xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision e3d786a3)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61 
62 #include <asm/unaligned.h>
63 
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74 
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78 
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 		   bool, 0444);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87 
88 
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
95 
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 								bool skip_pcu);
99 
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATH5K_AHB
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
104 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
105 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
107 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
109 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
110 #else
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 #endif
130 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
144 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATH5K_AHB
146 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
147 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
148 #endif
149 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
150 };
151 
152 static const struct ieee80211_rate ath5k_rates[] = {
153 	{ .bitrate = 10,
154 	  .hw_value = ATH5K_RATE_CODE_1M, },
155 	{ .bitrate = 20,
156 	  .hw_value = ATH5K_RATE_CODE_2M,
157 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 	{ .bitrate = 55,
160 	  .hw_value = ATH5K_RATE_CODE_5_5M,
161 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 	{ .bitrate = 110,
164 	  .hw_value = ATH5K_RATE_CODE_11M,
165 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 	{ .bitrate = 60,
168 	  .hw_value = ATH5K_RATE_CODE_6M,
169 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 		   IEEE80211_RATE_SUPPORTS_10MHZ },
171 	{ .bitrate = 90,
172 	  .hw_value = ATH5K_RATE_CODE_9M,
173 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 		   IEEE80211_RATE_SUPPORTS_10MHZ },
175 	{ .bitrate = 120,
176 	  .hw_value = ATH5K_RATE_CODE_12M,
177 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 		   IEEE80211_RATE_SUPPORTS_10MHZ },
179 	{ .bitrate = 180,
180 	  .hw_value = ATH5K_RATE_CODE_18M,
181 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 		   IEEE80211_RATE_SUPPORTS_10MHZ },
183 	{ .bitrate = 240,
184 	  .hw_value = ATH5K_RATE_CODE_24M,
185 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 		   IEEE80211_RATE_SUPPORTS_10MHZ },
187 	{ .bitrate = 360,
188 	  .hw_value = ATH5K_RATE_CODE_36M,
189 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 		   IEEE80211_RATE_SUPPORTS_10MHZ },
191 	{ .bitrate = 480,
192 	  .hw_value = ATH5K_RATE_CODE_48M,
193 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 		   IEEE80211_RATE_SUPPORTS_10MHZ },
195 	{ .bitrate = 540,
196 	  .hw_value = ATH5K_RATE_CODE_54M,
197 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 		   IEEE80211_RATE_SUPPORTS_10MHZ },
199 };
200 
201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202 {
203 	u64 tsf = ath5k_hw_get_tsf64(ah);
204 
205 	if ((tsf & 0x7fff) < rstamp)
206 		tsf -= 0x8000;
207 
208 	return (tsf & ~0x7fff) | rstamp;
209 }
210 
211 const char *
212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213 {
214 	const char *name = "xxxxx";
215 	unsigned int i;
216 
217 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 		if (srev_names[i].sr_type != type)
219 			continue;
220 
221 		if ((val & 0xf0) == srev_names[i].sr_val)
222 			name = srev_names[i].sr_name;
223 
224 		if ((val & 0xff) == srev_names[i].sr_val) {
225 			name = srev_names[i].sr_name;
226 			break;
227 		}
228 	}
229 
230 	return name;
231 }
232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233 {
234 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 	return ath5k_hw_reg_read(ah, reg_offset);
236 }
237 
238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239 {
240 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 	ath5k_hw_reg_write(ah, val, reg_offset);
242 }
243 
244 static const struct ath_ops ath5k_common_ops = {
245 	.read = ath5k_ioread32,
246 	.write = ath5k_iowrite32,
247 };
248 
249 /***********************\
250 * Driver Initialization *
251 \***********************/
252 
253 static void ath5k_reg_notifier(struct wiphy *wiphy,
254 			       struct regulatory_request *request)
255 {
256 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 	struct ath5k_hw *ah = hw->priv;
258 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259 
260 	ath_reg_notifier_apply(wiphy, request, regulatory);
261 }
262 
263 /********************\
264 * Channel/mode setup *
265 \********************/
266 
267 /*
268  * Returns true for the channel numbers used.
269  */
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
271 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
272 {
273 	return true;
274 }
275 
276 #else
277 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
278 {
279 	if (band == NL80211_BAND_2GHZ && chan <= 14)
280 		return true;
281 
282 	return	/* UNII 1,2 */
283 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 		/* midband */
285 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 		/* UNII-3 */
287 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 		/* 802.11j 5.030-5.080 GHz (20MHz) */
289 		(chan == 8 || chan == 12 || chan == 16) ||
290 		/* 802.11j 4.9GHz (20MHz) */
291 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
292 }
293 #endif
294 
295 static unsigned int
296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 		unsigned int mode, unsigned int max)
298 {
299 	unsigned int count, size, freq, ch;
300 	enum nl80211_band band;
301 
302 	switch (mode) {
303 	case AR5K_MODE_11A:
304 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
305 		size = 220;
306 		band = NL80211_BAND_5GHZ;
307 		break;
308 	case AR5K_MODE_11B:
309 	case AR5K_MODE_11G:
310 		size = 26;
311 		band = NL80211_BAND_2GHZ;
312 		break;
313 	default:
314 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 		return 0;
316 	}
317 
318 	count = 0;
319 	for (ch = 1; ch <= size && count < max; ch++) {
320 		freq = ieee80211_channel_to_frequency(ch, band);
321 
322 		if (freq == 0) /* mapping failed - not a standard channel */
323 			continue;
324 
325 		/* Write channel info, needed for ath5k_channel_ok() */
326 		channels[count].center_freq = freq;
327 		channels[count].band = band;
328 		channels[count].hw_value = mode;
329 
330 		/* Check if channel is supported by the chipset */
331 		if (!ath5k_channel_ok(ah, &channels[count]))
332 			continue;
333 
334 		if (!ath5k_is_standard_channel(ch, band))
335 			continue;
336 
337 		count++;
338 	}
339 
340 	return count;
341 }
342 
343 static void
344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345 {
346 	u8 i;
347 
348 	for (i = 0; i < AR5K_MAX_RATES; i++)
349 		ah->rate_idx[b->band][i] = -1;
350 
351 	for (i = 0; i < b->n_bitrates; i++) {
352 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 		if (b->bitrates[i].hw_value_short)
354 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355 	}
356 }
357 
358 static int
359 ath5k_setup_bands(struct ieee80211_hw *hw)
360 {
361 	struct ath5k_hw *ah = hw->priv;
362 	struct ieee80211_supported_band *sband;
363 	int max_c, count_c = 0;
364 	int i;
365 
366 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
367 	max_c = ARRAY_SIZE(ah->channels);
368 
369 	/* 2GHz band */
370 	sband = &ah->sbands[NL80211_BAND_2GHZ];
371 	sband->band = NL80211_BAND_2GHZ;
372 	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
373 
374 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 		/* G mode */
376 		memcpy(sband->bitrates, &ath5k_rates[0],
377 		       sizeof(struct ieee80211_rate) * 12);
378 		sband->n_bitrates = 12;
379 
380 		sband->channels = ah->channels;
381 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 					AR5K_MODE_11G, max_c);
383 
384 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
385 		count_c = sband->n_channels;
386 		max_c -= count_c;
387 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 		/* B mode */
389 		memcpy(sband->bitrates, &ath5k_rates[0],
390 		       sizeof(struct ieee80211_rate) * 4);
391 		sband->n_bitrates = 4;
392 
393 		/* 5211 only supports B rates and uses 4bit rate codes
394 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 		 * fix them up here:
396 		 */
397 		if (ah->ah_version == AR5K_AR5211) {
398 			for (i = 0; i < 4; i++) {
399 				sband->bitrates[i].hw_value =
400 					sband->bitrates[i].hw_value & 0xF;
401 				sband->bitrates[i].hw_value_short =
402 					sband->bitrates[i].hw_value_short & 0xF;
403 			}
404 		}
405 
406 		sband->channels = ah->channels;
407 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 					AR5K_MODE_11B, max_c);
409 
410 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
411 		count_c = sband->n_channels;
412 		max_c -= count_c;
413 	}
414 	ath5k_setup_rate_idx(ah, sband);
415 
416 	/* 5GHz band, A mode */
417 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 		sband = &ah->sbands[NL80211_BAND_5GHZ];
419 		sband->band = NL80211_BAND_5GHZ;
420 		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
421 
422 		memcpy(sband->bitrates, &ath5k_rates[4],
423 		       sizeof(struct ieee80211_rate) * 8);
424 		sband->n_bitrates = 8;
425 
426 		sband->channels = &ah->channels[count_c];
427 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 					AR5K_MODE_11A, max_c);
429 
430 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
431 	}
432 	ath5k_setup_rate_idx(ah, sband);
433 
434 	ath5k_debug_dump_bands(ah);
435 
436 	return 0;
437 }
438 
439 /*
440  * Set/change channels. We always reset the chip.
441  * To accomplish this we must first cleanup any pending DMA,
442  * then restart stuff after a la  ath5k_init.
443  *
444  * Called with ah->lock.
445  */
446 int
447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448 {
449 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 		  "channel set, resetting (%u -> %u MHz)\n",
451 		  ah->curchan->center_freq, chandef->chan->center_freq);
452 
453 	switch (chandef->width) {
454 	case NL80211_CHAN_WIDTH_20:
455 	case NL80211_CHAN_WIDTH_20_NOHT:
456 		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 		break;
458 	case NL80211_CHAN_WIDTH_5:
459 		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 		break;
461 	case NL80211_CHAN_WIDTH_10:
462 		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 		break;
464 	default:
465 		WARN_ON(1);
466 		return -EINVAL;
467 	}
468 
469 	/*
470 	 * To switch channels clear any pending DMA operations;
471 	 * wait long enough for the RX fifo to drain, reset the
472 	 * hardware at the new frequency, and then re-enable
473 	 * the relevant bits of the h/w.
474 	 */
475 	return ath5k_reset(ah, chandef->chan, true);
476 }
477 
478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479 {
480 	struct ath5k_vif_iter_data *iter_data = data;
481 	int i;
482 	struct ath5k_vif *avf = (void *)vif->drv_priv;
483 
484 	if (iter_data->hw_macaddr)
485 		for (i = 0; i < ETH_ALEN; i++)
486 			iter_data->mask[i] &=
487 				~(iter_data->hw_macaddr[i] ^ mac[i]);
488 
489 	if (!iter_data->found_active) {
490 		iter_data->found_active = true;
491 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
492 	}
493 
494 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 			iter_data->need_set_hw_addr = false;
497 
498 	if (!iter_data->any_assoc) {
499 		if (avf->assoc)
500 			iter_data->any_assoc = true;
501 	}
502 
503 	/* Calculate combined mode - when APs are active, operate in AP mode.
504 	 * Otherwise use the mode of the new interface. This can currently
505 	 * only deal with combinations of APs and STAs. Only one ad-hoc
506 	 * interfaces is allowed.
507 	 */
508 	if (avf->opmode == NL80211_IFTYPE_AP)
509 		iter_data->opmode = NL80211_IFTYPE_AP;
510 	else {
511 		if (avf->opmode == NL80211_IFTYPE_STATION)
512 			iter_data->n_stas++;
513 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 			iter_data->opmode = avf->opmode;
515 	}
516 }
517 
518 void
519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 				   struct ieee80211_vif *vif)
521 {
522 	struct ath_common *common = ath5k_hw_common(ah);
523 	struct ath5k_vif_iter_data iter_data;
524 	u32 rfilt;
525 
526 	/*
527 	 * Use the hardware MAC address as reference, the hardware uses it
528 	 * together with the BSSID mask when matching addresses.
