1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19 
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23 
24 #include <linux/slab.h>
25 
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30 
31 
32 /******************\
33 * Helper functions *
34 \******************/
35 
36 /*
37  * Translate binary channel representation in EEPROM to frequency
38  */
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40 							unsigned int mode)
41 {
42 	u16 val;
43 
44 	if (bin == AR5K_EEPROM_CHANNEL_DIS)
45 		return bin;
46 
47 	if (mode == AR5K_EEPROM_MODE_11A) {
48 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49 			val = (5 * bin) + 4800;
50 		else
51 			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52 				(bin * 10) + 5100;
53 	} else {
54 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55 			val = bin + 2300;
56 		else
57 			val = bin + 2400;
58 	}
59 
60 	return val;
61 }
62 
63 
64 /*********\
65 * Parsers *
66 \*********/
67 
68 /*
69  * Initialize eeprom & capabilities structs
70  */
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
73 {
74 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75 	u16 val;
76 	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
77 
78 	/*
79 	 * Read values from EEPROM and store them in the capability structure
80 	 */
81 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
82 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
83 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
84 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
85 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
86 
87 	/* Return if we have an old EEPROM */
88 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
89 		return 0;
90 
91 	/*
92 	 * Validate the checksum of the EEPROM date. There are some
93 	 * devices with invalid EEPROMs.
94 	 */
95 	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
96 	if (val) {
97 		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
98 			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
99 		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
100 		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
101 
102 		/*
103 		 * Fail safe check to prevent stupid loops due
104 		 * to busted EEPROMs. XXX: This value is likely too
105 		 * big still, waiting on a better value.
106 		 */
107 		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
108 			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
109 				  "%d (0x%04x) max expected: %d (0x%04x)\n",
110 				  eep_max, eep_max,
111 				  3 * AR5K_EEPROM_INFO_MAX,
112 				  3 * AR5K_EEPROM_INFO_MAX);
113 			return -EIO;
114 		}
115 	}
116 
117 	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
118 		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
119 		cksum ^= val;
120 	}
121 	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
122 		ATH5K_ERR(ah, "Invalid EEPROM "
123 			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
124 			  cksum, eep_max,
125 			  eep_max == AR5K_EEPROM_INFO_MAX ?
126 				"default size" : "custom size");
127 		return -EIO;
128 	}
129 
130 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
131 	    ee_ant_gain);
132 
133 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
134 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
135 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
136 
137 		/* XXX: Don't know which versions include these two */
138 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
139 
140 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
141 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
142 
143 		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
144 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
145 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
146 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
147 		}
148 	}
149 
150 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
151 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
152 		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
153 		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
154 
155 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
156 		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
157 		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
158 	}
159 
160 	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
161 
162 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
163 		ee->ee_is_hb63 = true;
164 	else
165 		ee->ee_is_hb63 = false;
166 
167 	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
168 	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
169 	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
170 
171 	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 	 * and enable serdes programming if needed.
173 	 *
174 	 * XXX: Serdes values seem to be fixed so
175 	 * no need to read them here, we write them
176 	 * during ath5k_hw_init */
177 	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
178 	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
179 							true : false;
180 
181 	return 0;
182 }
183 
184 
185 /*
186  * Read antenna infos from eeprom
187  */
188 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
189 		unsigned int mode)
190 {
191 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
192 	u32 o = *offset;
193 	u16 val;
194 	int i = 0;
195 
196 	AR5K_EEPROM_READ(o++, val);
197 	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
198 	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
199 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
200 
201 	AR5K_EEPROM_READ(o++, val);
202 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
203 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
204 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
205 
206 	AR5K_EEPROM_READ(o++, val);
207 	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
208 	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
209 	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
210 
211 	AR5K_EEPROM_READ(o++, val);
212 	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
213 	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
214 	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
215 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
216 
217 	AR5K_EEPROM_READ(o++, val);
218 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
219 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
220 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
221 
222 	/* Get antenna switch tables */
223 	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
224 	    (ee->ee_ant_control[mode][0] << 4);
225 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
226 	     ee->ee_ant_control[mode][1]	|
227 	    (ee->ee_ant_control[mode][2] << 6)	|
228 	    (ee->ee_ant_control[mode][3] << 12) |
229 	    (ee->ee_ant_control[mode][4] << 18) |
230 	    (ee->ee_ant_control[mode][5] << 24);
231 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
232 	     ee->ee_ant_control[mode][6]	|
233 	    (ee->ee_ant_control[mode][7] << 6)	|
234 	    (ee->ee_ant_control[mode][8] << 12) |
235 	    (ee->ee_ant_control[mode][9] << 18) |
236 	    (ee->ee_ant_control[mode][10] << 24);
237 
238 	/* return new offset */
239 	*offset = o;
240 
241 	return 0;
242 }
243 
244 /*
245  * Read supported modes and some mode-specific calibration data
246  * from eeprom
247  */
248 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
249 		unsigned int mode)
250 {
251 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
252 	u32 o = *offset;
253 	u16 val;
254 
255 	ee->ee_n_piers[mode] = 0;
256 	AR5K_EEPROM_READ(o++, val);
