xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/pcu.c (revision 4800cd83)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 #include "base.h"
33 
34 /*
35  * AR5212+ can use higher rates for ack transmition
36  * based on current tx rate instead of the base rate.
37  * It does this to better utilize channel usage.
38  * This is a mapping between G rates (that cover both
39  * CCK and OFDM) and ack rates that we use when setting
40  * rate -> duration table. This mapping is hw-based so
41  * don't change anything.
42  *
43  * To enable this functionality we must set
44  * ah->ah_ack_bitrate_high to true else base rate is
45  * used (1Mb for CCK, 6Mb for OFDM).
46  */
47 static const unsigned int ack_rates_high[] =
48 /* Tx	-> ACK	*/
49 /* 1Mb	-> 1Mb	*/	{ 0,
50 /* 2MB	-> 2Mb	*/	1,
51 /* 5.5Mb -> 2Mb	*/	1,
52 /* 11Mb	-> 2Mb	*/	1,
53 /* 6Mb	-> 6Mb	*/	4,
54 /* 9Mb	-> 6Mb	*/	4,
55 /* 12Mb	-> 12Mb	*/	6,
56 /* 18Mb	-> 12Mb	*/	6,
57 /* 24Mb	-> 24Mb	*/	8,
58 /* 36Mb	-> 24Mb	*/	8,
59 /* 48Mb	-> 24Mb	*/	8,
60 /* 54Mb	-> 24Mb	*/	8 };
61 
62 /*******************\
63 * Helper functions *
64 \*******************/
65 
66 /**
67  * ath5k_hw_get_frame_duration - Get tx time of a frame
68  *
69  * @ah: The &struct ath5k_hw
70  * @len: Frame's length in bytes
71  * @rate: The @struct ieee80211_rate
72  *
73  * Calculate tx duration of a frame given it's rate and length
74  * It extends ieee80211_generic_frame_duration for non standard
75  * bwmodes.
76  */
77 int ath5k_hw_get_frame_duration(struct ath5k_hw *ah,
78 		int len, struct ieee80211_rate *rate)
79 {
80 	struct ath5k_softc *sc = ah->ah_sc;
81 	int sifs, preamble, plcp_bits, sym_time;
82 	int bitrate, bits, symbols, symbol_bits;
83 	int dur;
84 
85 	/* Fallback */
86 	if (!ah->ah_bwmode) {
87 		dur = ieee80211_generic_frame_duration(sc->hw,
88 						NULL, len, rate);
89 		return le16_to_cpu(dur);
90 	}
91 
92 	bitrate = rate->bitrate;
93 	preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
94 	plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
95 	sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
96 
97 	switch (ah->ah_bwmode) {
98 	case AR5K_BWMODE_40MHZ:
99 		sifs = AR5K_INIT_SIFS_TURBO;
100 		preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
101 		break;
102 	case AR5K_BWMODE_10MHZ:
103 		sifs = AR5K_INIT_SIFS_HALF_RATE;
104 		preamble *= 2;
105 		sym_time *= 2;
106 		break;
107 	case AR5K_BWMODE_5MHZ:
108 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
109 		preamble *= 4;
110 		sym_time *= 4;
111 		break;
112 	default:
113 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
114 		break;
115 	}
116 
117 	bits = plcp_bits + (len << 3);
118 	/* Bit rate is in 100Kbits */
119 	symbol_bits = bitrate * sym_time;
120 	symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
121 
122 	dur = sifs + preamble + (sym_time * symbols);
123 
124 	return dur;
125 }
126 
127 /**
128  * ath5k_hw_get_default_slottime - Get the default slot time for current mode
129  *
130  * @ah: The &struct ath5k_hw
131  */
132 unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
133 {
134 	struct ieee80211_channel *channel = ah->ah_current_channel;
135 	unsigned int slot_time;
136 
137 	switch (ah->ah_bwmode) {
138 	case AR5K_BWMODE_40MHZ:
139 		slot_time = AR5K_INIT_SLOT_TIME_TURBO;
140 		break;
141 	case AR5K_BWMODE_10MHZ:
142 		slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
143 		break;
144 	case AR5K_BWMODE_5MHZ:
145 		slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
146 		break;
147 	case AR5K_BWMODE_DEFAULT:
148 		slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
149 	default:
150 		if (channel->hw_value & CHANNEL_CCK)
151 			slot_time = AR5K_INIT_SLOT_TIME_B;
152 		break;
153 	}
154 
155 	return slot_time;
156 }
157 
158 /**
159  * ath5k_hw_get_default_sifs - Get the default SIFS for current mode
160  *
161  * @ah: The &struct ath5k_hw
162  */
163 unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
164 {
165 	struct ieee80211_channel *channel = ah->ah_current_channel;