529 	 */
530 	iter_data.hw_macaddr = common->macaddr;
531 	eth_broadcast_addr(iter_data.mask);
532 	iter_data.found_active = false;
533 	iter_data.need_set_hw_addr = true;
534 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 	iter_data.n_stas = 0;
536 
537 	if (vif)
538 		ath5k_vif_iter(&iter_data, vif->addr, vif);
539 
540 	/* Get list of all active MAC addresses */
541 	ieee80211_iterate_active_interfaces_atomic(
542 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 		ath5k_vif_iter, &iter_data);
544 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545 
546 	ah->opmode = iter_data.opmode;
547 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 		/* Nothing active, default to station mode */
549 		ah->opmode = NL80211_IFTYPE_STATION;
550 
551 	ath5k_hw_set_opmode(ah, ah->opmode);
552 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 		  ah->opmode, ath_opmode_to_string(ah->opmode));
554 
555 	if (iter_data.need_set_hw_addr && iter_data.found_active)
556 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557 
558 	if (ath5k_hw_hasbssidmask(ah))
559 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560 
561 	/* Set up RX Filter */
562 	if (iter_data.n_stas > 1) {
563 		/* If you have multiple STA interfaces connected to
564 		 * different APs, ARPs are not received (most of the time?)
565 		 * Enabling PROMISC appears to fix that problem.
566 		 */
567 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
568 	}
569 
570 	rfilt = ah->filter_flags;
571 	ath5k_hw_set_rx_filter(ah, rfilt);
572 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573 }
574 
575 static inline int
576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577 {
578 	int rix;
579 
580 	/* return base rate on errors */
581 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 			"hw_rix out of bounds: %x\n", hw_rix))
583 		return 0;
584 
585 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 		rix = 0;
588 
589 	return rix;
590 }
591 
592 /***************\
593 * Buffers setup *
594 \***************/
595 
596 static
597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598 {
599 	struct ath_common *common = ath5k_hw_common(ah);
600 	struct sk_buff *skb;
601 
602 	/*
603 	 * Allocate buffer with headroom_needed space for the
604 	 * fake physical layer header at the start.
605 	 */
606 	skb = ath_rxbuf_alloc(common,
607 			      common->rx_bufsize,
608 			      GFP_ATOMIC);
609 
610 	if (!skb) {
611 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 				common->rx_bufsize);
613 		return NULL;
614 	}
615 
616 	*skb_addr = dma_map_single(ah->dev,
617 				   skb->data, common->rx_bufsize,
618 				   DMA_FROM_DEVICE);
619 
620 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 		dev_kfree_skb(skb);
623 		return NULL;
624 	}
625 	return skb;
626 }
627 
628 static int
629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630 {
631 	struct sk_buff *skb = bf->skb;
632 	struct ath5k_desc *ds;
633 	int ret;
634 
635 	if (!skb) {
636 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 		if (!skb)
638 			return -ENOMEM;
639 		bf->skb = skb;
640 	}
641 
642 	/*
643 	 * Setup descriptors.  For receive we always terminate
644 	 * the descriptor list with a self-linked entry so we'll
645 	 * not get overrun under high load (as can happen with a
646 	 * 5212 when ANI processing enables PHY error frames).
647 	 *
648 	 * To ensure the last descriptor is self-linked we create
649 	 * each descriptor as self-linked and add it to the end.  As
650 	 * each additional descriptor is added the previous self-linked
651 	 * entry is "fixed" naturally.  This should be safe even
652 	 * if DMA is happening.  When processing RX interrupts we
653 	 * never remove/process the last, self-linked, entry on the
654 	 * descriptor list.  This ensures the hardware always has
655 	 * someplace to write a new frame.
656 	 */
657 	ds = bf->desc;
658 	ds->ds_link = bf->daddr;	/* link to self */
659 	ds->ds_data = bf->skbaddr;
660 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 	if (ret) {
662 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 		return ret;
664 	}
665 
666 	if (ah->rxlink != NULL)
667 		*ah->rxlink = bf->daddr;
668 	ah->rxlink = &ds->ds_link;
669 	return 0;
670 }
671 
672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673 {
674 	struct ieee80211_hdr *hdr;
675 	enum ath5k_pkt_type htype;
676 	__le16 fc;
677 
678 	hdr = (struct ieee80211_hdr *)skb->data;
679 	fc = hdr->frame_control;
680 
681 	if (ieee80211_is_beacon(fc))
682 		htype = AR5K_PKT_TYPE_BEACON;
683 	else if (ieee80211_is_probe_resp(fc))
684 		htype = AR5K_PKT_TYPE_PROBE_RESP;
685 	else if (ieee80211_is_atim(fc))
686 		htype = AR5K_PKT_TYPE_ATIM;
687 	else if (ieee80211_is_pspoll(fc))
688 		htype = AR5K_PKT_TYPE_PSPOLL;
689 	else
690 		htype = AR5K_PKT_TYPE_NORMAL;
691 
692 	return htype;
693 }
694 
695 static struct ieee80211_rate *
696 ath5k_get_rate(const struct ieee80211_hw *hw,
697 	       const struct ieee80211_tx_info *info,
698 	       struct ath5k_buf *bf, int idx)
699 {
700 	/*
701 	* convert a ieee80211_tx_rate RC-table entry to
702 	* the respective ieee80211_rate struct
703 	*/
704 	if (bf->rates[idx].idx < 0) {
705 		return NULL;
706 	}
707 
708 	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709 }
710 
711 static u16
712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 			const struct ieee80211_tx_info *info,
714 			struct ath5k_buf *bf, int idx)
715 {
716 	struct ieee80211_rate *rate;
717 	u16 hw_rate;
718 	u8 rc_flags;
719 
720 	rate = ath5k_get_rate(hw, info, bf, idx);
721 	if (!rate)
722 		return 0;
723 
724 	rc_flags = bf->rates[idx].flags;
725 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 		   rate->hw_value_short : rate->hw_value;
727 
728 	return hw_rate;
729 }
730 
731 static int
732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 		  struct ath5k_txq *txq, int padsize,
734 		  struct ieee80211_tx_control *control)
735 {
736 	struct ath5k_desc *ds = bf->desc;
737 	struct sk_buff *skb = bf->skb;
738 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 	struct ieee80211_rate *rate;
741 	unsigned int mrr_rate[3], mrr_tries[3];
742 	int i, ret;
743 	u16 hw_rate;
744 	u16 cts_rate = 0;
745 	u16 duration = 0;
746 	u8 rc_flags;
747 
748 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749 
750 	/* XXX endianness */
751 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 			DMA_TO_DEVICE);
753 
754 	if (dma_mapping_error(ah->dev, bf->skbaddr))
755 		return -ENOSPC;
756 
757 	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758 			       ARRAY_SIZE(bf->rates));
759 
760 	rate = ath5k_get_rate(ah->hw, info, bf, 0);
761 
762 	if (!rate) {
763 		ret = -EINVAL;
764 		goto err_unmap;
765 	}
766 
767 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768 		flags |= AR5K_TXDESC_NOACK;
769 
770 	rc_flags = bf->rates[0].flags;
771 
772 	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
773 
774 	pktlen = skb->len;
775 
776 	/* FIXME: If we are in g mode and rate is a CCK rate
777 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 	 * from tx power (value is in dB units already) */
779 	if (info->control.hw_key) {
780 		keyidx = info->control.hw_key->hw_key_idx;
781 		pktlen += info->control.hw_key->icv_len;
782 	}
783 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784 		flags |= AR5K_TXDESC_RTSENA;
785 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787 			info->control.vif, pktlen, info));
788 	}
789 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790 		flags |= AR5K_TXDESC_CTSENA;
791 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793 			info->control.vif, pktlen, info));
794 	}
795 
796 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797 		ieee80211_get_hdrlen_from_skb(skb), padsize,
798 		get_hw_packet_type(skb),
799 		(ah->ah_txpower.txp_requested * 2),
800 		hw_rate,
801 		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802 		cts_rate, duration);
803 	if (ret)
804 		goto err_unmap;
805 
806 	/* Set up MRR descriptor */
807 	if (ah->ah_capabilities.cap_has_mrr_support) {
808 		memset(mrr_rate, 0, sizeof(mrr_rate));
809 		memset(mrr_tries, 0, sizeof(mrr_tries));
810 
811 		for (i = 0; i < 3; i++) {
812 
813 			rate = ath5k_get_rate(ah->hw, info, bf, i);
814 			if (!rate)
815 				break;
816 
817 			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818 			mrr_tries[i] = bf->rates[i].count;
819 		}
820 
821 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
822 			mrr_rate[0], mrr_tries[0],
823 			mrr_rate[1], mrr_tries[1],
824 			mrr_rate[2], mrr_tries[2]);
825 	}
826 
827 	ds->ds_link = 0;
828 	ds->ds_data = bf->skbaddr;
829 
830 	spin_lock_bh(&txq->lock);
831 	list_add_tail(&bf->list, &txq->q);
832 	txq->txq_len++;
833 	if (txq->link == NULL) /* is this first packet? */
834 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835 	else /* no, so only link it */
836 		*txq->link = bf->daddr;
837 
838 	txq->link = &ds->ds_link;
839 	ath5k_hw_start_tx_dma(ah, txq->qnum);
840 	mmiowb();
841 	spin_unlock_bh(&txq->lock);
842 
843 	return 0;
844 err_unmap:
845 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
846 	return ret;
847 }
848 
849 /*******************\
850 * Descriptors setup *
851 \*******************/
852 
853 static int
854 ath5k_desc_alloc(struct ath5k_hw *ah)
855 {
856 	struct ath5k_desc *ds;
857 	struct ath5k_buf *bf;
858 	dma_addr_t da;
859 	unsigned int i;
860 	int ret;
861 
862 	/* allocate descriptors */
863 	ah->desc_len = sizeof(struct ath5k_desc) *
864 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
865 
866 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
867 				&ah->desc_daddr, GFP_KERNEL);
868 	if (ah->desc == NULL) {
869 		ATH5K_ERR(ah, "can't allocate descriptors\n");
870 		ret = -ENOMEM;
871 		goto err;
872 	}
873 	ds = ah->desc;
874 	da = ah->desc_daddr;
875 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
876 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
877 
878 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
879 			sizeof(struct ath5k_buf), GFP_KERNEL);
880 	if (bf == NULL) {
881 		ATH5K_ERR(ah, "can't allocate bufptr\n");
882 		ret = -ENOMEM;
883 		goto err_free;
884 	}
885 	ah->bufptr = bf;
886 
887 	INIT_LIST_HEAD(&ah->rxbuf);
888 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
889 		bf->desc = ds;
890 		bf->daddr = da;
891 		list_add_tail(&bf->list, &ah->rxbuf);
892 	}
893 
894 	INIT_LIST_HEAD(&ah->txbuf);
895 	ah->txbuf_len = ATH_TXBUF;
896 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
897 		bf->desc = ds;
898 		bf->daddr = da;
899 		list_add_tail(&bf->list, &ah->txbuf);
900 	}
901 
902 	/* beacon buffers */
903 	INIT_LIST_HEAD(&ah->bcbuf);
904 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
905 		bf->desc = ds;
906 		bf->daddr = da;
907 		list_add_tail(&bf->list, &ah->bcbuf);
908 	}
909 
910 	return 0;
911 err_free:
912 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
913 err:
914 	ah->desc = NULL;
915 	return ret;
916 }
917 
918 void
919 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
920 {
921 	BUG_ON(!bf);
922 	if (!bf->skb)
923 		return;
924 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
925 			DMA_TO_DEVICE);
926 	ieee80211_free_txskb(ah->hw, bf->skb);
927 	bf->skb = NULL;
928 	bf->skbaddr = 0;
929 	bf->desc->ds_data = 0;
930 }
931 
932 void
933 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
934 {
935 	struct ath_common *common = ath5k_hw_common(ah);
936 
937 	BUG_ON(!bf);
938 	if (!bf->skb)
939 		return;
940 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
941 			DMA_FROM_DEVICE);
942 	dev_kfree_skb_any(bf->skb);
943 	bf->skb = NULL;
944 	bf->skbaddr = 0;
945 	bf->desc->ds_data = 0;
946 }
947 
948 static void
949 ath5k_desc_free(struct ath5k_hw *ah)
950 {
951 	struct ath5k_buf *bf;
952 
953 	list_for_each_entry(bf, &ah->txbuf, list)
954 		ath5k_txbuf_free_skb(ah, bf);
955 	list_for_each_entry(bf, &ah->rxbuf, list)
956 		ath5k_rxbuf_free_skb(ah, bf);
957 	list_for_each_entry(bf, &ah->bcbuf, list)
958 		ath5k_txbuf_free_skb(ah, bf);
959 
960 	/* Free memory associated with all descriptors */
961 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
962 	ah->desc = NULL;
963 	ah->desc_daddr = 0;
964 
965 	kfree(ah->bufptr);
966 	ah->bufptr = NULL;
967 }
968 
969 
970 /**************\
971 * Queues setup *
972 \**************/
973 
974 static struct ath5k_txq *
975 ath5k_txq_setup(struct ath5k_hw *ah,
976 		int qtype, int subtype)
977 {
978 	struct ath5k_txq *txq;
979 	struct ath5k_txq_info qi = {
980 		.tqi_subtype = subtype,
981 		/* XXX: default values not correct for B and XR channels,
982 		 * but who cares? */
983 		.tqi_aifs = AR5K_TUNE_AIFS,
984 		.tqi_cw_min = AR5K_TUNE_CWMIN,
985 		.tqi_cw_max = AR5K_TUNE_CWMAX
986 	};
987 	int qnum;
988 
989 	/*
990 	 * Enable interrupts only for EOL and DESC conditions.
