xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision cdfce539)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72 
73 bool ath5k_modparam_nohwcrypt;
74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76 
77 static bool modparam_fastchanswitch;
78 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
79 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
80 
81 static bool ath5k_modparam_no_hw_rfkill_switch;
82 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
83 								bool, S_IRUGO);
84 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
85 
86 
87 /* Module info */
88 MODULE_AUTHOR("Jiri Slaby");
89 MODULE_AUTHOR("Nick Kossifidis");
90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
92 MODULE_LICENSE("Dual BSD/GPL");
93 
94 static int ath5k_init(struct ieee80211_hw *hw);
95 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
96 								bool skip_pcu);
97 
98 /* Known SREVs */
99 static const struct ath5k_srev_name srev_names[] = {
100 #ifdef CONFIG_ATHEROS_AR231X
101 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
103 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
104 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
106 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
108 #else
109 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
110 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
111 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
112 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
113 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
114 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
115 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
116 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
117 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
118 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
119 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
120 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
121 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
122 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
123 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
124 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
125 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
126 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
127 #endif
128 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
129 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
130 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
131 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
132 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
133 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
134 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
135 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
136 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
137 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
138 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
139 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
140 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
141 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
142 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
143 #ifdef CONFIG_ATHEROS_AR231X
144 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
145 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
146 #endif
147 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
148 };
149 
150 static const struct ieee80211_rate ath5k_rates[] = {
151 	{ .bitrate = 10,
152 	  .hw_value = ATH5K_RATE_CODE_1M, },
153 	{ .bitrate = 20,
154 	  .hw_value = ATH5K_RATE_CODE_2M,
155 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
156 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 	{ .bitrate = 55,
158 	  .hw_value = ATH5K_RATE_CODE_5_5M,
159 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
160 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 	{ .bitrate = 110,
162 	  .hw_value = ATH5K_RATE_CODE_11M,
163 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
164 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 	{ .bitrate = 60,
166 	  .hw_value = ATH5K_RATE_CODE_6M,
167 	  .flags = 0 },
168 	{ .bitrate = 90,
169 	  .hw_value = ATH5K_RATE_CODE_9M,
170 	  .flags = 0 },
171 	{ .bitrate = 120,
172 	  .hw_value = ATH5K_RATE_CODE_12M,
173 	  .flags = 0 },
174 	{ .bitrate = 180,
175 	  .hw_value = ATH5K_RATE_CODE_18M,
176 	  .flags = 0 },
177 	{ .bitrate = 240,
178 	  .hw_value = ATH5K_RATE_CODE_24M,
179 	  .flags = 0 },
180 	{ .bitrate = 360,
181 	  .hw_value = ATH5K_RATE_CODE_36M,
182 	  .flags = 0 },
183 	{ .bitrate = 480,
184 	  .hw_value = ATH5K_RATE_CODE_48M,
185 	  .flags = 0 },
186 	{ .bitrate = 540,
187 	  .hw_value = ATH5K_RATE_CODE_54M,
188 	  .flags = 0 },
189 };
190 
191 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
192 {
193 	u64 tsf = ath5k_hw_get_tsf64(ah);
194 
195 	if ((tsf & 0x7fff) < rstamp)
196 		tsf -= 0x8000;
197 
198 	return (tsf & ~0x7fff) | rstamp;
199 }
200 
201 const char *
202 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
203 {
204 	const char *name = "xxxxx";
205 	unsigned int i;
206 
207 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
208 		if (srev_names[i].sr_type != type)
209 			continue;
210 
211 		if ((val & 0xf0) == srev_names[i].sr_val)
212 			name = srev_names[i].sr_name;
213 
214 		if ((val & 0xff) == srev_names[i].sr_val) {
215 			name = srev_names[i].sr_name;
216 			break;
217 		}
218 	}
219 
220 	return name;
221 }
222 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
223 {
224 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
225 	return ath5k_hw_reg_read(ah, reg_offset);
226 }
227 
228 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
229 {
230 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
231 	ath5k_hw_reg_write(ah, val, reg_offset);
232 }
233 
234 static const struct ath_ops ath5k_common_ops = {
235 	.read = ath5k_ioread32,
236 	.write = ath5k_iowrite32,
237 };
238 
239 /***********************\
240 * Driver Initialization *
241 \***********************/
242 
243 static void ath5k_reg_notifier(struct wiphy *wiphy,
244 			       struct regulatory_request *request)
245 {
246 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
247 	struct ath5k_hw *ah = hw->priv;
248 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
249 
250 	ath_reg_notifier_apply(wiphy, request, regulatory);
251 }
252 
253 /********************\
254 * Channel/mode setup *
255 \********************/
256 
257 /*
258  * Returns true for the channel numbers used.
259  */
260 #ifdef CONFIG_ATH5K_TEST_CHANNELS
261 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
262 {
263 	return true;
264 }
265 
266 #else
267 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
268 {
269 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
270 		return true;
271 
272 	return	/* UNII 1,2 */
273 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
274 		/* midband */
275 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
276 		/* UNII-3 */
277 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
278 		/* 802.11j 5.030-5.080 GHz (20MHz) */
279 		(chan == 8 || chan == 12 || chan == 16) ||
280 		/* 802.11j 4.9GHz (20MHz) */
281 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
282 }
283 #endif
284 
285 static unsigned int
286 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
287 		unsigned int mode, unsigned int max)
288 {
289 	unsigned int count, size, freq, ch;
290 	enum ieee80211_band band;
291 
292 	switch (mode) {
293 	case AR5K_MODE_11A:
294 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
295 		size = 220;
296 		band = IEEE80211_BAND_5GHZ;
297 		break;
298 	case AR5K_MODE_11B:
299 	case AR5K_MODE_11G:
300 		size = 26;
301 		band = IEEE80211_BAND_2GHZ;
302 		break;
303 	default:
304 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
305 		return 0;
306 	}
307 
308 	count = 0;
309 	for (ch = 1; ch <= size && count < max; ch++) {
310 		freq = ieee80211_channel_to_frequency(ch, band);
311 
312 		if (freq == 0) /* mapping failed - not a standard channel */
313 			continue;
314 
315 		/* Write channel info, needed for ath5k_channel_ok() */
316 		channels[count].center_freq = freq;
317 		channels[count].band = band;
318 		channels[count].hw_value = mode;
319 
320 		/* Check if channel is supported by the chipset */
321 		if (!ath5k_channel_ok(ah, &channels[count]))
322 			continue;
323 
324 		if (!ath5k_is_standard_channel(ch, band))
325 			continue;
326 
327 		count++;
328 	}
329 
330 	return count;
331 }
332 
333 static void
334 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
335 {
336 	u8 i;
337 
338 	for (i = 0; i < AR5K_MAX_RATES; i++)
339 		ah->rate_idx[b->band][i] = -1;
340 
341 	for (i = 0; i < b->n_bitrates; i++) {
342 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
343 		if (b->bitrates[i].hw_value_short)
344 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
345 	}
346 }
347 
348 static int
349 ath5k_setup_bands(struct ieee80211_hw *hw)
350 {
351 	struct ath5k_hw *ah = hw->priv;
352 	struct ieee80211_supported_band *sband;
353 	int max_c, count_c = 0;
354 	int i;
355 
356 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
357 	max_c = ARRAY_SIZE(ah->channels);
358 
359 	/* 2GHz band */
360 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
361 	sband->band = IEEE80211_BAND_2GHZ;
362 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
363 
364 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
365 		/* G mode */
366 		memcpy(sband->bitrates, &ath5k_rates[0],
367 		       sizeof(struct ieee80211_rate) * 12);
368 		sband->n_bitrates = 12;
369 
370 		sband->channels = ah->channels;
371 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
372 					AR5K_MODE_11G, max_c);
373 
374 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
375 		count_c = sband->n_channels;
376 		max_c -= count_c;
377 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
378 		/* B mode */
379 		memcpy(sband->bitrates, &ath5k_rates[0],
380 		       sizeof(struct ieee80211_rate) * 4);
381 		sband->n_bitrates = 4;
382 
383 		/* 5211 only supports B rates and uses 4bit rate codes
384 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
385 		 * fix them up here:
386 		 */
387 		if (ah->ah_version == AR5K_AR5211) {
388 			for (i = 0; i < 4; i++) {
389 				sband->bitrates[i].hw_value =
390 					sband->bitrates[i].hw_value & 0xF;
391 				sband->bitrates[i].hw_value_short =
392 					sband->bitrates[i].hw_value_short & 0xF;
393 			}
394 		}
395 
396 		sband->channels = ah->channels;
397 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
398 					AR5K_MODE_11B, max_c);
399 
400 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
401 		count_c = sband->n_channels;
402 		max_c -= count_c;
403 	}
404 	ath5k_setup_rate_idx(ah, sband);
405 
406 	/* 5GHz band, A mode */
407 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
408 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
409 		sband->band = IEEE80211_BAND_5GHZ;
410 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
411 
412 		memcpy(sband->bitrates, &ath5k_rates[4],
413 		       sizeof(struct ieee80211_rate) * 8);
414 		sband->n_bitrates = 8;
415 
416 		sband->channels = &ah->channels[count_c];
417 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
418 					AR5K_MODE_11A, max_c);
419 
420 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
421 	}
422 	ath5k_setup_rate_idx(ah, sband);
423 
424 	ath5k_debug_dump_bands(ah);
425 
426 	return 0;
427 }
428 
429 /*
430  * Set/change channels. We always reset the chip.
431  * To accomplish this we must first cleanup any pending DMA,
432  * then restart stuff after a la  ath5k_init.
433  *
434  * Called with ah->lock.
435  */
436 int
437 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
438 {
439 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
440 		  "channel set, resetting (%u -> %u MHz)\n",
441 		  ah->curchan->center_freq, chan->center_freq);
442 
443 	/*
444 	 * To switch channels clear any pending DMA operations;
445 	 * wait long enough for the RX fifo to drain, reset the
446 	 * hardware at the new frequency, and then re-enable
447 	 * the relevant bits of the h/w.
448 	 */
449 	return ath5k_reset(ah, chan, true);
450 }
451 
452 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
453 {
454 	struct ath5k_vif_iter_data *iter_data = data;
455 	int i;
456 	struct ath5k_vif *avf = (void *)vif->drv_priv;
457 
458 	if (iter_data->hw_macaddr)
459 		for (i = 0; i < ETH_ALEN; i++)
460 			iter_data->mask[i] &=
461 				~(iter_data->hw_macaddr[i] ^ mac[i]);
462 
463 	if (!iter_data->found_active) {
464 		iter_data->found_active = true;
465 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
466 	}
467 
468 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
469 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
470 			iter_data->need_set_hw_addr = false;
471 
472 	if (!iter_data->any_assoc) {
473 		if (avf->assoc)
474 			iter_data->any_assoc = true;
475 	}
476 
477 	/* Calculate combined mode - when APs are active, operate in AP mode.
478 	 * Otherwise use the mode of the new interface. This can currently
479 	 * only deal with combinations of APs and STAs. Only one ad-hoc
480 	 * interfaces is allowed.
481 	 */
482 	if (avf->opmode == NL80211_IFTYPE_AP)
483 		iter_data->opmode = NL80211_IFTYPE_AP;
484 	else {
485 		if (avf->opmode == NL80211_IFTYPE_STATION)
486 			iter_data->n_stas++;
487 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
488 			iter_data->opmode = avf->opmode;
489 	}
490 }
491 
492 void
493 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
494 				   struct ieee80211_vif *vif)
495 {
496 	struct ath_common *common = ath5k_hw_common(ah);
497 	struct ath5k_vif_iter_data iter_data;
498 	u32 rfilt;
499 
500 	/*
501 	 * Use the hardware MAC address as reference, the hardware uses it
502 	 * together with the BSSID mask when matching addresses.