166 	unsigned int sifs;
167 
168 	switch (ah->ah_bwmode) {
169 	case AR5K_BWMODE_40MHZ:
170 		sifs = AR5K_INIT_SIFS_TURBO;
171 		break;
172 	case AR5K_BWMODE_10MHZ:
173 		sifs = AR5K_INIT_SIFS_HALF_RATE;
174 		break;
175 	case AR5K_BWMODE_5MHZ:
176 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
177 		break;
178 	case AR5K_BWMODE_DEFAULT:
179 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
180 	default:
181 		if (channel->hw_value & CHANNEL_5GHZ)
182 			sifs = AR5K_INIT_SIFS_DEFAULT_A;
183 		break;
184 	}
185 
186 	return sifs;
187 }
188 
189 /**
190  * ath5k_hw_update_mib_counters - Update MIB counters (mac layer statistics)
191  *
192  * @ah: The &struct ath5k_hw
193  *
194  * Reads MIB counters from PCU and updates sw statistics. Is called after a
195  * MIB interrupt, because one of these counters might have reached their maximum
196  * and triggered the MIB interrupt, to let us read and clear the counter.
197  *
198  * Is called in interrupt context!
199  */
200 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
201 {
202 	struct ath5k_statistics *stats = &ah->ah_sc->stats;
203 
204 	/* Read-And-Clear */
205 	stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
206 	stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
207 	stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
208 	stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
209 	stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
210 }
211 
212 
213 /******************\
214 * ACK/CTS Timeouts *
215 \******************/
216 
217 /**
218  * ath5k_hw_write_rate_duration - fill rate code to duration table
219  *
220  * @ah: the &struct ath5k_hw
221  * @mode: one of enum ath5k_driver_mode
222  *
223  * Write the rate code to duration table upon hw reset. This is a helper for
224  * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
225  * the hardware, based on current mode, for each rate. The rates which are
226  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
227  * different rate code so we write their value twice (one for long preamble
228  * and one for short).
229  *
230  * Note: Band doesn't matter here, if we set the values for OFDM it works
231  * on both a and g modes. So all we have to do is set values for all g rates
232  * that include all OFDM and CCK rates.
233  *
234  */
235 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
236 {
237 	struct ath5k_softc *sc = ah->ah_sc;
238 	struct ieee80211_rate *rate;
239 	unsigned int i;
240 	/* 802.11g covers both OFDM and CCK */
241 	u8 band = IEEE80211_BAND_2GHZ;
242 
243 	/* Write rate duration table */
244 	for (i = 0; i < sc->sbands[band].n_bitrates; i++) {
245 		u32 reg;
246 		u16 tx_time;
247 
248 		if (ah->ah_ack_bitrate_high)
249 			rate = &sc->sbands[band].bitrates[ack_rates_high[i]];
250 		/* CCK -> 1Mb */
251 		else if (i < 4)
252 			rate = &sc->sbands[band].bitrates[0];
253 		/* OFDM -> 6Mb */
254 		else
255 			rate = &sc->sbands[band].bitrates[4];
256 
257 		/* Set ACK timeout */
258 		reg = AR5K_RATE_DUR(rate->hw_value);
259 
260 		/* An ACK frame consists of 10 bytes. If you add the FCS,
261 		 * which ieee80211_generic_frame_duration() adds,
262 		 * its 14 bytes. Note we use the control rate and not the
263 		 * actual rate for this rate. See mac80211 tx.c
264 		 * ieee80211_duration() for a brief description of
265 		 * what rate we should choose to TX ACKs. */
266 		tx_time = ath5k_hw_get_frame_duration(ah, 10, rate);
267 
268 		ath5k_hw_reg_write(ah, tx_time, reg);
269 
270 		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
271 			continue;
272 
273 		/*
274 		 * We're not distinguishing short preamble here,
275 		 * This is true, all we'll get is a longer value here
276 		 * which is not necessarilly bad. We could use
277 		 * export ieee80211_frame_duration() but that needs to be
278 		 * fixed first to be properly used by mac802111 drivers:
279 		 *
280 		 *  - remove erp stuff and let the routine figure ofdm
281 		 *    erp rates