991 	 * We mark tx descriptors to receive a DESC interrupt
992 	 * when a tx queue gets deep; otherwise we wait for the
993 	 * EOL to reap descriptors.  Note that this is done to
994 	 * reduce interrupt load and this only defers reaping
995 	 * descriptors, never transmitting frames.  Aside from
996 	 * reducing interrupts this also permits more concurrency.
997 	 * The only potential downside is if the tx queue backs
998 	 * up in which case the top half of the kernel may backup
999 	 * due to a lack of tx descriptors.
1000 	 */
1001 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004 	if (qnum < 0) {
1005 		/*
1006 		 * NB: don't print a message, this happens
1007 		 * normally on parts with too few tx queues
1008 		 */
1009 		return ERR_PTR(qnum);
1010 	}
1011 	txq = &ah->txqs[qnum];
1012 	if (!txq->setup) {
1013 		txq->qnum = qnum;
1014 		txq->link = NULL;
1015 		INIT_LIST_HEAD(&txq->q);
1016 		spin_lock_init(&txq->lock);
1017 		txq->setup = true;
1018 		txq->txq_len = 0;
1019 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020 		txq->txq_poll_mark = false;
1021 		txq->txq_stuck = 0;
1022 	}
1023 	return &ah->txqs[qnum];
1024 }
1025 
1026 static int
1027 ath5k_beaconq_setup(struct ath5k_hw *ah)
1028 {
1029 	struct ath5k_txq_info qi = {
1030 		/* XXX: default values not correct for B and XR channels,
1031 		 * but who cares? */
1032 		.tqi_aifs = AR5K_TUNE_AIFS,
1033 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1034 		.tqi_cw_max = AR5K_TUNE_CWMAX,
1035 		/* NB: for dynamic turbo, don't enable any other interrupts */
1036 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037 	};
1038 
1039 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040 }
1041 
1042 static int
1043 ath5k_beaconq_config(struct ath5k_hw *ah)
1044 {
1045 	struct ath5k_txq_info qi;
1046 	int ret;
1047 
1048 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049 	if (ret)
1050 		goto err;
1051 
1052 	if (ah->opmode == NL80211_IFTYPE_AP ||
1053 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054 		/*
1055 		 * Always burst out beacon and CAB traffic
1056 		 * (aifs = cwmin = cwmax = 0)
1057 		 */
1058 		qi.tqi_aifs = 0;
1059 		qi.tqi_cw_min = 0;
1060 		qi.tqi_cw_max = 0;
1061 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062 		/*
1063 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064 		 */
1065 		qi.tqi_aifs = 0;
1066 		qi.tqi_cw_min = 0;
1067 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068 	}
1069 
1070 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073 
1074 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075 	if (ret) {
1076 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077 			"hardware queue!\n", __func__);
1078 		goto err;
1079 	}
1080 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081 	if (ret)
1082 		goto err;
1083 
1084 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1085 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086 	if (ret)
1087 		goto err;
1088 
1089 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091 	if (ret)
1092 		goto err;
1093 
1094 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095 err:
1096 	return ret;
1097 }
1098 
1099 /**
1100  * ath5k_drain_tx_buffs - Empty tx buffers
1101  *
1102  * @ah The &struct ath5k_hw
1103  *
1104  * Empty tx buffers from all queues in preparation
1105  * of a reset or during shutdown.
1106  *
1107  * NB:	this assumes output has been stopped and
1108  *	we do not need to block ath5k_tx_tasklet
1109  */
1110 static void
1111 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112 {
1113 	struct ath5k_txq *txq;
1114 	struct ath5k_buf *bf, *bf0;
1115 	int i;
1116 
1117 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118 		if (ah->txqs[i].setup) {
1119 			txq = &ah->txqs[i];
1120 			spin_lock_bh(&txq->lock);
1121 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122 				ath5k_debug_printtxbuf(ah, bf);
1123 
1124 				ath5k_txbuf_free_skb(ah, bf);
1125 
1126 				spin_lock(&ah->txbuflock);
1127 				list_move_tail(&bf->list, &ah->txbuf);
1128 				ah->txbuf_len++;
1129 				txq->txq_len--;
1130 				spin_unlock(&ah->txbuflock);
1131 			}
1132 			txq->link = NULL;
1133 			txq->txq_poll_mark = false;
1134 			spin_unlock_bh(&txq->lock);
1135 		}
1136 	}
1137 }
1138 
1139 static void
1140 ath5k_txq_release(struct ath5k_hw *ah)
1141 {
1142 	struct ath5k_txq *txq = ah->txqs;
1143 	unsigned int i;
1144 
1145 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146 		if (txq->setup) {
1147 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1148 			txq->setup = false;
1149 		}
1150 }
1151 
1152 
1153 /*************\
1154 * RX Handling *
1155 \*************/
1156 
1157 /*
1158  * Enable the receive h/w following a reset.
1159  */
1160 static int
1161 ath5k_rx_start(struct ath5k_hw *ah)
1162 {
1163 	struct ath_common *common = ath5k_hw_common(ah);
1164 	struct ath5k_buf *bf;
1165 	int ret;
1166 
1167 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168 
1169 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170 		  common->cachelsz, common->rx_bufsize);
1171 
1172 	spin_lock_bh(&ah->rxbuflock);
1173 	ah->rxlink = NULL;
1174 	list_for_each_entry(bf, &ah->rxbuf, list) {
1175 		ret = ath5k_rxbuf_setup(ah, bf);
1176 		if (ret != 0) {
1177 			spin_unlock_bh(&ah->rxbuflock);
1178 			goto err;
1179 		}
1180 	}
1181 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182 	ath5k_hw_set_rxdp(ah, bf->daddr);
1183 	spin_unlock_bh(&ah->rxbuflock);
1184 
1185 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1186 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1188 
1189 	return 0;
1190 err:
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Disable the receive logic on PCU (DRU)
1196  * In preparation for a shutdown.
1197  *
1198  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199  * does.
1200  */
1201 static void
1202 ath5k_rx_stop(struct ath5k_hw *ah)
1203 {
1204 
1205 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1206 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1207 
1208 	ath5k_debug_printrxbuffs(ah);
1209 }
1210 
1211 static unsigned int
1212 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213 		   struct ath5k_rx_status *rs)
1214 {
1215 	struct ath_common *common = ath5k_hw_common(ah);
1216 	struct ieee80211_hdr *hdr = (void *)skb->data;
1217 	unsigned int keyix, hlen;
1218 
1219 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221 		return RX_FLAG_DECRYPTED;
1222 
1223 	/* Apparently when a default key is used to decrypt the packet
1224 	   the hw does not set the index used to decrypt.  In such cases
1225 	   get the index from the packet. */
1226 	hlen = ieee80211_hdrlen(hdr->frame_control);
1227 	if (ieee80211_has_protected(hdr->frame_control) &&
1228 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229 	    skb->len >= hlen + 4) {
1230 		keyix = skb->data[hlen + 3] >> 6;
1231 
1232 		if (test_bit(keyix, common->keymap))
1233 			return RX_FLAG_DECRYPTED;
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 
1240 static void
1241 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242 		     struct ieee80211_rx_status *rxs)
1243 {
1244 	u64 tsf, bc_tstamp;
1245 	u32 hw_tu;
1246 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247 
1248 	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1249 		/*
1250 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 		 * have updated the local TSF. We have to work around various
1252 		 * hardware bugs, though...
1253 		 */
1254 		tsf = ath5k_hw_get_tsf64(ah);
1255 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256 		hw_tu = TSF_TO_TU(tsf);
1257 
1258 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 			(unsigned long long)bc_tstamp,
1261 			(unsigned long long)rxs->mactime,
1262 			(unsigned long long)(rxs->mactime - bc_tstamp),
1263 			(unsigned long long)tsf);
1264 
1265 		/*
1266 		 * Sometimes the HW will give us a wrong tstamp in the rx
1267 		 * status, causing the timestamp extension to go wrong.
1268 		 * (This seems to happen especially with beacon frames bigger
1269 		 * than 78 byte (incl. FCS))
1270 		 * But we know that the receive timestamp must be later than the
1271 		 * timestamp of the beacon since HW must have synced to that.
1272 		 *
1273 		 * NOTE: here we assume mactime to be after the frame was
1274 		 * received, not like mac80211 which defines it at the start.
1275 		 */
1276 		if (bc_tstamp > rxs->mactime) {
1277 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278 				"fixing mactime from %llx to %llx\n",
1279 				(unsigned long long)rxs->mactime,
1280 				(unsigned long long)tsf);
1281 			rxs->mactime = tsf;
1282 		}
1283 
1284 		/*
1285 		 * Local TSF might have moved higher than our beacon timers,
1286 		 * in that case we have to update them to continue sending
1287 		 * beacons. This also takes care of synchronizing beacon sending
1288 		 * times with other stations.
1289 		 */
1290 		if (hw_tu >= ah->nexttbtt)
1291 			ath5k_beacon_update_timers(ah, bc_tstamp);
1292 
1293 		/* Check if the beacon timers are still correct, because a TSF
1294 		 * update might have created a window between them - for a
1295 		 * longer description see the comment of this function: */
1296 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297 			ath5k_beacon_update_timers(ah, bc_tstamp);
1298 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299 				"fixed beacon timers after beacon receive\n");
1300 		}
1301 	}
1302 }
1303 
1304 /*
1305  * Compute padding position. skb must contain an IEEE 802.11 frame
1306  */
1307 static int ath5k_common_padpos(struct sk_buff *skb)
1308 {
1309 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310 	__le16 frame_control = hdr->frame_control;
1311 	int padpos = 24;
1312 
1313 	if (ieee80211_has_a4(frame_control))
1314 		padpos += ETH_ALEN;
1315 
1316 	if (ieee80211_is_data_qos(frame_control))
1317 		padpos += IEEE80211_QOS_CTL_LEN;
1318 
1319 	return padpos;
1320 }
1321 
1322 /*
1323  * This function expects an 802.11 frame and returns the number of
1324  * bytes added, or -1 if we don't have enough header room.
