xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision fd589a8f)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 
54 #include <net/ieee80211_radiotap.h>
55 
56 #include <asm/unaligned.h>
57 
58 #include "base.h"
59 #include "reg.h"
60 #include "debug.h"
61 
62 static u8 ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt;
64 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
65 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
66 
67 static int modparam_all_channels;
68 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
69 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
70 
71 
72 /******************\
73 * Internal defines *
74 \******************/
75 
76 /* Module info */
77 MODULE_AUTHOR("Jiri Slaby");
78 MODULE_AUTHOR("Nick Kossifidis");
79 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
80 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
81 MODULE_LICENSE("Dual BSD/GPL");
82 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
83 
84 
85 /* Known PCI ids */
86 static const struct pci_device_id ath5k_pci_id_table[] = {
87 	{ PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
88 	{ PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
89 	{ PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
90 	{ PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
91 	{ PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
92 	{ PCI_VDEVICE(3COM_2,  0x0013) }, /* 3com 5212 */
93 	{ PCI_VDEVICE(3COM,    0x0013) }, /* 3com 3CRDAG675 5212 */
94 	{ PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
95 	{ PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
96 	{ PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
97 	{ PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
98 	{ PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
99 	{ PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
100 	{ PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
101 	{ PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
102 	{ PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
103 	{ PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
104 	{ PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
105 	{ 0 }
106 };
107 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
108 
109 /* Known SREVs */
110 static const struct ath5k_srev_name srev_names[] = {
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
143 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
144 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
145 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
146 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
147 };
148 
149 static const struct ieee80211_rate ath5k_rates[] = {
150 	{ .bitrate = 10,
151 	  .hw_value = ATH5K_RATE_CODE_1M, },
152 	{ .bitrate = 20,
153 	  .hw_value = ATH5K_RATE_CODE_2M,
154 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
155 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
156 	{ .bitrate = 55,
157 	  .hw_value = ATH5K_RATE_CODE_5_5M,
158 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
159 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
160 	{ .bitrate = 110,
161 	  .hw_value = ATH5K_RATE_CODE_11M,
162 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
163 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
164 	{ .bitrate = 60,
165 	  .hw_value = ATH5K_RATE_CODE_6M,
166 	  .flags = 0 },
167 	{ .bitrate = 90,
168 	  .hw_value = ATH5K_RATE_CODE_9M,
169 	  .flags = 0 },
170 	{ .bitrate = 120,
171 	  .hw_value = ATH5K_RATE_CODE_12M,
172 	  .flags = 0 },
173 	{ .bitrate = 180,
174 	  .hw_value = ATH5K_RATE_CODE_18M,
175 	  .flags = 0 },
176 	{ .bitrate = 240,
177 	  .hw_value = ATH5K_RATE_CODE_24M,
178 	  .flags = 0 },
179 	{ .bitrate = 360,
180 	  .hw_value = ATH5K_RATE_CODE_36M,
181 	  .flags = 0 },
182 	{ .bitrate = 480,
183 	  .hw_value = ATH5K_RATE_CODE_48M,
184 	  .flags = 0 },
185 	{ .bitrate = 540,
186 	  .hw_value = ATH5K_RATE_CODE_54M,
187 	  .flags = 0 },
188 	/* XR missing */
189 };
190 
191 /*
192  * Prototypes - PCI stack related functions
193  */
194 static int __devinit	ath5k_pci_probe(struct pci_dev *pdev,
195 				const struct pci_device_id *id);
196 static void __devexit	ath5k_pci_remove(struct pci_dev *pdev);
197 #ifdef CONFIG_PM
198 static int		ath5k_pci_suspend(struct pci_dev *pdev,
199 					pm_message_t state);
200 static int		ath5k_pci_resume(struct pci_dev *pdev);
201 #else
202 #define ath5k_pci_suspend NULL
203 #define ath5k_pci_resume NULL
204 #endif /* CONFIG_PM */
205 
206 static struct pci_driver ath5k_pci_driver = {
207 	.name		= KBUILD_MODNAME,
208 	.id_table	= ath5k_pci_id_table,
209 	.probe		= ath5k_pci_probe,
210 	.remove		= __devexit_p(ath5k_pci_remove),
211 	.suspend	= ath5k_pci_suspend,
212 	.resume		= ath5k_pci_resume,
213 };
214 
215 
216 
217 /*
218  * Prototypes - MAC 802.11 stack related functions
219  */
220 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
221 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
222 		struct ath5k_txq *txq);
223 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
224 static int ath5k_reset_wake(struct ath5k_softc *sc);
225 static int ath5k_start(struct ieee80211_hw *hw);
226 static void ath5k_stop(struct ieee80211_hw *hw);
227 static int ath5k_add_interface(struct ieee80211_hw *hw,
228 		struct ieee80211_if_init_conf *conf);
229 static void ath5k_remove_interface(struct ieee80211_hw *hw,
230 		struct ieee80211_if_init_conf *conf);
231 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
232 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
233 				   int mc_count, struct dev_addr_list *mc_list);
234 static void ath5k_configure_filter(struct ieee80211_hw *hw,
235 		unsigned int changed_flags,
236 		unsigned int *new_flags,
237 		u64 multicast);
238 static int ath5k_set_key(struct ieee80211_hw *hw,
239 		enum set_key_cmd cmd,
240 		struct ieee80211_vif *vif, struct ieee80211_sta *sta,
241 		struct ieee80211_key_conf *key);
242 static int ath5k_get_stats(struct ieee80211_hw *hw,
243 		struct ieee80211_low_level_stats *stats);
244 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
245 		struct ieee80211_tx_queue_stats *stats);
246 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
247 static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
248 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
249 static int ath5k_beacon_update(struct ieee80211_hw *hw,
250 		struct ieee80211_vif *vif);
251 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
252 		struct ieee80211_vif *vif,
253 		struct ieee80211_bss_conf *bss_conf,
254 		u32 changes);
255 static void ath5k_sw_scan_start(struct ieee80211_hw *hw);
256 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw);
257 
258 static const struct ieee80211_ops ath5k_hw_ops = {
259 	.tx 		= ath5k_tx,
260 	.start 		= ath5k_start,
261 	.stop 		= ath5k_stop,
262 	.add_interface 	= ath5k_add_interface,
263 	.remove_interface = ath5k_remove_interface,
264 	.config 	= ath5k_config,
265 	.prepare_multicast = ath5k_prepare_multicast,
266 	.configure_filter = ath5k_configure_filter,
267 	.set_key 	= ath5k_set_key,
268 	.get_stats 	= ath5k_get_stats,
269 	.conf_tx 	= NULL,
270 	.get_tx_stats 	= ath5k_get_tx_stats,
271 	.get_tsf 	= ath5k_get_tsf,
272 	.set_tsf 	= ath5k_set_tsf,
273 	.reset_tsf 	= ath5k_reset_tsf,
274 	.bss_info_changed = ath5k_bss_info_changed,
275 	.sw_scan_start	= ath5k_sw_scan_start,
276 	.sw_scan_complete = ath5k_sw_scan_complete,
277 };
278 
279 /*
280  * Prototypes - Internal functions
281  */
282 /* Attach detach */
283 static int 	ath5k_attach(struct pci_dev *pdev,
284 			struct ieee80211_hw *hw);
285 static void 	ath5k_detach(struct pci_dev *pdev,
286 			struct ieee80211_hw *hw);
287 /* Channel/mode setup */
288 static inline short ath5k_ieee2mhz(short chan);
289 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
290 				struct ieee80211_channel *channels,
291 				unsigned int mode,
292 				unsigned int max);
293 static int 	ath5k_setup_bands(struct ieee80211_hw *hw);
294 static int 	ath5k_chan_set(struct ath5k_softc *sc,
295 				struct ieee80211_channel *chan);
296 static void	ath5k_setcurmode(struct ath5k_softc *sc,
297 				unsigned int mode);
298 static void	ath5k_mode_setup(struct ath5k_softc *sc);
299 
300 /* Descriptor setup */
301 static int	ath5k_desc_alloc(struct ath5k_softc *sc,
302 				struct pci_dev *pdev);
303 static void	ath5k_desc_free(struct ath5k_softc *sc,
304 				struct pci_dev *pdev);
305 /* Buffers setup */
306 static int 	ath5k_rxbuf_setup(struct ath5k_softc *sc,
307 				struct ath5k_buf *bf);
308 static int 	ath5k_txbuf_setup(struct ath5k_softc *sc,
309 				struct ath5k_buf *bf,
310 				struct ath5k_txq *txq);
311 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
312 				struct ath5k_buf *bf)
313 {
314 	BUG_ON(!bf);
315 	if (!bf->skb)
316 		return;
317 	pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
318 			PCI_DMA_TODEVICE);
319 	dev_kfree_skb_any(bf->skb);
320 	bf->skb = NULL;
321 }
322 
323 static inline void ath5k_rxbuf_free(struct ath5k_softc *sc,
324 				struct ath5k_buf *bf)
325 {
326 	BUG_ON(!bf);
327 	if (!bf->skb)
328 		return;
329 	pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
330 			PCI_DMA_FROMDEVICE);
331 	dev_kfree_skb_any(bf->skb);
332 	bf->skb = NULL;
333 }
334 
335 
336 /* Queues setup */
337 static struct 	ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
338 				int qtype, int subtype);
339 static int 	ath5k_beaconq_setup(struct ath5k_hw *ah);
340 static int 	ath5k_beaconq_config(struct ath5k_softc *sc);
341 static void 	ath5k_txq_drainq(struct ath5k_softc *sc,
342 				struct ath5k_txq *txq);
343 static void 	ath5k_txq_cleanup(struct ath5k_softc *sc);
344 static void 	ath5k_txq_release(struct ath5k_softc *sc);
345 /* Rx handling */
346 static int 	ath5k_rx_start(struct ath5k_softc *sc);
347 static void 	ath5k_rx_stop(struct ath5k_softc *sc);
348 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
349 					struct ath5k_desc *ds,
350 					struct sk_buff *skb,
351 					struct ath5k_rx_status *rs);
352 static void 	ath5k_tasklet_rx(unsigned long data);
353 /* Tx handling */
354 static void 	ath5k_tx_processq(struct ath5k_softc *sc,
355 				struct ath5k_txq *txq);
356 static void 	ath5k_tasklet_tx(unsigned long data);
357 /* Beacon handling */
358 static int 	ath5k_beacon_setup(struct ath5k_softc *sc,
359 					struct ath5k_buf *bf);
360 static void 	ath5k_beacon_send(struct ath5k_softc *sc);
361 static void 	ath5k_beacon_config(struct ath5k_softc *sc);
362 static void	ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
363 static void	ath5k_tasklet_beacon(unsigned long data);
364 
365 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
366 {
367 	u64 tsf = ath5k_hw_get_tsf64(ah);
368 
369 	if ((tsf & 0x7fff) < rstamp)
370 		tsf -= 0x8000;
371 
372 	return (tsf & ~0x7fff) | rstamp;
373 }
374 
375 /* Interrupt handling */
376 static int 	ath5k_init(struct ath5k_softc *sc);
377 static int 	ath5k_stop_locked(struct ath5k_softc *sc);
378 static int 	ath5k_stop_hw(struct ath5k_softc *sc);
379 static irqreturn_t ath5k_intr(int irq, void *dev_id);
380 static void 	ath5k_tasklet_reset(unsigned long data);
381 
382 static void 	ath5k_tasklet_calibrate(unsigned long data);
383 
384 /*
385  * Module init/exit functions
386  */
387 static int __init
388 init_ath5k_pci(void)
389 {
390 	int ret;
391 
392 	ath5k_debug_init();
393 
394 	ret = pci_register_driver(&ath5k_pci_driver);
395 	if (ret) {
396 		printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
397 		return ret;
398 	}
399 
400 	return 0;
401 }
402 
403 static void __exit
404 exit_ath5k_pci(void)
405 {
406 	pci_unregister_driver(&ath5k_pci_driver);
407 
408 	ath5k_debug_finish();
409 }
410 
411 module_init(init_ath5k_pci);
412 module_exit(exit_ath5k_pci);
413 
414 
415 /********************\
416 * PCI Initialization *
417 \********************/
418 
419 static const char *
420 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
421 {
422 	const char *name = "xxxxx";
423 	unsigned int i;
424 
425 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
426 		if (srev_names[i].sr_type != type)
427 			continue;
428 
429 		if ((val & 0xf0) == srev_names[i].sr_val)
430 			name = srev_names[i].sr_name;
431 
432 		if ((val & 0xff) == srev_names[i].sr_val) {
433 			name = srev_names[i].sr_name;
434 			break;
435 		}
436 	}
437 
438 	return name;
439 }
440 
441 static int __devinit
442 ath5k_pci_probe(struct pci_dev *pdev,
443 		const struct pci_device_id *id)
444 {
445 	void __iomem *mem;
446 	struct ath5k_softc *sc;
447 	struct ieee80211_hw *hw;
448 	int ret;
449 	u8 csz;
450 
451 	ret = pci_enable_device(pdev);
452 	if (ret) {
453 		dev_err(&pdev->dev, "can't enable device\n");
454 		goto err;
455 	}
456 
457 	/* XXX 32-bit addressing only */
458 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
459 	if (ret) {
460 		dev_err(&pdev->dev, "32-bit DMA not available\n");
461 		goto err_dis;
462 	}
463 
464 	/*
465 	 * Cache line size is used to size and align various
466 	 * structures used to communicate with the hardware.