257 	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
258 	switch (mode) {
259 	case AR5K_EEPROM_MODE_11A:
260 		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
261 		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
262 		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
263 
264 		AR5K_EEPROM_READ(o++, val);
265 		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
266 		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
267 		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
268 		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
269 		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
270 		ee->ee_db[mode][0]	= val & 0x7;
271 		break;
272 	case AR5K_EEPROM_MODE_11G:
273 	case AR5K_EEPROM_MODE_11B:
274 		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
275 		ee->ee_db[mode][1]	= val & 0x7;
276 		break;
277 	}
278 
279 	AR5K_EEPROM_READ(o++, val);
280 	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
281 	ee->ee_thr_62[mode]		= val & 0xff;
282 
283 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285 
286 	AR5K_EEPROM_READ(o++, val);
287 	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
288 	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
289 
290 	AR5K_EEPROM_READ(o++, val);
291 	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
292 
293 	if ((val & 0xff) & 0x80)
294 		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 	else
296 		ee->ee_noise_floor_thr[mode] = val & 0xff;
297 
298 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 		ee->ee_noise_floor_thr[mode] =
300 		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301 
302 	AR5K_EEPROM_READ(o++, val);
303 	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
304 	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
305 	ee->ee_xpd[mode]		= val & 0x1;
306 
307 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
308 	    mode != AR5K_EEPROM_MODE_11B)
309 		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
310 
311 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
312 		AR5K_EEPROM_READ(o++, val);
313 		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
314 
315 		if (mode == AR5K_EEPROM_MODE_11A)
316 			ee->ee_xr_power[mode] = val & 0x3f;
317 		else {
318 			/* b_DB_11[bg] and b_OB_11[bg] */
319 			ee->ee_ob[mode][0] = val & 0x7;
320 			ee->ee_db[mode][0] = (val >> 3) & 0x7;
321 		}
322 	}
323 
324 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
325 		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
326 		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
327 	} else {
328 		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
329 
330 		AR5K_EEPROM_READ(o++, val);
331 		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
332 
333 		if (mode == AR5K_EEPROM_MODE_11G) {
334 			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
335 			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
336 				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
337 		}
338 	}
339 
340 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
341 			mode == AR5K_EEPROM_MODE_11A) {
342 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
343 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
344 	}
345 
346 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
347 		goto done;
348 
349 	/* Note: >= v5 have bg freq piers on another location
350 	 * so these freq piers are ignored for >= v5 (should be 0xff
351 	 * anyway) */
352 	switch (mode) {
353 	case AR5K_EEPROM_MODE_11A:
354 		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
355 			break;
356 
357 		AR5K_EEPROM_READ(o++, val);
358 		ee->ee_margin_tx_rx[mode] = val & 0x3f;
359 		break;
360 	case AR5K_EEPROM_MODE_11B:
361 		AR5K_EEPROM_READ(o++, val);
362 
363 		ee->ee_pwr_cal_b[0].freq =
364 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365 		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366 			ee->ee_n_piers[mode]++;
367 
368 		ee->ee_pwr_cal_b[1].freq =
369 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370 		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371 			ee->ee_n_piers[mode]++;
372 
373 		AR5K_EEPROM_READ(o++, val);
374 		ee->ee_pwr_cal_b[2].freq =
375 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
376 		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
377 			ee->ee_n_piers[mode]++;
378 
379 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
380 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
381 		break;
382 	case AR5K_EEPROM_MODE_11G:
383 		AR5K_EEPROM_READ(o++, val);
384 
385 		ee->ee_pwr_cal_g[0].freq =
386 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
387 		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
388 			ee->ee_n_piers[mode]++;
389 
390 		ee->ee_pwr_cal_g[1].freq =
391 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
392 		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
393 			ee->ee_n_piers[mode]++;
394 
395 		AR5K_EEPROM_READ(o++, val);
396 		ee->ee_turbo_max_power[mode] = val & 0x7f;
397 		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
398 
399 		AR5K_EEPROM_READ(o++, val);
400 		ee->ee_pwr_cal_g[2].freq =
401 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402 		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403 			ee->ee_n_piers[mode]++;
404 
405 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
407 
408 		AR5K_EEPROM_READ(o++, val);
409 		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
410 		ee->ee_q_cal[mode] = val & 0x1f;
411 
412 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
413 			AR5K_EEPROM_READ(o++, val);
414 			ee->ee_cck_ofdm_gain_delta = val & 0xff;
415 		}
416 		break;
417 	}
418 
419 	/*
420 	 * Read turbo mode information on newer EEPROM versions
421 	 */
422 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
423 		goto done;
424 
425 	switch (mode) {
426 	case AR5K_EEPROM_MODE_11A:
427 		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
428 
429 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
430 		AR5K_EEPROM_READ(o++, val);
431 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
432 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
433 
434 		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
435 		AR5K_EEPROM_READ(o++, val);
436 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
437 		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
438 
439 		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
440 			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
441 		break;
442 	case AR5K_EEPROM_MODE_11G:
443 		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
444 
445 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
446 		AR5K_EEPROM_READ(o++, val);
447 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
448 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
449 
450 		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
451 		AR5K_EEPROM_READ(o++, val);
452 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
453 		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
454 		break;
455 	}
456 
457 done:
458 	/* return new offset */
459 	*offset = o;
460 
461 	return 0;
462 }
463 
464 /* Read mode-specific data (except power calibration data) */
465 static int
466 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
467 {
468 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
469 	u32 mode_offset[3];
470 	unsigned int mode;
471 	u32 offset;
472 	int ret;
473 
474 	/*
475 	 * Get values for all modes
476 	 */
477 	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
478 	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