1325  */
1326 static int ath5k_add_padding(struct sk_buff *skb)
1327 {
1328 	int padpos = ath5k_common_padpos(skb);
1329 	int padsize = padpos & 3;
1330 
1331 	if (padsize && skb->len > padpos) {
1332 
1333 		if (skb_headroom(skb) < padsize)
1334 			return -1;
1335 
1336 		skb_push(skb, padsize);
1337 		memmove(skb->data, skb->data + padsize, padpos);
1338 		return padsize;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * The MAC header is padded to have 32-bit boundary if the
1346  * packet payload is non-zero. The general calculation for
1347  * padsize would take into account odd header lengths:
1348  * padsize = 4 - (hdrlen & 3); however, since only
1349  * even-length headers are used, padding can only be 0 or 2
1350  * bytes and we can optimize this a bit.  We must not try to
1351  * remove padding from short control frames that do not have a
1352  * payload.
1353  *
1354  * This function expects an 802.11 frame and returns the number of
1355  * bytes removed.
1356  */
1357 static int ath5k_remove_padding(struct sk_buff *skb)
1358 {
1359 	int padpos = ath5k_common_padpos(skb);
1360 	int padsize = padpos & 3;
1361 
1362 	if (padsize && skb->len >= padpos + padsize) {
1363 		memmove(skb->data + padsize, skb->data, padpos);
1364 		skb_pull(skb, padsize);
1365 		return padsize;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static void
1372 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373 		    struct ath5k_rx_status *rs)
1374 {
1375 	struct ieee80211_rx_status *rxs;
1376 	struct ath_common *common = ath5k_hw_common(ah);
1377 
1378 	ath5k_remove_padding(skb);
1379 
1380 	rxs = IEEE80211_SKB_RXCB(skb);
1381 
1382 	rxs->flag = 0;
1383 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1385 	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1386 		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1387 
1388 
1389 	/*
1390 	 * always extend the mac timestamp, since this information is
1391 	 * also needed for proper IBSS merging.
1392 	 *
1393 	 * XXX: it might be too late to do it here, since rs_tstamp is
1394 	 * 15bit only. that means TSF extension has to be done within
1395 	 * 32768usec (about 32ms). it might be necessary to move this to
1396 	 * the interrupt handler, like it is done in madwifi.
1397 	 */
1398 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1399 	rxs->flag |= RX_FLAG_MACTIME_END;
1400 
1401 	rxs->freq = ah->curchan->center_freq;
1402 	rxs->band = ah->curchan->band;
1403 
1404 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1405 
1406 	rxs->antenna = rs->rs_antenna;
1407 
1408 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1409 		ah->stats.antenna_rx[rs->rs_antenna]++;
1410 	else
1411 		ah->stats.antenna_rx[0]++; /* invalid */
1412 
1413 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1414 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1415 	switch (ah->ah_bwmode) {
1416 	case AR5K_BWMODE_5MHZ:
1417 		rxs->bw = RATE_INFO_BW_5;
1418 		break;
1419 	case AR5K_BWMODE_10MHZ:
1420 		rxs->bw = RATE_INFO_BW_10;
1421 		break;
1422 	default:
1423 		break;
1424 	}
1425 
1426 	if (rs->rs_rate ==
1427 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1428 		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1429 
1430 	trace_ath5k_rx(ah, skb);
1431 
1432 	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1433 		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1434 
1435 		/* check beacons in IBSS mode */
1436 		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1437 			ath5k_check_ibss_tsf(ah, skb, rxs);
1438 	}
1439 
1440 	ieee80211_rx(ah->hw, skb);
1441 }
1442 
1443 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1444  *
1445  * Check if we want to further process this frame or not. Also update
1446  * statistics. Return true if we want this frame, false if not.
1447  */
1448 static bool
1449 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1450 {
1451 	ah->stats.rx_all_count++;
1452 	ah->stats.rx_bytes_count += rs->rs_datalen;
1453 
1454 	if (unlikely(rs->rs_status)) {
1455 		unsigned int filters;
1456 
1457 		if (rs->rs_status & AR5K_RXERR_CRC)
1458 			ah->stats.rxerr_crc++;
1459 		if (rs->rs_status & AR5K_RXERR_FIFO)
1460 			ah->stats.rxerr_fifo++;
1461 		if (rs->rs_status & AR5K_RXERR_PHY) {
1462 			ah->stats.rxerr_phy++;
1463 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1464 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1465 
1466 			/*
1467 			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1468 			 * These restarts happen when the radio resynchronizes to a stronger frame
1469 			 * while receiving a weaker frame. Here we receive the prefix of the weak
1470 			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1471 			 */
1472 			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1473 			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1474 				rs->rs_status |= AR5K_RXERR_CRC;
1475 				rs->rs_status &= ~AR5K_RXERR_PHY;
1476 			} else {
1477 				return false;
1478 			}
1479 		}
1480 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1481 			/*
1482 			 * Decrypt error.  If the error occurred
1483 			 * because there was no hardware key, then
1484 			 * let the frame through so the upper layers
1485 			 * can process it.  This is necessary for 5210
1486 			 * parts which have no way to setup a ``clear''
1487 			 * key cache entry.
1488 			 *
1489 			 * XXX do key cache faulting
1490 			 */
1491 			ah->stats.rxerr_decrypt++;
1492 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1493 			    !(rs->rs_status & AR5K_RXERR_CRC))
1494 				return true;
1495 		}
1496 		if (rs->rs_status & AR5K_RXERR_MIC) {
1497 			ah->stats.rxerr_mic++;
1498 			return true;
1499 		}
1500 
1501 		/*
1502 		 * Reject any frames with non-crypto errors, and take into account the
1503 		 * current FIF_* filters.
1504 		 */
1505 		filters = AR5K_RXERR_DECRYPT;
1506 		if (ah->fif_filter_flags & FIF_FCSFAIL)
1507 			filters |= AR5K_RXERR_CRC;
1508 
1509 		if (rs->rs_status & ~filters)
1510 			return false;
1511 	}
1512 
1513 	if (unlikely(rs->rs_more)) {
1514 		ah->stats.rxerr_jumbo++;
1515 		return false;
1516 	}
1517 	return true;
1518 }
1519 
1520 static void
1521 ath5k_set_current_imask(struct ath5k_hw *ah)
1522 {
1523 	enum ath5k_int imask;
1524 	unsigned long flags;
1525 
1526 	if (test_bit(ATH_STAT_RESET, ah->status))
1527 		return;
1528 
1529 	spin_lock_irqsave(&ah->irqlock, flags);
1530 	imask = ah->imask;
1531 	if (ah->rx_pending)
1532 		imask &= ~AR5K_INT_RX_ALL;
1533 	if (ah->tx_pending)
1534 		imask &= ~AR5K_INT_TX_ALL;
1535 	ath5k_hw_set_imr(ah, imask);
1536 	spin_unlock_irqrestore(&ah->irqlock, flags);
1537 }
1538 
1539 static void
1540 ath5k_tasklet_rx(unsigned long data)
1541 {
1542 	struct ath5k_rx_status rs = {};
1543 	struct sk_buff *skb, *next_skb;
1544 	dma_addr_t next_skb_addr;
1545 	struct ath5k_hw *ah = (void *)data;
1546 	struct ath_common *common = ath5k_hw_common(ah);
1547 	struct ath5k_buf *bf;
1548 	struct ath5k_desc *ds;
1549 	int ret;
1550 
1551 	spin_lock(&ah->rxbuflock);
1552 	if (list_empty(&ah->rxbuf)) {
1553 		ATH5K_WARN(ah, "empty rx buf pool\n");
1554 		goto unlock;
1555 	}
1556 	do {
1557 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1558 		BUG_ON(bf->skb == NULL);
1559 		skb = bf->skb;
1560 		ds = bf->desc;
1561 
1562 		/* bail if HW is still using self-linked descriptor */
1563 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1564 			break;
1565 
1566 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1567 		if (unlikely(ret == -EINPROGRESS))
1568 			break;
1569 		else if (unlikely(ret)) {
1570 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1571 			ah->stats.rxerr_proc++;
1572 			break;
1573 		}
1574 
1575 		if (ath5k_receive_frame_ok(ah, &rs)) {
1576 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1577 
1578 			/*
1579 			 * If we can't replace bf->skb with a new skb under
1580 			 * memory pressure, just skip this packet
1581 			 */
1582 			if (!next_skb)
1583 				goto next;
1584 
1585 			dma_unmap_single(ah->dev, bf->skbaddr,
1586 					 common->rx_bufsize,
1587 					 DMA_FROM_DEVICE);
1588 
1589 			skb_put(skb, rs.rs_datalen);
1590 
1591 			ath5k_receive_frame(ah, skb, &rs);
1592 
1593 			bf->skb = next_skb;
1594 			bf->skbaddr = next_skb_addr;
1595 		}
1596 next:
1597 		list_move_tail(&bf->list, &ah->rxbuf);
1598 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1599 unlock:
1600 	spin_unlock(&ah->rxbuflock);
1601 	ah->rx_pending = false;
1602 	ath5k_set_current_imask(ah);
1603 }
1604 
1605 
1606 /*************\
1607 * TX Handling *
1608 \*************/
1609 
1610 void
1611 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1612 	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1613 {
1614 	struct ath5k_hw *ah = hw->priv;
1615 	struct ath5k_buf *bf;
1616 	unsigned long flags;
1617 	int padsize;
1618 
1619 	trace_ath5k_tx(ah, skb, txq);
1620 
1621 	/*
1622 	 * The hardware expects the header padded to 4 byte boundaries.
1623 	 * If this is not the case, we add the padding after the header.
1624 	 */
1625 	padsize = ath5k_add_padding(skb);
1626 	if (padsize < 0) {
1627 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1628 			  " headroom to pad");
1629 		goto drop_packet;
1630 	}
1631 
1632 	if (txq->txq_len >= txq->txq_max &&
1633 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1634 		ieee80211_stop_queue(hw, txq->qnum);
1635 
1636 	spin_lock_irqsave(&ah->txbuflock, flags);
1637 	if (list_empty(&ah->txbuf)) {
1638 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1639 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1640 		ieee80211_stop_queues(hw);
1641 		goto drop_packet;
1642 	}
1643 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1644 	list_del(&bf->list);
1645 	ah->txbuf_len--;
1646 	if (list_empty(&ah->txbuf))
1647 		ieee80211_stop_queues(hw);
1648 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1649 
1650 	bf->skb = skb;
1651 
1652 	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1653 		bf->skb = NULL;
1654 		spin_lock_irqsave(&ah->txbuflock, flags);
1655 		list_add_tail(&bf->list, &ah->txbuf);
1656 		ah->txbuf_len++;
1657 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1658 		goto drop_packet;
1659 	}
1660 	return;
1661 
1662 drop_packet:
1663 	ieee80211_free_txskb(hw, skb);
1664 }
1665 
1666 static void
1667 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1668 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1669 			 struct ath5k_buf *bf)
1670 {
1671 	struct ieee80211_tx_info *info;
1672 	u8 tries[3];
1673 	int i;
1674 	int size = 0;
1675 
1676 	ah->stats.tx_all_count++;
1677 	ah->stats.tx_bytes_count += skb->len;
1678 	info = IEEE80211_SKB_CB(skb);
1679 
1680 	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1681 	memcpy(info->status.rates, bf->rates, size);
1682 
1683 	tries[0] = info->status.rates[0].count;
1684 	tries[1] = info->status.rates[1].count;
1685 	tries[2] = info->status.rates[2].count;
1686 
1687 	ieee80211_tx_info_clear_status(info);
1688 
1689 	for (i = 0; i < ts->ts_final_idx; i++) {
1690 		struct ieee80211_tx_rate *r =
1691 			&info->status.rates[i];
1692 
1693 		r->count = tries[i];
1694 	}
1695 
1696 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1697 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1698 
1699 	if (unlikely(ts->ts_status)) {
1700 		ah->stats.ack_fail++;
1701 		if (ts->ts_status & AR5K_TXERR_FILT) {
1702 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1703 			ah->stats.txerr_filt++;
1704 		}
1705 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1706 			ah->stats.txerr_retry++;
1707 		if (ts->ts_status & AR5K_TXERR_FIFO)
1708 			ah->stats.txerr_fifo++;
1709 	} else {
1710 		info->flags |= IEEE80211_TX_STAT_ACK;
1711 		info->status.ack_signal = ts->ts_rssi;
1712 
1713 		/* count the successful attempt as well */
1714 		info->status.rates[ts->ts_final_idx].count++;
1715 	}
1716 
1717 	/*
1718 	* Remove MAC header padding before giving the frame
1719 	* back to mac80211.