467 	 */
468 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
469 	if (csz == 0) {
470 		/*
471 		 * Linux 2.4.18 (at least) writes the cache line size
472 		 * register as a 16-bit wide register which is wrong.
473 		 * We must have this setup properly for rx buffer
474 		 * DMA to work so force a reasonable value here if it
475 		 * comes up zero.
476 		 */
477 		csz = L1_CACHE_BYTES >> 2;
478 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
479 	}
480 	/*
481 	 * The default setting of latency timer yields poor results,
482 	 * set it to the value used by other systems.  It may be worth
483 	 * tweaking this setting more.
484 	 */
485 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
486 
487 	/* Enable bus mastering */
488 	pci_set_master(pdev);
489 
490 	/*
491 	 * Disable the RETRY_TIMEOUT register (0x41) to keep
492 	 * PCI Tx retries from interfering with C3 CPU state.
493 	 */
494 	pci_write_config_byte(pdev, 0x41, 0);
495 
496 	ret = pci_request_region(pdev, 0, "ath5k");
497 	if (ret) {
498 		dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
499 		goto err_dis;
500 	}
501 
502 	mem = pci_iomap(pdev, 0, 0);
503 	if (!mem) {
504 		dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
505 		ret = -EIO;
506 		goto err_reg;
507 	}
508 
509 	/*
510 	 * Allocate hw (mac80211 main struct)
511 	 * and hw->priv (driver private data)
512 	 */
513 	hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
514 	if (hw == NULL) {
515 		dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
516 		ret = -ENOMEM;
517 		goto err_map;
518 	}
519 
520 	dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
521 
522 	/* Initialize driver private data */
523 	SET_IEEE80211_DEV(hw, &pdev->dev);
524 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
525 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
526 		    IEEE80211_HW_SIGNAL_DBM |
527 		    IEEE80211_HW_NOISE_DBM;
528 
529 	hw->wiphy->interface_modes =
530 		BIT(NL80211_IFTYPE_AP) |
531 		BIT(NL80211_IFTYPE_STATION) |
532 		BIT(NL80211_IFTYPE_ADHOC) |
533 		BIT(NL80211_IFTYPE_MESH_POINT);
534 
535 	hw->extra_tx_headroom = 2;
536 	hw->channel_change_time = 5000;
537 	sc = hw->priv;
538 	sc->hw = hw;
539 	sc->pdev = pdev;
540 
541 	ath5k_debug_init_device(sc);
542 
543 	/*
544 	 * Mark the device as detached to avoid processing
545 	 * interrupts until setup is complete.
546 	 */
547 	__set_bit(ATH_STAT_INVALID, sc->status);
548 
549 	sc->iobase = mem; /* So we can unmap it on detach */
550 	sc->common.cachelsz = csz << 2; /* convert to bytes */
551 	sc->opmode = NL80211_IFTYPE_STATION;
552 	sc->bintval = 1000;
553 	mutex_init(&sc->lock);
554 	spin_lock_init(&sc->rxbuflock);
555 	spin_lock_init(&sc->txbuflock);
556 	spin_lock_init(&sc->block);
557 
558 	/* Set private data */
559 	pci_set_drvdata(pdev, hw);
560 
561 	/* Setup interrupt handler */
562 	ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
563 	if (ret) {
564 		ATH5K_ERR(sc, "request_irq failed\n");
565 		goto err_free;
566 	}
567 
568 	/* Initialize device */
569 	sc->ah = ath5k_hw_attach(sc);
570 	if (IS_ERR(sc->ah)) {
571 		ret = PTR_ERR(sc->ah);
572 		goto err_irq;
573 	}
574 
575 	/* set up multi-rate retry capabilities */
576 	if (sc->ah->ah_version == AR5K_AR5212) {
577 		hw->max_rates = 4;
578 		hw->max_rate_tries = 11;
579 	}
580 
581 	/* Finish private driver data initialization */
582 	ret = ath5k_attach(pdev, hw);
583 	if (ret)
584 		goto err_ah;
585 
586 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
587 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
588 					sc->ah->ah_mac_srev,
589 					sc->ah->ah_phy_revision);
590 
591 	if (!sc->ah->ah_single_chip) {
592 		/* Single chip radio (!RF5111) */
593 		if (sc->ah->ah_radio_5ghz_revision &&
594 			!sc->ah->ah_radio_2ghz_revision) {
595 			/* No 5GHz support -> report 2GHz radio */
596 			if (!test_bit(AR5K_MODE_11A,
597 				sc->ah->ah_capabilities.cap_mode)) {
598 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
599 					ath5k_chip_name(AR5K_VERSION_RAD,
600 						sc->ah->ah_radio_5ghz_revision),
601 						sc->ah->ah_radio_5ghz_revision);
602 			/* No 2GHz support (5110 and some
603 			 * 5Ghz only cards) -> report 5Ghz radio */
604 			} else if (!test_bit(AR5K_MODE_11B,
605 				sc->ah->ah_capabilities.cap_mode)) {
606 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
607 					ath5k_chip_name(AR5K_VERSION_RAD,
608 						sc->ah->ah_radio_5ghz_revision),
609 						sc->ah->ah_radio_5ghz_revision);
610 			/* Multiband radio */
611 			} else {
612 				ATH5K_INFO(sc, "RF%s multiband radio found"
613 					" (0x%x)\n",
614 					ath5k_chip_name(AR5K_VERSION_RAD,
615 						sc->ah->ah_radio_5ghz_revision),
616 						sc->ah->ah_radio_5ghz_revision);
617 			}
618 		}
619 		/* Multi chip radio (RF5111 - RF2111) ->
620 		 * report both 2GHz/5GHz radios */
621 		else if (sc->ah->ah_radio_5ghz_revision &&
622 				sc->ah->ah_radio_2ghz_revision){
623 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
624 				ath5k_chip_name(AR5K_VERSION_RAD,
625 					sc->ah->ah_radio_5ghz_revision),
626 					sc->ah->ah_radio_5ghz_revision);
627 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
628 				ath5k_chip_name(AR5K_VERSION_RAD,
629 					sc->ah->ah_radio_2ghz_revision),
630 					sc->ah->ah_radio_2ghz_revision);
631 		}
632 	}
633 
634 
635 	/* ready to process interrupts */
636 	__clear_bit(ATH_STAT_INVALID, sc->status);
637 
638 	return 0;
639 err_ah:
640 	ath5k_hw_detach(sc->ah);
641 err_irq:
642 	free_irq(pdev->irq, sc);
643 err_free:
644 	ieee80211_free_hw(hw);
645 err_map:
646 	pci_iounmap(pdev, mem);
647 err_reg:
648 	pci_release_region(pdev, 0);
649 err_dis:
650 	pci_disable_device(pdev);
651 err:
652 	return ret;
653 }
654 
655 static void __devexit
656 ath5k_pci_remove(struct pci_dev *pdev)
657 {
658 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
659 	struct ath5k_softc *sc = hw->priv;
660 
661 	ath5k_debug_finish_device(sc);
662 	ath5k_detach(pdev, hw);
663 	ath5k_hw_detach(sc->ah);
664 	free_irq(pdev->irq, sc);
665 	pci_iounmap(pdev, sc->iobase);
666 	pci_release_region(pdev, 0);
667 	pci_disable_device(pdev);
668 	ieee80211_free_hw(hw);
669 }
670 
671 #ifdef CONFIG_PM
672 static int
673 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
674 {
675 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
676 	struct ath5k_softc *sc = hw->priv;
677 
678 	ath5k_led_off(sc);
679 
680 	pci_save_state(pdev);
681 	pci_disable_device(pdev);
682 	pci_set_power_state(pdev, PCI_D3hot);
683 
684 	return 0;
685 }
686 
687 static int
688 ath5k_pci_resume(struct pci_dev *pdev)
689 {
690 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
691 	struct ath5k_softc *sc = hw->priv;
692 	int err;
693 
694 	pci_restore_state(pdev);
695 
696 	err = pci_enable_device(pdev);
697 	if (err)
698 		return err;
699 
700 	/*
701 	 * Suspend/Resume resets the PCI configuration space, so we have to
702 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep
703 	 * PCI Tx retries from interfering with C3 CPU state
704 	 */
705 	pci_write_config_byte(pdev, 0x41, 0);
706 
707 	ath5k_led_enable(sc);
708 	return 0;
709 }
710 #endif /* CONFIG_PM */
711 
712 
713 /***********************\
714 * Driver Initialization *
715 \***********************/
716 
717 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
718 {
719 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
720 	struct ath5k_softc *sc = hw->priv;
721 	struct ath_regulatory *regulatory = &sc->common.regulatory;
722 
723 	return ath_reg_notifier_apply(wiphy, request, regulatory);
724 }
725 
726 static int
727 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
728 {
729 	struct ath5k_softc *sc = hw->priv;
730 	struct ath5k_hw *ah = sc->ah;
731 	struct ath_regulatory *regulatory = &sc->common.regulatory;
732 	u8 mac[ETH_ALEN] = {};
733 	int ret;
734 
735 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
736 
737 	/*
738 	 * Check if the MAC has multi-rate retry support.
739 	 * We do this by trying to setup a fake extended
740 	 * descriptor.  MAC's that don't have support will
741 	 * return false w/o doing anything.  MAC's that do
742 	 * support it will return true w/o doing anything.
743 	 */
744 	ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
745 	if (ret < 0)
746 		goto err;
747 	if (ret > 0)
748 		__set_bit(ATH_STAT_MRRETRY, sc->status);
749 
750 	/*
751 	 * Collect the channel list.  The 802.11 layer
752 	 * is resposible for filtering this list based
753 	 * on settings like the phy mode and regulatory
754 	 * domain restrictions.
755 	 */
756 	ret = ath5k_setup_bands(hw);
757 	if (ret) {
758 		ATH5K_ERR(sc, "can't get channels\n");
759 		goto err;
760 	}
761 
762 	/* NB: setup here so ath5k_rate_update is happy */
763 	if (test_bit(AR5K_MODE_11A, ah->ah_modes))
764 		ath5k_setcurmode(sc, AR5K_MODE_11A);
765 	else
766 		ath5k_setcurmode(sc, AR5K_MODE_11B);
767 
768 	/*
769 	 * Allocate tx+rx descriptors and populate the lists.
770 	 */
771 	ret = ath5k_desc_alloc(sc, pdev);
772 	if (ret) {
773 		ATH5K_ERR(sc, "can't allocate descriptors\n");
774 		goto err;
775 	}
776 
777 	/*
778 	 * Allocate hardware transmit queues: one queue for
779 	 * beacon frames and one data queue for each QoS
780 	 * priority.  Note that hw functions handle reseting
781 	 * these queues at the needed time.
782 	 */
783 	ret = ath5k_beaconq_setup(ah);
784 	if (ret < 0) {
785 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
786 		goto err_desc;
787 	}
788 	sc->bhalq = ret;
789 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
790 	if (IS_ERR(sc->cabq)) {
791 		ATH5K_ERR(sc, "can't setup cab queue\n");
792 		ret = PTR_ERR(sc->cabq);
793 		goto err_bhal;
794 	}
795 
796 	sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
797 	if (IS_ERR(sc->txq)) {
798 		ATH5K_ERR(sc, "can't setup xmit queue\n");
799 		ret = PTR_ERR(sc->txq);
800 		goto err_queues;
801 	}
802 
803 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
804 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
805 	tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
806 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
807 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
808 
809 	ret = ath5k_eeprom_read_mac(ah, mac);
810 	if (ret) {
811 		ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
812 			sc->pdev->device);
813 		goto err_queues;
814 	}
815 
816 	SET_IEEE80211_PERM_ADDR(hw, mac);
817 	/* All MAC address bits matter for ACKs */
818 	memset(sc->bssidmask, 0xff, ETH_ALEN);
819 	ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
820 
821 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
822 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
823 	if (ret) {
824 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
825 		goto err_queues;
826 	}
827 
828 	ret = ieee80211_register_hw(hw);
829 	if (ret) {
830 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
831 		goto err_queues;
832 	}
833 
834 	if (!ath_is_world_regd(regulatory))
835 		regulatory_hint(hw->wiphy, regulatory->alpha2);
836 
837 	ath5k_init_leds(sc);
838 
839 	return 0;
840 err_queues:
841 	ath5k_txq_release(sc);
842 err_bhal:
843 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
844 err_desc:
845 	ath5k_desc_free(sc, pdev);
846 err:
847 	return ret;
848 }
849 
850 static void
851 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
852 {
853 	struct ath5k_softc *sc = hw->priv;
854 
855 	/*
856 	 * NB: the order of these is important:
857 	 * o call the 802.11 layer before detaching ath5k_hw to
858 	 *   insure callbacks into the driver to delete global
859 	 *   key cache entries can be handled
860 	 * o reclaim the tx queue data structures after calling
861 	 *   the 802.11 layer as we'll get called back to reclaim
862 	 *   node state and potentially want to use them
863 	 * o to cleanup the tx queues the hal is called, so detach
864 	 *   it last
865 	 * XXX: ??? detach ath5k_hw ???
