xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision ee8a99bd)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include <net/mac80211.h>
64 #include "base.h"
65 #include "reg.h"
66 #include "debug.h"
67 #include "ani.h"
68 #include "ath5k.h"
69 #include "../regd.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 bool ath5k_modparam_nohwcrypt;
75 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
76 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
77 
78 static bool modparam_fastchanswitch;
79 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
80 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
81 
82 static bool ath5k_modparam_no_hw_rfkill_switch;
83 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
84 								bool, S_IRUGO);
85 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
86 
87 
88 /* Module info */
89 MODULE_AUTHOR("Jiri Slaby");
90 MODULE_AUTHOR("Nick Kossifidis");
91 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
92 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
93 MODULE_LICENSE("Dual BSD/GPL");
94 
95 static int ath5k_init(struct ieee80211_hw *hw);
96 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97 								bool skip_pcu);
98 
99 /* Known SREVs */
100 static const struct ath5k_srev_name srev_names[] = {
101 #ifdef CONFIG_ATHEROS_AR231X
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
104 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
109 #else
110 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
111 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
112 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
113 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
114 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
115 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
116 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
117 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
118 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
119 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
120 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
121 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
122 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
123 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
124 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
125 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
126 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
127 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
128 #endif
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
143 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
144 #ifdef CONFIG_ATHEROS_AR231X
145 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
146 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
147 #endif
148 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
149 };
150 
151 static const struct ieee80211_rate ath5k_rates[] = {
152 	{ .bitrate = 10,
153 	  .hw_value = ATH5K_RATE_CODE_1M, },
154 	{ .bitrate = 20,
155 	  .hw_value = ATH5K_RATE_CODE_2M,
156 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 	{ .bitrate = 55,
159 	  .hw_value = ATH5K_RATE_CODE_5_5M,
160 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 	{ .bitrate = 110,
163 	  .hw_value = ATH5K_RATE_CODE_11M,
164 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166 	{ .bitrate = 60,
167 	  .hw_value = ATH5K_RATE_CODE_6M,
168 	  .flags = 0 },
169 	{ .bitrate = 90,
170 	  .hw_value = ATH5K_RATE_CODE_9M,
171 	  .flags = 0 },
172 	{ .bitrate = 120,
173 	  .hw_value = ATH5K_RATE_CODE_12M,
174 	  .flags = 0 },
175 	{ .bitrate = 180,
176 	  .hw_value = ATH5K_RATE_CODE_18M,
177 	  .flags = 0 },
178 	{ .bitrate = 240,
179 	  .hw_value = ATH5K_RATE_CODE_24M,
180 	  .flags = 0 },
181 	{ .bitrate = 360,
182 	  .hw_value = ATH5K_RATE_CODE_36M,
183 	  .flags = 0 },
184 	{ .bitrate = 480,
185 	  .hw_value = ATH5K_RATE_CODE_48M,
186 	  .flags = 0 },
187 	{ .bitrate = 540,
188 	  .hw_value = ATH5K_RATE_CODE_54M,
189 	  .flags = 0 },
190 };
191 
192 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
193 {
194 	u64 tsf = ath5k_hw_get_tsf64(ah);
195 
196 	if ((tsf & 0x7fff) < rstamp)
197 		tsf -= 0x8000;
198 
199 	return (tsf & ~0x7fff) | rstamp;
200 }
201 
202 const char *
203 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
204 {
205 	const char *name = "xxxxx";
206 	unsigned int i;
207 
208 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
209 		if (srev_names[i].sr_type != type)
210 			continue;
211 
212 		if ((val & 0xf0) == srev_names[i].sr_val)
213 			name = srev_names[i].sr_name;
214 
215 		if ((val & 0xff) == srev_names[i].sr_val) {
216 			name = srev_names[i].sr_name;
217 			break;
218 		}
219 	}
220 
221 	return name;
222 }
223 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
224 {
225 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
226 	return ath5k_hw_reg_read(ah, reg_offset);
227 }
228 
229 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
230 {
231 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
232 	ath5k_hw_reg_write(ah, val, reg_offset);
233 }
234 
235 static const struct ath_ops ath5k_common_ops = {
236 	.read = ath5k_ioread32,
237 	.write = ath5k_iowrite32,
238 };
239 
240 /***********************\
241 * Driver Initialization *
242 \***********************/
243 
244 static void ath5k_reg_notifier(struct wiphy *wiphy,
245 			       struct regulatory_request *request)
246 {
247 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
248 	struct ath5k_hw *ah = hw->priv;
249 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
250 
251 	ath_reg_notifier_apply(wiphy, request, regulatory);
252 }
253 
254 /********************\
255 * Channel/mode setup *
256 \********************/
257 
258 /*
259  * Returns true for the channel numbers used.
260  */
261 #ifdef CONFIG_ATH5K_TEST_CHANNELS
262 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
263 {
264 	return true;
265 }
266 
267 #else
268 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
269 {
270 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
271 		return true;
272 
273 	return	/* UNII 1,2 */
274 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
275 		/* midband */
276 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
277 		/* UNII-3 */
278 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
279 		/* 802.11j 5.030-5.080 GHz (20MHz) */
280 		(chan == 8 || chan == 12 || chan == 16) ||
281 		/* 802.11j 4.9GHz (20MHz) */
282 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
283 }
284 #endif
285 
286 static unsigned int
287 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
288 		unsigned int mode, unsigned int max)
289 {
290 	unsigned int count, size, freq, ch;
291 	enum ieee80211_band band;
292 
293 	switch (mode) {
294 	case AR5K_MODE_11A:
295 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
296 		size = 220;
297 		band = IEEE80211_BAND_5GHZ;
298 		break;
299 	case AR5K_MODE_11B:
300 	case AR5K_MODE_11G:
301 		size = 26;
302 		band = IEEE80211_BAND_2GHZ;
303 		break;
304 	default:
305 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
306 		return 0;
307 	}
308 
309 	count = 0;
310 	for (ch = 1; ch <= size && count < max; ch++) {
311 		freq = ieee80211_channel_to_frequency(ch, band);
312 
313 		if (freq == 0) /* mapping failed - not a standard channel */
314 			continue;
315 
316 		/* Write channel info, needed for ath5k_channel_ok() */
317 		channels[count].center_freq = freq;
318 		channels[count].band = band;
319 		channels[count].hw_value = mode;
320 
321 		/* Check if channel is supported by the chipset */
322 		if (!ath5k_channel_ok(ah, &channels[count]))
323 			continue;
324 
325 		if (!ath5k_is_standard_channel(ch, band))
326 			continue;
327 
328 		count++;
329 	}
330 
331 	return count;
332 }
333 
334 static void
335 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
336 {
337 	u8 i;
338 
339 	for (i = 0; i < AR5K_MAX_RATES; i++)
340 		ah->rate_idx[b->band][i] = -1;
341 
342 	for (i = 0; i < b->n_bitrates; i++) {
343 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
344 		if (b->bitrates[i].hw_value_short)
345 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
346 	}
347 }
348 
349 static int
350 ath5k_setup_bands(struct ieee80211_hw *hw)
351 {
352 	struct ath5k_hw *ah = hw->priv;
353 	struct ieee80211_supported_band *sband;
354 	int max_c, count_c = 0;
355 	int i;
356 
357 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
358 	max_c = ARRAY_SIZE(ah->channels);
359 
360 	/* 2GHz band */
361 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
362 	sband->band = IEEE80211_BAND_2GHZ;
363 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
364 
365 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
366 		/* G mode */
367 		memcpy(sband->bitrates, &ath5k_rates[0],
368 		       sizeof(struct ieee80211_rate) * 12);
369 		sband->n_bitrates = 12;
370 
371 		sband->channels = ah->channels;
372 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
373 					AR5K_MODE_11G, max_c);
374 
375 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
376 		count_c = sband->n_channels;
377 		max_c -= count_c;
378 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
379 		/* B mode */
380 		memcpy(sband->bitrates, &ath5k_rates[0],
381 		       sizeof(struct ieee80211_rate) * 4);
382 		sband->n_bitrates = 4;
383 
384 		/* 5211 only supports B rates and uses 4bit rate codes
385 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
386 		 * fix them up here:
387 		 */
388 		if (ah->ah_version == AR5K_AR5211) {
389 			for (i = 0; i < 4; i++) {
390 				sband->bitrates[i].hw_value =
391 					sband->bitrates[i].hw_value & 0xF;
392 				sband->bitrates[i].hw_value_short =
393 					sband->bitrates[i].hw_value_short & 0xF;
394 			}
395 		}
396 
397 		sband->channels = ah->channels;
398 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
399 					AR5K_MODE_11B, max_c);
400 
401 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
402 		count_c = sband->n_channels;
403 		max_c -= count_c;
404 	}
405 	ath5k_setup_rate_idx(ah, sband);
406 
407 	/* 5GHz band, A mode */
408 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
409 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
410 		sband->band = IEEE80211_BAND_5GHZ;
411 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
412 
413 		memcpy(sband->bitrates, &ath5k_rates[4],
414 		       sizeof(struct ieee80211_rate) * 8);
415 		sband->n_bitrates = 8;
416 
417 		sband->channels = &ah->channels[count_c];
418 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
419 					AR5K_MODE_11A, max_c);
420 
421 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
422 	}
423 	ath5k_setup_rate_idx(ah, sband);
424 
425 	ath5k_debug_dump_bands(ah);
426 
427 	return 0;
428 }
429 
430 /*
431  * Set/change channels. We always reset the chip.
432  * To accomplish this we must first cleanup any pending DMA,
433  * then restart stuff after a la  ath5k_init.
434  *
435  * Called with ah->lock.
436  */
437 int
438 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
439 {
440 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
441 		  "channel set, resetting (%u -> %u MHz)\n",
442 		  ah->curchan->center_freq, chan->center_freq);
443 
444 	/*
445 	 * To switch channels clear any pending DMA operations;
446 	 * wait long enough for the RX fifo to drain, reset the
447 	 * hardware at the new frequency, and then re-enable
448 	 * the relevant bits of the h/w.
449 	 */
450 	return ath5k_reset(ah, chan, true);
451 }
452 
453 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
454 {
455 	struct ath5k_vif_iter_data *iter_data = data;
456 	int i;
457 	struct ath5k_vif *avf = (void *)vif->drv_priv;
458 
459 	if (iter_data->hw_macaddr)
460 		for (i = 0; i < ETH_ALEN; i++)
461 			iter_data->mask[i] &=
462 				~(iter_data->hw_macaddr[i] ^ mac[i]);
463 
464 	if (!iter_data->found_active) {
465 		iter_data->found_active = true;
466 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
467 	}
468 
469 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
470 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
471 			iter_data->need_set_hw_addr = false;
472 
473 	if (!iter_data->any_assoc) {
474 		if (avf->assoc)
475 			iter_data->any_assoc = true;
476 	}
477 
478 	/* Calculate combined mode - when APs are active, operate in AP mode.
479 	 * Otherwise use the mode of the new interface. This can currently
480 	 * only deal with combinations of APs and STAs. Only one ad-hoc
481 	 * interfaces is allowed.
482 	 */
483 	if (avf->opmode == NL80211_IFTYPE_AP)
484 		iter_data->opmode = NL80211_IFTYPE_AP;
485 	else {
486 		if (avf->opmode == NL80211_IFTYPE_STATION)
487 			iter_data->n_stas++;
488 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
489 			iter_data->opmode = avf->opmode;
490 	}
491 }
492 
493 void
494 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
495 				   struct ieee80211_vif *vif)
496 {
497 	struct ath_common *common = ath5k_hw_common(ah);
498 	struct ath5k_vif_iter_data iter_data;
499 	u32 rfilt;
500 
501 	/*
502 	 * Use the hardware MAC address as reference, the hardware uses it
503 	 * together with the BSSID mask when matching addresses.