503 	 */
504 	iter_data.hw_macaddr = common->macaddr;
505 	memset(&iter_data.mask, 0xff, ETH_ALEN);
506 	iter_data.found_active = false;
507 	iter_data.need_set_hw_addr = true;
508 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
509 	iter_data.n_stas = 0;
510 
511 	if (vif)
512 		ath5k_vif_iter(&iter_data, vif->addr, vif);
513 
514 	/* Get list of all active MAC addresses */
515 	ieee80211_iterate_active_interfaces_atomic(
516 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
517 		ath5k_vif_iter, &iter_data);
518 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
519 
520 	ah->opmode = iter_data.opmode;
521 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
522 		/* Nothing active, default to station mode */
523 		ah->opmode = NL80211_IFTYPE_STATION;
524 
525 	ath5k_hw_set_opmode(ah, ah->opmode);
526 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
527 		  ah->opmode, ath_opmode_to_string(ah->opmode));
528 
529 	if (iter_data.need_set_hw_addr && iter_data.found_active)
530 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
531 
532 	if (ath5k_hw_hasbssidmask(ah))
533 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
534 
535 	/* Set up RX Filter */
536 	if (iter_data.n_stas > 1) {
537 		/* If you have multiple STA interfaces connected to
538 		 * different APs, ARPs are not received (most of the time?)
539 		 * Enabling PROMISC appears to fix that problem.
540 		 */
541 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
542 	}
543 
544 	rfilt = ah->filter_flags;
545 	ath5k_hw_set_rx_filter(ah, rfilt);
546 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
547 }
548 
549 static inline int
550 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
551 {
552 	int rix;
553 
554 	/* return base rate on errors */
555 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
556 			"hw_rix out of bounds: %x\n", hw_rix))
557 		return 0;
558 
559 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
560 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
561 		rix = 0;
562 
563 	return rix;
564 }
565 
566 /***************\
567 * Buffers setup *
568 \***************/
569 
570 static
571 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
572 {
573 	struct ath_common *common = ath5k_hw_common(ah);
574 	struct sk_buff *skb;
575 
576 	/*
577 	 * Allocate buffer with headroom_needed space for the
578 	 * fake physical layer header at the start.
579 	 */
580 	skb = ath_rxbuf_alloc(common,
581 			      common->rx_bufsize,
582 			      GFP_ATOMIC);
583 
584 	if (!skb) {
585 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
586 				common->rx_bufsize);
587 		return NULL;
588 	}
589 
590 	*skb_addr = dma_map_single(ah->dev,
591 				   skb->data, common->rx_bufsize,
592 				   DMA_FROM_DEVICE);
593 
594 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
595 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
596 		dev_kfree_skb(skb);
597 		return NULL;
598 	}
599 	return skb;
600 }
601 
602 static int
603 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
604 {
605 	struct sk_buff *skb = bf->skb;
606 	struct ath5k_desc *ds;
607 	int ret;
608 
609 	if (!skb) {
610 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
611 		if (!skb)
612 			return -ENOMEM;
613 		bf->skb = skb;
614 	}
615 
616 	/*
617 	 * Setup descriptors.  For receive we always terminate
618 	 * the descriptor list with a self-linked entry so we'll
619 	 * not get overrun under high load (as can happen with a
620 	 * 5212 when ANI processing enables PHY error frames).
621 	 *
622 	 * To ensure the last descriptor is self-linked we create
623 	 * each descriptor as self-linked and add it to the end.  As
624 	 * each additional descriptor is added the previous self-linked
625 	 * entry is "fixed" naturally.  This should be safe even
626 	 * if DMA is happening.  When processing RX interrupts we
627 	 * never remove/process the last, self-linked, entry on the
628 	 * descriptor list.  This ensures the hardware always has
629 	 * someplace to write a new frame.
630 	 */
631 	ds = bf->desc;
632 	ds->ds_link = bf->daddr;	/* link to self */
633 	ds->ds_data = bf->skbaddr;
634 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
635 	if (ret) {
636 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
637 		return ret;
638 	}
639 
640 	if (ah->rxlink != NULL)
641 		*ah->rxlink = bf->daddr;
642 	ah->rxlink = &ds->ds_link;
643 	return 0;
644 }
645 
646 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
647 {
648 	struct ieee80211_hdr *hdr;
649 	enum ath5k_pkt_type htype;
650 	__le16 fc;
651 
652 	hdr = (struct ieee80211_hdr *)skb->data;
653 	fc = hdr->frame_control;
654 
655 	if (ieee80211_is_beacon(fc))
656 		htype = AR5K_PKT_TYPE_BEACON;
657 	else if (ieee80211_is_probe_resp(fc))
658 		htype = AR5K_PKT_TYPE_PROBE_RESP;
659 	else if (ieee80211_is_atim(fc))
660 		htype = AR5K_PKT_TYPE_ATIM;
661 	else if (ieee80211_is_pspoll(fc))
662 		htype = AR5K_PKT_TYPE_PSPOLL;
663 	else
664 		htype = AR5K_PKT_TYPE_NORMAL;
665 
666 	return htype;
667 }
668 
669 static int
670 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
671 		  struct ath5k_txq *txq, int padsize)
672 {
673 	struct ath5k_desc *ds = bf->desc;
674 	struct sk_buff *skb = bf->skb;
675 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
676 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
677 	struct ieee80211_rate *rate;
678 	unsigned int mrr_rate[3], mrr_tries[3];
679 	int i, ret;
680 	u16 hw_rate;
681 	u16 cts_rate = 0;
682 	u16 duration = 0;
683 	u8 rc_flags;
684 
685 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
686 
687 	/* XXX endianness */
688 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
689 			DMA_TO_DEVICE);
690 
691 	rate = ieee80211_get_tx_rate(ah->hw, info);
692 	if (!rate) {
693 		ret = -EINVAL;
694 		goto err_unmap;
695 	}
696 
697 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
698 		flags |= AR5K_TXDESC_NOACK;
699 
700 	rc_flags = info->control.rates[0].flags;
701 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
702 		rate->hw_value_short : rate->hw_value;
703 
704 	pktlen = skb->len;
705 
706 	/* FIXME: If we are in g mode and rate is a CCK rate
707 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
708 	 * from tx power (value is in dB units already) */
709 	if (info->control.hw_key) {
710 		keyidx = info->control.hw_key->hw_key_idx;
711 		pktlen += info->control.hw_key->icv_len;
712 	}
713 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
714 		flags |= AR5K_TXDESC_RTSENA;
715 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
716 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
717 			info->control.vif, pktlen, info));
718 	}
719 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
720 		flags |= AR5K_TXDESC_CTSENA;
721 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
722 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
723 			info->control.vif, pktlen, info));
724 	}
725 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
726 		ieee80211_get_hdrlen_from_skb(skb), padsize,
727 		get_hw_packet_type(skb),
728 		(ah->ah_txpower.txp_requested * 2),
729 		hw_rate,
730 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
731 		cts_rate, duration);
732 	if (ret)
733 		goto err_unmap;
734 
735 	/* Set up MRR descriptor */
736 	if (ah->ah_capabilities.cap_has_mrr_support) {
737 		memset(mrr_rate, 0, sizeof(mrr_rate));
738 		memset(mrr_tries, 0, sizeof(mrr_tries));
739 		for (i = 0; i < 3; i++) {
740 			rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
741 			if (!rate)
742 				break;
743 
744 			mrr_rate[i] = rate->hw_value;
745 			mrr_tries[i] = info->control.rates[i + 1].count;
746 		}
747 
748 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
749 			mrr_rate[0], mrr_tries[0],
750 			mrr_rate[1], mrr_tries[1],
751 			mrr_rate[2], mrr_tries[2]);
752 	}
753 
754 	ds->ds_link = 0;
755 	ds->ds_data = bf->skbaddr;
756 
757 	spin_lock_bh(&txq->lock);
758 	list_add_tail(&bf->list, &txq->q);
759 	txq->txq_len++;
760 	if (txq->link == NULL) /* is this first packet? */
761 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
762 	else /* no, so only link it */
763 		*txq->link = bf->daddr;
764 
765 	txq->link = &ds->ds_link;
766 	ath5k_hw_start_tx_dma(ah, txq->qnum);
767 	mmiowb();
768 	spin_unlock_bh(&txq->lock);
769 
770 	return 0;
771 err_unmap:
772 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
773 	return ret;
774 }
775 
776 /*******************\
777 * Descriptors setup *
778 \*******************/
779 
780 static int
781 ath5k_desc_alloc(struct ath5k_hw *ah)
782 {
783 	struct ath5k_desc *ds;
784 	struct ath5k_buf *bf;
785 	dma_addr_t da;
786 	unsigned int i;
787 	int ret;
788 
789 	/* allocate descriptors */
790 	ah->desc_len = sizeof(struct ath5k_desc) *
791 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
792 
793 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
794 				&ah->desc_daddr, GFP_KERNEL);
795 	if (ah->desc == NULL) {
796 		ATH5K_ERR(ah, "can't allocate descriptors\n");
797 		ret = -ENOMEM;
798 		goto err;
799 	}
800 	ds = ah->desc;
801 	da = ah->desc_daddr;
802 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
803 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
804 
805 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
806 			sizeof(struct ath5k_buf), GFP_KERNEL);
807 	if (bf == NULL) {
808 		ATH5K_ERR(ah, "can't allocate bufptr\n");
809 		ret = -ENOMEM;
810 		goto err_free;
811 	}
812 	ah->bufptr = bf;
813 
814 	INIT_LIST_HEAD(&ah->rxbuf);
815 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
816 		bf->desc = ds;
817 		bf->daddr = da;
818 		list_add_tail(&bf->list, &ah->rxbuf);
819 	}
820 
821 	INIT_LIST_HEAD(&ah->txbuf);
822 	ah->txbuf_len = ATH_TXBUF;
823 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
824 		bf->desc = ds;
825 		bf->daddr = da;
826 		list_add_tail(&bf->list, &ah->txbuf);
827 	}
828 
829 	/* beacon buffers */
830 	INIT_LIST_HEAD(&ah->bcbuf);
831 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
832 		bf->desc = ds;
833 		bf->daddr = da;
834 		list_add_tail(&bf->list, &ah->bcbuf);
835 	}
836 
837 	return 0;
838 err_free:
839 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
840 err:
841 	ah->desc = NULL;
842 	return ret;
843 }
844 
845 void
846 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
847 {
848 	BUG_ON(!bf);
849 	if (!bf->skb)
850 		return;
851 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
852 			DMA_TO_DEVICE);
853 	ieee80211_free_txskb(ah->hw, bf->skb);
854 	bf->skb = NULL;
855 	bf->skbaddr = 0;
856 	bf->desc->ds_data = 0;
857 }
858 
859 void
860 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
861 {
862 	struct ath_common *common = ath5k_hw_common(ah);
863 
864 	BUG_ON(!bf);
865 	if (!bf->skb)
866 		return;
867 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
868 			DMA_FROM_DEVICE);
869 	dev_kfree_skb_any(bf->skb);
870 	bf->skb = NULL;
871 	bf->skbaddr = 0;
872 	bf->desc->ds_data = 0;
873 }
874 
875 static void
876 ath5k_desc_free(struct ath5k_hw *ah)
877 {
878 	struct ath5k_buf *bf;
879 
880 	list_for_each_entry(bf, &ah->txbuf, list)
881 		ath5k_txbuf_free_skb(ah, bf);
882 	list_for_each_entry(bf, &ah->rxbuf, list)
883 		ath5k_rxbuf_free_skb(ah, bf);
884 	list_for_each_entry(bf, &ah->bcbuf, list)
885 		ath5k_txbuf_free_skb(ah, bf);
886 
887 	/* Free memory associated with all descriptors */
888 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
889 	ah->desc = NULL;
890 	ah->desc_daddr = 0;
891 
892 	kfree(ah->bufptr);
893 	ah->bufptr = NULL;
894 }
895 
896 
897 /**************\
898 * Queues setup *
899 \**************/
900 
901 static struct ath5k_txq *
902 ath5k_txq_setup(struct ath5k_hw *ah,
903 		int qtype, int subtype)
904 {
905 	struct ath5k_txq *txq;
906 	struct ath5k_txq_info qi = {
907 		.tqi_subtype = subtype,
908 		/* XXX: default values not correct for B and XR channels,
909 		 * but who cares? */
910 		.tqi_aifs = AR5K_TUNE_AIFS,
911 		.tqi_cw_min = AR5K_TUNE_CWMIN,
912 		.tqi_cw_max = AR5K_TUNE_CWMAX
913 	};
914 	int qnum;
915 
916 	/*
917 	 * Enable interrupts only for EOL and DESC conditions.
