393  * Clear Multicast filter by index
394  */
395 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
396 {
397 
398 	ATH5K_TRACE(ah->ah_sc);
399 	if (index >= 64)
400 		return -EINVAL;
401 	else if (index >= 32)
402 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
403 				(1 << (index - 32)));
404 	else
405 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
406 
407 	return 0;
408 }
409 
410 /**
411  * ath5k_hw_get_rx_filter - Get current rx filter
412  *
413  * @ah: The &struct ath5k_hw
414  *
415  * Returns the RX filter by reading rx filter and
416  * phy error filter registers. RX filter is used
417  * to set the allowed frame types that PCU will accept
418  * and pass to the driver. For a list of frame types
419  * check out reg.h.
420  */
421 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
422 {
423 	u32 data, filter = 0;
424 
425 	ATH5K_TRACE(ah->ah_sc);
426 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
427 
428 	/*Radar detection for 5212*/
429 	if (ah->ah_version == AR5K_AR5212) {
430 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
431 
432 		if (data & AR5K_PHY_ERR_FIL_RADAR)
433 			filter |= AR5K_RX_FILTER_RADARERR;
434 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
435 			filter |= AR5K_RX_FILTER_PHYERR;
436 	}
437 
438 	return filter;
439 }
440 
441 /**
442  * ath5k_hw_set_rx_filter - Set rx filter
443  *
444  * @ah: The &struct ath5k_hw
445  * @filter: RX filter mask (see reg.h)
446  *
447  * Sets RX filter register and also handles PHY error filter
448  * register on 5212 and newer chips so that we have proper PHY
449  * error reporting.
450  */
451 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
452 {
453 	u32 data = 0;
454 
455 	ATH5K_TRACE(ah->ah_sc);
456 
457 	/* Set PHY error filter register on 5212*/
458 	if (ah->ah_version == AR5K_AR5212) {
459 		if (filter & AR5K_RX_FILTER_RADARERR)
460 			data |= AR5K_PHY_ERR_FIL_RADAR;
461 		if (filter & AR5K_RX_FILTER_PHYERR)
462 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
463 	}
464 
465 	/*
466 	 * The AR5210 uses promiscous mode to detect radar activity
467 	 */
468 	if (ah->ah_version == AR5K_AR5210 &&
469 			(filter & AR5K_RX_FILTER_RADARERR)) {
470 		filter &= ~AR5K_RX_FILTER_RADARERR;
471 		filter |= AR5K_RX_FILTER_PROM;
472 	}
473 
474 	/*Zero length DMA (phy error reporting) */
475 	if (data)
476 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
477 	else
478 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
479 
480 	/*Write RX Filter register*/
481 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
482 
483 	/*Write PHY error filter register on 5212*/
484 	if (ah->ah_version == AR5K_AR5212)
485 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
486 
487 }
488 
489 
490 /****************\
491 * Beacon control *
492 \****************/
493 
494 /**
495  * ath5k_hw_get_tsf32 - Get a 32bit TSF
496  *
497  * @ah: The &struct ath5k_hw
498  *
499  * Returns lower 32 bits of current TSF
500  */
501 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
502 {
503 	ATH5K_TRACE(ah->ah_sc);
504 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
505 }
506 
507 /**
508  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
509  *
510  * @ah: The &struct ath5k_hw
511  *
512  * Returns the current TSF
513  */
514 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
515 {
516 	u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
517 	ATH5K_TRACE(ah->ah_sc);
518 
519 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
520 }
521 
522 /**
523  * ath5k_hw_set_tsf64 - Set a new 64bit TSF
524  *
525  * @ah: The &struct ath5k_hw
526  * @tsf64: The new 64bit TSF
527  *
528  * Sets the new TSF
529  */
530 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
531 {
532 	ATH5K_TRACE(ah->ah_sc);
533 
534 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
535 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
536 }
537 
538 /**
539  * ath5k_hw_reset_tsf - Force a TSF reset
540  *
541  * @ah: The &struct ath5k_hw
542  *
543  * Forces a TSF reset on PCU
544  */
545 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
546 {
547 	u32 val;
548 
549 	ATH5K_TRACE(ah->ah_sc);
550 
551 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
552 
553 	/*
554 	 * Each write to the RESET_TSF bit toggles a hardware internal
555 	 * signal to reset TSF, but if left high it will cause a TSF reset
556 	 * on the next chip reset as well.  Thus we always write the value
557 	 * twice to clear the signal.