479 	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
480 
481 	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
482 		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
483 
484 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
485 		offset = mode_offset[mode];
486 
487 		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
488 		if (ret)
489 			return ret;
490 
491 		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
492 		if (ret)
493 			return ret;
494 	}
495 
496 	/* override for older eeprom versions for better performance */
497 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
498 		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
499 		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
500 		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
501 	}
502 
503 	return 0;
504 }
505 
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
507  * frequency mask) */
508 static inline int
509 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
510 			struct ath5k_chan_pcal_info *pc, unsigned int mode)
511 {
512 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513 	int o = *offset;
514 	int i = 0;
515 	u8 freq1, freq2;
516 	u16 val;
517 
518 	ee->ee_n_piers[mode] = 0;
519 	while (i < max) {
520 		AR5K_EEPROM_READ(o++, val);
521 
522 		freq1 = val & 0xff;
523 		if (!freq1)
524 			break;
525 
526 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
527 				freq1, mode);
528 		ee->ee_n_piers[mode]++;
529 
530 		freq2 = (val >> 8) & 0xff;
531 		if (!freq2)
532 			break;
533 
534 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535 				freq2, mode);
536 		ee->ee_n_piers[mode]++;
537 	}
538 
539 	/* return new offset */
540 	*offset = o;
541 
542 	return 0;
543 }
544 
545 /* Read frequency piers for 802.11a */
546 static int
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
548 {
549 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
550 	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
551 	int i;
552 	u16 val;
553 	u8 mask;
554 
555 	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
556 		ath5k_eeprom_read_freq_list(ah, &offset,
557 			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
558 			AR5K_EEPROM_MODE_11A);
559 	} else {
560 		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
561 
562 		AR5K_EEPROM_READ(offset++, val);
563 		pcal[0].freq  = (val >> 9) & mask;
564 		pcal[1].freq  = (val >> 2) & mask;
565 		pcal[2].freq  = (val << 5) & mask;
566 
567 		AR5K_EEPROM_READ(offset++, val);
568 		pcal[2].freq |= (val >> 11) & 0x1f;
569 		pcal[3].freq  = (val >> 4) & mask;
570 		pcal[4].freq  = (val << 3) & mask;
571 
572 		AR5K_EEPROM_READ(offset++, val);
573 		pcal[4].freq |= (val >> 13) & 0x7;
574 		pcal[5].freq  = (val >> 6) & mask;
575 		pcal[6].freq  = (val << 1) & mask;
576 
577 		AR5K_EEPROM_READ(offset++, val);
578 		pcal[6].freq |= (val >> 15) & 0x1;
579 		pcal[7].freq  = (val >> 8) & mask;
580 		pcal[8].freq  = (val >> 1) & mask;
581 		pcal[9].freq  = (val << 6) & mask;
582 
583 		AR5K_EEPROM_READ(offset++, val);
584 		pcal[9].freq |= (val >> 10) & 0x3f;
585 
586 		/* Fixed number of piers */
587 		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
588 
589 		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
590 			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
591 				pcal[i].freq, AR5K_EEPROM_MODE_11A);
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
599 static inline int
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
601 {
602 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
603 	struct ath5k_chan_pcal_info *pcal;
604 
605 	switch (mode) {
606 	case AR5K_EEPROM_MODE_11B:
607 		pcal = ee->ee_pwr_cal_b;
608 		break;
609 	case AR5K_EEPROM_MODE_11G:
610 		pcal = ee->ee_pwr_cal_g;
611 		break;
612 	default:
613 		return -EINVAL;
614 	}
615 
616 	ath5k_eeprom_read_freq_list(ah, &offset,
617 		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
618 		mode);
619 
620 	return 0;
621 }
622 
623 
624 /*
625  * Read power calibration for RF5111 chips
626  *
627  * For RF5111 we have an XPD -eXternal Power Detector- curve
628  * for each calibrated channel. Each curve has 0,5dB Power steps
629  * on x axis and PCDAC steps (offsets) on y axis and looks like an
630  * exponential function. To recreate the curve we read 11 points
631  * here and interpolate later.
632  */
633 
634 /* Used to match PCDAC steps with power values on RF5111 chips
635  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636  * steps that match with the power values we read from eeprom. On
637  * older eeprom versions (< 3.2) these steps are equally spaced at
638  * 10% of the pcdac curve -until the curve reaches its maximum-
639  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640  * these 11 steps are spaced in a different way. This function returns
641  * the pcdac steps based on eeprom version and curve min/max so that we
642  * can have pcdac/pwr points.
643  */
644 static inline void
645 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
646 {
647 	static const u16 intercepts3[] = {
648 		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
649 	};
650 	static const u16 intercepts3_2[] = {
651 		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
652 	};
653 	const u16 *ip;
654 	int i;
655 
656 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
657 		ip = intercepts3_2;
658 	else
659 		ip = intercepts3;
660 
661 	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
662 		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
663 }
664 
665 static int
666 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
667 {
668 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669 	struct ath5k_chan_pcal_info *chinfo;
670 	u8 pier, pdg;
671 
672 	switch (mode) {
673 	case AR5K_EEPROM_MODE_11A:
674 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
675 			return 0;
676 		chinfo = ee->ee_pwr_cal_a;
677 		break;
678 	case AR5K_EEPROM_MODE_11B:
679 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
680 			return 0;
681 		chinfo = ee->ee_pwr_cal_b;
682 		break;
683 	case AR5K_EEPROM_MODE_11G:
684 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
685 			return 0;
686 		chinfo = ee->ee_pwr_cal_g;
687 		break;
688 	default:
689 		return -EINVAL;
690 	}
691 
692 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
693 		if (!chinfo[pier].pd_curves)
694 			continue;
695 
696 		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
697 			struct ath5k_pdgain_info *pd =
698 					&chinfo[pier].pd_curves[pdg];
699 
700 			kfree(pd->pd_step);
701 			kfree(pd->pd_pwr);
702 		}
703 
704 		kfree(chinfo[pier].pd_curves);
705 	}
706 
707 	return 0;
708 }
709 
710 /* Convert RF5111 specific data to generic raw data
711  * used by interpolation code */
712 static int
713 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
714 				struct ath5k_chan_pcal_info *chinfo)
715 {
716 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
717 	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
718 	struct ath5k_pdgain_info *pd;
719 	u8 pier, point, idx;
720 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
721 
722 	/* Fill raw data for each calibration pier */
723 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
724 
725 		pcinfo = &chinfo[pier].rf5111_info;
726 
727 		/* Allocate pd_curves for this cal pier */
728 		chinfo[pier].pd_curves =
729 			kcalloc(AR5K_EEPROM_N_PD_CURVES,
730 				sizeof(struct ath5k_pdgain_info),
731 				GFP_KERNEL);
732 
733 		if (!chinfo[pier].pd_curves)
734 			goto err_out;
735 
736 		/* Only one curve for RF5111
737 		 * find out which one and place
738 		 * in pd_curves.