918 	 * We mark tx descriptors to receive a DESC interrupt
919 	 * when a tx queue gets deep; otherwise we wait for the
920 	 * EOL to reap descriptors.  Note that this is done to
921 	 * reduce interrupt load and this only defers reaping
922 	 * descriptors, never transmitting frames.  Aside from
923 	 * reducing interrupts this also permits more concurrency.
924 	 * The only potential downside is if the tx queue backs
925 	 * up in which case the top half of the kernel may backup
926 	 * due to a lack of tx descriptors.
927 	 */
928 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
929 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
930 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
931 	if (qnum < 0) {
932 		/*
933 		 * NB: don't print a message, this happens
934 		 * normally on parts with too few tx queues
935 		 */
936 		return ERR_PTR(qnum);
937 	}
938 	txq = &ah->txqs[qnum];
939 	if (!txq->setup) {
940 		txq->qnum = qnum;
941 		txq->link = NULL;
942 		INIT_LIST_HEAD(&txq->q);
943 		spin_lock_init(&txq->lock);
944 		txq->setup = true;
945 		txq->txq_len = 0;
946 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
947 		txq->txq_poll_mark = false;
948 		txq->txq_stuck = 0;
949 	}
950 	return &ah->txqs[qnum];
951 }
952 
953 static int
954 ath5k_beaconq_setup(struct ath5k_hw *ah)
955 {
956 	struct ath5k_txq_info qi = {
957 		/* XXX: default values not correct for B and XR channels,
958 		 * but who cares? */
959 		.tqi_aifs = AR5K_TUNE_AIFS,
960 		.tqi_cw_min = AR5K_TUNE_CWMIN,
961 		.tqi_cw_max = AR5K_TUNE_CWMAX,
962 		/* NB: for dynamic turbo, don't enable any other interrupts */
963 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
964 	};
965 
966 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
967 }
968 
969 static int
970 ath5k_beaconq_config(struct ath5k_hw *ah)
971 {
972 	struct ath5k_txq_info qi;
973 	int ret;
974 
975 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
976 	if (ret)
977 		goto err;
978 
979 	if (ah->opmode == NL80211_IFTYPE_AP ||
980 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
981 		/*
982 		 * Always burst out beacon and CAB traffic
983 		 * (aifs = cwmin = cwmax = 0)
984 		 */
985 		qi.tqi_aifs = 0;
986 		qi.tqi_cw_min = 0;
987 		qi.tqi_cw_max = 0;
988 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
989 		/*
990 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
991 		 */
992 		qi.tqi_aifs = 0;
993 		qi.tqi_cw_min = 0;
994 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
995 	}
996 
997 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
998 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
999 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1000 
1001 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1002 	if (ret) {
1003 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1004 			"hardware queue!\n", __func__);
1005 		goto err;
1006 	}
1007 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1008 	if (ret)
1009 		goto err;
1010 
1011 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1012 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1013 	if (ret)
1014 		goto err;
1015 
1016 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1017 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1018 	if (ret)
1019 		goto err;
1020 
1021 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1022 err:
1023 	return ret;
1024 }
1025 
1026 /**
1027  * ath5k_drain_tx_buffs - Empty tx buffers
1028  *
1029  * @ah The &struct ath5k_hw
1030  *
1031  * Empty tx buffers from all queues in preparation
1032  * of a reset or during shutdown.
1033  *
1034  * NB:	this assumes output has been stopped and
1035  *	we do not need to block ath5k_tx_tasklet
1036  */
1037 static void
1038 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1039 {
1040 	struct ath5k_txq *txq;
1041 	struct ath5k_buf *bf, *bf0;
1042 	int i;
1043 
1044 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1045 		if (ah->txqs[i].setup) {
1046 			txq = &ah->txqs[i];
1047 			spin_lock_bh(&txq->lock);
1048 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1049 				ath5k_debug_printtxbuf(ah, bf);
1050 
1051 				ath5k_txbuf_free_skb(ah, bf);
1052 
1053 				spin_lock(&ah->txbuflock);
1054 				list_move_tail(&bf->list, &ah->txbuf);
1055 				ah->txbuf_len++;
1056 				txq->txq_len--;
1057 				spin_unlock(&ah->txbuflock);
1058 			}
1059 			txq->link = NULL;
1060 			txq->txq_poll_mark = false;
1061 			spin_unlock_bh(&txq->lock);
1062 		}
1063 	}
1064 }
1065 
1066 static void
1067 ath5k_txq_release(struct ath5k_hw *ah)
1068 {
1069 	struct ath5k_txq *txq = ah->txqs;
1070 	unsigned int i;
1071 
1072 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1073 		if (txq->setup) {
1074 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1075 			txq->setup = false;
1076 		}
1077 }
1078 
1079 
1080 /*************\
1081 * RX Handling *
1082 \*************/
1083 
1084 /*
1085  * Enable the receive h/w following a reset.
1086  */
1087 static int
1088 ath5k_rx_start(struct ath5k_hw *ah)
1089 {
1090 	struct ath_common *common = ath5k_hw_common(ah);
1091 	struct ath5k_buf *bf;
1092 	int ret;
1093 
1094 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1095 
1096 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1097 		  common->cachelsz, common->rx_bufsize);
1098 
1099 	spin_lock_bh(&ah->rxbuflock);
1100 	ah->rxlink = NULL;
1101 	list_for_each_entry(bf, &ah->rxbuf, list) {
1102 		ret = ath5k_rxbuf_setup(ah, bf);
1103 		if (ret != 0) {
1104 			spin_unlock_bh(&ah->rxbuflock);
1105 			goto err;
1106 		}
1107 	}
1108 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1109 	ath5k_hw_set_rxdp(ah, bf->daddr);
1110 	spin_unlock_bh(&ah->rxbuflock);
1111 
1112 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1113 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1114 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1115 
1116 	return 0;
1117 err:
1118 	return ret;
1119 }
1120 
1121 /*
1122  * Disable the receive logic on PCU (DRU)
1123  * In preparation for a shutdown.
1124  *
1125  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1126  * does.
1127  */
1128 static void
1129 ath5k_rx_stop(struct ath5k_hw *ah)
1130 {
1131 
1132 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1133 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1134 
1135 	ath5k_debug_printrxbuffs(ah);
1136 }
1137 
1138 static unsigned int
1139 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1140 		   struct ath5k_rx_status *rs)
1141 {
1142 	struct ath_common *common = ath5k_hw_common(ah);
1143 	struct ieee80211_hdr *hdr = (void *)skb->data;
1144 	unsigned int keyix, hlen;
1145 
1146 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1147 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1148 		return RX_FLAG_DECRYPTED;
1149 
1150 	/* Apparently when a default key is used to decrypt the packet
1151 	   the hw does not set the index used to decrypt.  In such cases
1152 	   get the index from the packet. */
1153 	hlen = ieee80211_hdrlen(hdr->frame_control);
1154 	if (ieee80211_has_protected(hdr->frame_control) &&
1155 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1156 	    skb->len >= hlen + 4) {
1157 		keyix = skb->data[hlen + 3] >> 6;
1158 
1159 		if (test_bit(keyix, common->keymap))
1160 			return RX_FLAG_DECRYPTED;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 
1167 static void
1168 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1169 		     struct ieee80211_rx_status *rxs)
1170 {
1171 	struct ath_common *common = ath5k_hw_common(ah);
1172 	u64 tsf, bc_tstamp;
1173 	u32 hw_tu;
1174 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1175 
1176 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1177 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1178 	    ether_addr_equal(mgmt->bssid, common->curbssid)) {
1179 		/*
1180 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1181 		 * have updated the local TSF. We have to work around various
1182 		 * hardware bugs, though...
1183 		 */
1184 		tsf = ath5k_hw_get_tsf64(ah);
1185 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1186 		hw_tu = TSF_TO_TU(tsf);
1187 
1188 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1189 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1190 			(unsigned long long)bc_tstamp,
1191 			(unsigned long long)rxs->mactime,
1192 			(unsigned long long)(rxs->mactime - bc_tstamp),
1193 			(unsigned long long)tsf);
1194 
1195 		/*
1196 		 * Sometimes the HW will give us a wrong tstamp in the rx
1197 		 * status, causing the timestamp extension to go wrong.
1198 		 * (This seems to happen especially with beacon frames bigger
1199 		 * than 78 byte (incl. FCS))
1200 		 * But we know that the receive timestamp must be later than the
1201 		 * timestamp of the beacon since HW must have synced to that.
1202 		 *
1203 		 * NOTE: here we assume mactime to be after the frame was
1204 		 * received, not like mac80211 which defines it at the start.
1205 		 */
1206 		if (bc_tstamp > rxs->mactime) {
1207 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1208 				"fixing mactime from %llx to %llx\n",
1209 				(unsigned long long)rxs->mactime,
1210 				(unsigned long long)tsf);
1211 			rxs->mactime = tsf;
1212 		}
1213 
1214 		/*
1215 		 * Local TSF might have moved higher than our beacon timers,
1216 		 * in that case we have to update them to continue sending
1217 		 * beacons. This also takes care of synchronizing beacon sending
1218 		 * times with other stations.
1219 		 */
1220 		if (hw_tu >= ah->nexttbtt)
1221 			ath5k_beacon_update_timers(ah, bc_tstamp);
1222 
1223 		/* Check if the beacon timers are still correct, because a TSF
1224 		 * update might have created a window between them - for a
1225 		 * longer description see the comment of this function: */
1226 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1227 			ath5k_beacon_update_timers(ah, bc_tstamp);
1228 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1229 				"fixed beacon timers after beacon receive\n");
1230 		}
1231 	}
1232 }
1233 
1234 static void
1235 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1236 {
1237 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1238 	struct ath_common *common = ath5k_hw_common(ah);
1239 
1240 	/* only beacons from our BSSID */
1241 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1242 	    !ether_addr_equal(mgmt->bssid, common->curbssid))
1243 		return;
1244 
1245 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1246 
1247 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1248 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1249 }
1250 
1251 /*
1252  * Compute padding position. skb must contain an IEEE 802.11 frame
1253  */
1254 static int ath5k_common_padpos(struct sk_buff *skb)
1255 {
1256 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1257 	__le16 frame_control = hdr->frame_control;
1258 	int padpos = 24;
1259 
1260 	if (ieee80211_has_a4(frame_control))
1261 		padpos += ETH_ALEN;
1262 
1263 	if (ieee80211_is_data_qos(frame_control))
1264 		padpos += IEEE80211_QOS_CTL_LEN;
1265 
1266 	return padpos;
1267 }
1268 
1269 /*
1270  * This function expects an 802.11 frame and returns the number of
1271  * bytes added, or -1 if we don't have enough header room.