1720 	*/
1721 	ath5k_remove_padding(skb);
1722 
1723 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1724 		ah->stats.antenna_tx[ts->ts_antenna]++;
1725 	else
1726 		ah->stats.antenna_tx[0]++; /* invalid */
1727 
1728 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1729 	ieee80211_tx_status(ah->hw, skb);
1730 }
1731 
1732 static void
1733 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1734 {
1735 	struct ath5k_tx_status ts = {};
1736 	struct ath5k_buf *bf, *bf0;
1737 	struct ath5k_desc *ds;
1738 	struct sk_buff *skb;
1739 	int ret;
1740 
1741 	spin_lock(&txq->lock);
1742 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1743 
1744 		txq->txq_poll_mark = false;
1745 
1746 		/* skb might already have been processed last time. */
1747 		if (bf->skb != NULL) {
1748 			ds = bf->desc;
1749 
1750 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1751 			if (unlikely(ret == -EINPROGRESS))
1752 				break;
1753 			else if (unlikely(ret)) {
1754 				ATH5K_ERR(ah,
1755 					"error %d while processing "
1756 					"queue %u\n", ret, txq->qnum);
1757 				break;
1758 			}
1759 
1760 			skb = bf->skb;
1761 			bf->skb = NULL;
1762 
1763 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1764 					DMA_TO_DEVICE);
1765 			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1766 		}
1767 
1768 		/*
1769 		 * It's possible that the hardware can say the buffer is
1770 		 * completed when it hasn't yet loaded the ds_link from
1771 		 * host memory and moved on.
1772 		 * Always keep the last descriptor to avoid HW races...
1773 		 */
1774 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1775 			spin_lock(&ah->txbuflock);
1776 			list_move_tail(&bf->list, &ah->txbuf);
1777 			ah->txbuf_len++;
1778 			txq->txq_len--;
1779 			spin_unlock(&ah->txbuflock);
1780 		}
1781 	}
1782 	spin_unlock(&txq->lock);
1783 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1784 		ieee80211_wake_queue(ah->hw, txq->qnum);
1785 }
1786 
1787 static void
1788 ath5k_tasklet_tx(unsigned long data)
1789 {
1790 	int i;
1791 	struct ath5k_hw *ah = (void *)data;
1792 
1793 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1794 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1795 			ath5k_tx_processq(ah, &ah->txqs[i]);
1796 
1797 	ah->tx_pending = false;
1798 	ath5k_set_current_imask(ah);
1799 }
1800 
1801 
1802 /*****************\
1803 * Beacon handling *
1804 \*****************/
1805 
1806 /*
1807  * Setup the beacon frame for transmit.
1808  */
1809 static int
1810 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1811 {
1812 	struct sk_buff *skb = bf->skb;
1813 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1814 	struct ath5k_desc *ds;
1815 	int ret = 0;
1816 	u8 antenna;
1817 	u32 flags;
1818 	const int padsize = 0;
1819 
1820 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1821 			DMA_TO_DEVICE);
1822 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1823 			"skbaddr %llx\n", skb, skb->data, skb->len,
1824 			(unsigned long long)bf->skbaddr);
1825 
1826 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1827 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1828 		dev_kfree_skb_any(skb);
1829 		bf->skb = NULL;
1830 		return -EIO;
1831 	}
1832 
1833 	ds = bf->desc;
1834 	antenna = ah->ah_tx_ant;
1835 
1836 	flags = AR5K_TXDESC_NOACK;
1837 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1838 		ds->ds_link = bf->daddr;	/* self-linked */
1839 		flags |= AR5K_TXDESC_VEOL;
1840 	} else
1841 		ds->ds_link = 0;
1842 
1843 	/*
1844 	 * If we use multiple antennas on AP and use
1845 	 * the Sectored AP scenario, switch antenna every
1846 	 * 4 beacons to make sure everybody hears our AP.
1847 	 * When a client tries to associate, hw will keep
1848 	 * track of the tx antenna to be used for this client
1849 	 * automatically, based on ACKed packets.
1850 	 *
1851 	 * Note: AP still listens and transmits RTS on the
1852 	 * default antenna which is supposed to be an omni.
1853 	 *
1854 	 * Note2: On sectored scenarios it's possible to have
1855 	 * multiple antennas (1 omni -- the default -- and 14
1856 	 * sectors), so if we choose to actually support this
1857 	 * mode, we need to allow the user to set how many antennas
1858 	 * we have and tweak the code below to send beacons
1859 	 * on all of them.
1860 	 */
1861 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1862 		antenna = ah->bsent & 4 ? 2 : 1;
1863 
1864 
1865 	/* FIXME: If we are in g mode and rate is a CCK rate
1866 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1867 	 * from tx power (value is in dB units already) */
1868 	ds->ds_data = bf->skbaddr;
1869 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1870 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1871 			AR5K_PKT_TYPE_BEACON,
1872 			(ah->ah_txpower.txp_requested * 2),
1873 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1874 			1, AR5K_TXKEYIX_INVALID,
1875 			antenna, flags, 0, 0);
1876 	if (ret)
1877 		goto err_unmap;
1878 
1879 	return 0;
1880 err_unmap:
1881 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1882 	return ret;
1883 }
1884 
1885 /*
1886  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1887  * this is called only once at config_bss time, for AP we do it every
1888  * SWBA interrupt so that the TIM will reflect buffered frames.
1889  *
1890  * Called with the beacon lock.
1891  */
1892 int
1893 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1894 {
1895 	int ret;
1896 	struct ath5k_hw *ah = hw->priv;
1897 	struct ath5k_vif *avf;
1898 	struct sk_buff *skb;
1899 
1900 	if (WARN_ON(!vif)) {
1901 		ret = -EINVAL;
1902 		goto out;
1903 	}
1904 
1905 	skb = ieee80211_beacon_get(hw, vif);
1906 
1907 	if (!skb) {
1908 		ret = -ENOMEM;
1909 		goto out;
1910 	}
1911 
1912 	avf = (void *)vif->drv_priv;
1913 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1914 	avf->bbuf->skb = skb;
1915 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1916 out:
1917 	return ret;
1918 }
1919 
1920 /*
1921  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1922  * frame contents are done as needed and the slot time is
1923  * also adjusted based on current state.
1924  *
1925  * This is called from software irq context (beacontq tasklets)
1926  * or user context from ath5k_beacon_config.
1927  */
1928 static void
1929 ath5k_beacon_send(struct ath5k_hw *ah)
1930 {
1931 	struct ieee80211_vif *vif;
1932 	struct ath5k_vif *avf;
1933 	struct ath5k_buf *bf;
1934 	struct sk_buff *skb;
1935 	int err;
1936 
1937 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1938 
1939 	/*
1940 	 * Check if the previous beacon has gone out.  If
1941 	 * not, don't don't try to post another: skip this
1942 	 * period and wait for the next.  Missed beacons
1943 	 * indicate a problem and should not occur.  If we
1944 	 * miss too many consecutive beacons reset the device.
1945 	 */
1946 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1947 		ah->bmisscount++;
1948 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1949 			"missed %u consecutive beacons\n", ah->bmisscount);
1950 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1951 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1952 				"stuck beacon time (%u missed)\n",
1953 				ah->bmisscount);
1954 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1955 				  "stuck beacon, resetting\n");
1956 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1957 		}
1958 		return;
1959 	}
1960 	if (unlikely(ah->bmisscount != 0)) {
1961 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1962 			"resume beacon xmit after %u misses\n",
1963 			ah->bmisscount);
1964 		ah->bmisscount = 0;
1965 	}
1966 
1967 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1968 			ah->num_mesh_vifs > 1) ||
1969 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1970 		u64 tsf = ath5k_hw_get_tsf64(ah);
1971 		u32 tsftu = TSF_TO_TU(tsf);
1972 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1973 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1974 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1975 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1976 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1977 	} else /* only one interface */
1978 		vif = ah->bslot[0];
1979 
1980 	if (!vif)
1981 		return;
1982 
1983 	avf = (void *)vif->drv_priv;
1984 	bf = avf->bbuf;
1985 
1986 	/*
1987 	 * Stop any current dma and put the new frame on the queue.
1988 	 * This should never fail since we check above that no frames
1989 	 * are still pending on the queue.
1990 	 */
1991 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1992 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1993 		/* NB: hw still stops DMA, so proceed */
1994 	}
1995 
1996 	/* refresh the beacon for AP or MESH mode */
1997 	if (ah->opmode == NL80211_IFTYPE_AP ||
1998 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1999 		err = ath5k_beacon_update(ah->hw, vif);
2000 		if (err)
2001 			return;
2002 	}
2003 
2004 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2005 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2006 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2007 		return;
2008 	}
2009 
2010 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2011 
2012 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2013 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2014 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2015 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2016 
2017 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2018 	while (skb) {
2019 		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2020 
2021 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2022 			break;
2023 
2024 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2025 	}
2026 
2027 	ah->bsent++;
2028 }
2029 
2030 /**
2031  * ath5k_beacon_update_timers - update beacon timers
2032  *
2033  * @ah: struct ath5k_hw pointer we are operating on
2034  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2035  *          beacon timer update based on the current HW TSF.
2036  *
2037  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2038  * of a received beacon or the current local hardware TSF and write it to the
2039  * beacon timer registers.
2040  *
2041  * This is called in a variety of situations, e.g. when a beacon is received,
2042  * when a TSF update has been detected, but also when an new IBSS is created or
2043  * when we otherwise know we have to update the timers, but we keep it in this
2044  * function to have it all together in one place.
2045  */
2046 void
2047 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2048 {
2049 	u32 nexttbtt, intval, hw_tu, bc_tu;
2050 	u64 hw_tsf;
2051 
2052 	intval = ah->bintval & AR5K_BEACON_PERIOD;
2053 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2054 		+ ah->num_mesh_vifs > 1) {
2055 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2056 		if (intval < 15)
2057 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2058 				   intval);
2059 	}
2060 	if (WARN_ON(!intval))
2061 		return;
2062 
2063 	/* beacon TSF converted to TU */
2064 	bc_tu = TSF_TO_TU(bc_tsf);
2065 
2066 	/* current TSF converted to TU */
2067 	hw_tsf = ath5k_hw_get_tsf64(ah);
2068 	hw_tu = TSF_TO_TU(hw_tsf);
2069 
2070 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2071 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2072 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2073 	 * configuration we need to make sure it is bigger than that. */
2074 
2075 	if (bc_tsf == -1) {
2076 		/*
2077 		 * no beacons received, called internally.
2078 		 * just need to refresh timers based on HW TSF.
2079 		 */
2080 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2081 	} else if (bc_tsf == 0) {
2082 		/*
2083 		 * no beacon received, probably called by ath5k_reset_tsf().
2084 		 * reset TSF to start with 0.
2085 		 */
2086 		nexttbtt = intval;
2087 		intval |= AR5K_BEACON_RESET_TSF;
2088 	} else if (bc_tsf > hw_tsf) {
2089 		/*
2090 		 * beacon received, SW merge happened but HW TSF not yet updated.
2091 		 * not possible to reconfigure timers yet, but next time we
2092 		 * receive a beacon with the same BSSID, the hardware will
2093 		 * automatically update the TSF and then we need to reconfigure
2094 		 * the timers.