866 	 * Other than that, it's straightforward...
867 	 */
868 	ieee80211_unregister_hw(hw);
869 	ath5k_desc_free(sc, pdev);
870 	ath5k_txq_release(sc);
871 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
872 	ath5k_unregister_leds(sc);
873 
874 	/*
875 	 * NB: can't reclaim these until after ieee80211_ifdetach
876 	 * returns because we'll get called back to reclaim node
877 	 * state and potentially want to use them.
878 	 */
879 }
880 
881 
882 
883 
884 /********************\
885 * Channel/mode setup *
886 \********************/
887 
888 /*
889  * Convert IEEE channel number to MHz frequency.
890  */
891 static inline short
892 ath5k_ieee2mhz(short chan)
893 {
894 	if (chan <= 14 || chan >= 27)
895 		return ieee80211chan2mhz(chan);
896 	else
897 		return 2212 + chan * 20;
898 }
899 
900 /*
901  * Returns true for the channel numbers used without all_channels modparam.
902  */
903 static bool ath5k_is_standard_channel(short chan)
904 {
905 	return ((chan <= 14) ||
906 		/* UNII 1,2 */
907 		((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
908 		/* midband */
909 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
910 		/* UNII-3 */
911 		((chan & 3) == 1 && chan >= 149 && chan <= 165));
912 }
913 
914 static unsigned int
915 ath5k_copy_channels(struct ath5k_hw *ah,
916 		struct ieee80211_channel *channels,
917 		unsigned int mode,
918 		unsigned int max)
919 {
920 	unsigned int i, count, size, chfreq, freq, ch;
921 
922 	if (!test_bit(mode, ah->ah_modes))
923 		return 0;
924 
925 	switch (mode) {
926 	case AR5K_MODE_11A:
927 	case AR5K_MODE_11A_TURBO:
928 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
929 		size = 220 ;
930 		chfreq = CHANNEL_5GHZ;
931 		break;
932 	case AR5K_MODE_11B:
933 	case AR5K_MODE_11G:
934 	case AR5K_MODE_11G_TURBO:
935 		size = 26;
936 		chfreq = CHANNEL_2GHZ;
937 		break;
938 	default:
939 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
940 		return 0;
941 	}
942 
943 	for (i = 0, count = 0; i < size && max > 0; i++) {
944 		ch = i + 1 ;
945 		freq = ath5k_ieee2mhz(ch);
946 
947 		/* Check if channel is supported by the chipset */
948 		if (!ath5k_channel_ok(ah, freq, chfreq))
949 			continue;
950 
951 		if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
952 			continue;
953 
954 		/* Write channel info and increment counter */
955 		channels[count].center_freq = freq;
956 		channels[count].band = (chfreq == CHANNEL_2GHZ) ?
957 			IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
958 		switch (mode) {
959 		case AR5K_MODE_11A:
960 		case AR5K_MODE_11G:
961 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
962 			break;
963 		case AR5K_MODE_11A_TURBO:
964 		case AR5K_MODE_11G_TURBO:
965 			channels[count].hw_value = chfreq |
966 				CHANNEL_OFDM | CHANNEL_TURBO;
967 			break;
968 		case AR5K_MODE_11B:
969 			channels[count].hw_value = CHANNEL_B;
970 		}
971 
972 		count++;
973 		max--;
974 	}
975 
976 	return count;
977 }
978 
979 static void
980 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
981 {
982 	u8 i;
983 
984 	for (i = 0; i < AR5K_MAX_RATES; i++)
985 		sc->rate_idx[b->band][i] = -1;
986 
987 	for (i = 0; i < b->n_bitrates; i++) {
988 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
989 		if (b->bitrates[i].hw_value_short)
990 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
991 	}
992 }
993 
994 static int
995 ath5k_setup_bands(struct ieee80211_hw *hw)
996 {
997 	struct ath5k_softc *sc = hw->priv;
998 	struct ath5k_hw *ah = sc->ah;
999 	struct ieee80211_supported_band *sband;
1000 	int max_c, count_c = 0;
1001 	int i;
1002 
1003 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
1004 	max_c = ARRAY_SIZE(sc->channels);
1005 
1006 	/* 2GHz band */
1007 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
1008 	sband->band = IEEE80211_BAND_2GHZ;
1009 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
1010 
1011 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
1012 		/* G mode */
1013 		memcpy(sband->bitrates, &ath5k_rates[0],
1014 		       sizeof(struct ieee80211_rate) * 12);
1015 		sband->n_bitrates = 12;
1016 
1017 		sband->channels = sc->channels;
1018 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1019 					AR5K_MODE_11G, max_c);
1020 
1021 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1022 		count_c = sband->n_channels;
1023 		max_c -= count_c;
1024 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
1025 		/* B mode */
1026 		memcpy(sband->bitrates, &ath5k_rates[0],
1027 		       sizeof(struct ieee80211_rate) * 4);
1028 		sband->n_bitrates = 4;
1029 
1030 		/* 5211 only supports B rates and uses 4bit rate codes
1031 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1032 		 * fix them up here:
1033 		 */
1034 		if (ah->ah_version == AR5K_AR5211) {
1035 			for (i = 0; i < 4; i++) {
1036 				sband->bitrates[i].hw_value =
1037 					sband->bitrates[i].hw_value & 0xF;
1038 				sband->bitrates[i].hw_value_short =
1039 					sband->bitrates[i].hw_value_short & 0xF;
1040 			}
1041 		}
1042 
1043 		sband->channels = sc->channels;
1044 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1045 					AR5K_MODE_11B, max_c);
1046 
1047 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1048 		count_c = sband->n_channels;
1049 		max_c -= count_c;
1050 	}
1051 	ath5k_setup_rate_idx(sc, sband);
1052 
1053 	/* 5GHz band, A mode */
1054 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
1055 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1056 		sband->band = IEEE80211_BAND_5GHZ;
1057 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1058 
1059 		memcpy(sband->bitrates, &ath5k_rates[4],
1060 		       sizeof(struct ieee80211_rate) * 8);
1061 		sband->n_bitrates = 8;
1062 
1063 		sband->channels = &sc->channels[count_c];
1064 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1065 					AR5K_MODE_11A, max_c);
1066 
1067 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1068 	}
1069 	ath5k_setup_rate_idx(sc, sband);
1070 
1071 	ath5k_debug_dump_bands(sc);
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Set/change channels. We always reset the chip.
1078  * To accomplish this we must first cleanup any pending DMA,
1079  * then restart stuff after a la  ath5k_init.
1080  *
1081  * Called with sc->lock.
1082  */
1083 static int
1084 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1085 {
1086 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1087 		sc->curchan->center_freq, chan->center_freq);
1088 
1089 	/*
1090 	 * To switch channels clear any pending DMA operations;
1091 	 * wait long enough for the RX fifo to drain, reset the
1092 	 * hardware at the new frequency, and then re-enable
1093 	 * the relevant bits of the h/w.
1094 	 */
1095 	return ath5k_reset(sc, chan);
1096 }
1097 
1098 static void
1099 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1100 {
1101 	sc->curmode = mode;
1102 
1103 	if (mode == AR5K_MODE_11A) {
1104 		sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1105 	} else {
1106 		sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1107 	}
1108 }
1109 
1110 static void
1111 ath5k_mode_setup(struct ath5k_softc *sc)
1112 {
1113 	struct ath5k_hw *ah = sc->ah;
1114 	u32 rfilt;
1115 
1116 	ah->ah_op_mode = sc->opmode;
1117 
1118 	/* configure rx filter */
1119 	rfilt = sc->filter_flags;
1120 	ath5k_hw_set_rx_filter(ah, rfilt);
1121 
1122 	if (ath5k_hw_hasbssidmask(ah))
1123 		ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1124 
1125 	/* configure operational mode */
1126 	ath5k_hw_set_opmode(ah);
1127 
1128 	ath5k_hw_set_mcast_filter(ah, 0, 0);
1129 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1130 }
1131 
1132 static inline int
1133 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1134 {
1135 	int rix;
1136 
1137 	/* return base rate on errors */
1138 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1139 			"hw_rix out of bounds: %x\n", hw_rix))
1140 		return 0;
1141 
1142 	rix = sc->rate_idx[sc->curband->band][hw_rix];
1143 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1144 		rix = 0;
1145 
1146 	return rix;
1147 }
1148 
1149 /***************\
1150 * Buffers setup *
1151 \***************/
1152 
1153 static
1154 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
1155 {
1156 	struct sk_buff *skb;
1157 
1158 	/*
1159 	 * Allocate buffer with headroom_needed space for the
1160 	 * fake physical layer header at the start.
1161 	 */
1162 	skb = ath_rxbuf_alloc(&sc->common,
1163 			      sc->rxbufsize + sc->common.cachelsz - 1,
1164 			      GFP_ATOMIC);
1165 
1166 	if (!skb) {
1167 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1168 				sc->rxbufsize + sc->common.cachelsz - 1);
1169 		return NULL;
1170 	}
1171 
1172 	*skb_addr = pci_map_single(sc->pdev,
1173 		skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1174 	if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
1175 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1176 		dev_kfree_skb(skb);
1177 		return NULL;
1178 	}
1179 	return skb;
1180 }
1181 
1182 static int
1183 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1184 {
1185 	struct ath5k_hw *ah = sc->ah;
1186 	struct sk_buff *skb = bf->skb;
1187 	struct ath5k_desc *ds;
1188 
1189 	if (!skb) {
1190 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
1191 		if (!skb)
1192 			return -ENOMEM;
1193 		bf->skb = skb;
1194 	}
1195 
1196 	/*
1197 	 * Setup descriptors.  For receive we always terminate
1198 	 * the descriptor list with a self-linked entry so we'll
1199 	 * not get overrun under high load (as can happen with a
1200 	 * 5212 when ANI processing enables PHY error frames).
1201 	 *
1202 	 * To insure the last descriptor is self-linked we create
1203 	 * each descriptor as self-linked and add it to the end.  As
1204 	 * each additional descriptor is added the previous self-linked
1205 	 * entry is ``fixed'' naturally.  This should be safe even
1206 	 * if DMA is happening.  When processing RX interrupts we
1207 	 * never remove/process the last, self-linked, entry on the
1208 	 * descriptor list.  This insures the hardware always has
1209 	 * someplace to write a new frame.