282 		 *  - remove passing argument ieee80211_local as
283 		 *    drivers don't have access to it
284 		 *  - move drivers using ieee80211_generic_frame_duration()
285 		 *    to this
286 		 */
287 		ath5k_hw_reg_write(ah, tx_time,
288 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
289 	}
290 }
291 
292 /**
293  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
294  *
295  * @ah: The &struct ath5k_hw
296  * @timeout: Timeout in usec
297  */
298 static int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
299 {
300 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
301 			<= timeout)
302 		return -EINVAL;
303 
304 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
305 		ath5k_hw_htoclock(ah, timeout));
306 
307 	return 0;
308 }
309 
310 /**
311  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
312  *
313  * @ah: The &struct ath5k_hw
314  * @timeout: Timeout in usec
315  */
316 static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
317 {
318 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
319 			<= timeout)
320 		return -EINVAL;
321 
322 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
323 			ath5k_hw_htoclock(ah, timeout));
324 
325 	return 0;
326 }
327 
328 
329 /*******************\
330 * RX filter Control *
331 \*******************/
332 
333 /**
334  * ath5k_hw_set_lladdr - Set station id
335  *
336  * @ah: The &struct ath5k_hw
337  * @mac: The card's mac address
338  *
339  * Set station id on hw using the provided mac address
340  */
341 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
342 {
343 	struct ath_common *common = ath5k_hw_common(ah);
344 	u32 low_id, high_id;
345 	u32 pcu_reg;
346 
347 	/* Set new station ID */
348 	memcpy(common->macaddr, mac, ETH_ALEN);
349 
350 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
351 
352 	low_id = get_unaligned_le32(mac);
353 	high_id = get_unaligned_le16(mac + 4);
354 
355 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
356 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
357 
358 	return 0;
359 }
360 
361 /**
362  * ath5k_hw_set_bssid - Set current BSSID on hw
363  *
364  * @ah: The &struct ath5k_hw
365  *
366  * Sets the current BSSID and BSSID mask we have from the
367  * common struct into the hardware
368  */
369 void ath5k_hw_set_bssid(struct ath5k_hw *ah)
370 {
371 	struct ath_common *common = ath5k_hw_common(ah);
372 	u16 tim_offset = 0;
373 
374 	/*
375 	 * Set BSSID mask on 5212
376 	 */
377 	if (ah->ah_version == AR5K_AR5212)
378 		ath_hw_setbssidmask(common);
379 
380 	/*
381 	 * Set BSSID
382 	 */
383 	ath5k_hw_reg_write(ah,
384 			   get_unaligned_le32(common->curbssid),
385 			   AR5K_BSS_ID0);
386 	ath5k_hw_reg_write(ah,
387 			   get_unaligned_le16(common->curbssid + 4) |
388 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
389 			   AR5K_BSS_ID1);
390 
391 	if (common->curaid == 0) {
392 		ath5k_hw_disable_pspoll(ah);
393 		return;
394 	}
395 
396 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
397 			    tim_offset ? tim_offset + 4 : 0);
398 
399 	ath5k_hw_enable_pspoll(ah, NULL, 0);
400 }
401 
402 void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
403 {
404 	struct ath_common *common = ath5k_hw_common(ah);
405 
406 	/* Cache bssid mask so that we can restore it
407 	 * on reset */
408 	memcpy(common->bssidmask, mask, ETH_ALEN);
409 	if (ah->ah_version == AR5K_AR5212)
410 		ath_hw_setbssidmask(common);
411 }
412 
413 /*
414  * Set multicast filter
415  */
416 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
417 {
418 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
419 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
420 }
421 
422 /**
423  * ath5k_hw_get_rx_filter - Get current rx filter
424  *
425  * @ah: The &struct ath5k_hw
426  *
427  * Returns the RX filter by reading rx filter and
428  * phy error filter registers. RX filter is used
429  * to set the allowed frame types that PCU will accept
430  * and pass to the driver. For a list of frame types
431  * check out reg.h.