504 	 */
505 	iter_data.hw_macaddr = common->macaddr;
506 	memset(&iter_data.mask, 0xff, ETH_ALEN);
507 	iter_data.found_active = false;
508 	iter_data.need_set_hw_addr = true;
509 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
510 	iter_data.n_stas = 0;
511 
512 	if (vif)
513 		ath5k_vif_iter(&iter_data, vif->addr, vif);
514 
515 	/* Get list of all active MAC addresses */
516 	ieee80211_iterate_active_interfaces_atomic(
517 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
518 		ath5k_vif_iter, &iter_data);
519 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
520 
521 	ah->opmode = iter_data.opmode;
522 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
523 		/* Nothing active, default to station mode */
524 		ah->opmode = NL80211_IFTYPE_STATION;
525 
526 	ath5k_hw_set_opmode(ah, ah->opmode);
527 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
528 		  ah->opmode, ath_opmode_to_string(ah->opmode));
529 
530 	if (iter_data.need_set_hw_addr && iter_data.found_active)
531 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
532 
533 	if (ath5k_hw_hasbssidmask(ah))
534 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
535 
536 	/* Set up RX Filter */
537 	if (iter_data.n_stas > 1) {
538 		/* If you have multiple STA interfaces connected to
539 		 * different APs, ARPs are not received (most of the time?)
540 		 * Enabling PROMISC appears to fix that problem.
541 		 */
542 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
543 	}
544 
545 	rfilt = ah->filter_flags;
546 	ath5k_hw_set_rx_filter(ah, rfilt);
547 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
548 }
549 
550 static inline int
551 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
552 {
553 	int rix;
554 
555 	/* return base rate on errors */
556 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
557 			"hw_rix out of bounds: %x\n", hw_rix))
558 		return 0;
559 
560 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
561 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
562 		rix = 0;
563 
564 	return rix;
565 }
566 
567 /***************\
568 * Buffers setup *
569 \***************/
570 
571 static
572 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
573 {
574 	struct ath_common *common = ath5k_hw_common(ah);
575 	struct sk_buff *skb;
576 
577 	/*
578 	 * Allocate buffer with headroom_needed space for the
579 	 * fake physical layer header at the start.
580 	 */
581 	skb = ath_rxbuf_alloc(common,
582 			      common->rx_bufsize,
583 			      GFP_ATOMIC);
584 
585 	if (!skb) {
586 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
587 				common->rx_bufsize);
588 		return NULL;
589 	}
590 
591 	*skb_addr = dma_map_single(ah->dev,
592 				   skb->data, common->rx_bufsize,
593 				   DMA_FROM_DEVICE);
594 
595 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
596 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
597 		dev_kfree_skb(skb);
598 		return NULL;
599 	}
600 	return skb;
601 }
602 
603 static int
604 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
605 {
606 	struct sk_buff *skb = bf->skb;
607 	struct ath5k_desc *ds;
608 	int ret;
609 
610 	if (!skb) {
611 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
612 		if (!skb)
613 			return -ENOMEM;
614 		bf->skb = skb;
615 	}
616 
617 	/*
618 	 * Setup descriptors.  For receive we always terminate
619 	 * the descriptor list with a self-linked entry so we'll
620 	 * not get overrun under high load (as can happen with a
621 	 * 5212 when ANI processing enables PHY error frames).
622 	 *
623 	 * To ensure the last descriptor is self-linked we create
624 	 * each descriptor as self-linked and add it to the end.  As
625 	 * each additional descriptor is added the previous self-linked
626 	 * entry is "fixed" naturally.  This should be safe even
627 	 * if DMA is happening.  When processing RX interrupts we
628 	 * never remove/process the last, self-linked, entry on the
629 	 * descriptor list.  This ensures the hardware always has
630 	 * someplace to write a new frame.
631 	 */
632 	ds = bf->desc;
633 	ds->ds_link = bf->daddr;	/* link to self */
634 	ds->ds_data = bf->skbaddr;
635 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
636 	if (ret) {
637 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
638 		return ret;
639 	}
640 
641 	if (ah->rxlink != NULL)
642 		*ah->rxlink = bf->daddr;
643 	ah->rxlink = &ds->ds_link;
644 	return 0;
645 }
646 
647 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
648 {
649 	struct ieee80211_hdr *hdr;
650 	enum ath5k_pkt_type htype;
651 	__le16 fc;
652 
653 	hdr = (struct ieee80211_hdr *)skb->data;
654 	fc = hdr->frame_control;
655 
656 	if (ieee80211_is_beacon(fc))
657 		htype = AR5K_PKT_TYPE_BEACON;
658 	else if (ieee80211_is_probe_resp(fc))
659 		htype = AR5K_PKT_TYPE_PROBE_RESP;
660 	else if (ieee80211_is_atim(fc))
661 		htype = AR5K_PKT_TYPE_ATIM;
662 	else if (ieee80211_is_pspoll(fc))
663 		htype = AR5K_PKT_TYPE_PSPOLL;
664 	else
665 		htype = AR5K_PKT_TYPE_NORMAL;
666 
667 	return htype;
668 }
669 
670 static struct ieee80211_rate *
671 ath5k_get_rate(const struct ieee80211_hw *hw,
672 	       const struct ieee80211_tx_info *info,
673 	       struct ath5k_buf *bf, int idx)
674 {
675 	/*
676 	* convert a ieee80211_tx_rate RC-table entry to
677 	* the respective ieee80211_rate struct
678 	*/
679 	if (bf->rates[idx].idx < 0) {
680 		return NULL;
681 	}
682 
683 	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
684 }
685 
686 static u16
687 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
688 			const struct ieee80211_tx_info *info,
689 			struct ath5k_buf *bf, int idx)
690 {
691 	struct ieee80211_rate *rate;
692 	u16 hw_rate;
693 	u8 rc_flags;
694 
695 	rate = ath5k_get_rate(hw, info, bf, idx);
696 	if (!rate)
697 		return 0;
698 
699 	rc_flags = bf->rates[idx].flags;
700 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
701 		   rate->hw_value_short : rate->hw_value;
702 
703 	return hw_rate;
704 }
705 
706 static int
707 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
708 		  struct ath5k_txq *txq, int padsize,
709 		  struct ieee80211_tx_control *control)
710 {
711 	struct ath5k_desc *ds = bf->desc;
712 	struct sk_buff *skb = bf->skb;
713 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
714 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
715 	struct ieee80211_rate *rate;
716 	unsigned int mrr_rate[3], mrr_tries[3];
717 	int i, ret;
718 	u16 hw_rate;
719 	u16 cts_rate = 0;
720 	u16 duration = 0;
721 	u8 rc_flags;
722 
723 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
724 
725 	/* XXX endianness */
726 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
727 			DMA_TO_DEVICE);
728 
729 	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
730 			       ARRAY_SIZE(bf->rates));
731 
732 	rate = ath5k_get_rate(ah->hw, info, bf, 0);
733 
734 	if (!rate) {
735 		ret = -EINVAL;
736 		goto err_unmap;
737 	}
738 
739 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
740 		flags |= AR5K_TXDESC_NOACK;
741 
742 	rc_flags = info->control.rates[0].flags;
743 
744 	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
745 
746 	pktlen = skb->len;
747 
748 	/* FIXME: If we are in g mode and rate is a CCK rate
749 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
750 	 * from tx power (value is in dB units already) */
751 	if (info->control.hw_key) {
752 		keyidx = info->control.hw_key->hw_key_idx;
753 		pktlen += info->control.hw_key->icv_len;
754 	}
755 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
756 		flags |= AR5K_TXDESC_RTSENA;
757 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
758 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
759 			info->control.vif, pktlen, info));
760 	}
761 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
762 		flags |= AR5K_TXDESC_CTSENA;
763 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
764 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
765 			info->control.vif, pktlen, info));
766 	}
767 
768 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
769 		ieee80211_get_hdrlen_from_skb(skb), padsize,
770 		get_hw_packet_type(skb),
771 		(ah->ah_txpower.txp_requested * 2),
772 		hw_rate,
773 		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
774 		cts_rate, duration);
775 	if (ret)
776 		goto err_unmap;
777 
778 	/* Set up MRR descriptor */
779 	if (ah->ah_capabilities.cap_has_mrr_support) {
780 		memset(mrr_rate, 0, sizeof(mrr_rate));
781 		memset(mrr_tries, 0, sizeof(mrr_tries));
782 
783 		for (i = 0; i < 3; i++) {
784 
785 			rate = ath5k_get_rate(ah->hw, info, bf, i);
786 			if (!rate)
787 				break;
788 
789 			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
790 			mrr_tries[i] = bf->rates[i].count;
791 		}
792 
793 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
794 			mrr_rate[0], mrr_tries[0],
795 			mrr_rate[1], mrr_tries[1],
796 			mrr_rate[2], mrr_tries[2]);
797 	}
798 
799 	ds->ds_link = 0;
800 	ds->ds_data = bf->skbaddr;
801 
802 	spin_lock_bh(&txq->lock);
803 	list_add_tail(&bf->list, &txq->q);
804 	txq->txq_len++;
805 	if (txq->link == NULL) /* is this first packet? */
806 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
807 	else /* no, so only link it */
808 		*txq->link = bf->daddr;
809 
810 	txq->link = &ds->ds_link;
811 	ath5k_hw_start_tx_dma(ah, txq->qnum);
812 	mmiowb();
813 	spin_unlock_bh(&txq->lock);
814 
815 	return 0;
816 err_unmap:
817 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
818 	return ret;
819 }
820 
821 /*******************\
822 * Descriptors setup *
823 \*******************/
824 
825 static int
826 ath5k_desc_alloc(struct ath5k_hw *ah)
827 {
828 	struct ath5k_desc *ds;
829 	struct ath5k_buf *bf;
830 	dma_addr_t da;
831 	unsigned int i;
832 	int ret;
833 
834 	/* allocate descriptors */
835 	ah->desc_len = sizeof(struct ath5k_desc) *
836 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
837 
838 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
839 				&ah->desc_daddr, GFP_KERNEL);
840 	if (ah->desc == NULL) {
841 		ATH5K_ERR(ah, "can't allocate descriptors\n");
842 		ret = -ENOMEM;
843 		goto err;
844 	}
845 	ds = ah->desc;
846 	da = ah->desc_daddr;
847 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
848 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
849 
850 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
851 			sizeof(struct ath5k_buf), GFP_KERNEL);
852 	if (bf == NULL) {
853 		ATH5K_ERR(ah, "can't allocate bufptr\n");
854 		ret = -ENOMEM;
855 		goto err_free;
856 	}
857 	ah->bufptr = bf;
858 
859 	INIT_LIST_HEAD(&ah->rxbuf);
860 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
861 		bf->desc = ds;
862 		bf->daddr = da;
863 		list_add_tail(&bf->list, &ah->rxbuf);
864 	}
865 
866 	INIT_LIST_HEAD(&ah->txbuf);
867 	ah->txbuf_len = ATH_TXBUF;
868 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
869 		bf->desc = ds;
870 		bf->daddr = da;
871 		list_add_tail(&bf->list, &ah->txbuf);
872 	}
873 
874 	/* beacon buffers */
875 	INIT_LIST_HEAD(&ah->bcbuf);
876 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
877 		bf->desc = ds;
878 		bf->daddr = da;
879 		list_add_tail(&bf->list, &ah->bcbuf);
880 	}
881 
882 	return 0;
883 err_free:
884 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
885 err:
886 	ah->desc = NULL;
887 	return ret;
888 }
889 
890 void
891 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
892 {
893 	BUG_ON(!bf);
894 	if (!bf->skb)
895 		return;
896 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
897 			DMA_TO_DEVICE);
898 	ieee80211_free_txskb(ah->hw, bf->skb);
899 	bf->skb = NULL;
900 	bf->skbaddr = 0;
901 	bf->desc->ds_data = 0;
902 }
903 
904 void
905 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
906 {
907 	struct ath_common *common = ath5k_hw_common(ah);
908 
909 	BUG_ON(!bf);
910 	if (!bf->skb)
911 		return;
912 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
913 			DMA_FROM_DEVICE);
914 	dev_kfree_skb_any(bf->skb);
915 	bf->skb = NULL;
916 	bf->skbaddr = 0;
917 	bf->desc->ds_data = 0;
918 }
919 
920 static void
921 ath5k_desc_free(struct ath5k_hw *ah)
922 {
923 	struct ath5k_buf *bf;
924 
925 	list_for_each_entry(bf, &ah->txbuf, list)
926 		ath5k_txbuf_free_skb(ah, bf);
927 	list_for_each_entry(bf, &ah->rxbuf, list)
928 		ath5k_rxbuf_free_skb(ah, bf);
929 	list_for_each_entry(bf, &ah->bcbuf, list)
930 		ath5k_txbuf_free_skb(ah, bf);
931 
932 	/* Free memory associated with all descriptors */
933 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
934 	ah->desc = NULL;
935 	ah->desc_daddr = 0;
936 
937 	kfree(ah->bufptr);
938 	ah->bufptr = NULL;
939 }
940 
941 
942 /**************\
943 * Queues setup *
944 \**************/
945 
946 static struct ath5k_txq *
947 ath5k_txq_setup(struct ath5k_hw *ah,
948 		int qtype, int subtype)
949 {
950 	struct ath5k_txq *txq;
951 	struct ath5k_txq_info qi = {
952 		.tqi_subtype = subtype,
953 		/* XXX: default values not correct for B and XR channels,
954 		 * but who cares? */
955 		.tqi_aifs = AR5K_TUNE_AIFS,
956 		.tqi_cw_min = AR5K_TUNE_CWMIN,
957 		.tqi_cw_max = AR5K_TUNE_CWMAX
958 	};
959 	int qnum;
960 
961 	/*
962 	 * Enable interrupts only for EOL and DESC conditions.
