xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision b6bec26c)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72 
73 bool ath5k_modparam_nohwcrypt;
74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76 
77 static bool modparam_fastchanswitch;
78 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
79 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
80 
81 static bool ath5k_modparam_no_hw_rfkill_switch;
82 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
83 								bool, S_IRUGO);
84 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
85 
86 
87 /* Module info */
88 MODULE_AUTHOR("Jiri Slaby");
89 MODULE_AUTHOR("Nick Kossifidis");
90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
92 MODULE_LICENSE("Dual BSD/GPL");
93 
94 static int ath5k_init(struct ieee80211_hw *hw);
95 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
96 								bool skip_pcu);
97 
98 /* Known SREVs */
99 static const struct ath5k_srev_name srev_names[] = {
100 #ifdef CONFIG_ATHEROS_AR231X
101 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
103 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
104 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
106 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
108 #else
109 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
110 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
111 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
112 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
113 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
114 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
115 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
116 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
117 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
118 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
119 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
120 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
121 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
122 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
123 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
124 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
125 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
126 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
127 #endif
128 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
129 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
130 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
131 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
132 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
133 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
134 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
135 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
136 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
137 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
138 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
139 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
140 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
141 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
142 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
143 #ifdef CONFIG_ATHEROS_AR231X
144 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
145 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
146 #endif
147 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
148 };
149 
150 static const struct ieee80211_rate ath5k_rates[] = {
151 	{ .bitrate = 10,
152 	  .hw_value = ATH5K_RATE_CODE_1M, },
153 	{ .bitrate = 20,
154 	  .hw_value = ATH5K_RATE_CODE_2M,
155 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
156 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 	{ .bitrate = 55,
158 	  .hw_value = ATH5K_RATE_CODE_5_5M,
159 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
160 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 	{ .bitrate = 110,
162 	  .hw_value = ATH5K_RATE_CODE_11M,
163 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
164 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 	{ .bitrate = 60,
166 	  .hw_value = ATH5K_RATE_CODE_6M,
167 	  .flags = 0 },
168 	{ .bitrate = 90,
169 	  .hw_value = ATH5K_RATE_CODE_9M,
170 	  .flags = 0 },
171 	{ .bitrate = 120,
172 	  .hw_value = ATH5K_RATE_CODE_12M,
173 	  .flags = 0 },
174 	{ .bitrate = 180,
175 	  .hw_value = ATH5K_RATE_CODE_18M,
176 	  .flags = 0 },
177 	{ .bitrate = 240,
178 	  .hw_value = ATH5K_RATE_CODE_24M,
179 	  .flags = 0 },
180 	{ .bitrate = 360,
181 	  .hw_value = ATH5K_RATE_CODE_36M,
182 	  .flags = 0 },
183 	{ .bitrate = 480,
184 	  .hw_value = ATH5K_RATE_CODE_48M,
185 	  .flags = 0 },
186 	{ .bitrate = 540,
187 	  .hw_value = ATH5K_RATE_CODE_54M,
188 	  .flags = 0 },
189 };
190 
191 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
192 {
193 	u64 tsf = ath5k_hw_get_tsf64(ah);
194 
195 	if ((tsf & 0x7fff) < rstamp)
196 		tsf -= 0x8000;
197 
198 	return (tsf & ~0x7fff) | rstamp;
199 }
200 
201 const char *
202 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
203 {
204 	const char *name = "xxxxx";
205 	unsigned int i;
206 
207 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
208 		if (srev_names[i].sr_type != type)
209 			continue;
210 
211 		if ((val & 0xf0) == srev_names[i].sr_val)
212 			name = srev_names[i].sr_name;
213 
214 		if ((val & 0xff) == srev_names[i].sr_val) {
215 			name = srev_names[i].sr_name;
216 			break;
217 		}
218 	}
219 
220 	return name;
221 }
222 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
223 {
224 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
225 	return ath5k_hw_reg_read(ah, reg_offset);
226 }
227 
228 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
229 {
230 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
231 	ath5k_hw_reg_write(ah, val, reg_offset);
232 }
233 
234 static const struct ath_ops ath5k_common_ops = {
235 	.read = ath5k_ioread32,
236 	.write = ath5k_iowrite32,
237 };
238 
239 /***********************\
240 * Driver Initialization *
241 \***********************/
242 
243 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
244 {
245 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
246 	struct ath5k_hw *ah = hw->priv;
247 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
248 
249 	return ath_reg_notifier_apply(wiphy, request, regulatory);
250 }
251 
252 /********************\
253 * Channel/mode setup *
254 \********************/
255 
256 /*
257  * Returns true for the channel numbers used.