1210 	 */
1211 	ds = bf->desc;
1212 	ds->ds_link = bf->daddr;	/* link to self */
1213 	ds->ds_data = bf->skbaddr;
1214 	ah->ah_setup_rx_desc(ah, ds,
1215 		skb_tailroom(skb),	/* buffer size */
1216 		0);
1217 
1218 	if (sc->rxlink != NULL)
1219 		*sc->rxlink = bf->daddr;
1220 	sc->rxlink = &ds->ds_link;
1221 	return 0;
1222 }
1223 
1224 static int
1225 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1226 		  struct ath5k_txq *txq)
1227 {
1228 	struct ath5k_hw *ah = sc->ah;
1229 	struct ath5k_desc *ds = bf->desc;
1230 	struct sk_buff *skb = bf->skb;
1231 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1232 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1233 	struct ieee80211_rate *rate;
1234 	unsigned int mrr_rate[3], mrr_tries[3];
1235 	int i, ret;
1236 	u16 hw_rate;
1237 	u16 cts_rate = 0;
1238 	u16 duration = 0;
1239 	u8 rc_flags;
1240 
1241 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1242 
1243 	/* XXX endianness */
1244 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1245 			PCI_DMA_TODEVICE);
1246 
1247 	rate = ieee80211_get_tx_rate(sc->hw, info);
1248 
1249 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1250 		flags |= AR5K_TXDESC_NOACK;
1251 
1252 	rc_flags = info->control.rates[0].flags;
1253 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
1254 		rate->hw_value_short : rate->hw_value;
1255 
1256 	pktlen = skb->len;
1257 
1258 	/* FIXME: If we are in g mode and rate is a CCK rate
1259 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1260 	 * from tx power (value is in dB units already) */
1261 	if (info->control.hw_key) {
1262 		keyidx = info->control.hw_key->hw_key_idx;
1263 		pktlen += info->control.hw_key->icv_len;
1264 	}
1265 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1266 		flags |= AR5K_TXDESC_RTSENA;
1267 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1268 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
1269 			sc->vif, pktlen, info));
1270 	}
1271 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1272 		flags |= AR5K_TXDESC_CTSENA;
1273 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1274 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
1275 			sc->vif, pktlen, info));
1276 	}
1277 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1278 		ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1279 		(sc->power_level * 2),
1280 		hw_rate,
1281 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
1282 		cts_rate, duration);
1283 	if (ret)
1284 		goto err_unmap;
1285 
1286 	memset(mrr_rate, 0, sizeof(mrr_rate));
1287 	memset(mrr_tries, 0, sizeof(mrr_tries));
1288 	for (i = 0; i < 3; i++) {
1289 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1290 		if (!rate)
1291 			break;
1292 
1293 		mrr_rate[i] = rate->hw_value;
1294 		mrr_tries[i] = info->control.rates[i + 1].count;
1295 	}
1296 
1297 	ah->ah_setup_mrr_tx_desc(ah, ds,
1298 		mrr_rate[0], mrr_tries[0],
1299 		mrr_rate[1], mrr_tries[1],
1300 		mrr_rate[2], mrr_tries[2]);
1301 
1302 	ds->ds_link = 0;
1303 	ds->ds_data = bf->skbaddr;
1304 
1305 	spin_lock_bh(&txq->lock);
1306 	list_add_tail(&bf->list, &txq->q);
1307 	sc->tx_stats[txq->qnum].len++;
1308 	if (txq->link == NULL) /* is this first packet? */
1309 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1310 	else /* no, so only link it */
1311 		*txq->link = bf->daddr;
1312 
1313 	txq->link = &ds->ds_link;
1314 	ath5k_hw_start_tx_dma(ah, txq->qnum);
1315 	mmiowb();
1316 	spin_unlock_bh(&txq->lock);
1317 
1318 	return 0;
1319 err_unmap:
1320 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1321 	return ret;
1322 }
1323 
1324 /*******************\
1325 * Descriptors setup *
1326 \*******************/
1327 
1328 static int
1329 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1330 {
1331 	struct ath5k_desc *ds;
1332 	struct ath5k_buf *bf;
1333 	dma_addr_t da;
1334 	unsigned int i;
1335 	int ret;
1336 
1337 	/* allocate descriptors */
1338 	sc->desc_len = sizeof(struct ath5k_desc) *
1339 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1340 	sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1341 	if (sc->desc == NULL) {
1342 		ATH5K_ERR(sc, "can't allocate descriptors\n");
1343 		ret = -ENOMEM;
1344 		goto err;
1345 	}
1346 	ds = sc->desc;
1347 	da = sc->desc_daddr;
1348 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1349 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1350 
1351 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1352 			sizeof(struct ath5k_buf), GFP_KERNEL);
1353 	if (bf == NULL) {
1354 		ATH5K_ERR(sc, "can't allocate bufptr\n");
1355 		ret = -ENOMEM;
1356 		goto err_free;
1357 	}
1358 	sc->bufptr = bf;
1359 
1360 	INIT_LIST_HEAD(&sc->rxbuf);
1361 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1362 		bf->desc = ds;
1363 		bf->daddr = da;
1364 		list_add_tail(&bf->list, &sc->rxbuf);
1365 	}
1366 
1367 	INIT_LIST_HEAD(&sc->txbuf);
1368 	sc->txbuf_len = ATH_TXBUF;
1369 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1370 			da += sizeof(*ds)) {
1371 		bf->desc = ds;
1372 		bf->daddr = da;
1373 		list_add_tail(&bf->list, &sc->txbuf);
1374 	}
1375 
1376 	/* beacon buffer */
1377 	bf->desc = ds;
1378 	bf->daddr = da;
1379 	sc->bbuf = bf;
1380 
1381 	return 0;
1382 err_free:
1383 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1384 err:
1385 	sc->desc = NULL;
1386 	return ret;
1387 }
1388 
1389 static void
1390 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1391 {
1392 	struct ath5k_buf *bf;
1393 
1394 	ath5k_txbuf_free(sc, sc->bbuf);
1395 	list_for_each_entry(bf, &sc->txbuf, list)
1396 		ath5k_txbuf_free(sc, bf);
1397 	list_for_each_entry(bf, &sc->rxbuf, list)
1398 		ath5k_rxbuf_free(sc, bf);
1399 
1400 	/* Free memory associated with all descriptors */
1401 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1402 
1403 	kfree(sc->bufptr);
1404 	sc->bufptr = NULL;
1405 }
1406 
1407 
1408 
1409 
1410 
1411 /**************\
1412 * Queues setup *
1413 \**************/
1414 
1415 static struct ath5k_txq *
1416 ath5k_txq_setup(struct ath5k_softc *sc,
1417 		int qtype, int subtype)
1418 {
1419 	struct ath5k_hw *ah = sc->ah;
1420 	struct ath5k_txq *txq;
1421 	struct ath5k_txq_info qi = {
1422 		.tqi_subtype = subtype,
1423 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1424 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1425 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT
1426 	};
1427 	int qnum;
1428 
1429 	/*
1430 	 * Enable interrupts only for EOL and DESC conditions.
1431 	 * We mark tx descriptors to receive a DESC interrupt
1432 	 * when a tx queue gets deep; otherwise waiting for the
1433 	 * EOL to reap descriptors.  Note that this is done to
1434 	 * reduce interrupt load and this only defers reaping
1435 	 * descriptors, never transmitting frames.  Aside from
1436 	 * reducing interrupts this also permits more concurrency.
1437 	 * The only potential downside is if the tx queue backs
1438 	 * up in which case the top half of the kernel may backup
1439 	 * due to a lack of tx descriptors.
1440 	 */
1441 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1442 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1443 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1444 	if (qnum < 0) {
1445 		/*
1446 		 * NB: don't print a message, this happens
1447 		 * normally on parts with too few tx queues
1448 		 */
1449 		return ERR_PTR(qnum);
1450 	}
1451 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
1452 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1453 			qnum, ARRAY_SIZE(sc->txqs));
1454 		ath5k_hw_release_tx_queue(ah, qnum);
1455 		return ERR_PTR(-EINVAL);
1456 	}
1457 	txq = &sc->txqs[qnum];
1458 	if (!txq->setup) {
1459 		txq->qnum = qnum;
1460 		txq->link = NULL;
1461 		INIT_LIST_HEAD(&txq->q);
1462 		spin_lock_init(&txq->lock);
1463 		txq->setup = true;
1464 	}
1465 	return &sc->txqs[qnum];
1466 }
1467 
1468 static int
1469 ath5k_beaconq_setup(struct ath5k_hw *ah)
1470 {
1471 	struct ath5k_txq_info qi = {
1472 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1473 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1474 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1475 		/* NB: for dynamic turbo, don't enable any other interrupts */
1476 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1477 	};
1478 
1479 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1480 }
1481 
1482 static int
1483 ath5k_beaconq_config(struct ath5k_softc *sc)
1484 {
1485 	struct ath5k_hw *ah = sc->ah;
1486 	struct ath5k_txq_info qi;
1487 	int ret;
1488 
1489 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1490 	if (ret)
1491 		return ret;
1492 	if (sc->opmode == NL80211_IFTYPE_AP ||
1493 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1494 		/*
1495 		 * Always burst out beacon and CAB traffic
1496 		 * (aifs = cwmin = cwmax = 0)
1497 		 */
1498 		qi.tqi_aifs = 0;
1499 		qi.tqi_cw_min = 0;
1500 		qi.tqi_cw_max = 0;
1501 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1502 		/*
1503 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1504 		 */
1505 		qi.tqi_aifs = 0;
1506 		qi.tqi_cw_min = 0;
1507 		qi.tqi_cw_max = 2 * ah->ah_cw_min;
1508 	}
1509 
1510 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1511 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1512 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1513 
1514 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1515 	if (ret) {
1516 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1517 			"hardware queue!\n", __func__);
1518 		return ret;
1519 	}
1520 
1521 	return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1522 }
1523 
1524 static void
1525 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1526 {
1527 	struct ath5k_buf *bf, *bf0;
1528 
1529 	/*
1530 	 * NB: this assumes output has been stopped and
1531 	 *     we do not need to block ath5k_tx_tasklet
1532 	 */
1533 	spin_lock_bh(&txq->lock);
1534 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1535 		ath5k_debug_printtxbuf(sc, bf);
1536 
1537 		ath5k_txbuf_free(sc, bf);
1538 
1539 		spin_lock_bh(&sc->txbuflock);
1540 		sc->tx_stats[txq->qnum].len--;
1541 		list_move_tail(&bf->list, &sc->txbuf);
1542 		sc->txbuf_len++;
1543 		spin_unlock_bh(&sc->txbuflock);
1544 	}
1545 	txq->link = NULL;
1546 	spin_unlock_bh(&txq->lock);
1547 }
1548 
1549 /*
1550  * Drain the transmit queues and reclaim resources.
1551  */
1552 static void
1553 ath5k_txq_cleanup(struct ath5k_softc *sc)
1554 {
1555 	struct ath5k_hw *ah = sc->ah;
1556 	unsigned int i;
1557 
1558 	/* XXX return value */
1559 	if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1560 		/* don't touch the hardware if marked invalid */
1561 		ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1562 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1563 			ath5k_hw_get_txdp(ah, sc->bhalq));
1564 		for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1565 			if (sc->txqs[i].setup) {
1566 				ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1567 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1568 					"link %p\n",
1569 					sc->txqs[i].qnum,
1570 					ath5k_hw_get_txdp(ah,
1571 							sc->txqs[i].qnum),
1572 					sc->txqs[i].link);
1573 			}
1574 	}
1575 	ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1576 
1577 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1578 		if (sc->txqs[i].setup)
1579 			ath5k_txq_drainq(sc, &sc->txqs[i]);
1580 }
1581 
1582 static void
1583 ath5k_txq_release(struct ath5k_softc *sc)
1584 {
1585 	struct ath5k_txq *txq = sc->txqs;
1586 	unsigned int i;
1587 
1588 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1589 		if (txq->setup) {
1590 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1591 			txq->setup = false;
1592 		}
1593 }
1594 
1595 
1596 
1597 
1598 /*************\
1599 * RX Handling *
1600 \*************/
1601 
1602 /*
1603  * Enable the receive h/w following a reset.
1604  */
1605 static int
1606 ath5k_rx_start(struct ath5k_softc *sc)
1607 {
1608 	struct ath5k_hw *ah = sc->ah;
1609 	struct ath5k_buf *bf;
1610 	int ret;
1611 
1612 	sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->common.cachelsz);
1613 
1614 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1615 		sc->common.cachelsz, sc->rxbufsize);
1616 
1617 	spin_lock_bh(&sc->rxbuflock);
1618 	sc->rxlink = NULL;
1619 	list_for_each_entry(bf, &sc->rxbuf, list) {
1620 		ret = ath5k_rxbuf_setup(sc, bf);
1621 		if (ret != 0) {
1622 			spin_unlock_bh(&sc->rxbuflock);
1623 			goto err;
1624 		}
1625 	}
1626 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1627 	ath5k_hw_set_rxdp(ah, bf->daddr);
1628 	spin_unlock_bh(&sc->rxbuflock);
1629 
1630 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1631 	ath5k_mode_setup(sc);		/* set filters, etc. */
1632 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1633 
1634 	return 0;
1635 err:
1636 	return ret;
1637 }
1638 
1639 /*
1640  * Disable the receive h/w in preparation for a reset.
1641  */
1642 static void
1643 ath5k_rx_stop(struct ath5k_softc *sc)
1644 {
1645 	struct ath5k_hw *ah = sc->ah;
1646 
1647 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1648 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1649 	ath5k_hw_stop_rx_dma(ah);	/* disable DMA engine */
1650 
1651 	ath5k_debug_printrxbuffs(sc, ah);
1652 
1653 	sc->rxlink = NULL;		/* just in case */
1654 }
1655 
1656 static unsigned int
1657 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1658 		struct sk_buff *skb, struct ath5k_rx_status *rs)
1659 {
1660 	struct ieee80211_hdr *hdr = (void *)skb->data;
1661 	unsigned int keyix, hlen;
1662 
1663 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1664 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1665 		return RX_FLAG_DECRYPTED;
1666 
1667 	/* Apparently when a default key is used to decrypt the packet
1668 	   the hw does not set the index used to decrypt.  In such cases
1669 	   get the index from the packet. */
1670 	hlen = ieee80211_hdrlen(hdr->frame_control);
1671 	if (ieee80211_has_protected(hdr->frame_control) &&
1672 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1673 	    skb->len >= hlen + 4) {
1674 		keyix = skb->data[hlen + 3] >> 6;
1675 
1676 		if (test_bit(keyix, sc->keymap))
1677 			return RX_FLAG_DECRYPTED;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 
1684 static void
1685 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1686 		     struct ieee80211_rx_status *rxs)
1687 {
1688 	u64 tsf, bc_tstamp;
1689 	u32 hw_tu;
1690 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1691 
1692 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1693 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1694 	    memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1695 		/*
1696 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1697 		 * have updated the local TSF. We have to work around various
1698 		 * hardware bugs, though...