432  */
433 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
434 {
435 	u32 data, filter = 0;
436 
437 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
438 
439 	/*Radar detection for 5212*/
440 	if (ah->ah_version == AR5K_AR5212) {
441 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
442 
443 		if (data & AR5K_PHY_ERR_FIL_RADAR)
444 			filter |= AR5K_RX_FILTER_RADARERR;
445 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
446 			filter |= AR5K_RX_FILTER_PHYERR;
447 	}
448 
449 	return filter;
450 }
451 
452 /**
453  * ath5k_hw_set_rx_filter - Set rx filter
454  *
455  * @ah: The &struct ath5k_hw
456  * @filter: RX filter mask (see reg.h)
457  *
458  * Sets RX filter register and also handles PHY error filter
459  * register on 5212 and newer chips so that we have proper PHY
460  * error reporting.
461  */
462 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
463 {
464 	u32 data = 0;
465 
466 	/* Set PHY error filter register on 5212*/
467 	if (ah->ah_version == AR5K_AR5212) {
468 		if (filter & AR5K_RX_FILTER_RADARERR)
469 			data |= AR5K_PHY_ERR_FIL_RADAR;
470 		if (filter & AR5K_RX_FILTER_PHYERR)
471 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
472 	}
473 
474 	/*
475 	 * The AR5210 uses promiscous mode to detect radar activity
476 	 */
477 	if (ah->ah_version == AR5K_AR5210 &&
478 			(filter & AR5K_RX_FILTER_RADARERR)) {
479 		filter &= ~AR5K_RX_FILTER_RADARERR;
480 		filter |= AR5K_RX_FILTER_PROM;
481 	}
482 
483 	/*Zero length DMA (phy error reporting) */
484 	if (data)
485 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
486 	else
487 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
488 
489 	/*Write RX Filter register*/
490 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
491 
492 	/*Write PHY error filter register on 5212*/
493 	if (ah->ah_version == AR5K_AR5212)
494 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
495 
496 }
497 
498 
499 /****************\
500 * Beacon control *
501 \****************/
502 
503 #define ATH5K_MAX_TSF_READ 10
504 
505 /**
506  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
507  *
508  * @ah: The &struct ath5k_hw
509  *
510  * Returns the current TSF
511  */
512 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
513 {
514 	u32 tsf_lower, tsf_upper1, tsf_upper2;
515 	int i;
516 	unsigned long flags;
517 
518 	/* This code is time critical - we don't want to be interrupted here */
519 	local_irq_save(flags);
520 
521 	/*
522 	 * While reading TSF upper and then lower part, the clock is still
523 	 * counting (or jumping in case of IBSS merge) so we might get
524 	 * inconsistent values. To avoid this, we read the upper part again
525 	 * and check it has not been changed. We make the hypothesis that a
526 	 * maximum of 3 changes can happens in a row (we use 10 as a safe
527 	 * value).
528 	 *
529 	 * Impact on performance is pretty small, since in most cases, only
530 	 * 3 register reads are needed.