963 	 * We mark tx descriptors to receive a DESC interrupt
964 	 * when a tx queue gets deep; otherwise we wait for the
965 	 * EOL to reap descriptors.  Note that this is done to
966 	 * reduce interrupt load and this only defers reaping
967 	 * descriptors, never transmitting frames.  Aside from
968 	 * reducing interrupts this also permits more concurrency.
969 	 * The only potential downside is if the tx queue backs
970 	 * up in which case the top half of the kernel may backup
971 	 * due to a lack of tx descriptors.
972 	 */
973 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
974 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
975 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
976 	if (qnum < 0) {
977 		/*
978 		 * NB: don't print a message, this happens
979 		 * normally on parts with too few tx queues
980 		 */
981 		return ERR_PTR(qnum);
982 	}
983 	txq = &ah->txqs[qnum];
984 	if (!txq->setup) {
985 		txq->qnum = qnum;
986 		txq->link = NULL;
987 		INIT_LIST_HEAD(&txq->q);
988 		spin_lock_init(&txq->lock);
989 		txq->setup = true;
990 		txq->txq_len = 0;
991 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
992 		txq->txq_poll_mark = false;
993 		txq->txq_stuck = 0;
994 	}
995 	return &ah->txqs[qnum];
996 }
997 
998 static int
999 ath5k_beaconq_setup(struct ath5k_hw *ah)
1000 {
1001 	struct ath5k_txq_info qi = {
1002 		/* XXX: default values not correct for B and XR channels,
1003 		 * but who cares? */
1004 		.tqi_aifs = AR5K_TUNE_AIFS,
1005 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1006 		.tqi_cw_max = AR5K_TUNE_CWMAX,
1007 		/* NB: for dynamic turbo, don't enable any other interrupts */
1008 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1009 	};
1010 
1011 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1012 }
1013 
1014 static int
1015 ath5k_beaconq_config(struct ath5k_hw *ah)
1016 {
1017 	struct ath5k_txq_info qi;
1018 	int ret;
1019 
1020 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1021 	if (ret)
1022 		goto err;
1023 
1024 	if (ah->opmode == NL80211_IFTYPE_AP ||
1025 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1026 		/*
1027 		 * Always burst out beacon and CAB traffic
1028 		 * (aifs = cwmin = cwmax = 0)
1029 		 */
1030 		qi.tqi_aifs = 0;
1031 		qi.tqi_cw_min = 0;
1032 		qi.tqi_cw_max = 0;
1033 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1034 		/*
1035 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1036 		 */
1037 		qi.tqi_aifs = 0;
1038 		qi.tqi_cw_min = 0;
1039 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1040 	}
1041 
1042 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1043 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1044 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1045 
1046 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1047 	if (ret) {
1048 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1049 			"hardware queue!\n", __func__);
1050 		goto err;
1051 	}
1052 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1053 	if (ret)
1054 		goto err;
1055 
1056 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1057 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1058 	if (ret)
1059 		goto err;
1060 
1061 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1062 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1063 	if (ret)
1064 		goto err;
1065 
1066 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1067 err:
1068 	return ret;
1069 }
1070 
1071 /**
1072  * ath5k_drain_tx_buffs - Empty tx buffers
1073  *
1074  * @ah The &struct ath5k_hw
1075  *
1076  * Empty tx buffers from all queues in preparation
1077  * of a reset or during shutdown.
1078  *
1079  * NB:	this assumes output has been stopped and
1080  *	we do not need to block ath5k_tx_tasklet
1081  */
1082 static void
1083 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1084 {
1085 	struct ath5k_txq *txq;
1086 	struct ath5k_buf *bf, *bf0;
1087 	int i;
1088 
1089 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1090 		if (ah->txqs[i].setup) {
1091 			txq = &ah->txqs[i];
1092 			spin_lock_bh(&txq->lock);
1093 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1094 				ath5k_debug_printtxbuf(ah, bf);
1095 
1096 				ath5k_txbuf_free_skb(ah, bf);
1097 
1098 				spin_lock(&ah->txbuflock);
1099 				list_move_tail(&bf->list, &ah->txbuf);
1100 				ah->txbuf_len++;
1101 				txq->txq_len--;
1102 				spin_unlock(&ah->txbuflock);
1103 			}
1104 			txq->link = NULL;
1105 			txq->txq_poll_mark = false;
1106 			spin_unlock_bh(&txq->lock);
1107 		}
1108 	}
1109 }
1110 
1111 static void
1112 ath5k_txq_release(struct ath5k_hw *ah)
1113 {
1114 	struct ath5k_txq *txq = ah->txqs;
1115 	unsigned int i;
1116 
1117 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1118 		if (txq->setup) {
1119 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1120 			txq->setup = false;
1121 		}
1122 }
1123 
1124 
1125 /*************\
1126 * RX Handling *
1127 \*************/
1128 
1129 /*
1130  * Enable the receive h/w following a reset.
1131  */
1132 static int
1133 ath5k_rx_start(struct ath5k_hw *ah)
1134 {
1135 	struct ath_common *common = ath5k_hw_common(ah);
1136 	struct ath5k_buf *bf;
1137 	int ret;
1138 
1139 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1140 
1141 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1142 		  common->cachelsz, common->rx_bufsize);
1143 
1144 	spin_lock_bh(&ah->rxbuflock);
1145 	ah->rxlink = NULL;
1146 	list_for_each_entry(bf, &ah->rxbuf, list) {
1147 		ret = ath5k_rxbuf_setup(ah, bf);
1148 		if (ret != 0) {
1149 			spin_unlock_bh(&ah->rxbuflock);
1150 			goto err;
1151 		}
1152 	}
1153 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1154 	ath5k_hw_set_rxdp(ah, bf->daddr);
1155 	spin_unlock_bh(&ah->rxbuflock);
1156 
1157 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1158 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1159 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1160 
1161 	return 0;
1162 err:
1163 	return ret;
1164 }
1165 
1166 /*
1167  * Disable the receive logic on PCU (DRU)
1168  * In preparation for a shutdown.
1169  *
1170  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1171  * does.
1172  */
1173 static void
1174 ath5k_rx_stop(struct ath5k_hw *ah)
1175 {
1176 
1177 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1178 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1179 
1180 	ath5k_debug_printrxbuffs(ah);
1181 }
1182 
1183 static unsigned int
1184 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1185 		   struct ath5k_rx_status *rs)
1186 {
1187 	struct ath_common *common = ath5k_hw_common(ah);
1188 	struct ieee80211_hdr *hdr = (void *)skb->data;
1189 	unsigned int keyix, hlen;
1190 
1191 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1192 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1193 		return RX_FLAG_DECRYPTED;
1194 
1195 	/* Apparently when a default key is used to decrypt the packet
1196 	   the hw does not set the index used to decrypt.  In such cases
1197 	   get the index from the packet. */
1198 	hlen = ieee80211_hdrlen(hdr->frame_control);
1199 	if (ieee80211_has_protected(hdr->frame_control) &&
1200 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1201 	    skb->len >= hlen + 4) {
1202 		keyix = skb->data[hlen + 3] >> 6;
1203 
1204 		if (test_bit(keyix, common->keymap))
1205 			return RX_FLAG_DECRYPTED;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 
1212 static void
1213 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1214 		     struct ieee80211_rx_status *rxs)
1215 {
1216 	struct ath_common *common = ath5k_hw_common(ah);
1217 	u64 tsf, bc_tstamp;
1218 	u32 hw_tu;
1219 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1220 
1221 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1222 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1223 	    ether_addr_equal(mgmt->bssid, common->curbssid)) {
1224 		/*
1225 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1226 		 * have updated the local TSF. We have to work around various
1227 		 * hardware bugs, though...
1228 		 */
1229 		tsf = ath5k_hw_get_tsf64(ah);
1230 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1231 		hw_tu = TSF_TO_TU(tsf);
1232 
1233 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1234 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1235 			(unsigned long long)bc_tstamp,
1236 			(unsigned long long)rxs->mactime,
1237 			(unsigned long long)(rxs->mactime - bc_tstamp),
1238 			(unsigned long long)tsf);
1239 
1240 		/*
1241 		 * Sometimes the HW will give us a wrong tstamp in the rx
1242 		 * status, causing the timestamp extension to go wrong.
1243 		 * (This seems to happen especially with beacon frames bigger
1244 		 * than 78 byte (incl. FCS))
1245 		 * But we know that the receive timestamp must be later than the
1246 		 * timestamp of the beacon since HW must have synced to that.
1247 		 *
1248 		 * NOTE: here we assume mactime to be after the frame was
1249 		 * received, not like mac80211 which defines it at the start.
1250 		 */
1251 		if (bc_tstamp > rxs->mactime) {
1252 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1253 				"fixing mactime from %llx to %llx\n",
1254 				(unsigned long long)rxs->mactime,
1255 				(unsigned long long)tsf);
1256 			rxs->mactime = tsf;
1257 		}
1258 
1259 		/*
1260 		 * Local TSF might have moved higher than our beacon timers,
1261 		 * in that case we have to update them to continue sending
1262 		 * beacons. This also takes care of synchronizing beacon sending
1263 		 * times with other stations.