739 		 * Note: ee_x_gain is reversed here */
740 		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
741 
742 			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
743 				pdgain_idx[0] = idx;
744 				break;
745 			}
746 		}
747 
748 		ee->ee_pd_gains[mode] = 1;
749 
750 		pd = &chinfo[pier].pd_curves[idx];
751 
752 		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
753 
754 		/* Allocate pd points for this curve */
755 		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
756 					sizeof(u8), GFP_KERNEL);
757 		if (!pd->pd_step)
758 			goto err_out;
759 
760 		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
761 					sizeof(s16), GFP_KERNEL);
762 		if (!pd->pd_pwr)
763 			goto err_out;
764 
765 		/* Fill raw dataset
766 		 * (convert power to 0.25dB units
767 		 * for RF5112 compatibility) */
768 		for (point = 0; point < pd->pd_points; point++) {
769 
770 			/* Absolute values */
771 			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
772 
773 			/* Already sorted */
774 			pd->pd_step[point] = pcinfo->pcdac[point];
775 		}
776 
777 		/* Set min/max pwr */
778 		chinfo[pier].min_pwr = pd->pd_pwr[0];
779 		chinfo[pier].max_pwr = pd->pd_pwr[10];
780 
781 	}
782 
783 	return 0;
784 
785 err_out:
786 	ath5k_eeprom_free_pcal_info(ah, mode);
787 	return -ENOMEM;
788 }
789 
790 /* Parse EEPROM data */
791 static int
792 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
793 {
794 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
795 	struct ath5k_chan_pcal_info *pcal;
796 	int offset, ret;
797 	int i;
798 	u16 val;
799 
800 	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
801 	switch (mode) {
802 	case AR5K_EEPROM_MODE_11A:
803 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
804 			return 0;
805 
806 		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
807 			offset + AR5K_EEPROM_GROUP1_OFFSET);
808 		if (ret < 0)
809 			return ret;
810 
811 		offset += AR5K_EEPROM_GROUP2_OFFSET;
812 		pcal = ee->ee_pwr_cal_a;
813 		break;
814 	case AR5K_EEPROM_MODE_11B:
815 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
816 		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
817 			return 0;
818 
819 		pcal = ee->ee_pwr_cal_b;
820 		offset += AR5K_EEPROM_GROUP3_OFFSET;
821 
822 		/* fixed piers */
823 		pcal[0].freq = 2412;
824 		pcal[1].freq = 2447;
825 		pcal[2].freq = 2484;
826 		ee->ee_n_piers[mode] = 3;
827 		break;
828 	case AR5K_EEPROM_MODE_11G:
829 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
830 			return 0;
831 
832 		pcal = ee->ee_pwr_cal_g;
833 		offset += AR5K_EEPROM_GROUP4_OFFSET;
834 
835 		/* fixed piers */
836 		pcal[0].freq = 2312;
837 		pcal[1].freq = 2412;
838 		pcal[2].freq = 2484;
839 		ee->ee_n_piers[mode] = 3;
840 		break;
841 	default:
842 		return -EINVAL;
843 	}
844 
845 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
846 		struct ath5k_chan_pcal_info_rf5111 *cdata =
847 			&pcal[i].rf5111_info;
848 
849 		AR5K_EEPROM_READ(offset++, val);
850 		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
851 		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
852 		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
853 
854 		AR5K_EEPROM_READ(offset++, val);
855 		cdata->pwr[0] |= ((val >> 14) & 0x3);
856 		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
857 		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
858 		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
859 
860 		AR5K_EEPROM_READ(offset++, val);
861 		cdata->pwr[3] |= ((val >> 12) & 0xf);
862 		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
863 		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
864 
865 		AR5K_EEPROM_READ(offset++, val);
866 		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
867 		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
868 		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
869 
870 		AR5K_EEPROM_READ(offset++, val);
871 		cdata->pwr[8] |= ((val >> 14) & 0x3);
872 		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
873 		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
874 
875 		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
876 			cdata->pcdac_max, cdata->pcdac);
877 	}
878 
879 	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
880 }
881 
882 
883 /*
884  * Read power calibration for RF5112 chips
885  *
886  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
887  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
888  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
889  * power steps on x axis and PCDAC steps on y axis and looks like a
890  * linear function. To recreate the curve and pass the power values
891  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
892  * and 3 points for xpd 3 (higher gain -> lower power) here and
893  * interpolate later.
894  *
895  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
896  */
897 
898 /* Convert RF5112 specific data to generic raw data
899  * used by interpolation code */
900 static int
901 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
902 				struct ath5k_chan_pcal_info *chinfo)
903 {
904 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
905 	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
906 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
907 	unsigned int pier, pdg, point;
908 
909 	/* Fill raw data for each calibration pier */
910 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
911 
912 		pcinfo = &chinfo[pier].rf5112_info;
913 
914 		/* Allocate pd_curves for this cal pier */
915 		chinfo[pier].pd_curves =
916 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
917 					sizeof(struct ath5k_pdgain_info),
918 					GFP_KERNEL);
919 
920 		if (!chinfo[pier].pd_curves)
921 			goto err_out;
922 
923 		/* Fill pd_curves */
924 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
925 
926 			u8 idx = pdgain_idx[pdg];
927 			struct ath5k_pdgain_info *pd =
928 					&chinfo[pier].pd_curves[idx];
929 
930 			/* Lowest gain curve (max power) */
931 			if (pdg == 0) {
932 				/* One more point for better accuracy */
933 				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
934 
935 				/* Allocate pd points for this curve */
936 				pd->pd_step = kcalloc(pd->pd_points,
937 						sizeof(u8), GFP_KERNEL);
938 
939 				if (!pd->pd_step)
940 					goto err_out;
941 
942 				pd->pd_pwr = kcalloc(pd->pd_points,
943 						sizeof(s16), GFP_KERNEL);
944 
945 				if (!pd->pd_pwr)
946 					goto err_out;
947 
948 				/* Fill raw dataset
949 				 * (all power levels are in 0.25dB units) */
950 				pd->pd_step[0] = pcinfo->pcdac_x0[0];
951 				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
952 
953 				for (point = 1; point < pd->pd_points;
954 				point++) {
955 					/* Absolute values */
956 					pd->pd_pwr[point] =
957 						pcinfo->pwr_x0[point];
958 
959 					/* Deltas */
960 					pd->pd_step[point] =
961 						pd->pd_step[point - 1] +
962 						pcinfo->pcdac_x0[point];
963 				}
964 
965 				/* Set min power for this frequency */
966 				chinfo[pier].min_pwr = pd->pd_pwr[0];
967 
968 			/* Highest gain curve (min power) */
969 			} else if (pdg == 1) {
970 
971 				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
972 
973 				/* Allocate pd points for this curve */
974 				pd->pd_step = kcalloc(pd->pd_points,
975 						sizeof(u8), GFP_KERNEL);
976 
977 				if (!pd->pd_step)
978 					goto err_out;
979 
980 				pd->pd_pwr = kcalloc(pd->pd_points,
981 						sizeof(s16), GFP_KERNEL);
982 
983 				if (!pd->pd_pwr)
984 					goto err_out;
985 
986 				/* Fill raw dataset
987 				 * (all power levels are in 0.25dB units) */
988 				for (point = 0; point < pd->pd_points;
989 				point++) {
990 					/* Absolute values */
991 					pd->pd_pwr[point] =
992 						pcinfo->pwr_x3[point];
993 
994 					/* Fixed points */
995 					pd->pd_step[point] =
996 						pcinfo->pcdac_x3[point];
997 				}
998 
999 				/* Since we have a higher gain curve
1000 				 * override min power */
1001 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1002 			}
1003 		}
1004 	}
1005 
1006 	return 0;
1007 
1008 err_out:
1009 	ath5k_eeprom_free_pcal_info(ah, mode);
1010 	return -ENOMEM;
1011 }
1012 
1013 /* Parse EEPROM data */
1014 static int
1015 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1016 {
1017 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1018 	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1019 	struct ath5k_chan_pcal_info *gen_chan_info;
1020 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1021 	u32 offset;
1022 	u8 i, c;
1023 	u16 val;
1024 	u8 pd_gains = 0;
1025 
1026 	/* Count how many curves we have and
1027 	 * identify them (which one of the 4
1028 	 * available curves we have on each count).