1272  */
1273 static int ath5k_add_padding(struct sk_buff *skb)
1274 {
1275 	int padpos = ath5k_common_padpos(skb);
1276 	int padsize = padpos & 3;
1277 
1278 	if (padsize && skb->len > padpos) {
1279 
1280 		if (skb_headroom(skb) < padsize)
1281 			return -1;
1282 
1283 		skb_push(skb, padsize);
1284 		memmove(skb->data, skb->data + padsize, padpos);
1285 		return padsize;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * The MAC header is padded to have 32-bit boundary if the
1293  * packet payload is non-zero. The general calculation for
1294  * padsize would take into account odd header lengths:
1295  * padsize = 4 - (hdrlen & 3); however, since only
1296  * even-length headers are used, padding can only be 0 or 2
1297  * bytes and we can optimize this a bit.  We must not try to
1298  * remove padding from short control frames that do not have a
1299  * payload.
1300  *
1301  * This function expects an 802.11 frame and returns the number of
1302  * bytes removed.
1303  */
1304 static int ath5k_remove_padding(struct sk_buff *skb)
1305 {
1306 	int padpos = ath5k_common_padpos(skb);
1307 	int padsize = padpos & 3;
1308 
1309 	if (padsize && skb->len >= padpos + padsize) {
1310 		memmove(skb->data + padsize, skb->data, padpos);
1311 		skb_pull(skb, padsize);
1312 		return padsize;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void
1319 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1320 		    struct ath5k_rx_status *rs)
1321 {
1322 	struct ieee80211_rx_status *rxs;
1323 
1324 	ath5k_remove_padding(skb);
1325 
1326 	rxs = IEEE80211_SKB_RXCB(skb);
1327 
1328 	rxs->flag = 0;
1329 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1330 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1331 
1332 	/*
1333 	 * always extend the mac timestamp, since this information is
1334 	 * also needed for proper IBSS merging.
1335 	 *
1336 	 * XXX: it might be too late to do it here, since rs_tstamp is
1337 	 * 15bit only. that means TSF extension has to be done within
1338 	 * 32768usec (about 32ms). it might be necessary to move this to
1339 	 * the interrupt handler, like it is done in madwifi.
1340 	 */
1341 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1342 	rxs->flag |= RX_FLAG_MACTIME_END;
1343 
1344 	rxs->freq = ah->curchan->center_freq;
1345 	rxs->band = ah->curchan->band;
1346 
1347 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1348 
1349 	rxs->antenna = rs->rs_antenna;
1350 
1351 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1352 		ah->stats.antenna_rx[rs->rs_antenna]++;
1353 	else
1354 		ah->stats.antenna_rx[0]++; /* invalid */
1355 
1356 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1357 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1358 
1359 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1360 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1361 		rxs->flag |= RX_FLAG_SHORTPRE;
1362 
1363 	trace_ath5k_rx(ah, skb);
1364 
1365 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1366 
1367 	/* check beacons in IBSS mode */
1368 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1369 		ath5k_check_ibss_tsf(ah, skb, rxs);
1370 
1371 	ieee80211_rx(ah->hw, skb);
1372 }
1373 
1374 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1375  *
1376  * Check if we want to further process this frame or not. Also update
1377  * statistics. Return true if we want this frame, false if not.
1378  */
1379 static bool
1380 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1381 {
1382 	ah->stats.rx_all_count++;
1383 	ah->stats.rx_bytes_count += rs->rs_datalen;
1384 
1385 	if (unlikely(rs->rs_status)) {
1386 		if (rs->rs_status & AR5K_RXERR_CRC)
1387 			ah->stats.rxerr_crc++;
1388 		if (rs->rs_status & AR5K_RXERR_FIFO)
1389 			ah->stats.rxerr_fifo++;
1390 		if (rs->rs_status & AR5K_RXERR_PHY) {
1391 			ah->stats.rxerr_phy++;
1392 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1393 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1394 			return false;
1395 		}
1396 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1397 			/*
1398 			 * Decrypt error.  If the error occurred
1399 			 * because there was no hardware key, then
1400 			 * let the frame through so the upper layers
1401 			 * can process it.  This is necessary for 5210
1402 			 * parts which have no way to setup a ``clear''
1403 			 * key cache entry.
1404 			 *
1405 			 * XXX do key cache faulting
1406 			 */
1407 			ah->stats.rxerr_decrypt++;
1408 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1409 			    !(rs->rs_status & AR5K_RXERR_CRC))
1410 				return true;
1411 		}
1412 		if (rs->rs_status & AR5K_RXERR_MIC) {
1413 			ah->stats.rxerr_mic++;
1414 			return true;
1415 		}
1416 
1417 		/* reject any frames with non-crypto errors */
1418 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1419 			return false;
1420 	}
1421 
1422 	if (unlikely(rs->rs_more)) {
1423 		ah->stats.rxerr_jumbo++;
1424 		return false;
1425 	}
1426 	return true;
1427 }
1428 
1429 static void
1430 ath5k_set_current_imask(struct ath5k_hw *ah)
1431 {
1432 	enum ath5k_int imask;
1433 	unsigned long flags;
1434 
1435 	spin_lock_irqsave(&ah->irqlock, flags);
1436 	imask = ah->imask;
1437 	if (ah->rx_pending)
1438 		imask &= ~AR5K_INT_RX_ALL;
1439 	if (ah->tx_pending)
1440 		imask &= ~AR5K_INT_TX_ALL;
1441 	ath5k_hw_set_imr(ah, imask);
1442 	spin_unlock_irqrestore(&ah->irqlock, flags);
1443 }
1444 
1445 static void
1446 ath5k_tasklet_rx(unsigned long data)
1447 {
1448 	struct ath5k_rx_status rs = {};
1449 	struct sk_buff *skb, *next_skb;
1450 	dma_addr_t next_skb_addr;
1451 	struct ath5k_hw *ah = (void *)data;
1452 	struct ath_common *common = ath5k_hw_common(ah);
1453 	struct ath5k_buf *bf;
1454 	struct ath5k_desc *ds;
1455 	int ret;
1456 
1457 	spin_lock(&ah->rxbuflock);
1458 	if (list_empty(&ah->rxbuf)) {
1459 		ATH5K_WARN(ah, "empty rx buf pool\n");
1460 		goto unlock;
1461 	}
1462 	do {
1463 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1464 		BUG_ON(bf->skb == NULL);
1465 		skb = bf->skb;
1466 		ds = bf->desc;
1467 
1468 		/* bail if HW is still using self-linked descriptor */
1469 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1470 			break;
1471 
1472 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1473 		if (unlikely(ret == -EINPROGRESS))
1474 			break;
1475 		else if (unlikely(ret)) {
1476 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1477 			ah->stats.rxerr_proc++;
1478 			break;
1479 		}
1480 
1481 		if (ath5k_receive_frame_ok(ah, &rs)) {
1482 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1483 
1484 			/*
1485 			 * If we can't replace bf->skb with a new skb under
1486 			 * memory pressure, just skip this packet
1487 			 */
1488 			if (!next_skb)
1489 				goto next;
1490 
1491 			dma_unmap_single(ah->dev, bf->skbaddr,
1492 					 common->rx_bufsize,
1493 					 DMA_FROM_DEVICE);
1494 
1495 			skb_put(skb, rs.rs_datalen);
1496 
1497 			ath5k_receive_frame(ah, skb, &rs);
1498 
1499 			bf->skb = next_skb;
1500 			bf->skbaddr = next_skb_addr;
1501 		}
1502 next:
1503 		list_move_tail(&bf->list, &ah->rxbuf);
1504 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1505 unlock:
1506 	spin_unlock(&ah->rxbuflock);
1507 	ah->rx_pending = false;
1508 	ath5k_set_current_imask(ah);
1509 }
1510 
1511 
1512 /*************\
1513 * TX Handling *
1514 \*************/
1515 
1516 void
1517 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1518 	       struct ath5k_txq *txq)
1519 {
1520 	struct ath5k_hw *ah = hw->priv;
1521 	struct ath5k_buf *bf;
1522 	unsigned long flags;
1523 	int padsize;
1524 
1525 	trace_ath5k_tx(ah, skb, txq);
1526 
1527 	/*
1528 	 * The hardware expects the header padded to 4 byte boundaries.
1529 	 * If this is not the case, we add the padding after the header.
1530 	 */
1531 	padsize = ath5k_add_padding(skb);
1532 	if (padsize < 0) {
1533 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1534 			  " headroom to pad");
1535 		goto drop_packet;
1536 	}
1537 
1538 	if (txq->txq_len >= txq->txq_max &&
1539 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1540 		ieee80211_stop_queue(hw, txq->qnum);
1541 
1542 	spin_lock_irqsave(&ah->txbuflock, flags);
1543 	if (list_empty(&ah->txbuf)) {
1544 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1545 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1546 		ieee80211_stop_queues(hw);
1547 		goto drop_packet;
1548 	}
1549 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1550 	list_del(&bf->list);
1551 	ah->txbuf_len--;
1552 	if (list_empty(&ah->txbuf))
1553 		ieee80211_stop_queues(hw);
1554 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1555 
1556 	bf->skb = skb;
1557 
1558 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1559 		bf->skb = NULL;
1560 		spin_lock_irqsave(&ah->txbuflock, flags);
1561 		list_add_tail(&bf->list, &ah->txbuf);
1562 		ah->txbuf_len++;
1563 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1564 		goto drop_packet;
1565 	}
1566 	return;
1567 
1568 drop_packet:
1569 	ieee80211_free_txskb(hw, skb);
1570 }
1571 
1572 static void
1573 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1574 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1575 {
1576 	struct ieee80211_tx_info *info;
1577 	u8 tries[3];
1578 	int i;
1579 
1580 	ah->stats.tx_all_count++;
1581 	ah->stats.tx_bytes_count += skb->len;
1582 	info = IEEE80211_SKB_CB(skb);
1583 
1584 	tries[0] = info->status.rates[0].count;
1585 	tries[1] = info->status.rates[1].count;
1586 	tries[2] = info->status.rates[2].count;
1587 
1588 	ieee80211_tx_info_clear_status(info);
1589 
1590 	for (i = 0; i < ts->ts_final_idx; i++) {
1591 		struct ieee80211_tx_rate *r =
1592 			&info->status.rates[i];
1593 
1594 		r->count = tries[i];
1595 	}
1596 
1597 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1598 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1599 
1600 	if (unlikely(ts->ts_status)) {
1601 		ah->stats.ack_fail++;
1602 		if (ts->ts_status & AR5K_TXERR_FILT) {
1603 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1604 			ah->stats.txerr_filt++;
1605 		}
1606 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1607 			ah->stats.txerr_retry++;
1608 		if (ts->ts_status & AR5K_TXERR_FIFO)
1609 			ah->stats.txerr_fifo++;
1610 	} else {
1611 		info->flags |= IEEE80211_TX_STAT_ACK;
1612 		info->status.ack_signal = ts->ts_rssi;
1613 
1614 		/* count the successful attempt as well */
1615 		info->status.rates[ts->ts_final_idx].count++;
1616 	}
1617 
1618 	/*
1619 	* Remove MAC header padding before giving the frame
1620 	* back to mac80211.