1264 		 */
1265 		if (hw_tu >= ah->nexttbtt)
1266 			ath5k_beacon_update_timers(ah, bc_tstamp);
1267 
1268 		/* Check if the beacon timers are still correct, because a TSF
1269 		 * update might have created a window between them - for a
1270 		 * longer description see the comment of this function: */
1271 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1272 			ath5k_beacon_update_timers(ah, bc_tstamp);
1273 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1274 				"fixed beacon timers after beacon receive\n");
1275 		}
1276 	}
1277 }
1278 
1279 static void
1280 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1281 {
1282 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1283 	struct ath_common *common = ath5k_hw_common(ah);
1284 
1285 	/* only beacons from our BSSID */
1286 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1287 	    !ether_addr_equal(mgmt->bssid, common->curbssid))
1288 		return;
1289 
1290 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1291 
1292 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1293 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1294 }
1295 
1296 /*
1297  * Compute padding position. skb must contain an IEEE 802.11 frame
1298  */
1299 static int ath5k_common_padpos(struct sk_buff *skb)
1300 {
1301 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1302 	__le16 frame_control = hdr->frame_control;
1303 	int padpos = 24;
1304 
1305 	if (ieee80211_has_a4(frame_control))
1306 		padpos += ETH_ALEN;
1307 
1308 	if (ieee80211_is_data_qos(frame_control))
1309 		padpos += IEEE80211_QOS_CTL_LEN;
1310 
1311 	return padpos;
1312 }
1313 
1314 /*
1315  * This function expects an 802.11 frame and returns the number of
1316  * bytes added, or -1 if we don't have enough header room.
1317  */
1318 static int ath5k_add_padding(struct sk_buff *skb)
1319 {
1320 	int padpos = ath5k_common_padpos(skb);
1321 	int padsize = padpos & 3;
1322 
1323 	if (padsize && skb->len > padpos) {
1324 
1325 		if (skb_headroom(skb) < padsize)
1326 			return -1;
1327 
1328 		skb_push(skb, padsize);
1329 		memmove(skb->data, skb->data + padsize, padpos);
1330 		return padsize;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 /*
1337  * The MAC header is padded to have 32-bit boundary if the
1338  * packet payload is non-zero. The general calculation for
1339  * padsize would take into account odd header lengths:
1340  * padsize = 4 - (hdrlen & 3); however, since only
1341  * even-length headers are used, padding can only be 0 or 2
1342  * bytes and we can optimize this a bit.  We must not try to
1343  * remove padding from short control frames that do not have a
1344  * payload.
1345  *
1346  * This function expects an 802.11 frame and returns the number of
1347  * bytes removed.
1348  */
1349 static int ath5k_remove_padding(struct sk_buff *skb)
1350 {
1351 	int padpos = ath5k_common_padpos(skb);
1352 	int padsize = padpos & 3;
1353 
1354 	if (padsize && skb->len >= padpos + padsize) {
1355 		memmove(skb->data + padsize, skb->data, padpos);
1356 		skb_pull(skb, padsize);
1357 		return padsize;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static void
1364 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1365 		    struct ath5k_rx_status *rs)
1366 {
1367 	struct ieee80211_rx_status *rxs;
1368 
1369 	ath5k_remove_padding(skb);
1370 
1371 	rxs = IEEE80211_SKB_RXCB(skb);
1372 
1373 	rxs->flag = 0;
1374 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1375 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1376 
1377 	/*
1378 	 * always extend the mac timestamp, since this information is
1379 	 * also needed for proper IBSS merging.
1380 	 *
1381 	 * XXX: it might be too late to do it here, since rs_tstamp is
1382 	 * 15bit only. that means TSF extension has to be done within
1383 	 * 32768usec (about 32ms). it might be necessary to move this to
1384 	 * the interrupt handler, like it is done in madwifi.
1385 	 */
1386 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1387 	rxs->flag |= RX_FLAG_MACTIME_END;
1388 
1389 	rxs->freq = ah->curchan->center_freq;
1390 	rxs->band = ah->curchan->band;
1391 
1392 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1393 
1394 	rxs->antenna = rs->rs_antenna;
1395 
1396 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1397 		ah->stats.antenna_rx[rs->rs_antenna]++;
1398 	else
1399 		ah->stats.antenna_rx[0]++; /* invalid */
1400 
1401 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1402 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1403 
1404 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1405 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1406 		rxs->flag |= RX_FLAG_SHORTPRE;
1407 
1408 	trace_ath5k_rx(ah, skb);
1409 
1410 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1411 
1412 	/* check beacons in IBSS mode */
1413 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1414 		ath5k_check_ibss_tsf(ah, skb, rxs);
1415 
1416 	ieee80211_rx(ah->hw, skb);
1417 }
1418 
1419 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1420  *
1421  * Check if we want to further process this frame or not. Also update
1422  * statistics. Return true if we want this frame, false if not.
1423  */
1424 static bool
1425 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1426 {
1427 	ah->stats.rx_all_count++;
1428 	ah->stats.rx_bytes_count += rs->rs_datalen;
1429 
1430 	if (unlikely(rs->rs_status)) {
1431 		if (rs->rs_status & AR5K_RXERR_CRC)
1432 			ah->stats.rxerr_crc++;
1433 		if (rs->rs_status & AR5K_RXERR_FIFO)
1434 			ah->stats.rxerr_fifo++;
1435 		if (rs->rs_status & AR5K_RXERR_PHY) {
1436 			ah->stats.rxerr_phy++;
1437 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1438 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1439 			return false;
1440 		}
1441 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1442 			/*
1443 			 * Decrypt error.  If the error occurred
1444 			 * because there was no hardware key, then
1445 			 * let the frame through so the upper layers
1446 			 * can process it.  This is necessary for 5210
1447 			 * parts which have no way to setup a ``clear''
1448 			 * key cache entry.
1449 			 *
1450 			 * XXX do key cache faulting
1451 			 */
1452 			ah->stats.rxerr_decrypt++;
1453 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1454 			    !(rs->rs_status & AR5K_RXERR_CRC))
1455 				return true;
1456 		}
1457 		if (rs->rs_status & AR5K_RXERR_MIC) {
1458 			ah->stats.rxerr_mic++;
1459 			return true;
1460 		}
1461 
1462 		/* reject any frames with non-crypto errors */
1463 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1464 			return false;
1465 	}
1466 
1467 	if (unlikely(rs->rs_more)) {
1468 		ah->stats.rxerr_jumbo++;
1469 		return false;
1470 	}
1471 	return true;
1472 }
1473 
1474 static void
1475 ath5k_set_current_imask(struct ath5k_hw *ah)
1476 {
1477 	enum ath5k_int imask;
1478 	unsigned long flags;
1479 
1480 	spin_lock_irqsave(&ah->irqlock, flags);
1481 	imask = ah->imask;
1482 	if (ah->rx_pending)
1483 		imask &= ~AR5K_INT_RX_ALL;
1484 	if (ah->tx_pending)
1485 		imask &= ~AR5K_INT_TX_ALL;
1486 	ath5k_hw_set_imr(ah, imask);
1487 	spin_unlock_irqrestore(&ah->irqlock, flags);
1488 }
1489 
1490 static void
1491 ath5k_tasklet_rx(unsigned long data)
1492 {
1493 	struct ath5k_rx_status rs = {};
1494 	struct sk_buff *skb, *next_skb;
1495 	dma_addr_t next_skb_addr;
1496 	struct ath5k_hw *ah = (void *)data;
1497 	struct ath_common *common = ath5k_hw_common(ah);
1498 	struct ath5k_buf *bf;
1499 	struct ath5k_desc *ds;
1500 	int ret;
1501 
1502 	spin_lock(&ah->rxbuflock);
1503 	if (list_empty(&ah->rxbuf)) {
1504 		ATH5K_WARN(ah, "empty rx buf pool\n");
1505 		goto unlock;
1506 	}
1507 	do {
1508 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1509 		BUG_ON(bf->skb == NULL);
1510 		skb = bf->skb;
1511 		ds = bf->desc;
1512 
1513 		/* bail if HW is still using self-linked descriptor */
1514 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1515 			break;
1516 
1517 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1518 		if (unlikely(ret == -EINPROGRESS))
1519 			break;
1520 		else if (unlikely(ret)) {
1521 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1522 			ah->stats.rxerr_proc++;
1523 			break;
1524 		}
1525 
1526 		if (ath5k_receive_frame_ok(ah, &rs)) {
1527 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1528 
1529 			/*
1530 			 * If we can't replace bf->skb with a new skb under
1531 			 * memory pressure, just skip this packet
1532 			 */
1533 			if (!next_skb)
1534 				goto next;
1535 
1536 			dma_unmap_single(ah->dev, bf->skbaddr,
1537 					 common->rx_bufsize,
1538 					 DMA_FROM_DEVICE);
1539 
1540 			skb_put(skb, rs.rs_datalen);
1541 
1542 			ath5k_receive_frame(ah, skb, &rs);
1543 
1544 			bf->skb = next_skb;
1545 			bf->skbaddr = next_skb_addr;
1546 		}
1547 next:
1548 		list_move_tail(&bf->list, &ah->rxbuf);
1549 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1550 unlock:
1551 	spin_unlock(&ah->rxbuflock);
1552 	ah->rx_pending = false;
1553 	ath5k_set_current_imask(ah);
1554 }
1555 
1556 
1557 /*************\
1558 * TX Handling *
1559 \*************/
1560 
1561 void
1562 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1563 	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1564 {
1565 	struct ath5k_hw *ah = hw->priv;
1566 	struct ath5k_buf *bf;
1567 	unsigned long flags;
1568 	int padsize;
1569 
1570 	trace_ath5k_tx(ah, skb, txq);
1571 
1572 	/*
1573 	 * The hardware expects the header padded to 4 byte boundaries.
1574 	 * If this is not the case, we add the padding after the header.
1575 	 */
1576 	padsize = ath5k_add_padding(skb);
1577 	if (padsize < 0) {
1578 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1579 			  " headroom to pad");
1580 		goto drop_packet;
1581 	}
1582 
1583 	if (txq->txq_len >= txq->txq_max &&
1584 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1585 		ieee80211_stop_queue(hw, txq->qnum);
1586 
1587 	spin_lock_irqsave(&ah->txbuflock, flags);
1588 	if (list_empty(&ah->txbuf)) {
1589 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1590 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1591 		ieee80211_stop_queues(hw);
1592 		goto drop_packet;
1593 	}
1594 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1595 	list_del(&bf->list);
1596 	ah->txbuf_len--;
1597 	if (list_empty(&ah->txbuf))
1598 		ieee80211_stop_queues(hw);
1599 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1600 
1601 	bf->skb = skb;
1602 
1603 	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1604 		bf->skb = NULL;
1605 		spin_lock_irqsave(&ah->txbuflock, flags);
1606 		list_add_tail(&bf->list, &ah->txbuf);
1607 		ah->txbuf_len++;
1608 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1609 		goto drop_packet;
1610 	}
1611 	return;
1612 
1613 drop_packet:
1614 	ieee80211_free_txskb(hw, skb);
1615 }
1616 
1617 static void
1618 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1619 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1620 			 struct ath5k_buf *bf)
1621 {
1622 	struct ieee80211_tx_info *info;
1623 	u8 tries[3];
1624 	int i;
1625 	int size = 0;
1626 
1627 	ah->stats.tx_all_count++;
1628 	ah->stats.tx_bytes_count += skb->len;
1629 	info = IEEE80211_SKB_CB(skb);
1630 
1631 	tries[0] = info->status.rates[0].count;
1632 	tries[1] = info->status.rates[1].count;
1633 	tries[2] = info->status.rates[2].count;
1634 
1635 	ieee80211_tx_info_clear_status(info);
1636 
1637 	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1638 	memcpy(info->status.rates, bf->rates, size);
1639 
1640 	for (i = 0; i < ts->ts_final_idx; i++) {
1641 		struct ieee80211_tx_rate *r =
1642 			&info->status.rates[i];
1643 
1644 		r->count = tries[i];
1645 	}
1646 
1647 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1648 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1649 
1650 	if (unlikely(ts->ts_status)) {
1651 		ah->stats.ack_fail++;
1652 		if (ts->ts_status & AR5K_TXERR_FILT) {
1653 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1654 			ah->stats.txerr_filt++;
1655 		}
1656 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1657 			ah->stats.txerr_retry++;
1658 		if (ts->ts_status & AR5K_TXERR_FIFO)
1659 			ah->stats.txerr_fifo++;
1660 	} else {
1661 		info->flags |= IEEE80211_TX_STAT_ACK;
1662 		info->status.ack_signal = ts->ts_rssi;
1663 
1664 		/* count the successful attempt as well */
1665 		info->status.rates[ts->ts_final_idx].count++;
1666 	}
1667 
1668 	/*
1669 	* Remove MAC header padding before giving the frame
1670 	* back to mac80211.