1029 	 * Curves are stored from lower (x0) to
1030 	 * higher (x3) gain */
1031 	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1032 		/* ee_x_gain[mode] is x gain mask */
1033 		if ((ee->ee_x_gain[mode] >> i) & 0x1)
1034 			pdgain_idx[pd_gains++] = i;
1035 	}
1036 	ee->ee_pd_gains[mode] = pd_gains;
1037 
1038 	if (pd_gains == 0 || pd_gains > 2)
1039 		return -EINVAL;
1040 
1041 	switch (mode) {
1042 	case AR5K_EEPROM_MODE_11A:
1043 		/*
1044 		 * Read 5GHz EEPROM channels
1045 		 */
1046 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1047 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1048 
1049 		offset += AR5K_EEPROM_GROUP2_OFFSET;
1050 		gen_chan_info = ee->ee_pwr_cal_a;
1051 		break;
1052 	case AR5K_EEPROM_MODE_11B:
1053 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1054 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1055 			offset += AR5K_EEPROM_GROUP3_OFFSET;
1056 
1057 		/* NB: frequency piers parsed during mode init */
1058 		gen_chan_info = ee->ee_pwr_cal_b;
1059 		break;
1060 	case AR5K_EEPROM_MODE_11G:
1061 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1062 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1063 			offset += AR5K_EEPROM_GROUP4_OFFSET;
1064 		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1065 			offset += AR5K_EEPROM_GROUP2_OFFSET;
1066 
1067 		/* NB: frequency piers parsed during mode init */
1068 		gen_chan_info = ee->ee_pwr_cal_g;
1069 		break;
1070 	default:
1071 		return -EINVAL;
1072 	}
1073 
1074 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1075 		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1076 
1077 		/* Power values in quarter dB
1078 		 * for the lower xpd gain curve
1079 		 * (0 dBm -> higher output power) */
1080 		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1081 			AR5K_EEPROM_READ(offset++, val);
1082 			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1083 			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1084 		}
1085 
1086 		/* PCDAC steps
1087 		 * corresponding to the above power
1088 		 * measurements */
1089 		AR5K_EEPROM_READ(offset++, val);
1090 		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1091 		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1092 		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1093 
1094 		/* Power values in quarter dB
1095 		 * for the higher xpd gain curve
1096 		 * (18 dBm -> lower output power) */
1097 		AR5K_EEPROM_READ(offset++, val);
1098 		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1099 		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1100 
1101 		AR5K_EEPROM_READ(offset++, val);
1102 		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1103 
1104 		/* PCDAC steps
1105 		 * corresponding to the above power
1106 		 * measurements (fixed) */
1107 		chan_pcal_info->pcdac_x3[0] = 20;
1108 		chan_pcal_info->pcdac_x3[1] = 35;
1109 		chan_pcal_info->pcdac_x3[2] = 63;
1110 
1111 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1112 			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1113 
1114 			/* Last xpd0 power level is also channel maximum */
1115 			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1116 		} else {
1117 			chan_pcal_info->pcdac_x0[0] = 1;
1118 			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1119 		}
1120 
1121 	}
1122 
1123 	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1124 }
1125 
1126 
1127 /*
1128  * Read power calibration for RF2413 chips
1129  *
1130  * For RF2413 we have a Power to PDDAC table (Power Detector)
1131  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1132  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1133  * axis and looks like an exponential function like the RF5111 curve.
1134  *
1135  * To recreate the curves we read here the points and interpolate
1136  * later. Note that in most cases only 2 (higher and lower) curves are
1137  * used (like RF5112) but vendors have the opportunity to include all
1138  * 4 curves on eeprom. The final curve (higher power) has an extra
1139  * point for better accuracy like RF5112.
1140  */
1141 
1142 /* For RF2413 power calibration data doesn't start on a fixed location and
1143  * if a mode is not supported, its section is missing -not zeroed-.