558 	 */
559 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
560 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
561 }
562 
563 /*
564  * Initialize beacon timers
565  */
566 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
567 {
568 	u32 timer1, timer2, timer3;
569 
570 	ATH5K_TRACE(ah->ah_sc);
571 	/*
572 	 * Set the additional timers by mode
573 	 */
574 	switch (ah->ah_op_mode) {
575 	case NL80211_IFTYPE_MONITOR:
576 	case NL80211_IFTYPE_STATION:
577 		/* In STA mode timer1 is used as next wakeup
578 		 * timer and timer2 as next CFP duration start
579 		 * timer. Both in 1/8TUs. */
580 		/* TODO: PCF handling */
581 		if (ah->ah_version == AR5K_AR5210) {
582 			timer1 = 0xffffffff;
583 			timer2 = 0xffffffff;
584 		} else {
585 			timer1 = 0x0000ffff;
586 			timer2 = 0x0007ffff;
587 		}
588 		/* Mark associated AP as PCF incapable for now */
589 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
590 		break;
591 	case NL80211_IFTYPE_ADHOC:
592 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
593 	default:
594 		/* On non-STA modes timer1 is used as next DMA
595 		 * beacon alert (DBA) timer and timer2 as next
596 		 * software beacon alert. Both in 1/8TUs. */
597 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
598 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
599 		break;
600 	}
601 
602 	/* Timer3 marks the end of our ATIM window
603 	 * a zero length window is not allowed because
604 	 * we 'll get no beacons */
605 	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
606 
607 	/*
608 	 * Set the beacon register and enable all timers.
609 	 */
610 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
611 	if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
612 	    ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
613 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
614 
615 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
616 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
617 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
618 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
619 
620 	/* Force a TSF reset if requested and enable beacons */
621 	if (interval & AR5K_BEACON_RESET_TSF)
622 		ath5k_hw_reset_tsf(ah);
623 
624 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
625 					AR5K_BEACON_ENABLE),
626 						AR5K_BEACON);
627 
628 	/* Flush any pending BMISS interrupts on ISR by
629 	 * performing a clear-on-write operation on PISR
630 	 * register for the BMISS bit (writing a bit on
631 	 * ISR togles a reset for that bit and leaves
632 	 * the rest bits intact) */
633 	if (ah->ah_version == AR5K_AR5210)
634 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
635 	else
636 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
637 
638 	/* TODO: Set enchanced sleep registers on AR5212
639 	 * based on vif->bss_conf params, until then
640 	 * disable power save reporting.*/
641 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
642 
643 }
644 
645 #if 0
646 /*
647  * Set beacon timers
648  */
649 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
650 		const struct ath5k_beacon_state *state)
651 {
652 	u32 cfp_period, next_cfp, dtim, interval, next_beacon;
653 
654 	/*
655 	 * TODO: should be changed through *state
656 	 * review struct ath5k_beacon_state struct
657 	 *
658 	 * XXX: These are used for cfp period bellow, are they
659 	 * ok ? Is it O.K. for tsf here to be 0 or should we use
660 	 * get_tsf ?
661 	 */
662 	u32 dtim_count = 0; /* XXX */
663 	u32 cfp_count = 0; /* XXX */
664 	u32 tsf = 0; /* XXX */
665 
666 	ATH5K_TRACE(ah->ah_sc);
667 	/* Return on an invalid beacon state */
668 	if (state->bs_interval < 1)
669 		return -EINVAL;
670 
671 	interval = state->bs_interval;
672 	dtim = state->bs_dtim_period;
673 
674 	/*
675 	 * PCF support?
676 	 */
677 	if (state->bs_cfp_period > 0) {
678 		/*
679 		 * Enable PCF mode and set the CFP
680 		 * (Contention Free Period) and timer registers
681 		 */
682 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
683 			state->bs_interval;
684 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
685 			state->bs_interval;
686 
687 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
688 				AR5K_STA_ID1_DEFAULT_ANTENNA |
689 				AR5K_STA_ID1_PCF);
690 		ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
691 		ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
692 				AR5K_CFP_DUR);
693 		ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
694 						next_cfp)) << 3, AR5K_TIMER2);
695 	} else {
696 		/* Disable PCF mode */
697 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
698 				AR5K_STA_ID1_DEFAULT_ANTENNA |
699 				AR5K_STA_ID1_PCF);
700 	}
701 
702 	/*
703 	 * Enable the beacon timer register
704 	 */
705 	ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
706 
707 	/*
708 	 * Start the beacon timers
709 	 */
710 	ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
711 		~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
712 		AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
713 		AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
714 		AR5K_BEACON_PERIOD), AR5K_BEACON);
715 
716 	/*
717 	 * Write new beacon miss threshold, if it appears to be valid
718 	 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
719 	 * and return if its not in range. We can test this by reading value and
720 	 * setting value to a largest value and seeing which values register.