531 	 */
532 
533 	tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
534 	for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
535 		tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
536 		tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
537 		if (tsf_upper2 == tsf_upper1)
538 			break;
539 		tsf_upper1 = tsf_upper2;
540 	}
541 
542 	local_irq_restore(flags);
543 
544 	WARN_ON( i == ATH5K_MAX_TSF_READ );
545 
546 	return (((u64)tsf_upper1 << 32) | tsf_lower);
547 }
548 
549 /**
550  * ath5k_hw_set_tsf64 - Set a new 64bit TSF
551  *
552  * @ah: The &struct ath5k_hw
553  * @tsf64: The new 64bit TSF
554  *
555  * Sets the new TSF
556  */
557 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
558 {
559 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
560 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
561 }
562 
563 /**
564  * ath5k_hw_reset_tsf - Force a TSF reset
565  *
566  * @ah: The &struct ath5k_hw
567  *
568  * Forces a TSF reset on PCU
569  */
570 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
571 {
572 	u32 val;
573 
574 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
575 
576 	/*
577 	 * Each write to the RESET_TSF bit toggles a hardware internal
578 	 * signal to reset TSF, but if left high it will cause a TSF reset
579 	 * on the next chip reset as well.  Thus we always write the value
580 	 * twice to clear the signal.
581 	 */
582 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
583 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
584 }
585 
586 /*
587  * Initialize beacon timers
588  */
589 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
590 {
591 	u32 timer1, timer2, timer3;
592 
593 	/*
594 	 * Set the additional timers by mode
595 	 */
596 	switch (ah->ah_sc->opmode) {
597 	case NL80211_IFTYPE_MONITOR:
598 	case NL80211_IFTYPE_STATION:
599 		/* In STA mode timer1 is used as next wakeup
600 		 * timer and timer2 as next CFP duration start
601 		 * timer. Both in 1/8TUs. */
602 		/* TODO: PCF handling */
603 		if (ah->ah_version == AR5K_AR5210) {
604 			timer1 = 0xffffffff;
605 			timer2 = 0xffffffff;
606 		} else {
607 			timer1 = 0x0000ffff;
608 			timer2 = 0x0007ffff;
609 		}
610 		/* Mark associated AP as PCF incapable for now */
611 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
612 		break;
613 	case NL80211_IFTYPE_ADHOC:
614 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
615 	default:
616 		/* On non-STA modes timer1 is used as next DMA
617 		 * beacon alert (DBA) timer and timer2 as next
618 		 * software beacon alert. Both in 1/8TUs. */
619 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
620 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
621 		break;
622 	}
623 
624 	/* Timer3 marks the end of our ATIM window
625 	 * a zero length window is not allowed because
626 	 * we 'll get no beacons */
627 	timer3 = next_beacon + 1;
628 
629 	/*
630 	 * Set the beacon register and enable all timers.
631 	 */
632 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
633 	if (ah->ah_sc->opmode == NL80211_IFTYPE_AP ||
634 	    ah->ah_sc->opmode == NL80211_IFTYPE_MESH_POINT)
635 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
636 
637 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
638 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
639 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
640 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
641 
642 	/* Force a TSF reset if requested and enable beacons */
643 	if (interval & AR5K_BEACON_RESET_TSF)
644 		ath5k_hw_reset_tsf(ah);
645 
646 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
647 					AR5K_BEACON_ENABLE),
648 						AR5K_BEACON);
649 
650 	/* Flush any pending BMISS interrupts on ISR by
651 	 * performing a clear-on-write operation on PISR
652 	 * register for the BMISS bit (writing a bit on
653 	 * ISR togles a reset for that bit and leaves
654 	 * the rest bits intact) */
655 	if (ah->ah_version == AR5K_AR5210)
656 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
657 	else
658 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
659 
660 	/* TODO: Set enchanced sleep registers on AR5212
661 	 * based on vif->bss_conf params, until then
662 	 * disable power save reporting.*/
663 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
664 
665 }
666 
667 /**
668  * ath5k_check_timer_win - Check if timer B is timer A + window
669  *
670  * @a: timer a (before b)
671  * @b: timer b (after a)
672  * @window: difference between a and b
673  * @intval: timers are increased by this interval
674  *
675  * This helper function checks if timer B is timer A + window and covers
676  * cases where timer A or B might have already been updated or wrapped
677  * around (Timers are 16 bit).
678  *
679  * Returns true if O.K.