2095 		 */
2096 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097 			"need to wait for HW TSF sync\n");
2098 		return;
2099 	} else {
2100 		/*
2101 		 * most important case for beacon synchronization between STA.
2102 		 *
2103 		 * beacon received and HW TSF has been already updated by HW.
2104 		 * update next TBTT based on the TSF of the beacon, but make
2105 		 * sure it is ahead of our local TSF timer.
2106 		 */
2107 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2108 	}
2109 #undef FUDGE
2110 
2111 	ah->nexttbtt = nexttbtt;
2112 
2113 	intval |= AR5K_BEACON_ENA;
2114 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2115 
2116 	/*
2117 	 * debugging output last in order to preserve the time critical aspect
2118 	 * of this function
2119 	 */
2120 	if (bc_tsf == -1)
2121 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2122 			"reconfigured timers based on HW TSF\n");
2123 	else if (bc_tsf == 0)
2124 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2125 			"reset HW TSF and timers\n");
2126 	else
2127 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2128 			"updated timers based on beacon TSF\n");
2129 
2130 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2131 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2132 			  (unsigned long long) bc_tsf,
2133 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2134 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2135 		intval & AR5K_BEACON_PERIOD,
2136 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2137 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2138 }
2139 
2140 /**
2141  * ath5k_beacon_config - Configure the beacon queues and interrupts
2142  *
2143  * @ah: struct ath5k_hw pointer we are operating on
2144  *
2145  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2146  * interrupts to detect TSF updates only.
2147  */
2148 void
2149 ath5k_beacon_config(struct ath5k_hw *ah)
2150 {
2151 	spin_lock_bh(&ah->block);
2152 	ah->bmisscount = 0;
2153 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2154 
2155 	if (ah->enable_beacon) {
2156 		/*
2157 		 * In IBSS mode we use a self-linked tx descriptor and let the
2158 		 * hardware send the beacons automatically. We have to load it
2159 		 * only once here.
2160 		 * We use the SWBA interrupt only to keep track of the beacon
2161 		 * timers in order to detect automatic TSF updates.
2162 		 */
2163 		ath5k_beaconq_config(ah);
2164 
2165 		ah->imask |= AR5K_INT_SWBA;
2166 
2167 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2168 			if (ath5k_hw_hasveol(ah))
2169 				ath5k_beacon_send(ah);
2170 		} else
2171 			ath5k_beacon_update_timers(ah, -1);
2172 	} else {
2173 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2174 	}
2175 
2176 	ath5k_hw_set_imr(ah, ah->imask);
2177 	mmiowb();
2178 	spin_unlock_bh(&ah->block);
2179 }
2180 
2181 static void ath5k_tasklet_beacon(unsigned long data)
2182 {
2183 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2184 
2185 	/*
2186 	 * Software beacon alert--time to send a beacon.
2187 	 *
2188 	 * In IBSS mode we use this interrupt just to
2189 	 * keep track of the next TBTT (target beacon
2190 	 * transmission time) in order to detect whether
2191 	 * automatic TSF updates happened.
2192 	 */
2193 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2194 		/* XXX: only if VEOL supported */
2195 		u64 tsf = ath5k_hw_get_tsf64(ah);
2196 		ah->nexttbtt += ah->bintval;
2197 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2198 				"SWBA nexttbtt: %x hw_tu: %x "
2199 				"TSF: %llx\n",
2200 				ah->nexttbtt,
2201 				TSF_TO_TU(tsf),
2202 				(unsigned long long) tsf);
2203 	} else {
2204 		spin_lock(&ah->block);
2205 		ath5k_beacon_send(ah);
2206 		spin_unlock(&ah->block);
2207 	}
2208 }
2209 
2210 
2211 /********************\
2212 * Interrupt handling *
2213 \********************/
2214 
2215 static void
2216 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2217 {
2218 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2219 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2220 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2221 
2222 		/* Run ANI only when calibration is not active */
2223 
2224 		ah->ah_cal_next_ani = jiffies +
2225 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2226 		tasklet_schedule(&ah->ani_tasklet);
2227 
2228 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2229 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2230 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2231 
2232 		/* Run calibration only when another calibration
2233 		 * is not running.
2234 		 *
2235 		 * Note: This is for both full/short calibration,
2236 		 * if it's time for a full one, ath5k_calibrate_work will deal
2237 		 * with it. */
2238 
2239 		ah->ah_cal_next_short = jiffies +
2240 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2241 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2242 	}
2243 	/* we could use SWI to generate enough interrupts to meet our
2244 	 * calibration interval requirements, if necessary:
2245 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2246 }
2247 
2248 static void
2249 ath5k_schedule_rx(struct ath5k_hw *ah)
2250 {
2251 	ah->rx_pending = true;
2252 	tasklet_schedule(&ah->rxtq);
2253 }
2254 
2255 static void
2256 ath5k_schedule_tx(struct ath5k_hw *ah)
2257 {
2258 	ah->tx_pending = true;
2259 	tasklet_schedule(&ah->txtq);
2260 }
2261 
2262 static irqreturn_t
2263 ath5k_intr(int irq, void *dev_id)
2264 {
2265 	struct ath5k_hw *ah = dev_id;
2266 	enum ath5k_int status;
2267 	unsigned int counter = 1000;
2268 
2269 
2270 	/*
2271 	 * If hw is not ready (or detached) and we get an
2272 	 * interrupt, or if we have no interrupts pending
2273 	 * (that means it's not for us) skip it.
2274 	 *
2275 	 * NOTE: Group 0/1 PCI interface registers are not
2276 	 * supported on WiSOCs, so we can't check for pending
2277 	 * interrupts (ISR belongs to another register group
2278 	 * so we are ok).
2279 	 */
2280 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2281 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2282 			!ath5k_hw_is_intr_pending(ah))))
2283 		return IRQ_NONE;
2284 
2285 	/** Main loop **/
2286 	do {
2287 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2288 
2289 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2290 				status, ah->imask);
2291 
2292 		/*
2293 		 * Fatal hw error -> Log and reset
2294 		 *
2295 		 * Fatal errors are unrecoverable so we have to
2296 		 * reset the card. These errors include bus and
2297 		 * dma errors.
2298 		 */
2299 		if (unlikely(status & AR5K_INT_FATAL)) {
2300 
2301 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2302 				  "fatal int, resetting\n");
2303 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2304 
2305 		/*
2306 		 * RX Overrun -> Count and reset if needed
2307 		 *
2308 		 * Receive buffers are full. Either the bus is busy or
2309 		 * the CPU is not fast enough to process all received
2310 		 * frames.
2311 		 */
2312 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2313 
2314 			/*
2315 			 * Older chipsets need a reset to come out of this
2316 			 * condition, but we treat it as RX for newer chips.
2317 			 * We don't know exactly which versions need a reset
2318 			 * this guess is copied from the HAL.
2319 			 */
2320 			ah->stats.rxorn_intr++;
2321 
2322 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2323 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2324 					  "rx overrun, resetting\n");
2325 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2326 			} else
2327 				ath5k_schedule_rx(ah);
2328 
2329 		} else {
2330 
2331 			/* Software Beacon Alert -> Schedule beacon tasklet */
2332 			if (status & AR5K_INT_SWBA)
2333 				tasklet_hi_schedule(&ah->beacontq);
2334 
2335 			/*
2336 			 * No more RX descriptors -> Just count
2337 			 *
2338 			 * NB: the hardware should re-read the link when
2339 			 *     RXE bit is written, but it doesn't work at
2340 			 *     least on older hardware revs.
2341 			 */
2342 			if (status & AR5K_INT_RXEOL)
2343 				ah->stats.rxeol_intr++;
2344 
2345 
2346 			/* TX Underrun -> Bump tx trigger level */
2347 			if (status & AR5K_INT_TXURN)
2348 				ath5k_hw_update_tx_triglevel(ah, true);
2349 
2350 			/* RX -> Schedule rx tasklet */
2351 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2352 				ath5k_schedule_rx(ah);
2353 
2354 			/* TX -> Schedule tx tasklet */
2355 			if (status & (AR5K_INT_TXOK
2356 					| AR5K_INT_TXDESC
2357 					| AR5K_INT_TXERR
2358 					| AR5K_INT_TXEOL))
2359 				ath5k_schedule_tx(ah);
2360 
2361 			/* Missed beacon -> TODO
2362 			if (status & AR5K_INT_BMISS)
2363 			*/
2364 
2365 			/* MIB event -> Update counters and notify ANI */
2366 			if (status & AR5K_INT_MIB) {
2367 				ah->stats.mib_intr++;
2368 				ath5k_hw_update_mib_counters(ah);
2369 				ath5k_ani_mib_intr(ah);
2370 			}
2371 
2372 			/* GPIO -> Notify RFKill layer */
2373 			if (status & AR5K_INT_GPIO)
2374 				tasklet_schedule(&ah->rf_kill.toggleq);
2375 
2376 		}
2377 
2378 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2379 			break;
2380 
2381 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2382 
2383 	/*
2384 	 * Until we handle rx/tx interrupts mask them on IMR
2385 	 *
2386 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2387 	 * and unset after we 've handled the interrupts.
2388 	 */
2389 	if (ah->rx_pending || ah->tx_pending)
2390 		ath5k_set_current_imask(ah);
2391 
2392 	if (unlikely(!counter))
2393 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2394 
2395 	/* Fire up calibration poll */
2396 	ath5k_intr_calibration_poll(ah);
2397 
2398 	return IRQ_HANDLED;
2399 }
2400 
2401 /*
2402  * Periodically recalibrate the PHY to account
2403  * for temperature/environment changes.
2404  */
2405 static void
2406 ath5k_calibrate_work(struct work_struct *work)
2407 {
2408 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2409 		calib_work);
2410 
2411 	/* Should we run a full calibration ? */
2412 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2413 
2414 		ah->ah_cal_next_full = jiffies +
2415 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2416 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2417 
2418 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2419 				"running full calibration\n");
2420 
2421 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2422 			/*
2423 			 * Rfgain is out of bounds, reset the chip
2424 			 * to load new gain values.