1621 	*/
1622 	ath5k_remove_padding(skb);
1623 
1624 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1625 		ah->stats.antenna_tx[ts->ts_antenna]++;
1626 	else
1627 		ah->stats.antenna_tx[0]++; /* invalid */
1628 
1629 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1630 	ieee80211_tx_status(ah->hw, skb);
1631 }
1632 
1633 static void
1634 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1635 {
1636 	struct ath5k_tx_status ts = {};
1637 	struct ath5k_buf *bf, *bf0;
1638 	struct ath5k_desc *ds;
1639 	struct sk_buff *skb;
1640 	int ret;
1641 
1642 	spin_lock(&txq->lock);
1643 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1644 
1645 		txq->txq_poll_mark = false;
1646 
1647 		/* skb might already have been processed last time. */
1648 		if (bf->skb != NULL) {
1649 			ds = bf->desc;
1650 
1651 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1652 			if (unlikely(ret == -EINPROGRESS))
1653 				break;
1654 			else if (unlikely(ret)) {
1655 				ATH5K_ERR(ah,
1656 					"error %d while processing "
1657 					"queue %u\n", ret, txq->qnum);
1658 				break;
1659 			}
1660 
1661 			skb = bf->skb;
1662 			bf->skb = NULL;
1663 
1664 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1665 					DMA_TO_DEVICE);
1666 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1667 		}
1668 
1669 		/*
1670 		 * It's possible that the hardware can say the buffer is
1671 		 * completed when it hasn't yet loaded the ds_link from
1672 		 * host memory and moved on.
1673 		 * Always keep the last descriptor to avoid HW races...
1674 		 */
1675 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1676 			spin_lock(&ah->txbuflock);
1677 			list_move_tail(&bf->list, &ah->txbuf);
1678 			ah->txbuf_len++;
1679 			txq->txq_len--;
1680 			spin_unlock(&ah->txbuflock);
1681 		}
1682 	}
1683 	spin_unlock(&txq->lock);
1684 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1685 		ieee80211_wake_queue(ah->hw, txq->qnum);
1686 }
1687 
1688 static void
1689 ath5k_tasklet_tx(unsigned long data)
1690 {
1691 	int i;
1692 	struct ath5k_hw *ah = (void *)data;
1693 
1694 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1695 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1696 			ath5k_tx_processq(ah, &ah->txqs[i]);
1697 
1698 	ah->tx_pending = false;
1699 	ath5k_set_current_imask(ah);
1700 }
1701 
1702 
1703 /*****************\
1704 * Beacon handling *
1705 \*****************/
1706 
1707 /*
1708  * Setup the beacon frame for transmit.
1709  */
1710 static int
1711 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1712 {
1713 	struct sk_buff *skb = bf->skb;
1714 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1715 	struct ath5k_desc *ds;
1716 	int ret = 0;
1717 	u8 antenna;
1718 	u32 flags;
1719 	const int padsize = 0;
1720 
1721 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1722 			DMA_TO_DEVICE);
1723 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1724 			"skbaddr %llx\n", skb, skb->data, skb->len,
1725 			(unsigned long long)bf->skbaddr);
1726 
1727 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1728 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1729 		dev_kfree_skb_any(skb);
1730 		bf->skb = NULL;
1731 		return -EIO;
1732 	}
1733 
1734 	ds = bf->desc;
1735 	antenna = ah->ah_tx_ant;
1736 
1737 	flags = AR5K_TXDESC_NOACK;
1738 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1739 		ds->ds_link = bf->daddr;	/* self-linked */
1740 		flags |= AR5K_TXDESC_VEOL;
1741 	} else
1742 		ds->ds_link = 0;
1743 
1744 	/*
1745 	 * If we use multiple antennas on AP and use
1746 	 * the Sectored AP scenario, switch antenna every
1747 	 * 4 beacons to make sure everybody hears our AP.
1748 	 * When a client tries to associate, hw will keep
1749 	 * track of the tx antenna to be used for this client
1750 	 * automatically, based on ACKed packets.
1751 	 *
1752 	 * Note: AP still listens and transmits RTS on the
1753 	 * default antenna which is supposed to be an omni.
1754 	 *
1755 	 * Note2: On sectored scenarios it's possible to have
1756 	 * multiple antennas (1 omni -- the default -- and 14
1757 	 * sectors), so if we choose to actually support this
1758 	 * mode, we need to allow the user to set how many antennas
1759 	 * we have and tweak the code below to send beacons
1760 	 * on all of them.
1761 	 */
1762 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1763 		antenna = ah->bsent & 4 ? 2 : 1;
1764 
1765 
1766 	/* FIXME: If we are in g mode and rate is a CCK rate
1767 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1768 	 * from tx power (value is in dB units already) */
1769 	ds->ds_data = bf->skbaddr;
1770 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1771 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1772 			AR5K_PKT_TYPE_BEACON,
1773 			(ah->ah_txpower.txp_requested * 2),
1774 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1775 			1, AR5K_TXKEYIX_INVALID,
1776 			antenna, flags, 0, 0);
1777 	if (ret)
1778 		goto err_unmap;
1779 
1780 	return 0;
1781 err_unmap:
1782 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1783 	return ret;
1784 }
1785 
1786 /*
1787  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1788  * this is called only once at config_bss time, for AP we do it every
1789  * SWBA interrupt so that the TIM will reflect buffered frames.
1790  *
1791  * Called with the beacon lock.
1792  */
1793 int
1794 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1795 {
1796 	int ret;
1797 	struct ath5k_hw *ah = hw->priv;
1798 	struct ath5k_vif *avf;
1799 	struct sk_buff *skb;
1800 
1801 	if (WARN_ON(!vif)) {
1802 		ret = -EINVAL;
1803 		goto out;
1804 	}
1805 
1806 	skb = ieee80211_beacon_get(hw, vif);
1807 
1808 	if (!skb) {
1809 		ret = -ENOMEM;
1810 		goto out;
1811 	}
1812 
1813 	avf = (void *)vif->drv_priv;
1814 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1815 	avf->bbuf->skb = skb;
1816 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1817 out:
1818 	return ret;
1819 }
1820 
1821 /*
1822  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1823  * frame contents are done as needed and the slot time is
1824  * also adjusted based on current state.
1825  *
1826  * This is called from software irq context (beacontq tasklets)
1827  * or user context from ath5k_beacon_config.
1828  */
1829 static void
1830 ath5k_beacon_send(struct ath5k_hw *ah)
1831 {
1832 	struct ieee80211_vif *vif;
1833 	struct ath5k_vif *avf;
1834 	struct ath5k_buf *bf;
1835 	struct sk_buff *skb;
1836 	int err;
1837 
1838 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1839 
1840 	/*
1841 	 * Check if the previous beacon has gone out.  If
1842 	 * not, don't don't try to post another: skip this
1843 	 * period and wait for the next.  Missed beacons
1844 	 * indicate a problem and should not occur.  If we
1845 	 * miss too many consecutive beacons reset the device.
1846 	 */
1847 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1848 		ah->bmisscount++;
1849 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1850 			"missed %u consecutive beacons\n", ah->bmisscount);
1851 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1852 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1853 				"stuck beacon time (%u missed)\n",
1854 				ah->bmisscount);
1855 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1856 				  "stuck beacon, resetting\n");
1857 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1858 		}
1859 		return;
1860 	}
1861 	if (unlikely(ah->bmisscount != 0)) {
1862 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1863 			"resume beacon xmit after %u misses\n",
1864 			ah->bmisscount);
1865 		ah->bmisscount = 0;
1866 	}
1867 
1868 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1869 			ah->num_mesh_vifs > 1) ||
1870 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1871 		u64 tsf = ath5k_hw_get_tsf64(ah);
1872 		u32 tsftu = TSF_TO_TU(tsf);
1873 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1874 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1875 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1876 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1877 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1878 	} else /* only one interface */
1879 		vif = ah->bslot[0];
1880 
1881 	if (!vif)
1882 		return;
1883 
1884 	avf = (void *)vif->drv_priv;
1885 	bf = avf->bbuf;
1886 
1887 	/*
1888 	 * Stop any current dma and put the new frame on the queue.
1889 	 * This should never fail since we check above that no frames
1890 	 * are still pending on the queue.
1891 	 */
1892 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1893 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1894 		/* NB: hw still stops DMA, so proceed */
1895 	}
1896 
1897 	/* refresh the beacon for AP or MESH mode */
1898 	if (ah->opmode == NL80211_IFTYPE_AP ||
1899 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1900 		err = ath5k_beacon_update(ah->hw, vif);
1901 		if (err)
1902 			return;
1903 	}
1904 
1905 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1906 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1907 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1908 		return;
1909 	}
1910 
1911 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1912 
1913 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1914 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1915 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1916 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1917 
1918 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1919 	while (skb) {
1920 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1921 
1922 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1923 			break;
1924 
1925 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1926 	}
1927 
1928 	ah->bsent++;
1929 }
1930 
1931 /**
1932  * ath5k_beacon_update_timers - update beacon timers
1933  *
1934  * @ah: struct ath5k_hw pointer we are operating on
1935  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1936  *          beacon timer update based on the current HW TSF.
1937  *
1938  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1939  * of a received beacon or the current local hardware TSF and write it to the
1940  * beacon timer registers.
1941  *
1942  * This is called in a variety of situations, e.g. when a beacon is received,
1943  * when a TSF update has been detected, but also when an new IBSS is created or
1944  * when we otherwise know we have to update the timers, but we keep it in this
1945  * function to have it all together in one place.
1946  */
1947 void
1948 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1949 {
1950 	u32 nexttbtt, intval, hw_tu, bc_tu;
1951 	u64 hw_tsf;
1952 
1953 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1954 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1955 		+ ah->num_mesh_vifs > 1) {
1956 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1957 		if (intval < 15)
1958 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1959 				   intval);
1960 	}
1961 	if (WARN_ON(!intval))
1962 		return;
1963 
1964 	/* beacon TSF converted to TU */
1965 	bc_tu = TSF_TO_TU(bc_tsf);
1966 
1967 	/* current TSF converted to TU */
1968 	hw_tsf = ath5k_hw_get_tsf64(ah);
1969 	hw_tu = TSF_TO_TU(hw_tsf);
1970 
1971 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1972 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1973 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1974 	 * configuration we need to make sure it is bigger than that. */
1975 
1976 	if (bc_tsf == -1) {
1977 		/*
1978 		 * no beacons received, called internally.
1979 		 * just need to refresh timers based on HW TSF.
1980 		 */
1981 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1982 	} else if (bc_tsf == 0) {
1983 		/*
1984 		 * no beacon received, probably called by ath5k_reset_tsf().
1985 		 * reset TSF to start with 0.
1986 		 */
1987 		nexttbtt = intval;
1988 		intval |= AR5K_BEACON_RESET_TSF;
1989 	} else if (bc_tsf > hw_tsf) {
1990 		/*
1991 		 * beacon received, SW merge happened but HW TSF not yet updated.
1992 		 * not possible to reconfigure timers yet, but next time we
1993 		 * receive a beacon with the same BSSID, the hardware will
1994 		 * automatically update the TSF and then we need to reconfigure
1995 		 * the timers.