258  */
259 #ifdef CONFIG_ATH5K_TEST_CHANNELS
260 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
261 {
262 	return true;
263 }
264 
265 #else
266 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
267 {
268 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
269 		return true;
270 
271 	return	/* UNII 1,2 */
272 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
273 		/* midband */
274 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
275 		/* UNII-3 */
276 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
277 		/* 802.11j 5.030-5.080 GHz (20MHz) */
278 		(chan == 8 || chan == 12 || chan == 16) ||
279 		/* 802.11j 4.9GHz (20MHz) */
280 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
281 }
282 #endif
283 
284 static unsigned int
285 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
286 		unsigned int mode, unsigned int max)
287 {
288 	unsigned int count, size, freq, ch;
289 	enum ieee80211_band band;
290 
291 	switch (mode) {
292 	case AR5K_MODE_11A:
293 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
294 		size = 220;
295 		band = IEEE80211_BAND_5GHZ;
296 		break;
297 	case AR5K_MODE_11B:
298 	case AR5K_MODE_11G:
299 		size = 26;
300 		band = IEEE80211_BAND_2GHZ;
301 		break;
302 	default:
303 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
304 		return 0;
305 	}
306 
307 	count = 0;
308 	for (ch = 1; ch <= size && count < max; ch++) {
309 		freq = ieee80211_channel_to_frequency(ch, band);
310 
311 		if (freq == 0) /* mapping failed - not a standard channel */
312 			continue;
313 
314 		/* Write channel info, needed for ath5k_channel_ok() */
315 		channels[count].center_freq = freq;
316 		channels[count].band = band;
317 		channels[count].hw_value = mode;
318 
319 		/* Check if channel is supported by the chipset */
320 		if (!ath5k_channel_ok(ah, &channels[count]))
321 			continue;
322 
323 		if (!ath5k_is_standard_channel(ch, band))
324 			continue;
325 
326 		count++;
327 	}
328 
329 	return count;
330 }
331 
332 static void
333 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
334 {
335 	u8 i;
336 
337 	for (i = 0; i < AR5K_MAX_RATES; i++)
338 		ah->rate_idx[b->band][i] = -1;
339 
340 	for (i = 0; i < b->n_bitrates; i++) {
341 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
342 		if (b->bitrates[i].hw_value_short)
343 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
344 	}
345 }
346 
347 static int
348 ath5k_setup_bands(struct ieee80211_hw *hw)
349 {
350 	struct ath5k_hw *ah = hw->priv;
351 	struct ieee80211_supported_band *sband;
352 	int max_c, count_c = 0;
353 	int i;
354 
355 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
356 	max_c = ARRAY_SIZE(ah->channels);
357 
358 	/* 2GHz band */
359 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
360 	sband->band = IEEE80211_BAND_2GHZ;
361 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
362 
363 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
364 		/* G mode */
365 		memcpy(sband->bitrates, &ath5k_rates[0],
366 		       sizeof(struct ieee80211_rate) * 12);
367 		sband->n_bitrates = 12;
368 
369 		sband->channels = ah->channels;
370 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
371 					AR5K_MODE_11G, max_c);
372 
373 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
374 		count_c = sband->n_channels;
375 		max_c -= count_c;
376 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
377 		/* B mode */
378 		memcpy(sband->bitrates, &ath5k_rates[0],
379 		       sizeof(struct ieee80211_rate) * 4);
380 		sband->n_bitrates = 4;
381 
382 		/* 5211 only supports B rates and uses 4bit rate codes
383 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
384 		 * fix them up here:
385 		 */
386 		if (ah->ah_version == AR5K_AR5211) {
387 			for (i = 0; i < 4; i++) {
388 				sband->bitrates[i].hw_value =
389 					sband->bitrates[i].hw_value & 0xF;
390 				sband->bitrates[i].hw_value_short =
391 					sband->bitrates[i].hw_value_short & 0xF;
392 			}
393 		}
394 
395 		sband->channels = ah->channels;
396 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
397 					AR5K_MODE_11B, max_c);
398 
399 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
400 		count_c = sband->n_channels;
401 		max_c -= count_c;
402 	}
403 	ath5k_setup_rate_idx(ah, sband);
404 
405 	/* 5GHz band, A mode */
406 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
407 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
408 		sband->band = IEEE80211_BAND_5GHZ;
409 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
410 
411 		memcpy(sband->bitrates, &ath5k_rates[4],
412 		       sizeof(struct ieee80211_rate) * 8);
413 		sband->n_bitrates = 8;
414 
415 		sband->channels = &ah->channels[count_c];
416 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
417 					AR5K_MODE_11A, max_c);
418 
419 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
420 	}
421 	ath5k_setup_rate_idx(ah, sband);
422 
423 	ath5k_debug_dump_bands(ah);
424 
425 	return 0;
426 }
427 
428 /*
429  * Set/change channels. We always reset the chip.