1671 	*/
1672 	ath5k_remove_padding(skb);
1673 
1674 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1675 		ah->stats.antenna_tx[ts->ts_antenna]++;
1676 	else
1677 		ah->stats.antenna_tx[0]++; /* invalid */
1678 
1679 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1680 	ieee80211_tx_status(ah->hw, skb);
1681 }
1682 
1683 static void
1684 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1685 {
1686 	struct ath5k_tx_status ts = {};
1687 	struct ath5k_buf *bf, *bf0;
1688 	struct ath5k_desc *ds;
1689 	struct sk_buff *skb;
1690 	int ret;
1691 
1692 	spin_lock(&txq->lock);
1693 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1694 
1695 		txq->txq_poll_mark = false;
1696 
1697 		/* skb might already have been processed last time. */
1698 		if (bf->skb != NULL) {
1699 			ds = bf->desc;
1700 
1701 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1702 			if (unlikely(ret == -EINPROGRESS))
1703 				break;
1704 			else if (unlikely(ret)) {
1705 				ATH5K_ERR(ah,
1706 					"error %d while processing "
1707 					"queue %u\n", ret, txq->qnum);
1708 				break;
1709 			}
1710 
1711 			skb = bf->skb;
1712 			bf->skb = NULL;
1713 
1714 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1715 					DMA_TO_DEVICE);
1716 			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1717 		}
1718 
1719 		/*
1720 		 * It's possible that the hardware can say the buffer is
1721 		 * completed when it hasn't yet loaded the ds_link from
1722 		 * host memory and moved on.
1723 		 * Always keep the last descriptor to avoid HW races...
1724 		 */
1725 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1726 			spin_lock(&ah->txbuflock);
1727 			list_move_tail(&bf->list, &ah->txbuf);
1728 			ah->txbuf_len++;
1729 			txq->txq_len--;
1730 			spin_unlock(&ah->txbuflock);
1731 		}
1732 	}
1733 	spin_unlock(&txq->lock);
1734 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1735 		ieee80211_wake_queue(ah->hw, txq->qnum);
1736 }
1737 
1738 static void
1739 ath5k_tasklet_tx(unsigned long data)
1740 {
1741 	int i;
1742 	struct ath5k_hw *ah = (void *)data;
1743 
1744 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1745 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1746 			ath5k_tx_processq(ah, &ah->txqs[i]);
1747 
1748 	ah->tx_pending = false;
1749 	ath5k_set_current_imask(ah);
1750 }
1751 
1752 
1753 /*****************\
1754 * Beacon handling *
1755 \*****************/
1756 
1757 /*
1758  * Setup the beacon frame for transmit.
1759  */
1760 static int
1761 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1762 {
1763 	struct sk_buff *skb = bf->skb;
1764 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1765 	struct ath5k_desc *ds;
1766 	int ret = 0;
1767 	u8 antenna;
1768 	u32 flags;
1769 	const int padsize = 0;
1770 
1771 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1772 			DMA_TO_DEVICE);
1773 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1774 			"skbaddr %llx\n", skb, skb->data, skb->len,
1775 			(unsigned long long)bf->skbaddr);
1776 
1777 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1778 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1779 		dev_kfree_skb_any(skb);
1780 		bf->skb = NULL;
1781 		return -EIO;
1782 	}
1783 
1784 	ds = bf->desc;
1785 	antenna = ah->ah_tx_ant;
1786 
1787 	flags = AR5K_TXDESC_NOACK;
1788 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1789 		ds->ds_link = bf->daddr;	/* self-linked */
1790 		flags |= AR5K_TXDESC_VEOL;
1791 	} else
1792 		ds->ds_link = 0;
1793 
1794 	/*
1795 	 * If we use multiple antennas on AP and use
1796 	 * the Sectored AP scenario, switch antenna every
1797 	 * 4 beacons to make sure everybody hears our AP.
1798 	 * When a client tries to associate, hw will keep
1799 	 * track of the tx antenna to be used for this client
1800 	 * automatically, based on ACKed packets.
1801 	 *
1802 	 * Note: AP still listens and transmits RTS on the
1803 	 * default antenna which is supposed to be an omni.
1804 	 *
1805 	 * Note2: On sectored scenarios it's possible to have
1806 	 * multiple antennas (1 omni -- the default -- and 14
1807 	 * sectors), so if we choose to actually support this
1808 	 * mode, we need to allow the user to set how many antennas
1809 	 * we have and tweak the code below to send beacons
1810 	 * on all of them.
1811 	 */
1812 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1813 		antenna = ah->bsent & 4 ? 2 : 1;
1814 
1815 
1816 	/* FIXME: If we are in g mode and rate is a CCK rate
1817 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1818 	 * from tx power (value is in dB units already) */
1819 	ds->ds_data = bf->skbaddr;
1820 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1821 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1822 			AR5K_PKT_TYPE_BEACON,
1823 			(ah->ah_txpower.txp_requested * 2),
1824 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1825 			1, AR5K_TXKEYIX_INVALID,
1826 			antenna, flags, 0, 0);
1827 	if (ret)
1828 		goto err_unmap;
1829 
1830 	return 0;
1831 err_unmap:
1832 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1838  * this is called only once at config_bss time, for AP we do it every
1839  * SWBA interrupt so that the TIM will reflect buffered frames.
1840  *
1841  * Called with the beacon lock.
1842  */
1843 int
1844 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1845 {
1846 	int ret;
1847 	struct ath5k_hw *ah = hw->priv;
1848 	struct ath5k_vif *avf;
1849 	struct sk_buff *skb;
1850 
1851 	if (WARN_ON(!vif)) {
1852 		ret = -EINVAL;
1853 		goto out;
1854 	}
1855 
1856 	skb = ieee80211_beacon_get(hw, vif);
1857 
1858 	if (!skb) {
1859 		ret = -ENOMEM;
1860 		goto out;
1861 	}
1862 
1863 	avf = (void *)vif->drv_priv;
1864 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1865 	avf->bbuf->skb = skb;
1866 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1867 out:
1868 	return ret;
1869 }
1870 
1871 /*
1872  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1873  * frame contents are done as needed and the slot time is
1874  * also adjusted based on current state.
1875  *
1876  * This is called from software irq context (beacontq tasklets)
1877  * or user context from ath5k_beacon_config.
1878  */
1879 static void
1880 ath5k_beacon_send(struct ath5k_hw *ah)
1881 {
1882 	struct ieee80211_vif *vif;
1883 	struct ath5k_vif *avf;
1884 	struct ath5k_buf *bf;
1885 	struct sk_buff *skb;
1886 	int err;
1887 
1888 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1889 
1890 	/*
1891 	 * Check if the previous beacon has gone out.  If
1892 	 * not, don't don't try to post another: skip this
1893 	 * period and wait for the next.  Missed beacons
1894 	 * indicate a problem and should not occur.  If we
1895 	 * miss too many consecutive beacons reset the device.
1896 	 */
1897 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1898 		ah->bmisscount++;
1899 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1900 			"missed %u consecutive beacons\n", ah->bmisscount);
1901 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1902 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1903 				"stuck beacon time (%u missed)\n",
1904 				ah->bmisscount);
1905 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1906 				  "stuck beacon, resetting\n");
1907 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1908 		}
1909 		return;
1910 	}
1911 	if (unlikely(ah->bmisscount != 0)) {
1912 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1913 			"resume beacon xmit after %u misses\n",
1914 			ah->bmisscount);
1915 		ah->bmisscount = 0;
1916 	}
1917 
1918 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1919 			ah->num_mesh_vifs > 1) ||
1920 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1921 		u64 tsf = ath5k_hw_get_tsf64(ah);
1922 		u32 tsftu = TSF_TO_TU(tsf);
1923 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1924 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1925 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1926 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1927 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1928 	} else /* only one interface */
1929 		vif = ah->bslot[0];
1930 
1931 	if (!vif)
1932 		return;
1933 
1934 	avf = (void *)vif->drv_priv;
1935 	bf = avf->bbuf;
1936 
1937 	/*
1938 	 * Stop any current dma and put the new frame on the queue.
1939 	 * This should never fail since we check above that no frames
1940 	 * are still pending on the queue.
1941 	 */
1942 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1943 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1944 		/* NB: hw still stops DMA, so proceed */
1945 	}
1946 
1947 	/* refresh the beacon for AP or MESH mode */
1948 	if (ah->opmode == NL80211_IFTYPE_AP ||
1949 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1950 		err = ath5k_beacon_update(ah->hw, vif);
1951 		if (err)
1952 			return;
1953 	}
1954 
1955 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1956 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1957 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1958 		return;
1959 	}
1960 
1961 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1962 
1963 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1964 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1965 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1966 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1967 
1968 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1969 	while (skb) {
1970 		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1971 
1972 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1973 			break;
1974 
1975 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1976 	}
1977 
1978 	ah->bsent++;
1979 }
1980 
1981 /**
1982  * ath5k_beacon_update_timers - update beacon timers
1983  *
1984  * @ah: struct ath5k_hw pointer we are operating on
1985  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1986  *          beacon timer update based on the current HW TSF.
1987  *
1988  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1989  * of a received beacon or the current local hardware TSF and write it to the
1990  * beacon timer registers.
1991  *
1992  * This is called in a variety of situations, e.g. when a beacon is received,
1993  * when a TSF update has been detected, but also when an new IBSS is created or
1994  * when we otherwise know we have to update the timers, but we keep it in this
1995  * function to have it all together in one place.
1996  */
1997 void
1998 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1999 {
2000 	u32 nexttbtt, intval, hw_tu, bc_tu;
2001 	u64 hw_tsf;
2002 
2003 	intval = ah->bintval & AR5K_BEACON_PERIOD;
2004 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2005 		+ ah->num_mesh_vifs > 1) {
2006 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2007 		if (intval < 15)
2008 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2009 				   intval);
2010 	}
2011 	if (WARN_ON(!intval))
2012 		return;
2013 
2014 	/* beacon TSF converted to TU */
2015 	bc_tu = TSF_TO_TU(bc_tsf);
2016 
2017 	/* current TSF converted to TU */
2018 	hw_tsf = ath5k_hw_get_tsf64(ah);
2019 	hw_tu = TSF_TO_TU(hw_tsf);
2020 
2021 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2022 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2023 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2024 	 * configuration we need to make sure it is bigger than that. */
2025 
2026 	if (bc_tsf == -1) {
2027 		/*
2028 		 * no beacons received, called internally.
2029 		 * just need to refresh timers based on HW TSF.
2030 		 */
2031 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2032 	} else if (bc_tsf == 0) {
2033 		/*
2034 		 * no beacon received, probably called by ath5k_reset_tsf().
2035 		 * reset TSF to start with 0.