1144  * So we need to calculate the starting offset for each section by using
1145  * these two functions */
1146 
1147 /* Return the size of each section based on the mode and the number of pd
1148  * gains available (maximum 4). */
1149 static inline unsigned int
1150 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1151 {
1152 	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1153 	unsigned int sz;
1154 
1155 	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1156 	sz *= ee->ee_n_piers[mode];
1157 
1158 	return sz;
1159 }
1160 
1161 /* Return the starting offset for a section based on the modes supported
1162  * and each section's size. */
1163 static unsigned int
1164 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1165 {
1166 	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1167 
1168 	switch (mode) {
1169 	case AR5K_EEPROM_MODE_11G:
1170 		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1171 			offset += ath5k_pdgains_size_2413(ee,
1172 					AR5K_EEPROM_MODE_11B) +
1173 					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1174 		/* fall through */
1175 	case AR5K_EEPROM_MODE_11B:
1176 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1177 			offset += ath5k_pdgains_size_2413(ee,
1178 					AR5K_EEPROM_MODE_11A) +
1179 					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1180 		/* fall through */
1181 	case AR5K_EEPROM_MODE_11A:
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 
1187 	return offset;
1188 }
1189 
1190 /* Convert RF2413 specific data to generic raw data
1191  * used by interpolation code */
1192 static int
1193 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1194 				struct ath5k_chan_pcal_info *chinfo)
1195 {
1196 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1198 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1199 	unsigned int pier, pdg, point;
1200 
1201 	/* Fill raw data for each calibration pier */
1202 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1203 
1204 		pcinfo = &chinfo[pier].rf2413_info;
1205 
1206 		/* Allocate pd_curves for this cal pier */
1207 		chinfo[pier].pd_curves =
1208 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1209 					sizeof(struct ath5k_pdgain_info),
1210 					GFP_KERNEL);
1211 
1212 		if (!chinfo[pier].pd_curves)
1213 			goto err_out;
1214 
1215 		/* Fill pd_curves */
1216 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1217 
1218 			u8 idx = pdgain_idx[pdg];
1219 			struct ath5k_pdgain_info *pd =
1220 					&chinfo[pier].pd_curves[idx];
1221 
1222 			/* One more point for the highest power
1223 			 * curve (lowest gain) */
1224 			if (pdg == ee->ee_pd_gains[mode] - 1)
1225 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1226 			else
1227 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1228 
1229 			/* Allocate pd points for this curve */
1230 			pd->pd_step = kcalloc(pd->pd_points,
1231 					sizeof(u8), GFP_KERNEL);
1232 
1233 			if (!pd->pd_step)
1234 				goto err_out;
1235 
1236 			pd->pd_pwr = kcalloc(pd->pd_points,
1237 					sizeof(s16), GFP_KERNEL);
1238 
1239 			if (!pd->pd_pwr)
1240 				goto err_out;
1241 
1242 			/* Fill raw dataset
1243 			 * convert all pwr levels to
1244 			 * quarter dB for RF5112 compatibility */
1245 			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1246 			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1247 
1248 			for (point = 1; point < pd->pd_points; point++) {
1249 
1250 				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1251 					2 * pcinfo->pwr[pdg][point - 1];
1252 
1253 				pd->pd_step[point] = pd->pd_step[point - 1] +
1254 						pcinfo->pddac[pdg][point - 1];
1255 
1256 			}
1257 
1258 			/* Highest gain curve -> min power */
1259 			if (pdg == 0)
1260 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1261 
1262 			/* Lowest gain curve -> max power */
1263 			if (pdg == ee->ee_pd_gains[mode] - 1)
1264 				chinfo[pier].max_pwr =
1265 					pd->pd_pwr[pd->pd_points - 1];
1266 		}
1267 	}
1268 
1269 	return 0;
1270 
1271 err_out:
1272 	ath5k_eeprom_free_pcal_info(ah, mode);
1273 	return -ENOMEM;
1274 }
1275 
1276 /* Parse EEPROM data */
1277 static int
1278 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1279 {
1280 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1281 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1282 	struct ath5k_chan_pcal_info *chinfo;
1283 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1284 	u32 offset;
1285 	int idx, i;
1286 	u16 val;
1287 	u8 pd_gains = 0;
1288 
1289 	/* Count how many curves we have and
1290 	 * identify them (which one of the 4
1291 	 * available curves we have on each count).
1292 	 * Curves are stored from higher to
1293 	 * lower gain so we go backwards */
1294 	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1295 		/* ee_x_gain[mode] is x gain mask */
1296 		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1297 			pdgain_idx[pd_gains++] = idx;
1298 
1299 	}
1300 	ee->ee_pd_gains[mode] = pd_gains;
1301 
1302 	if (pd_gains == 0)
1303 		return -EINVAL;
1304 
1305 	offset = ath5k_cal_data_offset_2413(ee, mode);
1306 	switch (mode) {
1307 	case AR5K_EEPROM_MODE_11A:
1308 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1309 			return 0;
1310 
1311 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1312 		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1313 		chinfo = ee->ee_pwr_cal_a;
1314 		break;
1315 	case AR5K_EEPROM_MODE_11B:
1316 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1317 			return 0;
1318 
1319 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1320 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1321 		chinfo = ee->ee_pwr_cal_b;
1322 		break;
1323 	case AR5K_EEPROM_MODE_11G:
1324 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1325 			return 0;
1326 
1327 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1328 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1329 		chinfo = ee->ee_pwr_cal_g;
1330 		break;
1331 	default:
1332 		return -EINVAL;
1333 	}
1334 
1335 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1336 		pcinfo = &chinfo[i].rf2413_info;
1337 
1338 		/*
1339 		 * Read pwr_i, pddac_i and the first
1340 		 * 2 pd points (pwr, pddac)
1341 		 */
1342 		AR5K_EEPROM_READ(offset++, val);
1343 		pcinfo->pwr_i[0] = val & 0x1f;
1344 		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1345 		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1346 
1347 		AR5K_EEPROM_READ(offset++, val);
1348 		pcinfo->pddac[0][0] = val & 0x3f;
1349 		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1350 		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1351 
1352 		AR5K_EEPROM_READ(offset++, val);
1353 		pcinfo->pwr[0][2] = val & 0xf;
1354 		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1355 
1356 		pcinfo->pwr[0][3] = 0;
1357 		pcinfo->pddac[0][3] = 0;
1358 
1359 		if (pd_gains > 1) {
1360 			/*
1361 			 * Pd gain 0 is not the last pd gain
1362 			 * so it only has 2 pd points.