1699 		 */
1700 		tsf = ath5k_hw_get_tsf64(sc->ah);
1701 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1702 		hw_tu = TSF_TO_TU(tsf);
1703 
1704 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1705 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1706 			(unsigned long long)bc_tstamp,
1707 			(unsigned long long)rxs->mactime,
1708 			(unsigned long long)(rxs->mactime - bc_tstamp),
1709 			(unsigned long long)tsf);
1710 
1711 		/*
1712 		 * Sometimes the HW will give us a wrong tstamp in the rx
1713 		 * status, causing the timestamp extension to go wrong.
1714 		 * (This seems to happen especially with beacon frames bigger
1715 		 * than 78 byte (incl. FCS))
1716 		 * But we know that the receive timestamp must be later than the
1717 		 * timestamp of the beacon since HW must have synced to that.
1718 		 *
1719 		 * NOTE: here we assume mactime to be after the frame was
1720 		 * received, not like mac80211 which defines it at the start.
1721 		 */
1722 		if (bc_tstamp > rxs->mactime) {
1723 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1724 				"fixing mactime from %llx to %llx\n",
1725 				(unsigned long long)rxs->mactime,
1726 				(unsigned long long)tsf);
1727 			rxs->mactime = tsf;
1728 		}
1729 
1730 		/*
1731 		 * Local TSF might have moved higher than our beacon timers,
1732 		 * in that case we have to update them to continue sending
1733 		 * beacons. This also takes care of synchronizing beacon sending
1734 		 * times with other stations.
1735 		 */
1736 		if (hw_tu >= sc->nexttbtt)
1737 			ath5k_beacon_update_timers(sc, bc_tstamp);
1738 	}
1739 }
1740 
1741 static void
1742 ath5k_tasklet_rx(unsigned long data)
1743 {
1744 	struct ieee80211_rx_status *rxs;
1745 	struct ath5k_rx_status rs = {};
1746 	struct sk_buff *skb, *next_skb;
1747 	dma_addr_t next_skb_addr;
1748 	struct ath5k_softc *sc = (void *)data;
1749 	struct ath5k_buf *bf;
1750 	struct ath5k_desc *ds;
1751 	int ret;
1752 	int hdrlen;
1753 	int padsize;
1754 	int rx_flag;
1755 
1756 	spin_lock(&sc->rxbuflock);
1757 	if (list_empty(&sc->rxbuf)) {
1758 		ATH5K_WARN(sc, "empty rx buf pool\n");
1759 		goto unlock;
1760 	}
1761 	do {
1762 		rx_flag = 0;
1763 
1764 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1765 		BUG_ON(bf->skb == NULL);
1766 		skb = bf->skb;
1767 		ds = bf->desc;
1768 
1769 		/* bail if HW is still using self-linked descriptor */
1770 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1771 			break;
1772 
1773 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1774 		if (unlikely(ret == -EINPROGRESS))
1775 			break;
1776 		else if (unlikely(ret)) {
1777 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1778 			spin_unlock(&sc->rxbuflock);
1779 			return;
1780 		}
1781 
1782 		if (unlikely(rs.rs_more)) {
1783 			ATH5K_WARN(sc, "unsupported jumbo\n");
1784 			goto next;
1785 		}
1786 
1787 		if (unlikely(rs.rs_status)) {
1788 			if (rs.rs_status & AR5K_RXERR_PHY)
1789 				goto next;
1790 			if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1791 				/*
1792 				 * Decrypt error.  If the error occurred
1793 				 * because there was no hardware key, then
1794 				 * let the frame through so the upper layers
1795 				 * can process it.  This is necessary for 5210
1796 				 * parts which have no way to setup a ``clear''
1797 				 * key cache entry.
1798 				 *
1799 				 * XXX do key cache faulting
1800 				 */
1801 				if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1802 				    !(rs.rs_status & AR5K_RXERR_CRC))
1803 					goto accept;
1804 			}
1805 			if (rs.rs_status & AR5K_RXERR_MIC) {
1806 				rx_flag |= RX_FLAG_MMIC_ERROR;
1807 				goto accept;
1808 			}
1809 
1810 			/* let crypto-error packets fall through in MNTR */
1811 			if ((rs.rs_status &
1812 				~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1813 					sc->opmode != NL80211_IFTYPE_MONITOR)
1814 				goto next;
1815 		}
1816 accept:
1817 		next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1818 
1819 		/*
1820 		 * If we can't replace bf->skb with a new skb under memory
1821 		 * pressure, just skip this packet
1822 		 */
1823 		if (!next_skb)
1824 			goto next;
1825 
1826 		pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1827 				PCI_DMA_FROMDEVICE);
1828 		skb_put(skb, rs.rs_datalen);
1829 
1830 		/* The MAC header is padded to have 32-bit boundary if the
1831 		 * packet payload is non-zero. The general calculation for
1832 		 * padsize would take into account odd header lengths:
1833 		 * padsize = (4 - hdrlen % 4) % 4; However, since only
1834 		 * even-length headers are used, padding can only be 0 or 2
1835 		 * bytes and we can optimize this a bit. In addition, we must
1836 		 * not try to remove padding from short control frames that do
1837 		 * not have payload. */
1838 		hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1839 		padsize = ath5k_pad_size(hdrlen);
1840 		if (padsize) {
1841 			memmove(skb->data + padsize, skb->data, hdrlen);
1842 			skb_pull(skb, padsize);
1843 		}
1844 		rxs = IEEE80211_SKB_RXCB(skb);
1845 
1846 		/*
1847 		 * always extend the mac timestamp, since this information is
1848 		 * also needed for proper IBSS merging.
1849 		 *
1850 		 * XXX: it might be too late to do it here, since rs_tstamp is
1851 		 * 15bit only. that means TSF extension has to be done within
1852 		 * 32768usec (about 32ms). it might be necessary to move this to
1853 		 * the interrupt handler, like it is done in madwifi.
1854 		 *
1855 		 * Unfortunately we don't know when the hardware takes the rx
1856 		 * timestamp (beginning of phy frame, data frame, end of rx?).
1857 		 * The only thing we know is that it is hardware specific...
1858 		 * On AR5213 it seems the rx timestamp is at the end of the
1859 		 * frame, but i'm not sure.
1860 		 *
1861 		 * NOTE: mac80211 defines mactime at the beginning of the first
1862 		 * data symbol. Since we don't have any time references it's
1863 		 * impossible to comply to that. This affects IBSS merge only
1864 		 * right now, so it's not too bad...
1865 		 */
1866 		rxs->mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1867 		rxs->flag = rx_flag | RX_FLAG_TSFT;
1868 
1869 		rxs->freq = sc->curchan->center_freq;
1870 		rxs->band = sc->curband->band;
1871 
1872 		rxs->noise = sc->ah->ah_noise_floor;
1873 		rxs->signal = rxs->noise + rs.rs_rssi;
1874 
1875 		/* An rssi of 35 indicates you should be able use
1876 		 * 54 Mbps reliably. A more elaborate scheme can be used
1877 		 * here but it requires a map of SNR/throughput for each
1878 		 * possible mode used */
1879 		rxs->qual = rs.rs_rssi * 100 / 35;
1880 
1881 		/* rssi can be more than 35 though, anything above that
1882 		 * should be considered at 100% */
1883 		if (rxs->qual > 100)
1884 			rxs->qual = 100;
1885 
1886 		rxs->antenna = rs.rs_antenna;
1887 		rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1888 		rxs->flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1889 
1890 		if (rxs->rate_idx >= 0 && rs.rs_rate ==
1891 		    sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1892 			rxs->flag |= RX_FLAG_SHORTPRE;
1893 
1894 		ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1895 
1896 		/* check beacons in IBSS mode */
1897 		if (sc->opmode == NL80211_IFTYPE_ADHOC)
1898 			ath5k_check_ibss_tsf(sc, skb, rxs);
1899 
1900 		ieee80211_rx(sc->hw, skb);
1901 
1902 		bf->skb = next_skb;
1903 		bf->skbaddr = next_skb_addr;
1904 next:
1905 		list_move_tail(&bf->list, &sc->rxbuf);
1906 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1907 unlock:
1908 	spin_unlock(&sc->rxbuflock);
1909 }
1910 
1911 
1912 
1913 
1914 /*************\
1915 * TX Handling *
1916 \*************/
1917 
1918 static void
1919 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1920 {
1921 	struct ath5k_tx_status ts = {};
1922 	struct ath5k_buf *bf, *bf0;
1923 	struct ath5k_desc *ds;
1924 	struct sk_buff *skb;
1925 	struct ieee80211_tx_info *info;
1926 	int i, ret;
1927 
1928 	spin_lock(&txq->lock);
1929 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1930 		ds = bf->desc;
1931 
1932 		ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1933 		if (unlikely(ret == -EINPROGRESS))
1934 			break;
1935 		else if (unlikely(ret)) {
1936 			ATH5K_ERR(sc, "error %d while processing queue %u\n",
1937 				ret, txq->qnum);
1938 			break;
1939 		}
1940 
1941 		skb = bf->skb;
1942 		info = IEEE80211_SKB_CB(skb);
1943 		bf->skb = NULL;
1944 
1945 		pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1946 				PCI_DMA_TODEVICE);
1947 
1948 		ieee80211_tx_info_clear_status(info);
1949 		for (i = 0; i < 4; i++) {
1950 			struct ieee80211_tx_rate *r =
1951 				&info->status.rates[i];
1952 
1953 			if (ts.ts_rate[i]) {
1954 				r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1955 				r->count = ts.ts_retry[i];
1956 			} else {
1957 				r->idx = -1;
1958 				r->count = 0;
1959 			}
1960 		}
1961 
1962 		/* count the successful attempt as well */
1963 		info->status.rates[ts.ts_final_idx].count++;
1964 
1965 		if (unlikely(ts.ts_status)) {
1966 			sc->ll_stats.dot11ACKFailureCount++;
1967 			if (ts.ts_status & AR5K_TXERR_FILT)
1968 				info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1969 		} else {
1970 			info->flags |= IEEE80211_TX_STAT_ACK;
1971 			info->status.ack_signal = ts.ts_rssi;
1972 		}
1973 
1974 		ieee80211_tx_status(sc->hw, skb);
1975 		sc->tx_stats[txq->qnum].count++;
1976 
1977 		spin_lock(&sc->txbuflock);
1978 		sc->tx_stats[txq->qnum].len--;
1979 		list_move_tail(&bf->list, &sc->txbuf);
1980 		sc->txbuf_len++;
1981 		spin_unlock(&sc->txbuflock);
1982 	}
1983 	if (likely(list_empty(&txq->q)))
1984 		txq->link = NULL;
1985 	spin_unlock(&txq->lock);
1986 	if (sc->txbuf_len > ATH_TXBUF / 5)
1987 		ieee80211_wake_queues(sc->hw);
1988 }
1989 
1990 static void
1991 ath5k_tasklet_tx(unsigned long data)
1992 {
1993 	int i;
1994 	struct ath5k_softc *sc = (void *)data;
1995 
1996 	for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1997 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1998 			ath5k_tx_processq(sc, &sc->txqs[i]);
1999 }
2000 
2001 
2002 /*****************\
2003 * Beacon handling *
2004 \*****************/
2005 
2006 /*
2007  * Setup the beacon frame for transmit.
2008  */
2009 static int
2010 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2011 {
2012 	struct sk_buff *skb = bf->skb;
2013 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2014 	struct ath5k_hw *ah = sc->ah;
2015 	struct ath5k_desc *ds;
2016 	int ret = 0;
2017 	u8 antenna;
2018 	u32 flags;
2019 
2020 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2021 			PCI_DMA_TODEVICE);
2022 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2023 			"skbaddr %llx\n", skb, skb->data, skb->len,
2024 			(unsigned long long)bf->skbaddr);
2025 	if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
2026 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2027 		return -EIO;
2028 	}
2029 
2030 	ds = bf->desc;
2031 	antenna = ah->ah_tx_ant;
2032 
2033 	flags = AR5K_TXDESC_NOACK;
2034 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
2035 		ds->ds_link = bf->daddr;	/* self-linked */
2036 		flags |= AR5K_TXDESC_VEOL;
2037 	} else
2038 		ds->ds_link = 0;
2039 
2040 	/*
2041 	 * If we use multiple antennas on AP and use
2042 	 * the Sectored AP scenario, switch antenna every
2043 	 * 4 beacons to make sure everybody hears our AP.
2044 	 * When a client tries to associate, hw will keep
2045 	 * track of the tx antenna to be used for this client
2046 	 * automaticaly, based on ACKed packets.
2047 	 *
2048 	 * Note: AP still listens and transmits RTS on the
2049 	 * default antenna which is supposed to be an omni.
2050 	 *
2051 	 * Note2: On sectored scenarios it's possible to have
2052 	 * multiple antennas (1omni -the default- and 14 sectors)
2053 	 * so if we choose to actually support this mode we need
2054 	 * to allow user to set how many antennas we have and tweak
2055 	 * the code below to send beacons on all of them.