2425 			 */
2426 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2427 					"got new rfgain, resetting\n");
2428 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2429 		}
2430 	} else
2431 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2432 
2433 
2434 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2435 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2436 		ah->curchan->hw_value);
2437 
2438 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2439 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2440 			ieee80211_frequency_to_channel(
2441 				ah->curchan->center_freq));
2442 
2443 	/* Clear calibration flags */
2444 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2445 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2446 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2447 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2448 }
2449 
2450 
2451 static void
2452 ath5k_tasklet_ani(unsigned long data)
2453 {
2454 	struct ath5k_hw *ah = (void *)data;
2455 
2456 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2457 	ath5k_ani_calibration(ah);
2458 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2459 }
2460 
2461 
2462 static void
2463 ath5k_tx_complete_poll_work(struct work_struct *work)
2464 {
2465 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2466 			tx_complete_work.work);
2467 	struct ath5k_txq *txq;
2468 	int i;
2469 	bool needreset = false;
2470 
2471 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2472 		return;
2473 
2474 	mutex_lock(&ah->lock);
2475 
2476 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2477 		if (ah->txqs[i].setup) {
2478 			txq = &ah->txqs[i];
2479 			spin_lock_bh(&txq->lock);
2480 			if (txq->txq_len > 1) {
2481 				if (txq->txq_poll_mark) {
2482 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2483 						  "TX queue stuck %d\n",
2484 						  txq->qnum);
2485 					needreset = true;
2486 					txq->txq_stuck++;
2487 					spin_unlock_bh(&txq->lock);
2488 					break;
2489 				} else {
2490 					txq->txq_poll_mark = true;
2491 				}
2492 			}
2493 			spin_unlock_bh(&txq->lock);
2494 		}
2495 	}
2496 
2497 	if (needreset) {
2498 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2499 			  "TX queues stuck, resetting\n");
2500 		ath5k_reset(ah, NULL, true);
2501 	}
2502 
2503 	mutex_unlock(&ah->lock);
2504 
2505 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2506 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2507 }
2508 
2509 
2510 /*************************\
2511 * Initialization routines *
2512 \*************************/
2513 
2514 static const struct ieee80211_iface_limit if_limits[] = {
2515 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2516 	{ .max = 4,	.types =
2517 #ifdef CONFIG_MAC80211_MESH
2518 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2519 #endif
2520 				 BIT(NL80211_IFTYPE_AP) },
2521 };
2522 
2523 static const struct ieee80211_iface_combination if_comb = {
2524 	.limits = if_limits,
2525 	.n_limits = ARRAY_SIZE(if_limits),
2526 	.max_interfaces = 2048,
2527 	.num_different_channels = 1,
2528 };
2529 
2530 int
2531 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2532 {
2533 	struct ieee80211_hw *hw = ah->hw;
2534 	struct ath_common *common;
2535 	int ret;
2536 	int csz;
2537 
2538 	/* Initialize driver private data */
2539 	SET_IEEE80211_DEV(hw, ah->dev);
2540 	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2541 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2542 	ieee80211_hw_set(hw, MFP_CAPABLE);
2543 	ieee80211_hw_set(hw, SIGNAL_DBM);
2544 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2545 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2546 
2547 	hw->wiphy->interface_modes =
2548 		BIT(NL80211_IFTYPE_AP) |
2549 		BIT(NL80211_IFTYPE_STATION) |
2550 		BIT(NL80211_IFTYPE_ADHOC) |
2551 		BIT(NL80211_IFTYPE_MESH_POINT);
2552 
2553 	hw->wiphy->iface_combinations = &if_comb;
2554 	hw->wiphy->n_iface_combinations = 1;
2555 
2556 	/* SW support for IBSS_RSN is provided by mac80211 */
2557 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2558 
2559 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2560 
2561 	/* both antennas can be configured as RX or TX */
2562 	hw->wiphy->available_antennas_tx = 0x3;
2563 	hw->wiphy->available_antennas_rx = 0x3;
2564 
2565 	hw->extra_tx_headroom = 2;
2566 
2567 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2568 
2569 	/*
2570 	 * Mark the device as detached to avoid processing
2571 	 * interrupts until setup is complete.
2572 	 */
2573 	__set_bit(ATH_STAT_INVALID, ah->status);
2574 
2575 	ah->opmode = NL80211_IFTYPE_STATION;
2576 	ah->bintval = 1000;
2577 	mutex_init(&ah->lock);
2578 	spin_lock_init(&ah->rxbuflock);
2579 	spin_lock_init(&ah->txbuflock);
2580 	spin_lock_init(&ah->block);
2581 	spin_lock_init(&ah->irqlock);
2582 
2583 	/* Setup interrupt handler */
2584 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2585 	if (ret) {
2586 		ATH5K_ERR(ah, "request_irq failed\n");
2587 		goto err;
2588 	}
2589 
2590 	common = ath5k_hw_common(ah);
2591 	common->ops = &ath5k_common_ops;
2592 	common->bus_ops = bus_ops;
2593 	common->ah = ah;
2594 	common->hw = hw;
2595 	common->priv = ah;
2596 	common->clockrate = 40;
2597 
2598 	/*
2599 	 * Cache line size is used to size and align various
2600 	 * structures used to communicate with the hardware.
2601 	 */
2602 	ath5k_read_cachesize(common, &csz);
2603 	common->cachelsz = csz << 2; /* convert to bytes */
2604 
2605 	spin_lock_init(&common->cc_lock);
2606 
2607 	/* Initialize device */
2608 	ret = ath5k_hw_init(ah);
2609 	if (ret)
2610 		goto err_irq;
2611 
2612 	/* Set up multi-rate retry capabilities */
2613 	if (ah->ah_capabilities.cap_has_mrr_support) {
2614 		hw->max_rates = 4;
2615 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2616 					 AR5K_INIT_RETRY_LONG);
2617 	}
2618 
2619 	hw->vif_data_size = sizeof(struct ath5k_vif);
2620 
2621 	/* Finish private driver data initialization */
2622 	ret = ath5k_init(hw);
2623 	if (ret)
2624 		goto err_ah;
2625 
2626 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2627 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2628 					ah->ah_mac_srev,
2629 					ah->ah_phy_revision);
2630 
2631 	if (!ah->ah_single_chip) {
2632 		/* Single chip radio (!RF5111) */
2633 		if (ah->ah_radio_5ghz_revision &&
2634 			!ah->ah_radio_2ghz_revision) {
2635 			/* No 5GHz support -> report 2GHz radio */
2636 			if (!test_bit(AR5K_MODE_11A,
2637 				ah->ah_capabilities.cap_mode)) {
2638 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2639 					ath5k_chip_name(AR5K_VERSION_RAD,
2640 						ah->ah_radio_5ghz_revision),
2641 						ah->ah_radio_5ghz_revision);
2642 			/* No 2GHz support (5110 and some
2643 			 * 5GHz only cards) -> report 5GHz radio */
2644 			} else if (!test_bit(AR5K_MODE_11B,
2645 				ah->ah_capabilities.cap_mode)) {
2646 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2647 					ath5k_chip_name(AR5K_VERSION_RAD,
2648 						ah->ah_radio_5ghz_revision),
2649 						ah->ah_radio_5ghz_revision);
2650 			/* Multiband radio */
2651 			} else {
2652 				ATH5K_INFO(ah, "RF%s multiband radio found"
2653 					" (0x%x)\n",
2654 					ath5k_chip_name(AR5K_VERSION_RAD,
2655 						ah->ah_radio_5ghz_revision),
2656 						ah->ah_radio_5ghz_revision);
2657 			}
2658 		}
2659 		/* Multi chip radio (RF5111 - RF2111) ->
2660 		 * report both 2GHz/5GHz radios */
2661 		else if (ah->ah_radio_5ghz_revision &&
2662 				ah->ah_radio_2ghz_revision) {
2663 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2664 				ath5k_chip_name(AR5K_VERSION_RAD,
2665 					ah->ah_radio_5ghz_revision),
2666 					ah->ah_radio_5ghz_revision);
2667 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2668 				ath5k_chip_name(AR5K_VERSION_RAD,
2669 					ah->ah_radio_2ghz_revision),
2670 					ah->ah_radio_2ghz_revision);
2671 		}
2672 	}
2673 
2674 	ath5k_debug_init_device(ah);
2675 
2676 	/* ready to process interrupts */
2677 	__clear_bit(ATH_STAT_INVALID, ah->status);
2678 
2679 	return 0;
2680 err_ah:
2681 	ath5k_hw_deinit(ah);
2682 err_irq:
2683 	free_irq(ah->irq, ah);
2684 err:
2685 	return ret;
2686 }
2687 
2688 static int
2689 ath5k_stop_locked(struct ath5k_hw *ah)
2690 {
2691 
2692 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2693 			test_bit(ATH_STAT_INVALID, ah->status));
2694 
2695 	/*
2696 	 * Shutdown the hardware and driver:
2697 	 *    stop output from above
2698 	 *    disable interrupts
2699 	 *    turn off timers
2700 	 *    turn off the radio
2701 	 *    clear transmit machinery
2702 	 *    clear receive machinery
2703 	 *    drain and release tx queues
2704 	 *    reclaim beacon resources
2705 	 *    power down hardware
2706 	 *
2707 	 * Note that some of this work is not possible if the
2708 	 * hardware is gone (invalid).
2709 	 */
2710 	ieee80211_stop_queues(ah->hw);
2711 
2712 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2713 		ath5k_led_off(ah);
2714 		ath5k_hw_set_imr(ah, 0);
2715 		synchronize_irq(ah->irq);
2716 		ath5k_rx_stop(ah);
2717 		ath5k_hw_dma_stop(ah);
2718 		ath5k_drain_tx_buffs(ah);
2719 		ath5k_hw_phy_disable(ah);
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 int ath5k_start(struct ieee80211_hw *hw)
2726 {
2727 	struct ath5k_hw *ah = hw->priv;
2728 	struct ath_common *common = ath5k_hw_common(ah);
2729 	int ret, i;
2730 
2731 	mutex_lock(&ah->lock);
2732 
2733 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2734 
2735 	/*
2736 	 * Stop anything previously setup.  This is safe
2737 	 * no matter this is the first time through or not.
2738 	 */
2739 	ath5k_stop_locked(ah);
2740 
2741 	/*
2742 	 * The basic interface to setting the hardware in a good
2743 	 * state is ``reset''.  On return the hardware is known to
2744 	 * be powered up and with interrupts disabled.  This must
2745 	 * be followed by initialization of the appropriate bits
2746 	 * and then setup of the interrupt mask.
2747 	 */
2748 	ah->curchan = ah->hw->conf.chandef.chan;
2749 	ah->imask = AR5K_INT_RXOK
2750 		| AR5K_INT_RXERR
2751 		| AR5K_INT_RXEOL
2752 		| AR5K_INT_RXORN
2753 		| AR5K_INT_TXDESC
2754 		| AR5K_INT_TXEOL
2755 		| AR5K_INT_FATAL
2756 		| AR5K_INT_GLOBAL
2757 		| AR5K_INT_MIB;
2758 
2759 	ret = ath5k_reset(ah, NULL, false);
2760 	if (ret)
2761 		goto done;
2762 
2763 	if (!ath5k_modparam_no_hw_rfkill_switch)
2764 		ath5k_rfkill_hw_start(ah);
2765 
2766 	/*
2767 	 * Reset the key cache since some parts do not reset the
2768 	 * contents on initial power up or resume from suspend.
2769 	 */
2770 	for (i = 0; i < common->keymax; i++)
2771 		ath_hw_keyreset(common, (u16) i);
2772 
2773 	/* Use higher rates for acks instead of base
2774 	 * rate */
2775 	ah->ah_ack_bitrate_high = true;
2776 
2777 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2778 		ah->bslot[i] = NULL;
2779 
2780 	ret = 0;
2781 done:
2782 	mmiowb();
2783 	mutex_unlock(&ah->lock);
2784 
2785 	set_bit(ATH_STAT_STARTED, ah->status);
2786 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2787 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2788 
2789 	return ret;
2790 }
2791 
2792 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2793 {
2794 	ah->rx_pending = false;
2795 	ah->tx_pending = false;
2796 	tasklet_kill(&ah->rxtq);
2797 	tasklet_kill(&ah->txtq);
2798 	tasklet_kill(&ah->beacontq);
2799 	tasklet_kill(&ah->ani_tasklet);
2800 }
2801 
2802 /*
2803  * Stop the device, grabbing the top-level lock to protect
2804  * against concurrent entry through ath5k_init (which can happen
2805  * if another thread does a system call and the thread doing the
2806  * stop is preempted).
2807  */
2808 void ath5k_stop(struct ieee80211_hw *hw)
2809 {
2810 	struct ath5k_hw *ah = hw->priv;
2811 	int ret;
2812 
2813 	mutex_lock(&ah->lock);
2814 	ret = ath5k_stop_locked(ah);
2815 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2816 		/*
2817 		 * Don't set the card in full sleep mode!
2818 		 *
2819 		 * a) When the device is in this state it must be carefully
2820 		 * woken up or references to registers in the PCI clock
2821 		 * domain may freeze the bus (and system).  This varies
2822 		 * by chip and is mostly an issue with newer parts
2823 		 * (madwifi sources mentioned srev >= 0x78) that go to
2824 		 * sleep more quickly.
2825 		 *
2826 		 * b) On older chips full sleep results a weird behaviour
2827 		 * during wakeup. I tested various cards with srev < 0x78
2828 		 * and they don't wake up after module reload, a second
2829 		 * module reload is needed to bring the card up again.