1996 		 */
1997 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1998 			"need to wait for HW TSF sync\n");
1999 		return;
2000 	} else {
2001 		/*
2002 		 * most important case for beacon synchronization between STA.
2003 		 *
2004 		 * beacon received and HW TSF has been already updated by HW.
2005 		 * update next TBTT based on the TSF of the beacon, but make
2006 		 * sure it is ahead of our local TSF timer.
2007 		 */
2008 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2009 	}
2010 #undef FUDGE
2011 
2012 	ah->nexttbtt = nexttbtt;
2013 
2014 	intval |= AR5K_BEACON_ENA;
2015 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2016 
2017 	/*
2018 	 * debugging output last in order to preserve the time critical aspect
2019 	 * of this function
2020 	 */
2021 	if (bc_tsf == -1)
2022 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2023 			"reconfigured timers based on HW TSF\n");
2024 	else if (bc_tsf == 0)
2025 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2026 			"reset HW TSF and timers\n");
2027 	else
2028 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2029 			"updated timers based on beacon TSF\n");
2030 
2031 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2032 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2033 			  (unsigned long long) bc_tsf,
2034 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2035 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2036 		intval & AR5K_BEACON_PERIOD,
2037 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2038 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2039 }
2040 
2041 /**
2042  * ath5k_beacon_config - Configure the beacon queues and interrupts
2043  *
2044  * @ah: struct ath5k_hw pointer we are operating on
2045  *
2046  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2047  * interrupts to detect TSF updates only.
2048  */
2049 void
2050 ath5k_beacon_config(struct ath5k_hw *ah)
2051 {
2052 	spin_lock_bh(&ah->block);
2053 	ah->bmisscount = 0;
2054 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2055 
2056 	if (ah->enable_beacon) {
2057 		/*
2058 		 * In IBSS mode we use a self-linked tx descriptor and let the
2059 		 * hardware send the beacons automatically. We have to load it
2060 		 * only once here.
2061 		 * We use the SWBA interrupt only to keep track of the beacon
2062 		 * timers in order to detect automatic TSF updates.
2063 		 */
2064 		ath5k_beaconq_config(ah);
2065 
2066 		ah->imask |= AR5K_INT_SWBA;
2067 
2068 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2069 			if (ath5k_hw_hasveol(ah))
2070 				ath5k_beacon_send(ah);
2071 		} else
2072 			ath5k_beacon_update_timers(ah, -1);
2073 	} else {
2074 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2075 	}
2076 
2077 	ath5k_hw_set_imr(ah, ah->imask);
2078 	mmiowb();
2079 	spin_unlock_bh(&ah->block);
2080 }
2081 
2082 static void ath5k_tasklet_beacon(unsigned long data)
2083 {
2084 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2085 
2086 	/*
2087 	 * Software beacon alert--time to send a beacon.
2088 	 *
2089 	 * In IBSS mode we use this interrupt just to
2090 	 * keep track of the next TBTT (target beacon
2091 	 * transmission time) in order to detect whether
2092 	 * automatic TSF updates happened.
2093 	 */
2094 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2095 		/* XXX: only if VEOL supported */
2096 		u64 tsf = ath5k_hw_get_tsf64(ah);
2097 		ah->nexttbtt += ah->bintval;
2098 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2099 				"SWBA nexttbtt: %x hw_tu: %x "
2100 				"TSF: %llx\n",
2101 				ah->nexttbtt,
2102 				TSF_TO_TU(tsf),
2103 				(unsigned long long) tsf);
2104 	} else {
2105 		spin_lock(&ah->block);
2106 		ath5k_beacon_send(ah);
2107 		spin_unlock(&ah->block);
2108 	}
2109 }
2110 
2111 
2112 /********************\
2113 * Interrupt handling *
2114 \********************/
2115 
2116 static void
2117 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2118 {
2119 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2120 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2121 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2122 
2123 		/* Run ANI only when calibration is not active */
2124 
2125 		ah->ah_cal_next_ani = jiffies +
2126 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2127 		tasklet_schedule(&ah->ani_tasklet);
2128 
2129 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2130 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2131 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2132 
2133 		/* Run calibration only when another calibration
2134 		 * is not running.
2135 		 *
2136 		 * Note: This is for both full/short calibration,
2137 		 * if it's time for a full one, ath5k_calibrate_work will deal
2138 		 * with it. */
2139 
2140 		ah->ah_cal_next_short = jiffies +
2141 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2142 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2143 	}
2144 	/* we could use SWI to generate enough interrupts to meet our
2145 	 * calibration interval requirements, if necessary:
2146 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2147 }
2148 
2149 static void
2150 ath5k_schedule_rx(struct ath5k_hw *ah)
2151 {
2152 	ah->rx_pending = true;
2153 	tasklet_schedule(&ah->rxtq);
2154 }
2155 
2156 static void
2157 ath5k_schedule_tx(struct ath5k_hw *ah)
2158 {
2159 	ah->tx_pending = true;
2160 	tasklet_schedule(&ah->txtq);
2161 }
2162 
2163 static irqreturn_t
2164 ath5k_intr(int irq, void *dev_id)
2165 {
2166 	struct ath5k_hw *ah = dev_id;
2167 	enum ath5k_int status;
2168 	unsigned int counter = 1000;
2169 
2170 
2171 	/*
2172 	 * If hw is not ready (or detached) and we get an
2173 	 * interrupt, or if we have no interrupts pending
2174 	 * (that means it's not for us) skip it.
2175 	 *
2176 	 * NOTE: Group 0/1 PCI interface registers are not
2177 	 * supported on WiSOCs, so we can't check for pending
2178 	 * interrupts (ISR belongs to another register group
2179 	 * so we are ok).
2180 	 */
2181 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2182 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2183 			!ath5k_hw_is_intr_pending(ah))))
2184 		return IRQ_NONE;
2185 
2186 	/** Main loop **/
2187 	do {
2188 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2189 
2190 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2191 				status, ah->imask);
2192 
2193 		/*
2194 		 * Fatal hw error -> Log and reset
2195 		 *
2196 		 * Fatal errors are unrecoverable so we have to
2197 		 * reset the card. These errors include bus and
2198 		 * dma errors.
2199 		 */
2200 		if (unlikely(status & AR5K_INT_FATAL)) {
2201 
2202 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2203 				  "fatal int, resetting\n");
2204 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2205 
2206 		/*
2207 		 * RX Overrun -> Count and reset if needed
2208 		 *
2209 		 * Receive buffers are full. Either the bus is busy or
2210 		 * the CPU is not fast enough to process all received
2211 		 * frames.
2212 		 */
2213 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2214 
2215 			/*
2216 			 * Older chipsets need a reset to come out of this
2217 			 * condition, but we treat it as RX for newer chips.
2218 			 * We don't know exactly which versions need a reset
2219 			 * this guess is copied from the HAL.
2220 			 */
2221 			ah->stats.rxorn_intr++;
2222 
2223 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2224 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2225 					  "rx overrun, resetting\n");
2226 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2227 			} else
2228 				ath5k_schedule_rx(ah);
2229 
2230 		} else {
2231 
2232 			/* Software Beacon Alert -> Schedule beacon tasklet */
2233 			if (status & AR5K_INT_SWBA)
2234 				tasklet_hi_schedule(&ah->beacontq);
2235 
2236 			/*
2237 			 * No more RX descriptors -> Just count
2238 			 *
2239 			 * NB: the hardware should re-read the link when
2240 			 *     RXE bit is written, but it doesn't work at
2241 			 *     least on older hardware revs.
2242 			 */
2243 			if (status & AR5K_INT_RXEOL)
2244 				ah->stats.rxeol_intr++;
2245 
2246 
2247 			/* TX Underrun -> Bump tx trigger level */
2248 			if (status & AR5K_INT_TXURN)
2249 				ath5k_hw_update_tx_triglevel(ah, true);
2250 
2251 			/* RX -> Schedule rx tasklet */
2252 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2253 				ath5k_schedule_rx(ah);
2254 
2255 			/* TX -> Schedule tx tasklet */
2256 			if (status & (AR5K_INT_TXOK
2257 					| AR5K_INT_TXDESC
2258 					| AR5K_INT_TXERR
2259 					| AR5K_INT_TXEOL))
2260 				ath5k_schedule_tx(ah);
2261 
2262 			/* Missed beacon -> TODO
2263 			if (status & AR5K_INT_BMISS)
2264 			*/
2265 
2266 			/* MIB event -> Update counters and notify ANI */
2267 			if (status & AR5K_INT_MIB) {
2268 				ah->stats.mib_intr++;
2269 				ath5k_hw_update_mib_counters(ah);
2270 				ath5k_ani_mib_intr(ah);
2271 			}
2272 
2273 			/* GPIO -> Notify RFKill layer */
2274 			if (status & AR5K_INT_GPIO)
2275 				tasklet_schedule(&ah->rf_kill.toggleq);
2276 
2277 		}
2278 
2279 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2280 			break;
2281 
2282 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2283 
2284 	/*
2285 	 * Until we handle rx/tx interrupts mask them on IMR
2286 	 *
2287 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2288 	 * and unset after we 've handled the interrupts.
2289 	 */
2290 	if (ah->rx_pending || ah->tx_pending)
2291 		ath5k_set_current_imask(ah);
2292 
2293 	if (unlikely(!counter))
2294 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2295 
2296 	/* Fire up calibration poll */
2297 	ath5k_intr_calibration_poll(ah);
2298 
2299 	return IRQ_HANDLED;
2300 }
2301 
2302 /*
2303  * Periodically recalibrate the PHY to account
2304  * for temperature/environment changes.
2305  */
2306 static void
2307 ath5k_calibrate_work(struct work_struct *work)
2308 {
2309 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2310 		calib_work);
2311 
2312 	/* Should we run a full calibration ? */
2313 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2314 
2315 		ah->ah_cal_next_full = jiffies +
2316 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2317 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2318 
2319 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2320 				"running full calibration\n");
2321 
2322 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2323 			/*
2324 			 * Rfgain is out of bounds, reset the chip
2325 			 * to load new gain values.