2056 	 */
2057 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2058 		antenna = sc->bsent & 4 ? 2 : 1;
2059 
2060 
2061 	/* FIXME: If we are in g mode and rate is a CCK rate
2062 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2063 	 * from tx power (value is in dB units already) */
2064 	ds->ds_data = bf->skbaddr;
2065 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2066 			ieee80211_get_hdrlen_from_skb(skb),
2067 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2068 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2069 			1, AR5K_TXKEYIX_INVALID,
2070 			antenna, flags, 0, 0);
2071 	if (ret)
2072 		goto err_unmap;
2073 
2074 	return 0;
2075 err_unmap:
2076 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2082  * frame contents are done as needed and the slot time is
2083  * also adjusted based on current state.
2084  *
2085  * This is called from software irq context (beacontq or restq
2086  * tasklets) or user context from ath5k_beacon_config.
2087  */
2088 static void
2089 ath5k_beacon_send(struct ath5k_softc *sc)
2090 {
2091 	struct ath5k_buf *bf = sc->bbuf;
2092 	struct ath5k_hw *ah = sc->ah;
2093 	struct sk_buff *skb;
2094 
2095 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2096 
2097 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
2098 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
2099 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2100 		return;
2101 	}
2102 	/*
2103 	 * Check if the previous beacon has gone out.  If
2104 	 * not don't don't try to post another, skip this
2105 	 * period and wait for the next.  Missed beacons
2106 	 * indicate a problem and should not occur.  If we
2107 	 * miss too many consecutive beacons reset the device.
2108 	 */
2109 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2110 		sc->bmisscount++;
2111 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2112 			"missed %u consecutive beacons\n", sc->bmisscount);
2113 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
2114 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2115 				"stuck beacon time (%u missed)\n",
2116 				sc->bmisscount);
2117 			tasklet_schedule(&sc->restq);
2118 		}
2119 		return;
2120 	}
2121 	if (unlikely(sc->bmisscount != 0)) {
2122 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2123 			"resume beacon xmit after %u misses\n",
2124 			sc->bmisscount);
2125 		sc->bmisscount = 0;
2126 	}
2127 
2128 	/*
2129 	 * Stop any current dma and put the new frame on the queue.
2130 	 * This should never fail since we check above that no frames
2131 	 * are still pending on the queue.
2132 	 */
2133 	if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2134 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
2135 		/* NB: hw still stops DMA, so proceed */
2136 	}
2137 
2138 	/* refresh the beacon for AP mode */
2139 	if (sc->opmode == NL80211_IFTYPE_AP)
2140 		ath5k_beacon_update(sc->hw, sc->vif);
2141 
2142 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2143 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
2144 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2145 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2146 
2147 	skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2148 	while (skb) {
2149 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
2150 		skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2151 	}
2152 
2153 	sc->bsent++;
2154 }
2155 
2156 
2157 /**
2158  * ath5k_beacon_update_timers - update beacon timers
2159  *
2160  * @sc: struct ath5k_softc pointer we are operating on
2161  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2162  *          beacon timer update based on the current HW TSF.
2163  *
2164  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2165  * of a received beacon or the current local hardware TSF and write it to the
2166  * beacon timer registers.
2167  *
2168  * This is called in a variety of situations, e.g. when a beacon is received,
2169  * when a TSF update has been detected, but also when an new IBSS is created or
2170  * when we otherwise know we have to update the timers, but we keep it in this
2171  * function to have it all together in one place.
2172  */
2173 static void
2174 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2175 {
2176 	struct ath5k_hw *ah = sc->ah;
2177 	u32 nexttbtt, intval, hw_tu, bc_tu;
2178 	u64 hw_tsf;
2179 
2180 	intval = sc->bintval & AR5K_BEACON_PERIOD;
2181 	if (WARN_ON(!intval))
2182 		return;
2183 
2184 	/* beacon TSF converted to TU */
2185 	bc_tu = TSF_TO_TU(bc_tsf);
2186 
2187 	/* current TSF converted to TU */
2188 	hw_tsf = ath5k_hw_get_tsf64(ah);
2189 	hw_tu = TSF_TO_TU(hw_tsf);
2190 
2191 #define FUDGE 3
2192 	/* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2193 	if (bc_tsf == -1) {
2194 		/*
2195 		 * no beacons received, called internally.
2196 		 * just need to refresh timers based on HW TSF.
2197 		 */
2198 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2199 	} else if (bc_tsf == 0) {
2200 		/*
2201 		 * no beacon received, probably called by ath5k_reset_tsf().
2202 		 * reset TSF to start with 0.
2203 		 */
2204 		nexttbtt = intval;
2205 		intval |= AR5K_BEACON_RESET_TSF;
2206 	} else if (bc_tsf > hw_tsf) {
2207 		/*
2208 		 * beacon received, SW merge happend but HW TSF not yet updated.
2209 		 * not possible to reconfigure timers yet, but next time we
2210 		 * receive a beacon with the same BSSID, the hardware will
2211 		 * automatically update the TSF and then we need to reconfigure
2212 		 * the timers.
2213 		 */
2214 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2215 			"need to wait for HW TSF sync\n");
2216 		return;
2217 	} else {
2218 		/*
2219 		 * most important case for beacon synchronization between STA.
2220 		 *
2221 		 * beacon received and HW TSF has been already updated by HW.
2222 		 * update next TBTT based on the TSF of the beacon, but make
2223 		 * sure it is ahead of our local TSF timer.
2224 		 */
2225 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2226 	}
2227 #undef FUDGE
2228 
2229 	sc->nexttbtt = nexttbtt;
2230 
2231 	intval |= AR5K_BEACON_ENA;
2232 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2233 
2234 	/*
2235 	 * debugging output last in order to preserve the time critical aspect
2236 	 * of this function
2237 	 */
2238 	if (bc_tsf == -1)
2239 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2240 			"reconfigured timers based on HW TSF\n");
2241 	else if (bc_tsf == 0)
2242 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2243 			"reset HW TSF and timers\n");
2244 	else
2245 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2246 			"updated timers based on beacon TSF\n");
2247 
2248 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2249 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2250 			  (unsigned long long) bc_tsf,
2251 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2252 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2253 		intval & AR5K_BEACON_PERIOD,
2254 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2255 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2256 }
2257 
2258 
2259 /**
2260  * ath5k_beacon_config - Configure the beacon queues and interrupts
2261  *
2262  * @sc: struct ath5k_softc pointer we are operating on
2263  *
2264  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2265  * interrupts to detect TSF updates only.
2266  */
2267 static void
2268 ath5k_beacon_config(struct ath5k_softc *sc)
2269 {
2270 	struct ath5k_hw *ah = sc->ah;
2271 	unsigned long flags;
2272 
2273 	spin_lock_irqsave(&sc->block, flags);
2274 	sc->bmisscount = 0;
2275 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2276 
2277 	if (sc->enable_beacon) {
2278 		/*
2279 		 * In IBSS mode we use a self-linked tx descriptor and let the
2280 		 * hardware send the beacons automatically. We have to load it
2281 		 * only once here.
2282 		 * We use the SWBA interrupt only to keep track of the beacon
2283 		 * timers in order to detect automatic TSF updates.
2284 		 */
2285 		ath5k_beaconq_config(sc);
2286 
2287 		sc->imask |= AR5K_INT_SWBA;
2288 
2289 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2290 			if (ath5k_hw_hasveol(ah))
2291 				ath5k_beacon_send(sc);
2292 		} else
2293 			ath5k_beacon_update_timers(sc, -1);
2294 	} else {
2295 		ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2296 	}
2297 
2298 	ath5k_hw_set_imr(ah, sc->imask);
2299 	mmiowb();
2300 	spin_unlock_irqrestore(&sc->block, flags);
2301 }
2302 
2303 static void ath5k_tasklet_beacon(unsigned long data)
2304 {
2305 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2306 
2307 	/*
2308 	 * Software beacon alert--time to send a beacon.
2309 	 *
2310 	 * In IBSS mode we use this interrupt just to
2311 	 * keep track of the next TBTT (target beacon
2312 	 * transmission time) in order to detect wether
2313 	 * automatic TSF updates happened.
2314 	 */
2315 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2316 		/* XXX: only if VEOL suppported */
2317 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2318 		sc->nexttbtt += sc->bintval;
2319 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2320 				"SWBA nexttbtt: %x hw_tu: %x "
2321 				"TSF: %llx\n",
2322 				sc->nexttbtt,
2323 				TSF_TO_TU(tsf),
2324 				(unsigned long long) tsf);
2325 	} else {
2326 		spin_lock(&sc->block);
2327 		ath5k_beacon_send(sc);
2328 		spin_unlock(&sc->block);
2329 	}
2330 }
2331 
2332 
2333 /********************\
2334 * Interrupt handling *
2335 \********************/
2336 
2337 static int
2338 ath5k_init(struct ath5k_softc *sc)
2339 {
2340 	struct ath5k_hw *ah = sc->ah;
2341 	int ret, i;
2342 
2343 	mutex_lock(&sc->lock);
2344 
2345 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2346 
2347 	/*
2348 	 * Stop anything previously setup.  This is safe
2349 	 * no matter this is the first time through or not.
2350 	 */
2351 	ath5k_stop_locked(sc);
2352 
2353 	/*
2354 	 * The basic interface to setting the hardware in a good
2355 	 * state is ``reset''.  On return the hardware is known to
2356 	 * be powered up and with interrupts disabled.  This must
2357 	 * be followed by initialization of the appropriate bits
2358 	 * and then setup of the interrupt mask.
2359 	 */
2360 	sc->curchan = sc->hw->conf.channel;
2361 	sc->curband = &sc->sbands[sc->curchan->band];
2362 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2363 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2364 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_SWI;
2365 	ret = ath5k_reset(sc, NULL);
2366 	if (ret)
2367 		goto done;
2368 
2369 	ath5k_rfkill_hw_start(ah);
2370 
2371 	/*
2372 	 * Reset the key cache since some parts do not reset the
2373 	 * contents on initial power up or resume from suspend.
2374 	 */
2375 	for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2376 		ath5k_hw_reset_key(ah, i);
2377 
2378 	/* Set ack to be sent at low bit-rates */
2379 	ath5k_hw_set_ack_bitrate_high(ah, false);
2380 
2381 	/* Set PHY calibration inteval */
2382 	ah->ah_cal_intval = ath5k_calinterval;
2383 
2384 	ret = 0;
2385 done:
2386 	mmiowb();
2387 	mutex_unlock(&sc->lock);
2388 	return ret;
2389 }
2390 
2391 static int
2392 ath5k_stop_locked(struct ath5k_softc *sc)
2393 {
2394 	struct ath5k_hw *ah = sc->ah;
2395 
2396 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2397 			test_bit(ATH_STAT_INVALID, sc->status));
2398 
2399 	/*
2400 	 * Shutdown the hardware and driver:
2401 	 *    stop output from above
2402 	 *    disable interrupts
2403 	 *    turn off timers
2404 	 *    turn off the radio
2405 	 *    clear transmit machinery
2406 	 *    clear receive machinery
2407 	 *    drain and release tx queues
2408 	 *    reclaim beacon resources
2409 	 *    power down hardware
2410 	 *
2411 	 * Note that some of this work is not possible if the
2412 	 * hardware is gone (invalid).
2413 	 */
2414 	ieee80211_stop_queues(sc->hw);
2415 
2416 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2417 		ath5k_led_off(sc);
2418 		ath5k_hw_set_imr(ah, 0);
2419 		synchronize_irq(sc->pdev->irq);
2420 	}
2421 	ath5k_txq_cleanup(sc);
2422 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2423 		ath5k_rx_stop(sc);
2424 		ath5k_hw_phy_disable(ah);
2425 	} else
2426 		sc->rxlink = NULL;
2427 
2428 	return 0;
2429 }
2430 
2431 /*
2432  * Stop the device, grabbing the top-level lock to protect
2433  * against concurrent entry through ath5k_init (which can happen
2434  * if another thread does a system call and the thread doing the
2435  * stop is preempted).
2436  */
2437 static int
2438 ath5k_stop_hw(struct ath5k_softc *sc)
2439 {
2440 	int ret;
2441 
2442 	mutex_lock(&sc->lock);
2443 	ret = ath5k_stop_locked(sc);
2444 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2445 		/*
2446 		 * Don't set the card in full sleep mode!
2447 		 *
2448 		 * a) When the device is in this state it must be carefully
2449 		 * woken up or references to registers in the PCI clock
2450 		 * domain may freeze the bus (and system).  This varies
2451 		 * by chip and is mostly an issue with newer parts
2452 		 * (madwifi sources mentioned srev >= 0x78) that go to
2453 		 * sleep more quickly.
2454 		 *
2455 		 * b) On older chips full sleep results a weird behaviour
2456 		 * during wakeup. I tested various cards with srev < 0x78
2457 		 * and they don't wake up after module reload, a second
2458 		 * module reload is needed to bring the card up again.