680  */
681 static inline bool
682 ath5k_check_timer_win(int a, int b, int window, int intval)
683 {
684 	/*
685 	 * 1.) usually B should be A + window
686 	 * 2.) A already updated, B not updated yet
687 	 * 3.) A already updated and has wrapped around
688 	 * 4.) B has wrapped around
689 	 */
690 	if ((b - a == window) ||				/* 1.) */
691 	    (a - b == intval - window) ||			/* 2.) */
692 	    ((a | 0x10000) - b == intval - window) ||		/* 3.) */
693 	    ((b | 0x10000) - a == window))			/* 4.) */
694 		return true; /* O.K. */
695 	return false;
696 }
697 
698 /**
699  * ath5k_hw_check_beacon_timers - Check if the beacon timers are correct
700  *
701  * @ah: The &struct ath5k_hw
702  * @intval: beacon interval
703  *
704  * This is a workaround for IBSS mode:
705  *
706  * The need for this function arises from the fact that we have 4 separate
707  * HW timer registers (TIMER0 - TIMER3), which are closely related to the
708  * next beacon target time (NBTT), and that the HW updates these timers
709  * seperately based on the current TSF value. The hardware increments each
710  * timer by the beacon interval, when the local TSF coverted to TU is equal
711  * to the value stored in the timer.
712  *
713  * The reception of a beacon with the same BSSID can update the local HW TSF
714  * at any time - this is something we can't avoid. If the TSF jumps to a
715  * time which is later than the time stored in a timer, this timer will not
716  * be updated until the TSF in TU wraps around at 16 bit (the size of the
717  * timers) and reaches the time which is stored in the timer.
718  *
719  * The problem is that these timers are closely related to TIMER0 (NBTT) and
720  * that they define a time "window". When the TSF jumps between two timers
721  * (e.g. ATIM and NBTT), the one in the past will be left behind (not
722  * updated), while the one in the future will be updated every beacon
723  * interval. This causes the window to get larger, until the TSF wraps
724  * around as described above and the timer which was left behind gets
725  * updated again. But - because the beacon interval is usually not an exact
726  * divisor of the size of the timers (16 bit), an unwanted "window" between
727  * these timers has developed!
728  *
729  * This is especially important with the ATIM window, because during
730  * the ATIM window only ATIM frames and no data frames are allowed to be
731  * sent, which creates transmission pauses after each beacon. This symptom
732  * has been described as "ramping ping" because ping times increase linearly
733  * for some time and then drop down again. A wrong window on the DMA beacon
734  * timer has the same effect, so we check for these two conditions.
735  *
736  * Returns true if O.K.
737  */
738 bool
739 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
740 {
741 	unsigned int nbtt, atim, dma;
742 
743 	nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
744 	atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
745 	dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
746 
747 	/* NOTE: SWBA is different. Having a wrong window there does not
748 	 * stop us from sending data and this condition is catched thru
749 	 * other means (SWBA interrupt) */
750 
751 	if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
752 	    ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
753 				  intval))
754 		return true; /* O.K. */
755 	return false;
756 }
757 
758 /**
759  * ath5k_hw_set_coverage_class - Set IEEE 802.11 coverage class
760  *
761  * @ah: The &struct ath5k_hw
762  * @coverage_class: IEEE 802.11 coverage class number
763  *
764  * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
765  */
766 void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
767 {
768 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
769 	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
770 	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
771 	int cts_timeout = ack_timeout;
772 
773 	ath5k_hw_set_ifs_intervals(ah, slot_time);
774 	ath5k_hw_set_ack_timeout(ah, ack_timeout);
775 	ath5k_hw_set_cts_timeout(ah, cts_timeout);
776 
777 	ah->ah_coverage_class = coverage_class;
778 }
779 
780 /***************************\
781 * Init/Start/Stop functions *
782 \***************************/
783 
784 /**
785  * ath5k_hw_start_rx_pcu - Start RX engine
786  *
787  * @ah: The &struct ath5k_hw
788  *
789  * Starts RX engine on PCU so that hw can process RXed frames
790  * (ACK etc).