2036 		 */
2037 		nexttbtt = intval;
2038 		intval |= AR5K_BEACON_RESET_TSF;
2039 	} else if (bc_tsf > hw_tsf) {
2040 		/*
2041 		 * beacon received, SW merge happened but HW TSF not yet updated.
2042 		 * not possible to reconfigure timers yet, but next time we
2043 		 * receive a beacon with the same BSSID, the hardware will
2044 		 * automatically update the TSF and then we need to reconfigure
2045 		 * the timers.
2046 		 */
2047 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2048 			"need to wait for HW TSF sync\n");
2049 		return;
2050 	} else {
2051 		/*
2052 		 * most important case for beacon synchronization between STA.
2053 		 *
2054 		 * beacon received and HW TSF has been already updated by HW.
2055 		 * update next TBTT based on the TSF of the beacon, but make
2056 		 * sure it is ahead of our local TSF timer.
2057 		 */
2058 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2059 	}
2060 #undef FUDGE
2061 
2062 	ah->nexttbtt = nexttbtt;
2063 
2064 	intval |= AR5K_BEACON_ENA;
2065 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2066 
2067 	/*
2068 	 * debugging output last in order to preserve the time critical aspect
2069 	 * of this function
2070 	 */
2071 	if (bc_tsf == -1)
2072 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2073 			"reconfigured timers based on HW TSF\n");
2074 	else if (bc_tsf == 0)
2075 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2076 			"reset HW TSF and timers\n");
2077 	else
2078 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2079 			"updated timers based on beacon TSF\n");
2080 
2081 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2082 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2083 			  (unsigned long long) bc_tsf,
2084 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2085 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2086 		intval & AR5K_BEACON_PERIOD,
2087 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2088 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2089 }
2090 
2091 /**
2092  * ath5k_beacon_config - Configure the beacon queues and interrupts
2093  *
2094  * @ah: struct ath5k_hw pointer we are operating on
2095  *
2096  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2097  * interrupts to detect TSF updates only.
2098  */
2099 void
2100 ath5k_beacon_config(struct ath5k_hw *ah)
2101 {
2102 	spin_lock_bh(&ah->block);
2103 	ah->bmisscount = 0;
2104 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2105 
2106 	if (ah->enable_beacon) {
2107 		/*
2108 		 * In IBSS mode we use a self-linked tx descriptor and let the
2109 		 * hardware send the beacons automatically. We have to load it
2110 		 * only once here.
2111 		 * We use the SWBA interrupt only to keep track of the beacon
2112 		 * timers in order to detect automatic TSF updates.
2113 		 */
2114 		ath5k_beaconq_config(ah);
2115 
2116 		ah->imask |= AR5K_INT_SWBA;
2117 
2118 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2119 			if (ath5k_hw_hasveol(ah))
2120 				ath5k_beacon_send(ah);
2121 		} else
2122 			ath5k_beacon_update_timers(ah, -1);
2123 	} else {
2124 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2125 	}
2126 
2127 	ath5k_hw_set_imr(ah, ah->imask);
2128 	mmiowb();
2129 	spin_unlock_bh(&ah->block);
2130 }
2131 
2132 static void ath5k_tasklet_beacon(unsigned long data)
2133 {
2134 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2135 
2136 	/*
2137 	 * Software beacon alert--time to send a beacon.
2138 	 *
2139 	 * In IBSS mode we use this interrupt just to
2140 	 * keep track of the next TBTT (target beacon
2141 	 * transmission time) in order to detect whether
2142 	 * automatic TSF updates happened.
2143 	 */
2144 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2145 		/* XXX: only if VEOL supported */
2146 		u64 tsf = ath5k_hw_get_tsf64(ah);
2147 		ah->nexttbtt += ah->bintval;
2148 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2149 				"SWBA nexttbtt: %x hw_tu: %x "
2150 				"TSF: %llx\n",
2151 				ah->nexttbtt,
2152 				TSF_TO_TU(tsf),
2153 				(unsigned long long) tsf);
2154 	} else {
2155 		spin_lock(&ah->block);
2156 		ath5k_beacon_send(ah);
2157 		spin_unlock(&ah->block);
2158 	}
2159 }
2160 
2161 
2162 /********************\
2163 * Interrupt handling *
2164 \********************/
2165 
2166 static void
2167 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2168 {
2169 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2170 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2171 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2172 
2173 		/* Run ANI only when calibration is not active */
2174 
2175 		ah->ah_cal_next_ani = jiffies +
2176 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2177 		tasklet_schedule(&ah->ani_tasklet);
2178 
2179 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2180 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2181 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2182 
2183 		/* Run calibration only when another calibration
2184 		 * is not running.
2185 		 *
2186 		 * Note: This is for both full/short calibration,
2187 		 * if it's time for a full one, ath5k_calibrate_work will deal
2188 		 * with it. */
2189 
2190 		ah->ah_cal_next_short = jiffies +
2191 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2192 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2193 	}
2194 	/* we could use SWI to generate enough interrupts to meet our
2195 	 * calibration interval requirements, if necessary:
2196 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2197 }
2198 
2199 static void
2200 ath5k_schedule_rx(struct ath5k_hw *ah)
2201 {
2202 	ah->rx_pending = true;
2203 	tasklet_schedule(&ah->rxtq);
2204 }
2205 
2206 static void
2207 ath5k_schedule_tx(struct ath5k_hw *ah)
2208 {
2209 	ah->tx_pending = true;
2210 	tasklet_schedule(&ah->txtq);
2211 }
2212 
2213 static irqreturn_t
2214 ath5k_intr(int irq, void *dev_id)
2215 {
2216 	struct ath5k_hw *ah = dev_id;
2217 	enum ath5k_int status;
2218 	unsigned int counter = 1000;
2219 
2220 
2221 	/*
2222 	 * If hw is not ready (or detached) and we get an
2223 	 * interrupt, or if we have no interrupts pending
2224 	 * (that means it's not for us) skip it.
2225 	 *
2226 	 * NOTE: Group 0/1 PCI interface registers are not
2227 	 * supported on WiSOCs, so we can't check for pending
2228 	 * interrupts (ISR belongs to another register group
2229 	 * so we are ok).
2230 	 */
2231 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2232 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2233 			!ath5k_hw_is_intr_pending(ah))))
2234 		return IRQ_NONE;
2235 
2236 	/** Main loop **/
2237 	do {
2238 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2239 
2240 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2241 				status, ah->imask);
2242 
2243 		/*
2244 		 * Fatal hw error -> Log and reset
2245 		 *
2246 		 * Fatal errors are unrecoverable so we have to
2247 		 * reset the card. These errors include bus and
2248 		 * dma errors.
2249 		 */
2250 		if (unlikely(status & AR5K_INT_FATAL)) {
2251 
2252 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2253 				  "fatal int, resetting\n");
2254 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2255 
2256 		/*
2257 		 * RX Overrun -> Count and reset if needed
2258 		 *
2259 		 * Receive buffers are full. Either the bus is busy or
2260 		 * the CPU is not fast enough to process all received
2261 		 * frames.
2262 		 */
2263 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2264 
2265 			/*
2266 			 * Older chipsets need a reset to come out of this
2267 			 * condition, but we treat it as RX for newer chips.
2268 			 * We don't know exactly which versions need a reset
2269 			 * this guess is copied from the HAL.
2270 			 */
2271 			ah->stats.rxorn_intr++;
2272 
2273 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2274 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2275 					  "rx overrun, resetting\n");
2276 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2277 			} else
2278 				ath5k_schedule_rx(ah);
2279 
2280 		} else {
2281 
2282 			/* Software Beacon Alert -> Schedule beacon tasklet */
2283 			if (status & AR5K_INT_SWBA)
2284 				tasklet_hi_schedule(&ah->beacontq);
2285 
2286 			/*
2287 			 * No more RX descriptors -> Just count
2288 			 *
2289 			 * NB: the hardware should re-read the link when
2290 			 *     RXE bit is written, but it doesn't work at
2291 			 *     least on older hardware revs.
2292 			 */
2293 			if (status & AR5K_INT_RXEOL)
2294 				ah->stats.rxeol_intr++;
2295 
2296 
2297 			/* TX Underrun -> Bump tx trigger level */
2298 			if (status & AR5K_INT_TXURN)
2299 				ath5k_hw_update_tx_triglevel(ah, true);
2300 
2301 			/* RX -> Schedule rx tasklet */
2302 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2303 				ath5k_schedule_rx(ah);
2304 
2305 			/* TX -> Schedule tx tasklet */
2306 			if (status & (AR5K_INT_TXOK
2307 					| AR5K_INT_TXDESC
2308 					| AR5K_INT_TXERR
2309 					| AR5K_INT_TXEOL))
2310 				ath5k_schedule_tx(ah);
2311 
2312 			/* Missed beacon -> TODO
2313 			if (status & AR5K_INT_BMISS)
2314 			*/
2315 
2316 			/* MIB event -> Update counters and notify ANI */
2317 			if (status & AR5K_INT_MIB) {
2318 				ah->stats.mib_intr++;
2319 				ath5k_hw_update_mib_counters(ah);
2320 				ath5k_ani_mib_intr(ah);
2321 			}
2322 
2323 			/* GPIO -> Notify RFKill layer */
2324 			if (status & AR5K_INT_GPIO)
2325 				tasklet_schedule(&ah->rf_kill.toggleq);
2326 
2327 		}
2328 
2329 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2330 			break;
2331 
2332 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2333 
2334 	/*
2335 	 * Until we handle rx/tx interrupts mask them on IMR
2336 	 *
2337 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2338 	 * and unset after we 've handled the interrupts.
2339 	 */
2340 	if (ah->rx_pending || ah->tx_pending)
2341 		ath5k_set_current_imask(ah);
2342 
2343 	if (unlikely(!counter))
2344 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2345 
2346 	/* Fire up calibration poll */
2347 	ath5k_intr_calibration_poll(ah);
2348 
2349 	return IRQ_HANDLED;
2350 }
2351 
2352 /*
2353  * Periodically recalibrate the PHY to account
2354  * for temperature/environment changes.
2355  */
2356 static void
2357 ath5k_calibrate_work(struct work_struct *work)
2358 {
2359 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2360 		calib_work);
2361 
2362 	/* Should we run a full calibration ? */
2363 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2364 
2365 		ah->ah_cal_next_full = jiffies +
2366 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2367 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2368 
2369 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2370 				"running full calibration\n");
2371 
2372 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2373 			/*
2374 			 * Rfgain is out of bounds, reset the chip
2375 			 * to load new gain values.