2459 		 *
2460 		 * Until we figure out what's going on don't enable
2461 		 * full chip reset on any chip (this is what Legacy HAL
2462 		 * and Sam's HAL do anyway). Instead Perform a full reset
2463 		 * on the device (same as initial state after attach) and
2464 		 * leave it idle (keep MAC/BB on warm reset) */
2465 		ret = ath5k_hw_on_hold(sc->ah);
2466 
2467 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2468 				"putting device to sleep\n");
2469 	}
2470 	ath5k_txbuf_free(sc, sc->bbuf);
2471 
2472 	mmiowb();
2473 	mutex_unlock(&sc->lock);
2474 
2475 	tasklet_kill(&sc->rxtq);
2476 	tasklet_kill(&sc->txtq);
2477 	tasklet_kill(&sc->restq);
2478 	tasklet_kill(&sc->calib);
2479 	tasklet_kill(&sc->beacontq);
2480 
2481 	ath5k_rfkill_hw_stop(sc->ah);
2482 
2483 	return ret;
2484 }
2485 
2486 static irqreturn_t
2487 ath5k_intr(int irq, void *dev_id)
2488 {
2489 	struct ath5k_softc *sc = dev_id;
2490 	struct ath5k_hw *ah = sc->ah;
2491 	enum ath5k_int status;
2492 	unsigned int counter = 1000;
2493 
2494 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2495 				!ath5k_hw_is_intr_pending(ah)))
2496 		return IRQ_NONE;
2497 
2498 	do {
2499 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2500 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2501 				status, sc->imask);
2502 		if (unlikely(status & AR5K_INT_FATAL)) {
2503 			/*
2504 			 * Fatal errors are unrecoverable.
2505 			 * Typically these are caused by DMA errors.
2506 			 */
2507 			tasklet_schedule(&sc->restq);
2508 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2509 			tasklet_schedule(&sc->restq);
2510 		} else {
2511 			if (status & AR5K_INT_SWBA) {
2512 				tasklet_hi_schedule(&sc->beacontq);
2513 			}
2514 			if (status & AR5K_INT_RXEOL) {
2515 				/*
2516 				* NB: the hardware should re-read the link when
2517 				*     RXE bit is written, but it doesn't work at
2518 				*     least on older hardware revs.
2519 				*/
2520 				sc->rxlink = NULL;
2521 			}
2522 			if (status & AR5K_INT_TXURN) {
2523 				/* bump tx trigger level */
2524 				ath5k_hw_update_tx_triglevel(ah, true);
2525 			}
2526 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2527 				tasklet_schedule(&sc->rxtq);
2528 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2529 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2530 				tasklet_schedule(&sc->txtq);
2531 			if (status & AR5K_INT_BMISS) {
2532 				/* TODO */
2533 			}
2534 			if (status & AR5K_INT_SWI) {
2535 				tasklet_schedule(&sc->calib);
2536 			}
2537 			if (status & AR5K_INT_MIB) {
2538 				/*
2539 				 * These stats are also used for ANI i think
2540 				 * so how about updating them more often ?
2541 				 */
2542 				ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2543 			}
2544 			if (status & AR5K_INT_GPIO)
2545 				tasklet_schedule(&sc->rf_kill.toggleq);
2546 
2547 		}
2548 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2549 
2550 	if (unlikely(!counter))
2551 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2552 
2553 	ath5k_hw_calibration_poll(ah);
2554 
2555 	return IRQ_HANDLED;
2556 }
2557 
2558 static void
2559 ath5k_tasklet_reset(unsigned long data)
2560 {
2561 	struct ath5k_softc *sc = (void *)data;
2562 
2563 	ath5k_reset_wake(sc);
2564 }
2565 
2566 /*
2567  * Periodically recalibrate the PHY to account
2568  * for temperature/environment changes.
2569  */
2570 static void
2571 ath5k_tasklet_calibrate(unsigned long data)
2572 {
2573 	struct ath5k_softc *sc = (void *)data;
2574 	struct ath5k_hw *ah = sc->ah;
2575 
2576 	/* Only full calibration for now */
2577 	if (ah->ah_swi_mask != AR5K_SWI_FULL_CALIBRATION)
2578 		return;
2579 
2580 	/* Stop queues so that calibration
2581 	 * doesn't interfere with tx */
2582 	ieee80211_stop_queues(sc->hw);
2583 
2584 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2585 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2586 		sc->curchan->hw_value);
2587 
2588 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2589 		/*
2590 		 * Rfgain is out of bounds, reset the chip
2591 		 * to load new gain values.
2592 		 */
2593 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2594 		ath5k_reset_wake(sc);
2595 	}
2596 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2597 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2598 			ieee80211_frequency_to_channel(
2599 				sc->curchan->center_freq));
2600 
2601 	ah->ah_swi_mask = 0;
2602 
2603 	/* Wake queues */
2604 	ieee80211_wake_queues(sc->hw);
2605 
2606 }
2607 
2608 
2609 /********************\
2610 * Mac80211 functions *
2611 \********************/
2612 
2613 static int
2614 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2615 {
2616 	struct ath5k_softc *sc = hw->priv;
2617 
2618 	return ath5k_tx_queue(hw, skb, sc->txq);
2619 }
2620 
2621 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
2622 			  struct ath5k_txq *txq)
2623 {
2624 	struct ath5k_softc *sc = hw->priv;
2625 	struct ath5k_buf *bf;
2626 	unsigned long flags;
2627 	int hdrlen;
2628 	int padsize;
2629 
2630 	ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
2631 
2632 	if (sc->opmode == NL80211_IFTYPE_MONITOR)
2633 		ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2634 
2635 	/*
2636 	 * the hardware expects the header padded to 4 byte boundaries
2637 	 * if this is not the case we add the padding after the header
2638 	 */
2639 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2640 	padsize = ath5k_pad_size(hdrlen);
2641 	if (padsize) {
2642 
2643 		if (skb_headroom(skb) < padsize) {
2644 			ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2645 				  " headroom to pad %d\n", hdrlen, padsize);
2646 			goto drop_packet;
2647 		}
2648 		skb_push(skb, padsize);
2649 		memmove(skb->data, skb->data+padsize, hdrlen);
2650 	}
2651 
2652 	spin_lock_irqsave(&sc->txbuflock, flags);
2653 	if (list_empty(&sc->txbuf)) {
2654 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2655 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2656 		ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2657 		goto drop_packet;
2658 	}
2659 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2660 	list_del(&bf->list);
2661 	sc->txbuf_len--;
2662 	if (list_empty(&sc->txbuf))
2663 		ieee80211_stop_queues(hw);
2664 	spin_unlock_irqrestore(&sc->txbuflock, flags);
2665 
2666 	bf->skb = skb;
2667 
2668 	if (ath5k_txbuf_setup(sc, bf, txq)) {
2669 		bf->skb = NULL;
2670 		spin_lock_irqsave(&sc->txbuflock, flags);
2671 		list_add_tail(&bf->list, &sc->txbuf);
2672 		sc->txbuf_len++;
2673 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2674 		goto drop_packet;
2675 	}
2676 	return NETDEV_TX_OK;
2677 
2678 drop_packet:
2679 	dev_kfree_skb_any(skb);
2680 	return NETDEV_TX_OK;
2681 }
2682 
2683 /*
2684  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2685  * and change to the given channel.
2686  */
2687 static int
2688 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2689 {
2690 	struct ath5k_hw *ah = sc->ah;
2691 	int ret;
2692 
2693 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2694 
2695 	if (chan) {
2696 		ath5k_hw_set_imr(ah, 0);
2697 		ath5k_txq_cleanup(sc);
2698 		ath5k_rx_stop(sc);
2699 
2700 		sc->curchan = chan;
2701 		sc->curband = &sc->sbands[chan->band];
2702 	}
2703 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
2704 	if (ret) {
2705 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2706 		goto err;
2707 	}
2708 
2709 	ret = ath5k_rx_start(sc);
2710 	if (ret) {
2711 		ATH5K_ERR(sc, "can't start recv logic\n");
2712 		goto err;
2713 	}
2714 
2715 	/*
2716 	 * Change channels and update the h/w rate map if we're switching;
2717 	 * e.g. 11a to 11b/g.
2718 	 *
2719 	 * We may be doing a reset in response to an ioctl that changes the
2720 	 * channel so update any state that might change as a result.
2721 	 *
2722 	 * XXX needed?
2723 	 */
2724 /*	ath5k_chan_change(sc, c); */
2725 
2726 	ath5k_beacon_config(sc);
2727 	/* intrs are enabled by ath5k_beacon_config */
2728 
2729 	return 0;
2730 err:
2731 	return ret;
2732 }
2733 
2734 static int
2735 ath5k_reset_wake(struct ath5k_softc *sc)
2736 {
2737 	int ret;
2738 
2739 	ret = ath5k_reset(sc, sc->curchan);
2740 	if (!ret)
2741 		ieee80211_wake_queues(sc->hw);
2742 
2743 	return ret;
2744 }
2745 
2746 static int ath5k_start(struct ieee80211_hw *hw)
2747 {
2748 	return ath5k_init(hw->priv);
2749 }
2750 
2751 static void ath5k_stop(struct ieee80211_hw *hw)
2752 {
2753 	ath5k_stop_hw(hw->priv);
2754 }
2755 
2756 static int ath5k_add_interface(struct ieee80211_hw *hw,
2757 		struct ieee80211_if_init_conf *conf)
2758 {
2759 	struct ath5k_softc *sc = hw->priv;
2760 	int ret;
2761 
2762 	mutex_lock(&sc->lock);
2763 	if (sc->vif) {
2764 		ret = 0;
2765 		goto end;
2766 	}
2767 
2768 	sc->vif = conf->vif;
2769 
2770 	switch (conf->type) {
2771 	case NL80211_IFTYPE_AP:
2772 	case NL80211_IFTYPE_STATION:
2773 	case NL80211_IFTYPE_ADHOC:
2774 	case NL80211_IFTYPE_MESH_POINT:
2775 	case NL80211_IFTYPE_MONITOR:
2776 		sc->opmode = conf->type;
2777 		break;
2778 	default:
2779 		ret = -EOPNOTSUPP;
2780 		goto end;
2781 	}
2782 
2783 	ath5k_hw_set_lladdr(sc->ah, conf->mac_addr);
2784 	ath5k_mode_setup(sc);
2785 
2786 	ret = 0;
2787 end:
2788 	mutex_unlock(&sc->lock);
2789 	return ret;
2790 }
2791 
2792 static void
2793 ath5k_remove_interface(struct ieee80211_hw *hw,
2794 			struct ieee80211_if_init_conf *conf)
2795 {
2796 	struct ath5k_softc *sc = hw->priv;
2797 	u8 mac[ETH_ALEN] = {};
2798 
2799 	mutex_lock(&sc->lock);
2800 	if (sc->vif != conf->vif)
2801 		goto end;
2802 
2803 	ath5k_hw_set_lladdr(sc->ah, mac);
2804 	sc->vif = NULL;
2805 end:
2806 	mutex_unlock(&sc->lock);
2807 }
2808 
2809 /*
2810  * TODO: Phy disable/diversity etc
2811  */
2812 static int
2813 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2814 {
2815 	struct ath5k_softc *sc = hw->priv;
2816 	struct ath5k_hw *ah = sc->ah;
2817 	struct ieee80211_conf *conf = &hw->conf;
2818 	int ret = 0;
2819 
2820 	mutex_lock(&sc->lock);
2821 
2822 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2823 		ret = ath5k_chan_set(sc, conf->channel);
2824 		if (ret < 0)
2825 			goto unlock;
2826 	}
2827 
2828 	if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2829 	(sc->power_level != conf->power_level)) {
2830 		sc->power_level = conf->power_level;
2831 
2832 		/* Half dB steps */
2833 		ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2834 	}
2835 
2836 	/* TODO:
2837 	 * 1) Move this on config_interface and handle each case
2838 	 * separately eg. when we have only one STA vif, use
2839 	 * AR5K_ANTMODE_SINGLE_AP
2840 	 *
2841 	 * 2) Allow the user to change antenna mode eg. when only
2842 	 * one antenna is present
2843 	 *
2844 	 * 3) Allow the user to set default/tx antenna when possible
2845 	 *
2846 	 * 4) Default mode should handle 90% of the cases, together
2847 	 * with fixed a/b and single AP modes we should be able to
2848 	 * handle 99%. Sectored modes are extreme cases and i still
2849 	 * haven't found a usage for them. If we decide to support them,
2850 	 * then we must allow the user to set how many tx antennas we
2851 	 * have available
2852 	 */
2853 	ath5k_hw_set_antenna_mode(ah, AR5K_ANTMODE_DEFAULT);
2854 
2855 unlock:
2856 	mutex_unlock(&sc->lock);
2857 	return ret;
2858 }
2859 
2860 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
2861 				   int mc_count, struct dev_addr_list *mclist)
2862 {
2863 	u32 mfilt[2], val;
2864 	int i;
2865 	u8 pos;
2866 
2867 	mfilt[0] = 0;
2868 	mfilt[1] = 1;
2869 
2870 	for (i = 0; i < mc_count; i++) {
2871 		if (!mclist)
2872 			break;
2873 		/* calculate XOR of eight 6-bit values */
2874 		val = get_unaligned_le32(mclist->dmi_addr + 0);
2875 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2876 		val = get_unaligned_le32(mclist->dmi_addr + 3);
2877 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2878 		pos &= 0x3f;
2879 		mfilt[pos / 32] |= (1 << (pos % 32));
2880 		/* XXX: we might be able to just do this instead,
2881 		* but not sure, needs testing, if we do use this we'd
2882 		* neet to inform below to not reset the mcast */
2883 		/* ath5k_hw_set_mcast_filterindex(ah,
2884 		 *      mclist->dmi_addr[5]); */
2885 		mclist = mclist->next;
2886 	}
2887 
2888 	return ((u64)(mfilt[1]) << 32) | mfilt[0];
2889 }
2890 
2891 #define SUPPORTED_FIF_FLAGS \
2892 	FIF_PROMISC_IN_BSS |  FIF_ALLMULTI | FIF_FCSFAIL | \
2893 	FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2894 	FIF_BCN_PRBRESP_PROMISC
2895 /*
2896  * o always accept unicast, broadcast, and multicast traffic
2897  * o multicast traffic for all BSSIDs will be enabled if mac80211
2898  *   says it should be
2899  * o maintain current state of phy ofdm or phy cck error reception.