721 	 */
722 
723 	AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
724 			state->bs_bmiss_threshold);
725 
726 	/*
727 	 * Set sleep control register
728 	 * XXX: Didn't find this in 5210 code but since this register
729 	 * exists also in ar5k's 5210 headers i leave it as common code.
730 	 */
731 	AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
732 			(state->bs_sleep_duration - 3) << 3);
733 
734 	/*
735 	 * Set enhanced sleep registers on 5212
736 	 */
737 	if (ah->ah_version == AR5K_AR5212) {
738 		if (state->bs_sleep_duration > state->bs_interval &&
739 				roundup(state->bs_sleep_duration, interval) ==
740 				state->bs_sleep_duration)
741 			interval = state->bs_sleep_duration;
742 
743 		if (state->bs_sleep_duration > dtim && (dtim == 0 ||
744 				roundup(state->bs_sleep_duration, dtim) ==
745 				state->bs_sleep_duration))
746 			dtim = state->bs_sleep_duration;
747 
748 		if (interval > dtim)
749 			return -EINVAL;
750 
751 		next_beacon = interval == dtim ? state->bs_next_dtim :
752 			state->bs_next_beacon;
753 
754 		ath5k_hw_reg_write(ah,
755 			AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
756 			AR5K_SLEEP0_NEXT_DTIM) |
757 			AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
758 			AR5K_SLEEP0_ENH_SLEEP_EN |
759 			AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
760 
761 		ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
762 			AR5K_SLEEP1_NEXT_TIM) |
763 			AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
764 
765 		ath5k_hw_reg_write(ah,
766 			AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
767 			AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
768 	}
769 
770 	return 0;
771 }
772 
773 /*
774  * Reset beacon timers
775  */
776 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
777 {
778 	ATH5K_TRACE(ah->ah_sc);
779 	/*
780 	 * Disable beacon timer
781 	 */
782 	ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
783 
784 	/*
785 	 * Disable some beacon register values
786 	 */
787 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
788 			AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
789 	ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
790 }
791 
792 /*
793  * Wait for beacon queue to finish
794  */
795 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
796 {
797 	unsigned int i;
798 	int ret;
799 
800 	ATH5K_TRACE(ah->ah_sc);
801 
802 	/* 5210 doesn't have QCU*/
803 	if (ah->ah_version == AR5K_AR5210) {
804 		/*
805 		 * Wait for beaconn queue to finish by checking
806 		 * Control Register and Beacon Status Register.
807 		 */
808 		for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
809 			if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
810 					||
811 			    !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
812 				break;
813 			udelay(10);
814 		}
815 
816 		/* Timeout... */
817 		if (i <= 0) {
818 			/*
819 			 * Re-schedule the beacon queue
820 			 */
821 			ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
822 			ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
823 					AR5K_BCR);
824 
825 			return -EIO;
826 		}
827 		ret = 0;
828 	} else {
829 	/*5211/5212*/
830 		ret = ath5k_hw_register_timeout(ah,
831 			AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
832 			AR5K_QCU_STS_FRMPENDCNT, 0, false);
833 
834 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
835 			return -EIO;
836 	}
837 
838 	return ret;
839 }
840 #endif
841 
842 
843 /*********************\
844 * Key table functions *
845 \*********************/
846 
847 /*
848  * Reset a key entry on the table
849  */
850 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
851 {
852 	unsigned int i, type;
853 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
854 
855 	ATH5K_TRACE(ah->ah_sc);
856 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
857 
858 	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
859 
860 	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
861 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
862 
863 	/* Reset associated MIC entry if TKIP
864 	 * is enabled located at offset (entry + 64) */
865 	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
866 		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
867 		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
868 			ath5k_hw_reg_write(ah, 0,
869 				AR5K_KEYTABLE_OFF(micentry, i));
870 	}
871 
872 	/*
873 	 * Set NULL encryption on AR5212+
874 	 *
875 	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
876 	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
877 	 *
878 	 * Note2: Windows driver (ndiswrapper) sets this to
879 	 *        0x00000714 instead of 0x00000007
880 	 */
881 	if (ah->ah_version >= AR5K_AR5211) {
882 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
883 				AR5K_KEYTABLE_TYPE(entry));
884 
885 		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
886 			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
887 				AR5K_KEYTABLE_TYPE(micentry));
888 		}
889 	}
890 
891 	return 0;
892 }
893 
894 /*
895  * Check if a table entry is valid
896  */
897 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
898 {
899 	ATH5K_TRACE(ah->ah_sc);
900 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
901 
902 	/* Check the validation flag at the end of the entry */
903 	return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
904 		AR5K_KEYTABLE_VALID;
905 }
906 
907 static
908 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
909 {
910 	switch (key->alg) {
911 	case ALG_TKIP:
912 		return AR5K_KEYTABLE_TYPE_TKIP;
913 	case ALG_CCMP:
914 		return AR5K_KEYTABLE_TYPE_CCM;
915 	case ALG_WEP:
916 		if (key->keylen == WLAN_KEY_LEN_WEP40)
917 			return AR5K_KEYTABLE_TYPE_40;
918 		else if (key->keylen == WLAN_KEY_LEN_WEP104)
919 			return AR5K_KEYTABLE_TYPE_104;
920 		return -EINVAL;
921 	default:
922 		return -EINVAL;
923 	}
924 	return -EINVAL;
925 }
926 
927 /*
928  * Set a key entry on the table
929  */
930 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
931 		const struct ieee80211_key_conf *key, const u8 *mac)
932 {
933 	unsigned int i;
934 	int keylen;
935 	__le32 key_v[5] = {};
936 	__le32 key0 = 0, key1 = 0;
937 	__le32 *rxmic, *txmic;
938 	int keytype;
939 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
940 	bool is_tkip;
941 	const u8 *key_ptr;
942 
943 	ATH5K_TRACE(ah->ah_sc);
944 
945 	is_tkip = (key->alg == ALG_TKIP);
946 
947 	/*
948 	 * key->keylen comes in from mac80211 in bytes.