2830 		 *
2831 		 * Until we figure out what's going on don't enable
2832 		 * full chip reset on any chip (this is what Legacy HAL
2833 		 * and Sam's HAL do anyway). Instead Perform a full reset
2834 		 * on the device (same as initial state after attach) and
2835 		 * leave it idle (keep MAC/BB on warm reset) */
2836 		ret = ath5k_hw_on_hold(ah);
2837 
2838 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2839 				"putting device to sleep\n");
2840 	}
2841 
2842 	mmiowb();
2843 	mutex_unlock(&ah->lock);
2844 
2845 	ath5k_stop_tasklets(ah);
2846 
2847 	clear_bit(ATH_STAT_STARTED, ah->status);
2848 	cancel_delayed_work_sync(&ah->tx_complete_work);
2849 
2850 	if (!ath5k_modparam_no_hw_rfkill_switch)
2851 		ath5k_rfkill_hw_stop(ah);
2852 }
2853 
2854 /*
2855  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2856  * and change to the given channel.
2857  *
2858  * This should be called with ah->lock.
2859  */
2860 static int
2861 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2862 							bool skip_pcu)
2863 {
2864 	struct ath_common *common = ath5k_hw_common(ah);
2865 	int ret, ani_mode;
2866 	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2867 
2868 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2869 
2870 	__set_bit(ATH_STAT_RESET, ah->status);
2871 
2872 	ath5k_hw_set_imr(ah, 0);
2873 	synchronize_irq(ah->irq);
2874 	ath5k_stop_tasklets(ah);
2875 
2876 	/* Save ani mode and disable ANI during
2877 	 * reset. If we don't we might get false
2878 	 * PHY error interrupts. */
2879 	ani_mode = ah->ani_state.ani_mode;
2880 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2881 
2882 	/* We are going to empty hw queues
2883 	 * so we should also free any remaining
2884 	 * tx buffers */
2885 	ath5k_drain_tx_buffs(ah);
2886 
2887 	/* Stop PCU */
2888 	ath5k_hw_stop_rx_pcu(ah);
2889 
2890 	/* Stop DMA
2891 	 *
2892 	 * Note: If DMA didn't stop continue
2893 	 * since only a reset will fix it.
2894 	 */
2895 	ret = ath5k_hw_dma_stop(ah);
2896 
2897 	/* RF Bus grant won't work if we have pending
2898 	 * frames
2899 	 */
2900 	if (ret && fast) {
2901 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2902 			  "DMA didn't stop, falling back to normal reset\n");
2903 		fast = false;
2904 	}
2905 
2906 	if (chan)
2907 		ah->curchan = chan;
2908 
2909 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2910 	if (ret) {
2911 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2912 		goto err;
2913 	}
2914 
2915 	ret = ath5k_rx_start(ah);
2916 	if (ret) {
2917 		ATH5K_ERR(ah, "can't start recv logic\n");
2918 		goto err;
2919 	}
2920 
2921 	ath5k_ani_init(ah, ani_mode);
2922 
2923 	/*
2924 	 * Set calibration intervals
2925 	 *
2926 	 * Note: We don't need to run calibration imediately
2927 	 * since some initial calibration is done on reset
2928 	 * even for fast channel switching. Also on scanning
2929 	 * this will get set again and again and it won't get
2930 	 * executed unless we connect somewhere and spend some
2931 	 * time on the channel (that's what calibration needs
2932 	 * anyway to be accurate).
2933 	 */
2934 	ah->ah_cal_next_full = jiffies +
2935 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2936 	ah->ah_cal_next_ani = jiffies +
2937 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2938 	ah->ah_cal_next_short = jiffies +
2939 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2940 
2941 	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2942 
2943 	/* clear survey data and cycle counters */
2944 	memset(&ah->survey, 0, sizeof(ah->survey));
2945 	spin_lock_bh(&common->cc_lock);
2946 	ath_hw_cycle_counters_update(common);
2947 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2948 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2949 	spin_unlock_bh(&common->cc_lock);
2950 
2951 	/*
2952 	 * Change channels and update the h/w rate map if we're switching;
2953 	 * e.g. 11a to 11b/g.
2954 	 *
2955 	 * We may be doing a reset in response to an ioctl that changes the
2956 	 * channel so update any state that might change as a result.
2957 	 *
2958 	 * XXX needed?
2959 	 */
2960 /*	ath5k_chan_change(ah, c); */
2961 
2962 	__clear_bit(ATH_STAT_RESET, ah->status);
2963 
2964 	ath5k_beacon_config(ah);
2965 	/* intrs are enabled by ath5k_beacon_config */
2966 
2967 	ieee80211_wake_queues(ah->hw);
2968 
2969 	return 0;
2970 err:
2971 	return ret;
2972 }
2973 
2974 static void ath5k_reset_work(struct work_struct *work)
2975 {
2976 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2977 		reset_work);
2978 
2979 	mutex_lock(&ah->lock);
2980 	ath5k_reset(ah, NULL, true);
2981 	mutex_unlock(&ah->lock);
2982 }
2983 
2984 static int
2985 ath5k_init(struct ieee80211_hw *hw)
2986 {
2987 
2988 	struct ath5k_hw *ah = hw->priv;
2989 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2990 	struct ath5k_txq *txq;
2991 	u8 mac[ETH_ALEN] = {};
2992 	int ret;
2993 
2994 
2995 	/*
2996 	 * Collect the channel list.  The 802.11 layer
2997 	 * is responsible for filtering this list based
2998 	 * on settings like the phy mode and regulatory
2999 	 * domain restrictions.
3000 	 */
3001 	ret = ath5k_setup_bands(hw);
3002 	if (ret) {
3003 		ATH5K_ERR(ah, "can't get channels\n");
3004 		goto err;
3005 	}
3006 
3007 	/*
3008 	 * Allocate tx+rx descriptors and populate the lists.
3009 	 */
3010 	ret = ath5k_desc_alloc(ah);
3011 	if (ret) {
3012 		ATH5K_ERR(ah, "can't allocate descriptors\n");
3013 		goto err;
3014 	}
3015 
3016 	/*
3017 	 * Allocate hardware transmit queues: one queue for
3018 	 * beacon frames and one data queue for each QoS
3019 	 * priority.  Note that hw functions handle resetting
3020 	 * these queues at the needed time.
3021 	 */
3022 	ret = ath5k_beaconq_setup(ah);
3023 	if (ret < 0) {
3024 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3025 		goto err_desc;
3026 	}
3027 	ah->bhalq = ret;
3028 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3029 	if (IS_ERR(ah->cabq)) {
3030 		ATH5K_ERR(ah, "can't setup cab queue\n");
3031 		ret = PTR_ERR(ah->cabq);
3032 		goto err_bhal;
3033 	}
3034 
3035 	/* 5211 and 5212 usually support 10 queues but we better rely on the
3036 	 * capability information */
3037 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3038 		/* This order matches mac80211's queue priority, so we can
3039 		* directly use the mac80211 queue number without any mapping */
3040 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3041 		if (IS_ERR(txq)) {
3042 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3043 			ret = PTR_ERR(txq);
3044 			goto err_queues;
3045 		}
3046 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3047 		if (IS_ERR(txq)) {
3048 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3049 			ret = PTR_ERR(txq);
3050 			goto err_queues;
3051 		}
3052 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3053 		if (IS_ERR(txq)) {
3054 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3055 			ret = PTR_ERR(txq);
3056 			goto err_queues;
3057 		}
3058 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3059 		if (IS_ERR(txq)) {
3060 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3061 			ret = PTR_ERR(txq);
3062 			goto err_queues;
3063 		}
3064 		hw->queues = 4;
3065 	} else {
3066 		/* older hardware (5210) can only support one data queue */
3067 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3068 		if (IS_ERR(txq)) {
3069 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3070 			ret = PTR_ERR(txq);
3071 			goto err_queues;
3072 		}
3073 		hw->queues = 1;
3074 	}
3075 
3076 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3077 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3078 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3079 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3080 
3081 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3082 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3083 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3084 
3085 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3086 	if (ret) {
3087 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3088 		goto err_queues;
3089 	}
3090 
3091 	SET_IEEE80211_PERM_ADDR(hw, mac);
3092 	/* All MAC address bits matter for ACKs */
3093 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3094 
3095 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3096 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3097 	if (ret) {
3098 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3099 		goto err_queues;
3100 	}
3101 
3102 	ret = ieee80211_register_hw(hw);
3103 	if (ret) {
3104 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3105 		goto err_queues;
3106 	}
3107 
3108 	if (!ath_is_world_regd(regulatory))
3109 		regulatory_hint(hw->wiphy, regulatory->alpha2);
3110 
3111 	ath5k_init_leds(ah);
3112 
3113 	ath5k_sysfs_register(ah);
3114 
3115 	return 0;
3116 err_queues:
3117 	ath5k_txq_release(ah);
3118 err_bhal:
3119 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3120 err_desc:
3121 	ath5k_desc_free(ah);
3122 err:
3123 	return ret;
3124 }
3125 
3126 void
3127 ath5k_deinit_ah(struct ath5k_hw *ah)
3128 {
3129 	struct ieee80211_hw *hw = ah->hw;
3130 
3131 	/*
3132 	 * NB: the order of these is important:
3133 	 * o call the 802.11 layer before detaching ath5k_hw to
3134 	 *   ensure callbacks into the driver to delete global
3135 	 *   key cache entries can be handled
3136 	 * o reclaim the tx queue data structures after calling
3137 	 *   the 802.11 layer as we'll get called back to reclaim
3138 	 *   node state and potentially want to use them
3139 	 * o to cleanup the tx queues the hal is called, so detach
3140 	 *   it last
3141 	 * XXX: ??? detach ath5k_hw ???
3142 	 * Other than that, it's straightforward...
3143 	 */
3144 	ieee80211_unregister_hw(hw);
3145 	ath5k_desc_free(ah);
3146 	ath5k_txq_release(ah);
3147 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3148 	ath5k_unregister_leds(ah);
3149 
3150 	ath5k_sysfs_unregister(ah);
3151 	/*
3152 	 * NB: can't reclaim these until after ieee80211_ifdetach
3153 	 * returns because we'll get called back to reclaim node
3154 	 * state and potentially want to use them.
3155 	 */
3156 	ath5k_hw_deinit(ah);
3157 	free_irq(ah->irq, ah);
3158 }
3159 
3160 bool
3161 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3162 {
3163 	struct ath5k_vif_iter_data iter_data;
3164 	iter_data.hw_macaddr = NULL;
3165 	iter_data.any_assoc = false;
3166 	iter_data.need_set_hw_addr = false;
3167 	iter_data.found_active = true;
3168 
3169 	ieee80211_iterate_active_interfaces_atomic(
3170 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3171 		ath5k_vif_iter, &iter_data);
3172 	return iter_data.any_assoc;
3173 }
3174 
3175 void
3176 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3177 {
3178 	struct ath5k_hw *ah = hw->priv;
3179 	u32 rfilt;
3180 	rfilt = ath5k_hw_get_rx_filter(ah);
3181 	if (enable)
3182 		rfilt |= AR5K_RX_FILTER_BEACON;
3183 	else
3184 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3185 	ath5k_hw_set_rx_filter(ah, rfilt);
3186 	ah->filter_flags = rfilt;
3187 }
3188 
3189 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3190 		   const char *fmt, ...)
3191 {
3192 	struct va_format vaf;
3193 	va_list args;
3194 
3195 	va_start(args, fmt);
3196 
3197 	vaf.fmt = fmt;
3198 	vaf.va = &args;
3199 
3200 	if (ah && ah->hw)
3201 		printk("%s" pr_fmt("%s: %pV"),
3202 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3203 	else
3204 		printk("%s" pr_fmt("%pV"), level, &vaf);
3205 
3206 	va_end(args);
3207 }
3208