2900  *   If the hardware detects any of these type of errors then
2901  *   ath5k_hw_get_rx_filter() will pass to us the respective
2902  *   hardware filters to be able to receive these type of frames.
2903  * o probe request frames are accepted only when operating in
2904  *   hostap, adhoc, or monitor modes
2905  * o enable promiscuous mode according to the interface state
2906  * o accept beacons:
2907  *   - when operating in adhoc mode so the 802.11 layer creates
2908  *     node table entries for peers,
2909  *   - when operating in station mode for collecting rssi data when
2910  *     the station is otherwise quiet, or
2911  *   - when scanning
2912  */
2913 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2914 		unsigned int changed_flags,
2915 		unsigned int *new_flags,
2916 		u64 multicast)
2917 {
2918 	struct ath5k_softc *sc = hw->priv;
2919 	struct ath5k_hw *ah = sc->ah;
2920 	u32 mfilt[2], rfilt;
2921 
2922 	mutex_lock(&sc->lock);
2923 
2924 	mfilt[0] = multicast;
2925 	mfilt[1] = multicast >> 32;
2926 
2927 	/* Only deal with supported flags */
2928 	changed_flags &= SUPPORTED_FIF_FLAGS;
2929 	*new_flags &= SUPPORTED_FIF_FLAGS;
2930 
2931 	/* If HW detects any phy or radar errors, leave those filters on.
2932 	 * Also, always enable Unicast, Broadcasts and Multicast
2933 	 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2934 	rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2935 		(AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2936 		AR5K_RX_FILTER_MCAST);
2937 
2938 	if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2939 		if (*new_flags & FIF_PROMISC_IN_BSS) {
2940 			rfilt |= AR5K_RX_FILTER_PROM;
2941 			__set_bit(ATH_STAT_PROMISC, sc->status);
2942 		} else {
2943 			__clear_bit(ATH_STAT_PROMISC, sc->status);
2944 		}
2945 	}
2946 
2947 	/* Note, AR5K_RX_FILTER_MCAST is already enabled */
2948 	if (*new_flags & FIF_ALLMULTI) {
2949 		mfilt[0] =  ~0;
2950 		mfilt[1] =  ~0;
2951 	}
2952 
2953 	/* This is the best we can do */
2954 	if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2955 		rfilt |= AR5K_RX_FILTER_PHYERR;
2956 
2957 	/* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2958 	* and probes for any BSSID, this needs testing */
2959 	if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2960 		rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2961 
2962 	/* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2963 	 * set we should only pass on control frames for this
2964 	 * station. This needs testing. I believe right now this
2965 	 * enables *all* control frames, which is OK.. but
2966 	 * but we should see if we can improve on granularity */
2967 	if (*new_flags & FIF_CONTROL)
2968 		rfilt |= AR5K_RX_FILTER_CONTROL;
2969 
2970 	/* Additional settings per mode -- this is per ath5k */
2971 
2972 	/* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2973 
2974 	switch (sc->opmode) {
2975 	case NL80211_IFTYPE_MESH_POINT:
2976 	case NL80211_IFTYPE_MONITOR:
2977 		rfilt |= AR5K_RX_FILTER_CONTROL |
2978 			 AR5K_RX_FILTER_BEACON |
2979 			 AR5K_RX_FILTER_PROBEREQ |
2980 			 AR5K_RX_FILTER_PROM;
2981 		break;
2982 	case NL80211_IFTYPE_AP:
2983 	case NL80211_IFTYPE_ADHOC:
2984 		rfilt |= AR5K_RX_FILTER_PROBEREQ |
2985 			 AR5K_RX_FILTER_BEACON;
2986 		break;
2987 	case NL80211_IFTYPE_STATION:
2988 		if (sc->assoc)
2989 			rfilt |= AR5K_RX_FILTER_BEACON;
2990 	default:
2991 		break;
2992 	}
2993 
2994 	/* Set filters */
2995 	ath5k_hw_set_rx_filter(ah, rfilt);
2996 
2997 	/* Set multicast bits */
2998 	ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2999 	/* Set the cached hw filter flags, this will alter actually
3000 	 * be set in HW */
3001 	sc->filter_flags = rfilt;
3002 
3003 	mutex_unlock(&sc->lock);
3004 }
3005 
3006 static int
3007 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
3008 	      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3009 	      struct ieee80211_key_conf *key)
3010 {
3011 	struct ath5k_softc *sc = hw->priv;
3012 	int ret = 0;
3013 
3014 	if (modparam_nohwcrypt)
3015 		return -EOPNOTSUPP;
3016 
3017 	if (sc->opmode == NL80211_IFTYPE_AP)
3018 		return -EOPNOTSUPP;
3019 
3020 	switch (key->alg) {
3021 	case ALG_WEP:
3022 	case ALG_TKIP:
3023 		break;
3024 	case ALG_CCMP:
3025 		if (sc->ah->ah_aes_support)
3026 			break;
3027 
3028 		return -EOPNOTSUPP;
3029 	default:
3030 		WARN_ON(1);
3031 		return -EINVAL;
3032 	}
3033 
3034 	mutex_lock(&sc->lock);
3035 
3036 	switch (cmd) {
3037 	case SET_KEY:
3038 		ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
3039 				       sta ? sta->addr : NULL);
3040 		if (ret) {
3041 			ATH5K_ERR(sc, "can't set the key\n");
3042 			goto unlock;
3043 		}
3044 		__set_bit(key->keyidx, sc->keymap);
3045 		key->hw_key_idx = key->keyidx;
3046 		key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
3047 			       IEEE80211_KEY_FLAG_GENERATE_MMIC);
3048 		break;
3049 	case DISABLE_KEY:
3050 		ath5k_hw_reset_key(sc->ah, key->keyidx);
3051 		__clear_bit(key->keyidx, sc->keymap);
3052 		break;
3053 	default:
3054 		ret = -EINVAL;
3055 		goto unlock;
3056 	}
3057 
3058 unlock:
3059 	mmiowb();
3060 	mutex_unlock(&sc->lock);
3061 	return ret;
3062 }
3063 
3064 static int
3065 ath5k_get_stats(struct ieee80211_hw *hw,
3066 		struct ieee80211_low_level_stats *stats)
3067 {
3068 	struct ath5k_softc *sc = hw->priv;
3069 	struct ath5k_hw *ah = sc->ah;
3070 
3071 	/* Force update */
3072 	ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3073 
3074 	memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3075 
3076 	return 0;
3077 }
3078 
3079 static int
3080 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3081 		struct ieee80211_tx_queue_stats *stats)
3082 {
3083 	struct ath5k_softc *sc = hw->priv;
3084 
3085 	memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3086 
3087 	return 0;
3088 }
3089 
3090 static u64
3091 ath5k_get_tsf(struct ieee80211_hw *hw)
3092 {
3093 	struct ath5k_softc *sc = hw->priv;
3094 
3095 	return ath5k_hw_get_tsf64(sc->ah);
3096 }
3097 
3098 static void
3099 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3100 {
3101 	struct ath5k_softc *sc = hw->priv;
3102 
3103 	ath5k_hw_set_tsf64(sc->ah, tsf);
3104 }
3105 
3106 static void
3107 ath5k_reset_tsf(struct ieee80211_hw *hw)
3108 {
3109 	struct ath5k_softc *sc = hw->priv;
3110 
3111 	/*
3112 	 * in IBSS mode we need to update the beacon timers too.
3113 	 * this will also reset the TSF if we call it with 0
3114 	 */
3115 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
3116 		ath5k_beacon_update_timers(sc, 0);
3117 	else
3118 		ath5k_hw_reset_tsf(sc->ah);
3119 }
3120 
3121 /*
3122  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
3123  * this is called only once at config_bss time, for AP we do it every
3124  * SWBA interrupt so that the TIM will reflect buffered frames.
3125  *
3126  * Called with the beacon lock.
3127  */
3128 static int
3129 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3130 {
3131 	int ret;
3132 	struct ath5k_softc *sc = hw->priv;
3133 	struct sk_buff *skb;
3134 
3135 	if (WARN_ON(!vif)) {
3136 		ret = -EINVAL;
3137 		goto out;
3138 	}
3139 
3140 	skb = ieee80211_beacon_get(hw, vif);
3141 
3142 	if (!skb) {
3143 		ret = -ENOMEM;
3144 		goto out;
3145 	}
3146 
3147 	ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
3148 
3149 	ath5k_txbuf_free(sc, sc->bbuf);
3150 	sc->bbuf->skb = skb;
3151 	ret = ath5k_beacon_setup(sc, sc->bbuf);
3152 	if (ret)
3153 		sc->bbuf->skb = NULL;
3154 out:
3155 	return ret;
3156 }
3157 
3158 static void
3159 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3160 {
3161 	struct ath5k_softc *sc = hw->priv;
3162 	struct ath5k_hw *ah = sc->ah;
3163 	u32 rfilt;
3164 	rfilt = ath5k_hw_get_rx_filter(ah);
3165 	if (enable)
3166 		rfilt |= AR5K_RX_FILTER_BEACON;
3167 	else
3168 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3169 	ath5k_hw_set_rx_filter(ah, rfilt);
3170 	sc->filter_flags = rfilt;
3171 }
3172 
3173 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3174 				    struct ieee80211_vif *vif,
3175 				    struct ieee80211_bss_conf *bss_conf,
3176 				    u32 changes)
3177 {
3178 	struct ath5k_softc *sc = hw->priv;
3179 	struct ath5k_hw *ah = sc->ah;
3180 	unsigned long flags;
3181 
3182 	mutex_lock(&sc->lock);
3183 	if (WARN_ON(sc->vif != vif))
3184 		goto unlock;
3185 
3186 	if (changes & BSS_CHANGED_BSSID) {
3187 		/* Cache for later use during resets */
3188 		memcpy(ah->ah_bssid, bss_conf->bssid, ETH_ALEN);
3189 		/* XXX: assoc id is set to 0 for now, mac80211 doesn't have
3190 		 * a clean way of letting us retrieve this yet. */
3191 		ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
3192 		mmiowb();
3193 	}
3194 
3195 	if (changes & BSS_CHANGED_BEACON_INT)
3196 		sc->bintval = bss_conf->beacon_int;
3197 
3198 	if (changes & BSS_CHANGED_ASSOC) {
3199 		sc->assoc = bss_conf->assoc;
3200 		if (sc->opmode == NL80211_IFTYPE_STATION)
3201 			set_beacon_filter(hw, sc->assoc);
3202 		ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3203 			AR5K_LED_ASSOC : AR5K_LED_INIT);
3204 	}
3205 
3206 	if (changes & BSS_CHANGED_BEACON) {
3207 		spin_lock_irqsave(&sc->block, flags);
3208 		ath5k_beacon_update(hw, vif);
3209 		spin_unlock_irqrestore(&sc->block, flags);
3210 	}
3211 
3212 	if (changes & BSS_CHANGED_BEACON_ENABLED)
3213 		sc->enable_beacon = bss_conf->enable_beacon;
3214 
3215 	if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3216 		       BSS_CHANGED_BEACON_INT))
3217 		ath5k_beacon_config(sc);
3218 
3219  unlock:
3220 	mutex_unlock(&sc->lock);
3221 }
3222 
3223 static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3224 {
3225 	struct ath5k_softc *sc = hw->priv;
3226 	if (!sc->assoc)
3227 		ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3228 }
3229 
3230 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3231 {
3232 	struct ath5k_softc *sc = hw->priv;
3233 	ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3234 		AR5K_LED_ASSOC : AR5K_LED_INIT);
3235 }
3236