949 	 * TKIP is 128 bit + 128 bit mic
950 	 */
951 	keylen = (is_tkip) ? (128 / 8) : key->keylen;
952 
953 	if (entry > AR5K_KEYTABLE_SIZE ||
954 		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
955 		return -EOPNOTSUPP;
956 
957 	if (unlikely(keylen > 16))
958 		return -EOPNOTSUPP;
959 
960 	keytype = ath5k_keycache_type(key);
961 	if (keytype < 0)
962 		return keytype;
963 
964 	/*
965 	 * each key block is 6 bytes wide, written as pairs of
966 	 * alternating 32 and 16 bit le values.
967 	 */
968 	key_ptr = key->key;
969 	for (i = 0; keylen >= 6; keylen -= 6) {
970 		memcpy(&key_v[i], key_ptr, 6);
971 		i += 2;
972 		key_ptr += 6;
973 	}
974 	if (keylen)
975 		memcpy(&key_v[i], key_ptr, keylen);
976 
977 	/* intentionally corrupt key until mic is installed */
978 	if (is_tkip) {
979 		key0 = key_v[0] = ~key_v[0];
980 		key1 = key_v[1] = ~key_v[1];
981 	}
982 
983 	for (i = 0; i < ARRAY_SIZE(key_v); i++)
984 		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
985 				AR5K_KEYTABLE_OFF(entry, i));
986 
987 	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
988 
989 	if (is_tkip) {
990 		/* Install rx/tx MIC */
991 		rxmic = (__le32 *) &key->key[16];
992 		txmic = (__le32 *) &key->key[24];
993 
994 		if (ah->ah_combined_mic) {
995 			key_v[0] = rxmic[0];
996 			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
997 			key_v[2] = rxmic[1];
998 			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
999 			key_v[4] = txmic[1];
1000 		} else {
1001 			key_v[0] = rxmic[0];
1002 			key_v[1] = 0;
1003 			key_v[2] = rxmic[1];
1004 			key_v[3] = 0;
1005 			key_v[4] = 0;
1006 		}
1007 		for (i = 0; i < ARRAY_SIZE(key_v); i++)
1008 			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1009 				AR5K_KEYTABLE_OFF(micentry, i));
1010 
1011 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1012 			AR5K_KEYTABLE_TYPE(micentry));
1013 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1014 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1015 
1016 		/* restore first 2 words of key */
1017 		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1018 			AR5K_KEYTABLE_OFF(entry, 0));
1019 		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1020 			AR5K_KEYTABLE_OFF(entry, 1));
1021 	}
1022 
1023 	return ath5k_hw_set_key_lladdr(ah, entry, mac);
1024 }
1025 
1026 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1027 {
1028 	u32 low_id, high_id;
1029 
1030 	ATH5K_TRACE(ah->ah_sc);
1031 	 /* Invalid entry (key table overflow) */
1032 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1033 
1034 	/*
1035 	 * MAC may be NULL if it's a broadcast key. In this case no need to
1036 	 * to compute get_unaligned_le32 and get_unaligned_le16 as we
1037 	 * already know it.
1038 	 */
1039 	if (!mac) {
1040 		low_id = 0xffffffff;
1041 		high_id = 0xffff | AR5K_KEYTABLE_VALID;
1042 	} else {
1043 		low_id = get_unaligned_le32(mac);
1044 		high_id = get_unaligned_le16(mac + 4) | AR5K_KEYTABLE_VALID;
1045 	}
1046 
1047 	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1048 	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1049 
1050 	return 0;
1051 }
1052 
1053