1363 			 * Continue with pd gain 1.
1364 			 */
1365 			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1366 
1367 			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1368 			AR5K_EEPROM_READ(offset++, val);
1369 			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1370 
1371 			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1372 			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1373 
1374 			AR5K_EEPROM_READ(offset++, val);
1375 			pcinfo->pwr[1][1] = val & 0xf;
1376 			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1377 			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1378 
1379 			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1380 			AR5K_EEPROM_READ(offset++, val);
1381 			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1382 
1383 			pcinfo->pwr[1][3] = 0;
1384 			pcinfo->pddac[1][3] = 0;
1385 		} else if (pd_gains == 1) {
1386 			/*
1387 			 * Pd gain 0 is the last one so
1388 			 * read the extra point.
1389 			 */
1390 			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1391 
1392 			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1393 			AR5K_EEPROM_READ(offset++, val);
1394 			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1395 		}
1396 
1397 		/*
1398 		 * Proceed with the other pd_gains
1399 		 * as above.
1400 		 */
1401 		if (pd_gains > 2) {
1402 			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1403 			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1404 
1405 			AR5K_EEPROM_READ(offset++, val);
1406 			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1407 			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1408 			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1409 
1410 			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1411 			AR5K_EEPROM_READ(offset++, val);
1412 			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1413 
1414 			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1415 			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1416 
1417 			pcinfo->pwr[2][3] = 0;
1418 			pcinfo->pddac[2][3] = 0;
1419 		} else if (pd_gains == 2) {
1420 			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1421 			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1422 		}
1423 
1424 		if (pd_gains > 3) {
1425 			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1426 			AR5K_EEPROM_READ(offset++, val);
1427 			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1428 
1429 			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1430 			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1431 			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1432 
1433 			AR5K_EEPROM_READ(offset++, val);
1434 			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1435 			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1436 			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1437 
1438 			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1439 			AR5K_EEPROM_READ(offset++, val);
1440 			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1441 
1442 			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1443 			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1444 
1445 			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1446 			AR5K_EEPROM_READ(offset++, val);
1447 			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1448 		} else if (pd_gains == 3) {
1449 			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1450 			AR5K_EEPROM_READ(offset++, val);
1451 			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1452 
1453 			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1454 		}
1455 	}
1456 
1457 	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1458 }
1459 
1460 
1461 /*
1462  * Read per rate target power (this is the maximum tx power
1463  * supported by the card). This info is used when setting
1464  * tx power, no matter the channel.
1465  *
1466  * This also works for v5 EEPROMs.
1467  */
1468 static int
1469 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1470 {
1471 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472 	struct ath5k_rate_pcal_info *rate_pcal_info;
1473 	u8 *rate_target_pwr_num;
1474 	u32 offset;
1475 	u16 val;
1476 	int i;
1477 
1478 	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1479 	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1480 	switch (mode) {
1481 	case AR5K_EEPROM_MODE_11A:
1482 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1483 		rate_pcal_info = ee->ee_rate_tpwr_a;
1484 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1485 		break;
1486 	case AR5K_EEPROM_MODE_11B:
1487 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1488 		rate_pcal_info = ee->ee_rate_tpwr_b;
1489 		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1490 		break;
1491 	case AR5K_EEPROM_MODE_11G:
1492 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1493 		rate_pcal_info = ee->ee_rate_tpwr_g;
1494 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1495 		break;
1496 	default:
1497 		return -EINVAL;
1498 	}
1499 
1500 	/* Different freq mask for older eeproms (<= v3.2) */
1501 	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1502 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1503 			AR5K_EEPROM_READ(offset++, val);
1504 			rate_pcal_info[i].freq =
1505 			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1506 
1507 			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1508 			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1509 
1510 			AR5K_EEPROM_READ(offset++, val);
1511 
1512 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1513 			    val == 0) {
1514 				(*rate_target_pwr_num) = i;
1515 				break;
1516 			}
1517 
1518 			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1519 			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1520 			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1521 		}
1522 	} else {
1523 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1524 			AR5K_EEPROM_READ(offset++, val);
1525 			rate_pcal_info[i].freq =
1526 			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1527 
1528 			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1529 			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1530 
1531 			AR5K_EEPROM_READ(offset++, val);
1532 
1533 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1534 			    val == 0) {
1535 				(*rate_target_pwr_num) = i;
1536 				break;
1537 			}
1538 
1539 			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1540 			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1541 			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1542 		}
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 
1549 /*
1550  * Read per channel calibration info from EEPROM
1551  *
1552  * This info is used to calibrate the baseband power table. Imagine
1553  * that for each channel there is a power curve that's hw specific
1554  * (depends on amplifier etc) and we try to "correct" this curve using
1555  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1556  * it can use accurate power values when setting tx power (takes amplifier's
1557  * performance on each channel into account).
1558  *
1559  * EEPROM provides us with the offsets for some pre-calibrated channels
1560  * and we have to interpolate to create the full table for these channels and
1561  * also the table for any channel.