2326 			 */
2327 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2328 					"got new rfgain, resetting\n");
2329 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2330 		}
2331 	} else
2332 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2333 
2334 
2335 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2336 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2337 		ah->curchan->hw_value);
2338 
2339 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2340 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2341 			ieee80211_frequency_to_channel(
2342 				ah->curchan->center_freq));
2343 
2344 	/* Clear calibration flags */
2345 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2346 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2347 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2348 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2349 }
2350 
2351 
2352 static void
2353 ath5k_tasklet_ani(unsigned long data)
2354 {
2355 	struct ath5k_hw *ah = (void *)data;
2356 
2357 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2358 	ath5k_ani_calibration(ah);
2359 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2360 }
2361 
2362 
2363 static void
2364 ath5k_tx_complete_poll_work(struct work_struct *work)
2365 {
2366 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2367 			tx_complete_work.work);
2368 	struct ath5k_txq *txq;
2369 	int i;
2370 	bool needreset = false;
2371 
2372 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2373 		return;
2374 
2375 	mutex_lock(&ah->lock);
2376 
2377 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2378 		if (ah->txqs[i].setup) {
2379 			txq = &ah->txqs[i];
2380 			spin_lock_bh(&txq->lock);
2381 			if (txq->txq_len > 1) {
2382 				if (txq->txq_poll_mark) {
2383 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2384 						  "TX queue stuck %d\n",
2385 						  txq->qnum);
2386 					needreset = true;
2387 					txq->txq_stuck++;
2388 					spin_unlock_bh(&txq->lock);
2389 					break;
2390 				} else {
2391 					txq->txq_poll_mark = true;
2392 				}
2393 			}
2394 			spin_unlock_bh(&txq->lock);
2395 		}
2396 	}
2397 
2398 	if (needreset) {
2399 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2400 			  "TX queues stuck, resetting\n");
2401 		ath5k_reset(ah, NULL, true);
2402 	}
2403 
2404 	mutex_unlock(&ah->lock);
2405 
2406 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2407 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2408 }
2409 
2410 
2411 /*************************\
2412 * Initialization routines *
2413 \*************************/
2414 
2415 static const struct ieee80211_iface_limit if_limits[] = {
2416 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2417 	{ .max = 4,	.types =
2418 #ifdef CONFIG_MAC80211_MESH
2419 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2420 #endif
2421 				 BIT(NL80211_IFTYPE_AP) },
2422 };
2423 
2424 static const struct ieee80211_iface_combination if_comb = {
2425 	.limits = if_limits,
2426 	.n_limits = ARRAY_SIZE(if_limits),
2427 	.max_interfaces = 2048,
2428 	.num_different_channels = 1,
2429 };
2430 
2431 int
2432 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2433 {
2434 	struct ieee80211_hw *hw = ah->hw;
2435 	struct ath_common *common;
2436 	int ret;
2437 	int csz;
2438 
2439 	/* Initialize driver private data */
2440 	SET_IEEE80211_DEV(hw, ah->dev);
2441 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2442 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2443 			IEEE80211_HW_SIGNAL_DBM |
2444 			IEEE80211_HW_MFP_CAPABLE |
2445 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2446 
2447 	hw->wiphy->interface_modes =
2448 		BIT(NL80211_IFTYPE_AP) |
2449 		BIT(NL80211_IFTYPE_STATION) |
2450 		BIT(NL80211_IFTYPE_ADHOC) |
2451 		BIT(NL80211_IFTYPE_MESH_POINT);
2452 
2453 	hw->wiphy->iface_combinations = &if_comb;
2454 	hw->wiphy->n_iface_combinations = 1;
2455 
2456 	/* SW support for IBSS_RSN is provided by mac80211 */
2457 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2458 
2459 	/* both antennas can be configured as RX or TX */
2460 	hw->wiphy->available_antennas_tx = 0x3;
2461 	hw->wiphy->available_antennas_rx = 0x3;
2462 
2463 	hw->extra_tx_headroom = 2;
2464 	hw->channel_change_time = 5000;
2465 
2466 	/*
2467 	 * Mark the device as detached to avoid processing
2468 	 * interrupts until setup is complete.
2469 	 */
2470 	__set_bit(ATH_STAT_INVALID, ah->status);
2471 
2472 	ah->opmode = NL80211_IFTYPE_STATION;
2473 	ah->bintval = 1000;
2474 	mutex_init(&ah->lock);
2475 	spin_lock_init(&ah->rxbuflock);
2476 	spin_lock_init(&ah->txbuflock);
2477 	spin_lock_init(&ah->block);
2478 	spin_lock_init(&ah->irqlock);
2479 
2480 	/* Setup interrupt handler */
2481 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2482 	if (ret) {
2483 		ATH5K_ERR(ah, "request_irq failed\n");
2484 		goto err;
2485 	}
2486 
2487 	common = ath5k_hw_common(ah);
2488 	common->ops = &ath5k_common_ops;
2489 	common->bus_ops = bus_ops;
2490 	common->ah = ah;
2491 	common->hw = hw;
2492 	common->priv = ah;
2493 	common->clockrate = 40;
2494 
2495 	/*
2496 	 * Cache line size is used to size and align various
2497 	 * structures used to communicate with the hardware.
2498 	 */
2499 	ath5k_read_cachesize(common, &csz);
2500 	common->cachelsz = csz << 2; /* convert to bytes */
2501 
2502 	spin_lock_init(&common->cc_lock);
2503 
2504 	/* Initialize device */
2505 	ret = ath5k_hw_init(ah);
2506 	if (ret)
2507 		goto err_irq;
2508 
2509 	/* Set up multi-rate retry capabilities */
2510 	if (ah->ah_capabilities.cap_has_mrr_support) {
2511 		hw->max_rates = 4;
2512 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2513 					 AR5K_INIT_RETRY_LONG);
2514 	}
2515 
2516 	hw->vif_data_size = sizeof(struct ath5k_vif);
2517 
2518 	/* Finish private driver data initialization */
2519 	ret = ath5k_init(hw);
2520 	if (ret)
2521 		goto err_ah;
2522 
2523 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2524 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2525 					ah->ah_mac_srev,
2526 					ah->ah_phy_revision);
2527 
2528 	if (!ah->ah_single_chip) {
2529 		/* Single chip radio (!RF5111) */
2530 		if (ah->ah_radio_5ghz_revision &&
2531 			!ah->ah_radio_2ghz_revision) {
2532 			/* No 5GHz support -> report 2GHz radio */
2533 			if (!test_bit(AR5K_MODE_11A,
2534 				ah->ah_capabilities.cap_mode)) {
2535 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2536 					ath5k_chip_name(AR5K_VERSION_RAD,
2537 						ah->ah_radio_5ghz_revision),
2538 						ah->ah_radio_5ghz_revision);
2539 			/* No 2GHz support (5110 and some
2540 			 * 5GHz only cards) -> report 5GHz radio */
2541 			} else if (!test_bit(AR5K_MODE_11B,
2542 				ah->ah_capabilities.cap_mode)) {
2543 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2544 					ath5k_chip_name(AR5K_VERSION_RAD,
2545 						ah->ah_radio_5ghz_revision),
2546 						ah->ah_radio_5ghz_revision);
2547 			/* Multiband radio */
2548 			} else {
2549 				ATH5K_INFO(ah, "RF%s multiband radio found"
2550 					" (0x%x)\n",
2551 					ath5k_chip_name(AR5K_VERSION_RAD,
2552 						ah->ah_radio_5ghz_revision),
2553 						ah->ah_radio_5ghz_revision);
2554 			}
2555 		}
2556 		/* Multi chip radio (RF5111 - RF2111) ->
2557 		 * report both 2GHz/5GHz radios */
2558 		else if (ah->ah_radio_5ghz_revision &&
2559 				ah->ah_radio_2ghz_revision) {
2560 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2561 				ath5k_chip_name(AR5K_VERSION_RAD,
2562 					ah->ah_radio_5ghz_revision),
2563 					ah->ah_radio_5ghz_revision);
2564 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2565 				ath5k_chip_name(AR5K_VERSION_RAD,
2566 					ah->ah_radio_2ghz_revision),
2567 					ah->ah_radio_2ghz_revision);
2568 		}
2569 	}
2570 
2571 	ath5k_debug_init_device(ah);
2572 
2573 	/* ready to process interrupts */
2574 	__clear_bit(ATH_STAT_INVALID, ah->status);
2575 
2576 	return 0;
2577 err_ah:
2578 	ath5k_hw_deinit(ah);
2579 err_irq:
2580 	free_irq(ah->irq, ah);
2581 err:
2582 	return ret;
2583 }
2584 
2585 static int
2586 ath5k_stop_locked(struct ath5k_hw *ah)
2587 {
2588 
2589 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2590 			test_bit(ATH_STAT_INVALID, ah->status));
2591 
2592 	/*
2593 	 * Shutdown the hardware and driver:
2594 	 *    stop output from above
2595 	 *    disable interrupts
2596 	 *    turn off timers
2597 	 *    turn off the radio
2598 	 *    clear transmit machinery
2599 	 *    clear receive machinery
2600 	 *    drain and release tx queues
2601 	 *    reclaim beacon resources
2602 	 *    power down hardware
2603 	 *
2604 	 * Note that some of this work is not possible if the
2605 	 * hardware is gone (invalid).
2606 	 */
2607 	ieee80211_stop_queues(ah->hw);
2608 
2609 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2610 		ath5k_led_off(ah);
2611 		ath5k_hw_set_imr(ah, 0);
2612 		synchronize_irq(ah->irq);
2613 		ath5k_rx_stop(ah);
2614 		ath5k_hw_dma_stop(ah);
2615 		ath5k_drain_tx_buffs(ah);
2616 		ath5k_hw_phy_disable(ah);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 int ath5k_start(struct ieee80211_hw *hw)
2623 {
2624 	struct ath5k_hw *ah = hw->priv;
2625 	struct ath_common *common = ath5k_hw_common(ah);
2626 	int ret, i;
2627 
2628 	mutex_lock(&ah->lock);
2629 
2630 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2631 
2632 	/*
2633 	 * Stop anything previously setup.  This is safe
2634 	 * no matter this is the first time through or not.
2635 	 */
2636 	ath5k_stop_locked(ah);
2637 
2638 	/*
2639 	 * The basic interface to setting the hardware in a good
2640 	 * state is ``reset''.  On return the hardware is known to
2641 	 * be powered up and with interrupts disabled.  This must
2642 	 * be followed by initialization of the appropriate bits
2643 	 * and then setup of the interrupt mask.
2644 	 */
2645 	ah->curchan = ah->hw->conf.chandef.chan;
2646 	ah->imask = AR5K_INT_RXOK
2647 		| AR5K_INT_RXERR
2648 		| AR5K_INT_RXEOL
2649 		| AR5K_INT_RXORN
2650 		| AR5K_INT_TXDESC
2651 		| AR5K_INT_TXEOL
2652 		| AR5K_INT_FATAL
2653 		| AR5K_INT_GLOBAL
2654 		| AR5K_INT_MIB;
2655 
2656 	ret = ath5k_reset(ah, NULL, false);
2657 	if (ret)
2658 		goto done;
2659 
2660 	if (!ath5k_modparam_no_hw_rfkill_switch)
2661 		ath5k_rfkill_hw_start(ah);
2662 
2663 	/*
2664 	 * Reset the key cache since some parts do not reset the
2665 	 * contents on initial power up or resume from suspend.
2666 	 */
2667 	for (i = 0; i < common->keymax; i++)
2668 		ath_hw_keyreset(common, (u16) i);
2669 
2670 	/* Use higher rates for acks instead of base
2671 	 * rate */
2672 	ah->ah_ack_bitrate_high = true;
2673 
2674 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2675 		ah->bslot[i] = NULL;
2676 
2677 	ret = 0;
2678 done:
2679 	mmiowb();
2680 	mutex_unlock(&ah->lock);
2681 
2682 	set_bit(ATH_STAT_STARTED, ah->status);
2683 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2684 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2685 
2686 	return ret;
2687 }
2688 
2689 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2690 {
2691 	ah->rx_pending = false;
2692 	ah->tx_pending = false;
2693 	tasklet_kill(&ah->rxtq);
2694 	tasklet_kill(&ah->txtq);
2695 	tasklet_kill(&ah->beacontq);
2696 	tasklet_kill(&ah->ani_tasklet);
2697 }
2698 
2699 /*
2700  * Stop the device, grabbing the top-level lock to protect
2701  * against concurrent entry through ath5k_init (which can happen
2702  * if another thread does a system call and the thread doing the
2703  * stop is preempted).
2704  */
2705 void ath5k_stop(struct ieee80211_hw *hw)
2706 {
2707 	struct ath5k_hw *ah = hw->priv;
2708 	int ret;
2709 
2710 	mutex_lock(&ah->lock);
2711 	ret = ath5k_stop_locked(ah);
2712 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2713 		/*
2714 		 * Don't set the card in full sleep mode!