2376 			 */
2377 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2378 					"got new rfgain, resetting\n");
2379 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2380 		}
2381 	} else
2382 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2383 
2384 
2385 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2386 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2387 		ah->curchan->hw_value);
2388 
2389 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2390 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2391 			ieee80211_frequency_to_channel(
2392 				ah->curchan->center_freq));
2393 
2394 	/* Clear calibration flags */
2395 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2396 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2397 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2398 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2399 }
2400 
2401 
2402 static void
2403 ath5k_tasklet_ani(unsigned long data)
2404 {
2405 	struct ath5k_hw *ah = (void *)data;
2406 
2407 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2408 	ath5k_ani_calibration(ah);
2409 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2410 }
2411 
2412 
2413 static void
2414 ath5k_tx_complete_poll_work(struct work_struct *work)
2415 {
2416 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2417 			tx_complete_work.work);
2418 	struct ath5k_txq *txq;
2419 	int i;
2420 	bool needreset = false;
2421 
2422 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2423 		return;
2424 
2425 	mutex_lock(&ah->lock);
2426 
2427 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2428 		if (ah->txqs[i].setup) {
2429 			txq = &ah->txqs[i];
2430 			spin_lock_bh(&txq->lock);
2431 			if (txq->txq_len > 1) {
2432 				if (txq->txq_poll_mark) {
2433 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2434 						  "TX queue stuck %d\n",
2435 						  txq->qnum);
2436 					needreset = true;
2437 					txq->txq_stuck++;
2438 					spin_unlock_bh(&txq->lock);
2439 					break;
2440 				} else {
2441 					txq->txq_poll_mark = true;
2442 				}
2443 			}
2444 			spin_unlock_bh(&txq->lock);
2445 		}
2446 	}
2447 
2448 	if (needreset) {
2449 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2450 			  "TX queues stuck, resetting\n");
2451 		ath5k_reset(ah, NULL, true);
2452 	}
2453 
2454 	mutex_unlock(&ah->lock);
2455 
2456 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2457 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2458 }
2459 
2460 
2461 /*************************\
2462 * Initialization routines *
2463 \*************************/
2464 
2465 static const struct ieee80211_iface_limit if_limits[] = {
2466 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2467 	{ .max = 4,	.types =
2468 #ifdef CONFIG_MAC80211_MESH
2469 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2470 #endif
2471 				 BIT(NL80211_IFTYPE_AP) },
2472 };
2473 
2474 static const struct ieee80211_iface_combination if_comb = {
2475 	.limits = if_limits,
2476 	.n_limits = ARRAY_SIZE(if_limits),
2477 	.max_interfaces = 2048,
2478 	.num_different_channels = 1,
2479 };
2480 
2481 int
2482 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2483 {
2484 	struct ieee80211_hw *hw = ah->hw;
2485 	struct ath_common *common;
2486 	int ret;
2487 	int csz;
2488 
2489 	/* Initialize driver private data */
2490 	SET_IEEE80211_DEV(hw, ah->dev);
2491 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2492 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2493 			IEEE80211_HW_SIGNAL_DBM |
2494 			IEEE80211_HW_MFP_CAPABLE |
2495 			IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2496 			IEEE80211_HW_SUPPORTS_RC_TABLE;
2497 
2498 	hw->wiphy->interface_modes =
2499 		BIT(NL80211_IFTYPE_AP) |
2500 		BIT(NL80211_IFTYPE_STATION) |
2501 		BIT(NL80211_IFTYPE_ADHOC) |
2502 		BIT(NL80211_IFTYPE_MESH_POINT);
2503 
2504 	hw->wiphy->iface_combinations = &if_comb;
2505 	hw->wiphy->n_iface_combinations = 1;
2506 
2507 	/* SW support for IBSS_RSN is provided by mac80211 */
2508 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2509 
2510 	/* both antennas can be configured as RX or TX */
2511 	hw->wiphy->available_antennas_tx = 0x3;
2512 	hw->wiphy->available_antennas_rx = 0x3;
2513 
2514 	hw->extra_tx_headroom = 2;
2515 	hw->channel_change_time = 5000;
2516 
2517 	/*
2518 	 * Mark the device as detached to avoid processing
2519 	 * interrupts until setup is complete.
2520 	 */
2521 	__set_bit(ATH_STAT_INVALID, ah->status);
2522 
2523 	ah->opmode = NL80211_IFTYPE_STATION;
2524 	ah->bintval = 1000;
2525 	mutex_init(&ah->lock);
2526 	spin_lock_init(&ah->rxbuflock);
2527 	spin_lock_init(&ah->txbuflock);
2528 	spin_lock_init(&ah->block);
2529 	spin_lock_init(&ah->irqlock);
2530 
2531 	/* Setup interrupt handler */
2532 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2533 	if (ret) {
2534 		ATH5K_ERR(ah, "request_irq failed\n");
2535 		goto err;
2536 	}
2537 
2538 	common = ath5k_hw_common(ah);
2539 	common->ops = &ath5k_common_ops;
2540 	common->bus_ops = bus_ops;
2541 	common->ah = ah;
2542 	common->hw = hw;
2543 	common->priv = ah;
2544 	common->clockrate = 40;
2545 
2546 	/*
2547 	 * Cache line size is used to size and align various
2548 	 * structures used to communicate with the hardware.
2549 	 */
2550 	ath5k_read_cachesize(common, &csz);
2551 	common->cachelsz = csz << 2; /* convert to bytes */
2552 
2553 	spin_lock_init(&common->cc_lock);
2554 
2555 	/* Initialize device */
2556 	ret = ath5k_hw_init(ah);
2557 	if (ret)
2558 		goto err_irq;
2559 
2560 	/* Set up multi-rate retry capabilities */
2561 	if (ah->ah_capabilities.cap_has_mrr_support) {
2562 		hw->max_rates = 4;
2563 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2564 					 AR5K_INIT_RETRY_LONG);
2565 	}
2566 
2567 	hw->vif_data_size = sizeof(struct ath5k_vif);
2568 
2569 	/* Finish private driver data initialization */
2570 	ret = ath5k_init(hw);
2571 	if (ret)
2572 		goto err_ah;
2573 
2574 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2575 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2576 					ah->ah_mac_srev,
2577 					ah->ah_phy_revision);
2578 
2579 	if (!ah->ah_single_chip) {
2580 		/* Single chip radio (!RF5111) */
2581 		if (ah->ah_radio_5ghz_revision &&
2582 			!ah->ah_radio_2ghz_revision) {
2583 			/* No 5GHz support -> report 2GHz radio */
2584 			if (!test_bit(AR5K_MODE_11A,
2585 				ah->ah_capabilities.cap_mode)) {
2586 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2587 					ath5k_chip_name(AR5K_VERSION_RAD,
2588 						ah->ah_radio_5ghz_revision),
2589 						ah->ah_radio_5ghz_revision);
2590 			/* No 2GHz support (5110 and some
2591 			 * 5GHz only cards) -> report 5GHz radio */
2592 			} else if (!test_bit(AR5K_MODE_11B,
2593 				ah->ah_capabilities.cap_mode)) {
2594 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2595 					ath5k_chip_name(AR5K_VERSION_RAD,
2596 						ah->ah_radio_5ghz_revision),
2597 						ah->ah_radio_5ghz_revision);
2598 			/* Multiband radio */
2599 			} else {
2600 				ATH5K_INFO(ah, "RF%s multiband radio found"
2601 					" (0x%x)\n",
2602 					ath5k_chip_name(AR5K_VERSION_RAD,
2603 						ah->ah_radio_5ghz_revision),
2604 						ah->ah_radio_5ghz_revision);
2605 			}
2606 		}
2607 		/* Multi chip radio (RF5111 - RF2111) ->
2608 		 * report both 2GHz/5GHz radios */
2609 		else if (ah->ah_radio_5ghz_revision &&
2610 				ah->ah_radio_2ghz_revision) {
2611 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2612 				ath5k_chip_name(AR5K_VERSION_RAD,
2613 					ah->ah_radio_5ghz_revision),
2614 					ah->ah_radio_5ghz_revision);
2615 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2616 				ath5k_chip_name(AR5K_VERSION_RAD,
2617 					ah->ah_radio_2ghz_revision),
2618 					ah->ah_radio_2ghz_revision);
2619 		}
2620 	}
2621 
2622 	ath5k_debug_init_device(ah);
2623 
2624 	/* ready to process interrupts */
2625 	__clear_bit(ATH_STAT_INVALID, ah->status);
2626 
2627 	return 0;
2628 err_ah:
2629 	ath5k_hw_deinit(ah);
2630 err_irq:
2631 	free_irq(ah->irq, ah);
2632 err:
2633 	return ret;
2634 }
2635 
2636 static int
2637 ath5k_stop_locked(struct ath5k_hw *ah)
2638 {
2639 
2640 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2641 			test_bit(ATH_STAT_INVALID, ah->status));
2642 
2643 	/*
2644 	 * Shutdown the hardware and driver:
2645 	 *    stop output from above
2646 	 *    disable interrupts
2647 	 *    turn off timers
2648 	 *    turn off the radio
2649 	 *    clear transmit machinery
2650 	 *    clear receive machinery
2651 	 *    drain and release tx queues
2652 	 *    reclaim beacon resources
2653 	 *    power down hardware
2654 	 *
2655 	 * Note that some of this work is not possible if the
2656 	 * hardware is gone (invalid).
2657 	 */
2658 	ieee80211_stop_queues(ah->hw);
2659 
2660 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2661 		ath5k_led_off(ah);
2662 		ath5k_hw_set_imr(ah, 0);
2663 		synchronize_irq(ah->irq);
2664 		ath5k_rx_stop(ah);
2665 		ath5k_hw_dma_stop(ah);
2666 		ath5k_drain_tx_buffs(ah);
2667 		ath5k_hw_phy_disable(ah);
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 int ath5k_start(struct ieee80211_hw *hw)
2674 {
2675 	struct ath5k_hw *ah = hw->priv;
2676 	struct ath_common *common = ath5k_hw_common(ah);
2677 	int ret, i;
2678 
2679 	mutex_lock(&ah->lock);
2680 
2681 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2682 
2683 	/*
2684 	 * Stop anything previously setup.  This is safe
2685 	 * no matter this is the first time through or not.
2686 	 */
2687 	ath5k_stop_locked(ah);
2688 
2689 	/*
2690 	 * The basic interface to setting the hardware in a good
2691 	 * state is ``reset''.  On return the hardware is known to
2692 	 * be powered up and with interrupts disabled.  This must
2693 	 * be followed by initialization of the appropriate bits
2694 	 * and then setup of the interrupt mask.
2695 	 */
2696 	ah->curchan = ah->hw->conf.chandef.chan;
2697 	ah->imask = AR5K_INT_RXOK
2698 		| AR5K_INT_RXERR
2699 		| AR5K_INT_RXEOL
2700 		| AR5K_INT_RXORN
2701 		| AR5K_INT_TXDESC
2702 		| AR5K_INT_TXEOL
2703 		| AR5K_INT_FATAL
2704 		| AR5K_INT_GLOBAL
2705 		| AR5K_INT_MIB;
2706 
2707 	ret = ath5k_reset(ah, NULL, false);
2708 	if (ret)
2709 		goto done;
2710 
2711 	if (!ath5k_modparam_no_hw_rfkill_switch)
2712 		ath5k_rfkill_hw_start(ah);
2713 
2714 	/*
2715 	 * Reset the key cache since some parts do not reset the
2716 	 * contents on initial power up or resume from suspend.
2717 	 */
2718 	for (i = 0; i < common->keymax; i++)
2719 		ath_hw_keyreset(common, (u16) i);
2720 
2721 	/* Use higher rates for acks instead of base
2722 	 * rate */
2723 	ah->ah_ack_bitrate_high = true;
2724 
2725 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2726 		ah->bslot[i] = NULL;
2727 
2728 	ret = 0;
2729 done:
2730 	mmiowb();
2731 	mutex_unlock(&ah->lock);
2732 
2733 	set_bit(ATH_STAT_STARTED, ah->status);
2734 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2735 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2736 
2737 	return ret;
2738 }
2739 
2740 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2741 {
2742 	ah->rx_pending = false;
2743 	ah->tx_pending = false;
2744 	tasklet_kill(&ah->rxtq);
2745 	tasklet_kill(&ah->txtq);
2746 	tasklet_kill(&ah->beacontq);
2747 	tasklet_kill(&ah->ani_tasklet);
2748 }
2749 
2750 /*
2751  * Stop the device, grabbing the top-level lock to protect
2752  * against concurrent entry through ath5k_init (which can happen
2753  * if another thread does a system call and the thread doing the
2754  * stop is preempted).
2755  */
2756 void ath5k_stop(struct ieee80211_hw *hw)
2757 {
2758 	struct ath5k_hw *ah = hw->priv;
2759 	int ret;
2760 
2761 	mutex_lock(&ah->lock);
2762 	ret = ath5k_stop_locked(ah);
2763 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2764 		/*
2765 		 * Don't set the card in full sleep mode!