1562  */
1563 static int
1564 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1565 {
1566 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1567 	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1568 	int mode;
1569 	int err;
1570 
1571 	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1572 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1573 		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1574 	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1575 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1576 		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1577 	else
1578 		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1579 
1580 
1581 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1582 	mode++) {
1583 		err = read_pcal(ah, mode);
1584 		if (err)
1585 			return err;
1586 
1587 		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1588 		if (err < 0)
1589 			return err;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 /* Read conformance test limits used for regulatory control */
1596 static int
1597 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1598 {
1599 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1600 	struct ath5k_edge_power *rep;
1601 	unsigned int fmask, pmask;
1602 	unsigned int ctl_mode;
1603 	int i, j;
1604 	u32 offset;
1605 	u16 val;
1606 
1607 	pmask = AR5K_EEPROM_POWER_M;
1608 	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1609 	offset = AR5K_EEPROM_CTL(ee->ee_version);
1610 	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1611 	for (i = 0; i < ee->ee_ctls; i += 2) {
1612 		AR5K_EEPROM_READ(offset++, val);
1613 		ee->ee_ctl[i] = (val >> 8) & 0xff;
1614 		ee->ee_ctl[i + 1] = val & 0xff;
1615 	}
1616 
1617 	offset = AR5K_EEPROM_GROUP8_OFFSET;
1618 	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1619 		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1620 			AR5K_EEPROM_GROUP5_OFFSET;
1621 	else
1622 		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1623 
1624 	rep = ee->ee_ctl_pwr;
1625 	for (i = 0; i < ee->ee_ctls; i++) {
1626 		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1627 		case AR5K_CTL_11A:
1628 		case AR5K_CTL_TURBO:
1629 			ctl_mode = AR5K_EEPROM_MODE_11A;
1630 			break;
1631 		default:
1632 			ctl_mode = AR5K_EEPROM_MODE_11G;
1633 			break;
1634 		}
1635 		if (ee->ee_ctl[i] == 0) {
1636 			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1637 				offset += 8;
1638 			else
1639 				offset += 7;
1640 			rep += AR5K_EEPROM_N_EDGES;
1641 			continue;
1642 		}
1643 		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1644 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1645 				AR5K_EEPROM_READ(offset++, val);
1646 				rep[j].freq = (val >> 8) & fmask;
1647 				rep[j + 1].freq = val & fmask;
1648 			}
1649 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1650 				AR5K_EEPROM_READ(offset++, val);
1651 				rep[j].edge = (val >> 8) & pmask;
1652 				rep[j].flag = (val >> 14) & 1;
1653 				rep[j + 1].edge = val & pmask;
1654 				rep[j + 1].flag = (val >> 6) & 1;
1655 			}
1656 		} else {
1657 			AR5K_EEPROM_READ(offset++, val);
1658 			rep[0].freq = (val >> 9) & fmask;
1659 			rep[1].freq = (val >> 2) & fmask;
1660 			rep[2].freq = (val << 5) & fmask;
1661 
1662 			AR5K_EEPROM_READ(offset++, val);
1663 			rep[2].freq |= (val >> 11) & 0x1f;
1664 			rep[3].freq = (val >> 4) & fmask;
1665 			rep[4].freq = (val << 3) & fmask;
1666 
1667 			AR5K_EEPROM_READ(offset++, val);
1668 			rep[4].freq |= (val >> 13) & 0x7;
1669 			rep[5].freq = (val >> 6) & fmask;
1670 			rep[6].freq = (val << 1) & fmask;
1671 
1672 			AR5K_EEPROM_READ(offset++, val);
1673 			rep[6].freq |= (val >> 15) & 0x1;
1674 			rep[7].freq = (val >> 8) & fmask;
1675 
1676 			rep[0].edge = (val >> 2) & pmask;
1677 			rep[1].edge = (val << 4) & pmask;
1678 
1679 			AR5K_EEPROM_READ(offset++, val);
1680 			rep[1].edge |= (val >> 12) & 0xf;
1681 			rep[2].edge = (val >> 6) & pmask;
1682 			rep[3].edge = val & pmask;
1683 
1684 			AR5K_EEPROM_READ(offset++, val);
1685 			rep[4].edge = (val >> 10) & pmask;
1686 			rep[5].edge = (val >> 4) & pmask;
1687 			rep[6].edge = (val << 2) & pmask;
1688 
1689 			AR5K_EEPROM_READ(offset++, val);
1690 			rep[6].edge |= (val >> 14) & 0x3;
1691 			rep[7].edge = (val >> 8) & pmask;
1692 		}
1693 		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1694 			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1695 				rep[j].freq, ctl_mode);
1696 		}
1697 		rep += AR5K_EEPROM_N_EDGES;
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 static int
1704 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1705 {
1706 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1707 	u32 offset;
1708 	u16 val;
1709 	int ret = 0, i;
1710 
1711 	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1712 				AR5K_EEPROM_N_CTLS(ee->ee_version);
1713 
1714 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1715 		/* No spur info for 5GHz */
1716 		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1717 		/* 2 channels for 2GHz (2464/2420) */
1718 		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1719 		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1720 		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1721 	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1722 		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1723 			AR5K_EEPROM_READ(offset, val);
1724 			ee->ee_spur_chans[i][0] = val;
1725 			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1726 									val);
1727 			ee->ee_spur_chans[i][1] = val;
1728 			offset++;
1729 		}
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 
1736 /***********************\
1737 * Init/Detach functions *
1738 \***********************/
1739 
1740 /*
1741  * Initialize eeprom data structure
1742  */
1743 int
1744 ath5k_eeprom_init(struct ath5k_hw *ah)
1745 {
1746 	int err;
1747 
1748 	err = ath5k_eeprom_init_header(ah);
1749 	if (err < 0)
1750 		return err;
1751 
1752 	err = ath5k_eeprom_init_modes(ah);
1753 	if (err < 0)
1754 		return err;
1755 
1756 	err = ath5k_eeprom_read_pcal_info(ah);
1757 	if (err < 0)
1758 		return err;
1759 
1760 	err = ath5k_eeprom_read_ctl_info(ah);
1761 	if (err < 0)
1762 		return err;
1763 
1764 	err = ath5k_eeprom_read_spur_chans(ah);
1765 	if (err < 0)
1766 		return err;
1767 
1768 	return 0;
1769 }
1770 
1771 void
1772 ath5k_eeprom_detach(struct ath5k_hw *ah)
1773 {
1774 	u8 mode;
1775 
1776 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1777 		ath5k_eeprom_free_pcal_info(ah, mode);
1778 }
1779 
1780 int
1781 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1782 {
1783 	switch (channel->hw_value & CHANNEL_MODES) {
1784 	case CHANNEL_A:
1785 	case CHANNEL_XR:
1786 		return AR5K_EEPROM_MODE_11A;
1787 	case CHANNEL_G:
1788 		return AR5K_EEPROM_MODE_11G;
1789 	case CHANNEL_B:
1790 		return AR5K_EEPROM_MODE_11B;
1791 	default:
1792 		return -1;
1793 	}
1794 }
1795