2715 		 *
2716 		 * a) When the device is in this state it must be carefully
2717 		 * woken up or references to registers in the PCI clock
2718 		 * domain may freeze the bus (and system).  This varies
2719 		 * by chip and is mostly an issue with newer parts
2720 		 * (madwifi sources mentioned srev >= 0x78) that go to
2721 		 * sleep more quickly.
2722 		 *
2723 		 * b) On older chips full sleep results a weird behaviour
2724 		 * during wakeup. I tested various cards with srev < 0x78
2725 		 * and they don't wake up after module reload, a second
2726 		 * module reload is needed to bring the card up again.
2727 		 *
2728 		 * Until we figure out what's going on don't enable
2729 		 * full chip reset on any chip (this is what Legacy HAL
2730 		 * and Sam's HAL do anyway). Instead Perform a full reset
2731 		 * on the device (same as initial state after attach) and
2732 		 * leave it idle (keep MAC/BB on warm reset) */
2733 		ret = ath5k_hw_on_hold(ah);
2734 
2735 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2736 				"putting device to sleep\n");
2737 	}
2738 
2739 	mmiowb();
2740 	mutex_unlock(&ah->lock);
2741 
2742 	ath5k_stop_tasklets(ah);
2743 
2744 	clear_bit(ATH_STAT_STARTED, ah->status);
2745 	cancel_delayed_work_sync(&ah->tx_complete_work);
2746 
2747 	if (!ath5k_modparam_no_hw_rfkill_switch)
2748 		ath5k_rfkill_hw_stop(ah);
2749 }
2750 
2751 /*
2752  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2753  * and change to the given channel.
2754  *
2755  * This should be called with ah->lock.
2756  */
2757 static int
2758 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2759 							bool skip_pcu)
2760 {
2761 	struct ath_common *common = ath5k_hw_common(ah);
2762 	int ret, ani_mode;
2763 	bool fast;
2764 
2765 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2766 
2767 	ath5k_hw_set_imr(ah, 0);
2768 	synchronize_irq(ah->irq);
2769 	ath5k_stop_tasklets(ah);
2770 
2771 	/* Save ani mode and disable ANI during
2772 	 * reset. If we don't we might get false
2773 	 * PHY error interrupts. */
2774 	ani_mode = ah->ani_state.ani_mode;
2775 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2776 
2777 	/* We are going to empty hw queues
2778 	 * so we should also free any remaining
2779 	 * tx buffers */
2780 	ath5k_drain_tx_buffs(ah);
2781 	if (chan)
2782 		ah->curchan = chan;
2783 
2784 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2785 
2786 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2787 	if (ret) {
2788 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2789 		goto err;
2790 	}
2791 
2792 	ret = ath5k_rx_start(ah);
2793 	if (ret) {
2794 		ATH5K_ERR(ah, "can't start recv logic\n");
2795 		goto err;
2796 	}
2797 
2798 	ath5k_ani_init(ah, ani_mode);
2799 
2800 	/*
2801 	 * Set calibration intervals
2802 	 *
2803 	 * Note: We don't need to run calibration imediately
2804 	 * since some initial calibration is done on reset
2805 	 * even for fast channel switching. Also on scanning
2806 	 * this will get set again and again and it won't get
2807 	 * executed unless we connect somewhere and spend some
2808 	 * time on the channel (that's what calibration needs
2809 	 * anyway to be accurate).
2810 	 */
2811 	ah->ah_cal_next_full = jiffies +
2812 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2813 	ah->ah_cal_next_ani = jiffies +
2814 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2815 	ah->ah_cal_next_short = jiffies +
2816 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2817 
2818 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2819 
2820 	/* clear survey data and cycle counters */
2821 	memset(&ah->survey, 0, sizeof(ah->survey));
2822 	spin_lock_bh(&common->cc_lock);
2823 	ath_hw_cycle_counters_update(common);
2824 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2825 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2826 	spin_unlock_bh(&common->cc_lock);
2827 
2828 	/*
2829 	 * Change channels and update the h/w rate map if we're switching;
2830 	 * e.g. 11a to 11b/g.
2831 	 *
2832 	 * We may be doing a reset in response to an ioctl that changes the
2833 	 * channel so update any state that might change as a result.
2834 	 *
2835 	 * XXX needed?
2836 	 */
2837 /*	ath5k_chan_change(ah, c); */
2838 
2839 	ath5k_beacon_config(ah);
2840 	/* intrs are enabled by ath5k_beacon_config */
2841 
2842 	ieee80211_wake_queues(ah->hw);
2843 
2844 	return 0;
2845 err:
2846 	return ret;
2847 }
2848 
2849 static void ath5k_reset_work(struct work_struct *work)
2850 {
2851 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2852 		reset_work);
2853 
2854 	mutex_lock(&ah->lock);
2855 	ath5k_reset(ah, NULL, true);
2856 	mutex_unlock(&ah->lock);
2857 }
2858 
2859 static int
2860 ath5k_init(struct ieee80211_hw *hw)
2861 {
2862 
2863 	struct ath5k_hw *ah = hw->priv;
2864 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2865 	struct ath5k_txq *txq;
2866 	u8 mac[ETH_ALEN] = {};
2867 	int ret;
2868 
2869 
2870 	/*
2871 	 * Collect the channel list.  The 802.11 layer
2872 	 * is responsible for filtering this list based
2873 	 * on settings like the phy mode and regulatory
2874 	 * domain restrictions.
2875 	 */
2876 	ret = ath5k_setup_bands(hw);
2877 	if (ret) {
2878 		ATH5K_ERR(ah, "can't get channels\n");
2879 		goto err;
2880 	}
2881 
2882 	/*
2883 	 * Allocate tx+rx descriptors and populate the lists.
2884 	 */
2885 	ret = ath5k_desc_alloc(ah);
2886 	if (ret) {
2887 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2888 		goto err;
2889 	}
2890 
2891 	/*
2892 	 * Allocate hardware transmit queues: one queue for
2893 	 * beacon frames and one data queue for each QoS
2894 	 * priority.  Note that hw functions handle resetting
2895 	 * these queues at the needed time.
2896 	 */
2897 	ret = ath5k_beaconq_setup(ah);
2898 	if (ret < 0) {
2899 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2900 		goto err_desc;
2901 	}
2902 	ah->bhalq = ret;
2903 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2904 	if (IS_ERR(ah->cabq)) {
2905 		ATH5K_ERR(ah, "can't setup cab queue\n");
2906 		ret = PTR_ERR(ah->cabq);
2907 		goto err_bhal;
2908 	}
2909 
2910 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2911 	 * capability information */
2912 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2913 		/* This order matches mac80211's queue priority, so we can
2914 		* directly use the mac80211 queue number without any mapping */
2915 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2916 		if (IS_ERR(txq)) {
2917 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2918 			ret = PTR_ERR(txq);
2919 			goto err_queues;
2920 		}
2921 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2922 		if (IS_ERR(txq)) {
2923 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2924 			ret = PTR_ERR(txq);
2925 			goto err_queues;
2926 		}
2927 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2928 		if (IS_ERR(txq)) {
2929 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2930 			ret = PTR_ERR(txq);
2931 			goto err_queues;
2932 		}
2933 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2934 		if (IS_ERR(txq)) {
2935 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2936 			ret = PTR_ERR(txq);
2937 			goto err_queues;
2938 		}
2939 		hw->queues = 4;
2940 	} else {
2941 		/* older hardware (5210) can only support one data queue */
2942 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2943 		if (IS_ERR(txq)) {
2944 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2945 			ret = PTR_ERR(txq);
2946 			goto err_queues;
2947 		}
2948 		hw->queues = 1;
2949 	}
2950 
2951 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2952 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2953 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2954 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2955 
2956 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2957 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2958 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2959 
2960 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2961 	if (ret) {
2962 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2963 		goto err_queues;
2964 	}
2965 
2966 	SET_IEEE80211_PERM_ADDR(hw, mac);
2967 	/* All MAC address bits matter for ACKs */
2968 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2969 
2970 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2971 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2972 	if (ret) {
2973 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2974 		goto err_queues;
2975 	}
2976 
2977 	ret = ieee80211_register_hw(hw);
2978 	if (ret) {
2979 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2980 		goto err_queues;
2981 	}
2982 
2983 	if (!ath_is_world_regd(regulatory))
2984 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2985 
2986 	ath5k_init_leds(ah);
2987 
2988 	ath5k_sysfs_register(ah);
2989 
2990 	return 0;
2991 err_queues:
2992 	ath5k_txq_release(ah);
2993 err_bhal:
2994 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2995 err_desc:
2996 	ath5k_desc_free(ah);
2997 err:
2998 	return ret;
2999 }
3000 
3001 void
3002 ath5k_deinit_ah(struct ath5k_hw *ah)
3003 {
3004 	struct ieee80211_hw *hw = ah->hw;
3005 
3006 	/*
3007 	 * NB: the order of these is important:
3008 	 * o call the 802.11 layer before detaching ath5k_hw to
3009 	 *   ensure callbacks into the driver to delete global
3010 	 *   key cache entries can be handled
3011 	 * o reclaim the tx queue data structures after calling
3012 	 *   the 802.11 layer as we'll get called back to reclaim
3013 	 *   node state and potentially want to use them
3014 	 * o to cleanup the tx queues the hal is called, so detach
3015 	 *   it last
3016 	 * XXX: ??? detach ath5k_hw ???
3017 	 * Other than that, it's straightforward...
3018 	 */
3019 	ieee80211_unregister_hw(hw);
3020 	ath5k_desc_free(ah);
3021 	ath5k_txq_release(ah);
3022 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3023 	ath5k_unregister_leds(ah);
3024 
3025 	ath5k_sysfs_unregister(ah);
3026 	/*
3027 	 * NB: can't reclaim these until after ieee80211_ifdetach
3028 	 * returns because we'll get called back to reclaim node
3029 	 * state and potentially want to use them.
3030 	 */
3031 	ath5k_hw_deinit(ah);
3032 	free_irq(ah->irq, ah);
3033 }
3034 
3035 bool
3036 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3037 {
3038 	struct ath5k_vif_iter_data iter_data;
3039 	iter_data.hw_macaddr = NULL;
3040 	iter_data.any_assoc = false;
3041 	iter_data.need_set_hw_addr = false;
3042 	iter_data.found_active = true;
3043 
3044 	ieee80211_iterate_active_interfaces_atomic(
3045 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3046 		ath5k_vif_iter, &iter_data);
3047 	return iter_data.any_assoc;
3048 }
3049 
3050 void
3051 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3052 {
3053 	struct ath5k_hw *ah = hw->priv;
3054 	u32 rfilt;
3055 	rfilt = ath5k_hw_get_rx_filter(ah);
3056 	if (enable)
3057 		rfilt |= AR5K_RX_FILTER_BEACON;
3058 	else
3059 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3060 	ath5k_hw_set_rx_filter(ah, rfilt);
3061 	ah->filter_flags = rfilt;
3062 }
3063 
3064 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3065 		   const char *fmt, ...)
3066 {
3067 	struct va_format vaf;
3068 	va_list args;
3069 
3070 	va_start(args, fmt);
3071 
3072 	vaf.fmt = fmt;
3073 	vaf.va = &args;
3074 
3075 	if (ah && ah->hw)
3076 		printk("%s" pr_fmt("%s: %pV"),
3077 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3078 	else
3079 		printk("%s" pr_fmt("%pV"), level, &vaf);
3080 
3081 	va_end(args);
3082 }
3083