2766 		 *
2767 		 * a) When the device is in this state it must be carefully
2768 		 * woken up or references to registers in the PCI clock
2769 		 * domain may freeze the bus (and system).  This varies
2770 		 * by chip and is mostly an issue with newer parts
2771 		 * (madwifi sources mentioned srev >= 0x78) that go to
2772 		 * sleep more quickly.
2773 		 *
2774 		 * b) On older chips full sleep results a weird behaviour
2775 		 * during wakeup. I tested various cards with srev < 0x78
2776 		 * and they don't wake up after module reload, a second
2777 		 * module reload is needed to bring the card up again.
2778 		 *
2779 		 * Until we figure out what's going on don't enable
2780 		 * full chip reset on any chip (this is what Legacy HAL
2781 		 * and Sam's HAL do anyway). Instead Perform a full reset
2782 		 * on the device (same as initial state after attach) and
2783 		 * leave it idle (keep MAC/BB on warm reset) */
2784 		ret = ath5k_hw_on_hold(ah);
2785 
2786 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2787 				"putting device to sleep\n");
2788 	}
2789 
2790 	mmiowb();
2791 	mutex_unlock(&ah->lock);
2792 
2793 	ath5k_stop_tasklets(ah);
2794 
2795 	clear_bit(ATH_STAT_STARTED, ah->status);
2796 	cancel_delayed_work_sync(&ah->tx_complete_work);
2797 
2798 	if (!ath5k_modparam_no_hw_rfkill_switch)
2799 		ath5k_rfkill_hw_stop(ah);
2800 }
2801 
2802 /*
2803  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2804  * and change to the given channel.
2805  *
2806  * This should be called with ah->lock.
2807  */
2808 static int
2809 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2810 							bool skip_pcu)
2811 {
2812 	struct ath_common *common = ath5k_hw_common(ah);
2813 	int ret, ani_mode;
2814 	bool fast;
2815 
2816 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2817 
2818 	ath5k_hw_set_imr(ah, 0);
2819 	synchronize_irq(ah->irq);
2820 	ath5k_stop_tasklets(ah);
2821 
2822 	/* Save ani mode and disable ANI during
2823 	 * reset. If we don't we might get false
2824 	 * PHY error interrupts. */
2825 	ani_mode = ah->ani_state.ani_mode;
2826 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2827 
2828 	/* We are going to empty hw queues
2829 	 * so we should also free any remaining
2830 	 * tx buffers */
2831 	ath5k_drain_tx_buffs(ah);
2832 	if (chan)
2833 		ah->curchan = chan;
2834 
2835 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2836 
2837 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2838 	if (ret) {
2839 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2840 		goto err;
2841 	}
2842 
2843 	ret = ath5k_rx_start(ah);
2844 	if (ret) {
2845 		ATH5K_ERR(ah, "can't start recv logic\n");
2846 		goto err;
2847 	}
2848 
2849 	ath5k_ani_init(ah, ani_mode);
2850 
2851 	/*
2852 	 * Set calibration intervals
2853 	 *
2854 	 * Note: We don't need to run calibration imediately
2855 	 * since some initial calibration is done on reset
2856 	 * even for fast channel switching. Also on scanning
2857 	 * this will get set again and again and it won't get
2858 	 * executed unless we connect somewhere and spend some
2859 	 * time on the channel (that's what calibration needs
2860 	 * anyway to be accurate).
2861 	 */
2862 	ah->ah_cal_next_full = jiffies +
2863 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2864 	ah->ah_cal_next_ani = jiffies +
2865 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2866 	ah->ah_cal_next_short = jiffies +
2867 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2868 
2869 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2870 
2871 	/* clear survey data and cycle counters */
2872 	memset(&ah->survey, 0, sizeof(ah->survey));
2873 	spin_lock_bh(&common->cc_lock);
2874 	ath_hw_cycle_counters_update(common);
2875 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2876 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2877 	spin_unlock_bh(&common->cc_lock);
2878 
2879 	/*
2880 	 * Change channels and update the h/w rate map if we're switching;
2881 	 * e.g. 11a to 11b/g.
2882 	 *
2883 	 * We may be doing a reset in response to an ioctl that changes the
2884 	 * channel so update any state that might change as a result.
2885 	 *
2886 	 * XXX needed?
2887 	 */
2888 /*	ath5k_chan_change(ah, c); */
2889 
2890 	ath5k_beacon_config(ah);
2891 	/* intrs are enabled by ath5k_beacon_config */
2892 
2893 	ieee80211_wake_queues(ah->hw);
2894 
2895 	return 0;
2896 err:
2897 	return ret;
2898 }
2899 
2900 static void ath5k_reset_work(struct work_struct *work)
2901 {
2902 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2903 		reset_work);
2904 
2905 	mutex_lock(&ah->lock);
2906 	ath5k_reset(ah, NULL, true);
2907 	mutex_unlock(&ah->lock);
2908 }
2909 
2910 static int
2911 ath5k_init(struct ieee80211_hw *hw)
2912 {
2913 
2914 	struct ath5k_hw *ah = hw->priv;
2915 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2916 	struct ath5k_txq *txq;
2917 	u8 mac[ETH_ALEN] = {};
2918 	int ret;
2919 
2920 
2921 	/*
2922 	 * Collect the channel list.  The 802.11 layer
2923 	 * is responsible for filtering this list based
2924 	 * on settings like the phy mode and regulatory
2925 	 * domain restrictions.
2926 	 */
2927 	ret = ath5k_setup_bands(hw);
2928 	if (ret) {
2929 		ATH5K_ERR(ah, "can't get channels\n");
2930 		goto err;
2931 	}
2932 
2933 	/*
2934 	 * Allocate tx+rx descriptors and populate the lists.
2935 	 */
2936 	ret = ath5k_desc_alloc(ah);
2937 	if (ret) {
2938 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2939 		goto err;
2940 	}
2941 
2942 	/*
2943 	 * Allocate hardware transmit queues: one queue for
2944 	 * beacon frames and one data queue for each QoS
2945 	 * priority.  Note that hw functions handle resetting
2946 	 * these queues at the needed time.
2947 	 */
2948 	ret = ath5k_beaconq_setup(ah);
2949 	if (ret < 0) {
2950 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2951 		goto err_desc;
2952 	}
2953 	ah->bhalq = ret;
2954 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2955 	if (IS_ERR(ah->cabq)) {
2956 		ATH5K_ERR(ah, "can't setup cab queue\n");
2957 		ret = PTR_ERR(ah->cabq);
2958 		goto err_bhal;
2959 	}
2960 
2961 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2962 	 * capability information */
2963 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2964 		/* This order matches mac80211's queue priority, so we can
2965 		* directly use the mac80211 queue number without any mapping */
2966 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2967 		if (IS_ERR(txq)) {
2968 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2969 			ret = PTR_ERR(txq);
2970 			goto err_queues;
2971 		}
2972 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2973 		if (IS_ERR(txq)) {
2974 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2975 			ret = PTR_ERR(txq);
2976 			goto err_queues;
2977 		}
2978 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2979 		if (IS_ERR(txq)) {
2980 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2981 			ret = PTR_ERR(txq);
2982 			goto err_queues;
2983 		}
2984 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2985 		if (IS_ERR(txq)) {
2986 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2987 			ret = PTR_ERR(txq);
2988 			goto err_queues;
2989 		}
2990 		hw->queues = 4;
2991 	} else {
2992 		/* older hardware (5210) can only support one data queue */
2993 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2994 		if (IS_ERR(txq)) {
2995 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2996 			ret = PTR_ERR(txq);
2997 			goto err_queues;
2998 		}
2999 		hw->queues = 1;
3000 	}
3001 
3002 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3003 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3004 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3005 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3006 
3007 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3008 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3009 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3010 
3011 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3012 	if (ret) {
3013 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3014 		goto err_queues;
3015 	}
3016 
3017 	SET_IEEE80211_PERM_ADDR(hw, mac);
3018 	/* All MAC address bits matter for ACKs */
3019 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3020 
3021 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3022 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3023 	if (ret) {
3024 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3025 		goto err_queues;
3026 	}
3027 
3028 	ret = ieee80211_register_hw(hw);
3029 	if (ret) {
3030 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3031 		goto err_queues;
3032 	}
3033 
3034 	if (!ath_is_world_regd(regulatory))
3035 		regulatory_hint(hw->wiphy, regulatory->alpha2);
3036 
3037 	ath5k_init_leds(ah);
3038 
3039 	ath5k_sysfs_register(ah);
3040 
3041 	return 0;
3042 err_queues:
3043 	ath5k_txq_release(ah);
3044 err_bhal:
3045 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3046 err_desc:
3047 	ath5k_desc_free(ah);
3048 err:
3049 	return ret;
3050 }
3051 
3052 void
3053 ath5k_deinit_ah(struct ath5k_hw *ah)
3054 {
3055 	struct ieee80211_hw *hw = ah->hw;
3056 
3057 	/*
3058 	 * NB: the order of these is important:
3059 	 * o call the 802.11 layer before detaching ath5k_hw to
3060 	 *   ensure callbacks into the driver to delete global
3061 	 *   key cache entries can be handled
3062 	 * o reclaim the tx queue data structures after calling
3063 	 *   the 802.11 layer as we'll get called back to reclaim
3064 	 *   node state and potentially want to use them
3065 	 * o to cleanup the tx queues the hal is called, so detach
3066 	 *   it last
3067 	 * XXX: ??? detach ath5k_hw ???
3068 	 * Other than that, it's straightforward...
3069 	 */
3070 	ieee80211_unregister_hw(hw);
3071 	ath5k_desc_free(ah);
3072 	ath5k_txq_release(ah);
3073 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3074 	ath5k_unregister_leds(ah);
3075 
3076 	ath5k_sysfs_unregister(ah);
3077 	/*
3078 	 * NB: can't reclaim these until after ieee80211_ifdetach
3079 	 * returns because we'll get called back to reclaim node
3080 	 * state and potentially want to use them.
3081 	 */
3082 	ath5k_hw_deinit(ah);
3083 	free_irq(ah->irq, ah);
3084 }
3085 
3086 bool
3087 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3088 {
3089 	struct ath5k_vif_iter_data iter_data;
3090 	iter_data.hw_macaddr = NULL;
3091 	iter_data.any_assoc = false;
3092 	iter_data.need_set_hw_addr = false;
3093 	iter_data.found_active = true;
3094 
3095 	ieee80211_iterate_active_interfaces_atomic(
3096 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3097 		ath5k_vif_iter, &iter_data);
3098 	return iter_data.any_assoc;
3099 }
3100 
3101 void
3102 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3103 {
3104 	struct ath5k_hw *ah = hw->priv;
3105 	u32 rfilt;
3106 	rfilt = ath5k_hw_get_rx_filter(ah);
3107 	if (enable)
3108 		rfilt |= AR5K_RX_FILTER_BEACON;
3109 	else
3110 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3111 	ath5k_hw_set_rx_filter(ah, rfilt);
3112 	ah->filter_flags = rfilt;
3113 }
3114 
3115 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3116 		   const char *fmt, ...)
3117 {
3118 	struct va_format vaf;
3119 	va_list args;
3120 
3121 	va_start(args, fmt);
3122 
3123 	vaf.fmt = fmt;
3124 	vaf.va = &args;
3125 
3126 	if (ah && ah->hw)
3127 		printk("%s" pr_fmt("%s: %pV"),
3128 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3129 	else
3130 		printk("%s" pr_fmt("%pV"), level, &vaf);
3131 
3132 	va_end(args);
3133 }
3134