791  *
792  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
793  */
794 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
795 {
796 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
797 }
798 
799 /**
800  * at5k_hw_stop_rx_pcu - Stop RX engine
801  *
802  * @ah: The &struct ath5k_hw
803  *
804  * Stops RX engine on PCU
805  */
806 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
807 {
808 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
809 }
810 
811 /**
812  * ath5k_hw_set_opmode - Set PCU operating mode
813  *
814  * @ah: The &struct ath5k_hw
815  * @op_mode: &enum nl80211_iftype operating mode
816  *
817  * Configure PCU for the various operating modes (AP/STA etc)
818  */
819 int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
820 {
821 	struct ath_common *common = ath5k_hw_common(ah);
822 	u32 pcu_reg, beacon_reg, low_id, high_id;
823 
824 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
825 
826 	/* Preserve rest settings */
827 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
828 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
829 			| AR5K_STA_ID1_KEYSRCH_MODE
830 			| (ah->ah_version == AR5K_AR5210 ?
831 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
832 
833 	beacon_reg = 0;
834 
835 	switch (op_mode) {
836 	case NL80211_IFTYPE_ADHOC:
837 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
838 		beacon_reg |= AR5K_BCR_ADHOC;
839 		if (ah->ah_version == AR5K_AR5210)
840 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
841 		else
842 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
843 		break;
844 
845 	case NL80211_IFTYPE_AP:
846 	case NL80211_IFTYPE_MESH_POINT:
847 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
848 		beacon_reg |= AR5K_BCR_AP;
849 		if (ah->ah_version == AR5K_AR5210)
850 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
851 		else
852 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
853 		break;
854 
855 	case NL80211_IFTYPE_STATION:
856 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
857 			| (ah->ah_version == AR5K_AR5210 ?
858 				AR5K_STA_ID1_PWR_SV : 0);
859 	case NL80211_IFTYPE_MONITOR:
860 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
861 			| (ah->ah_version == AR5K_AR5210 ?
862 				AR5K_STA_ID1_NO_PSPOLL : 0);
863 		break;
864 
865 	default:
866 		return -EINVAL;
867 	}
868 
869 	/*
870 	 * Set PCU registers
871 	 */
872 	low_id = get_unaligned_le32(common->macaddr);
873 	high_id = get_unaligned_le16(common->macaddr + 4);
874 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
875 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
876 
877 	/*
878 	 * Set Beacon Control Register on 5210
879 	 */
880 	if (ah->ah_version == AR5K_AR5210)
881 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
882 
883 	return 0;
884 }
885 
886 void ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
887 								u8 mode)
888 {
889 	/* Set bssid and bssid mask */
890 	ath5k_hw_set_bssid(ah);
891 
892 	/* Set PCU config */
893 	ath5k_hw_set_opmode(ah, op_mode);
894 
895 	/* Write rate duration table only on AR5212 and if
896 	 * virtual interface has already been brought up
897 	 * XXX: rethink this after new mode changes to
898 	 * mac80211 are integrated */
899 	if (ah->ah_version == AR5K_AR5212 &&
900 		ah->ah_sc->nvifs)
901 		ath5k_hw_write_rate_duration(ah);
902 
903 	/* Set RSSI/BRSSI thresholds
904 	 *
905 	 * Note: If we decide to set this value
906 	 * dynamicaly, have in mind that when AR5K_RSSI_THR
907 	 * register is read it might return 0x40 if we haven't
908 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
909 	 * So doing a save/restore procedure here isn't the right
910 	 * choice. Instead store it on ath5k_hw */
911 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
912 				AR5K_TUNE_BMISS_THRES <<
913 				AR5K_RSSI_THR_BMISS_S),
914 				AR5K_RSSI_THR);
915 
916 	/* MIC QoS support */
917 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
918 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
919 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
920 	}
921 
922 	/* QoS NOACK Policy */
923 	if (ah->ah_version == AR5K_AR5212) {
924 		ath5k_hw_reg_write(ah,
925 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
926 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
927 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
928 			AR5K_QOS_NOACK);
929 	}
930 
931 	/* Restore slot time and ACK timeouts */
932 	if (ah->ah_coverage_class > 0)
933 		ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
934 
935 	/* Set ACK bitrate mode (see ack_rates_high) */
936 	if (ah->ah_version == AR5K_AR5212) {
937 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
938 		if (ah->ah_ack_bitrate_high)
939 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
940 		else
941 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
942 	}
943 	return;
944 }
945