430  * To accomplish this we must first cleanup any pending DMA,
431  * then restart stuff after a la  ath5k_init.
432  *
433  * Called with ah->lock.
434  */
435 int
436 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
437 {
438 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
439 		  "channel set, resetting (%u -> %u MHz)\n",
440 		  ah->curchan->center_freq, chan->center_freq);
441 
442 	/*
443 	 * To switch channels clear any pending DMA operations;
444 	 * wait long enough for the RX fifo to drain, reset the
445 	 * hardware at the new frequency, and then re-enable
446 	 * the relevant bits of the h/w.
447 	 */
448 	return ath5k_reset(ah, chan, true);
449 }
450 
451 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
452 {
453 	struct ath5k_vif_iter_data *iter_data = data;
454 	int i;
455 	struct ath5k_vif *avf = (void *)vif->drv_priv;
456 
457 	if (iter_data->hw_macaddr)
458 		for (i = 0; i < ETH_ALEN; i++)
459 			iter_data->mask[i] &=
460 				~(iter_data->hw_macaddr[i] ^ mac[i]);
461 
462 	if (!iter_data->found_active) {
463 		iter_data->found_active = true;
464 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
465 	}
466 
467 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
468 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
469 			iter_data->need_set_hw_addr = false;
470 
471 	if (!iter_data->any_assoc) {
472 		if (avf->assoc)
473 			iter_data->any_assoc = true;
474 	}
475 
476 	/* Calculate combined mode - when APs are active, operate in AP mode.
477 	 * Otherwise use the mode of the new interface. This can currently
478 	 * only deal with combinations of APs and STAs. Only one ad-hoc
479 	 * interfaces is allowed.
480 	 */
481 	if (avf->opmode == NL80211_IFTYPE_AP)
482 		iter_data->opmode = NL80211_IFTYPE_AP;
483 	else {
484 		if (avf->opmode == NL80211_IFTYPE_STATION)
485 			iter_data->n_stas++;
486 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
487 			iter_data->opmode = avf->opmode;
488 	}
489 }
490 
491 void
492 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
493 				   struct ieee80211_vif *vif)
494 {
495 	struct ath_common *common = ath5k_hw_common(ah);
496 	struct ath5k_vif_iter_data iter_data;
497 	u32 rfilt;
498 
499 	/*
500 	 * Use the hardware MAC address as reference, the hardware uses it
501 	 * together with the BSSID mask when matching addresses.
502 	 */
503 	iter_data.hw_macaddr = common->macaddr;
504 	memset(&iter_data.mask, 0xff, ETH_ALEN);
505 	iter_data.found_active = false;
506 	iter_data.need_set_hw_addr = true;
507 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
508 	iter_data.n_stas = 0;
509 
510 	if (vif)
511 		ath5k_vif_iter(&iter_data, vif->addr, vif);
512 
513 	/* Get list of all active MAC addresses */
514 	ieee80211_iterate_active_interfaces_atomic(
515 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
516 		ath5k_vif_iter, &iter_data);
517 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
518 
519 	ah->opmode = iter_data.opmode;
520 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
521 		/* Nothing active, default to station mode */
522 		ah->opmode = NL80211_IFTYPE_STATION;
523 
524 	ath5k_hw_set_opmode(ah, ah->opmode);
525 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
526 		  ah->opmode, ath_opmode_to_string(ah->opmode));
527 
528 	if (iter_data.need_set_hw_addr && iter_data.found_active)
529 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
530 
531 	if (ath5k_hw_hasbssidmask(ah))
532 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
533 
534 	/* Set up RX Filter */
535 	if (iter_data.n_stas > 1) {
536 		/* If you have multiple STA interfaces connected to
537 		 * different APs, ARPs are not received (most of the time?)
538 		 * Enabling PROMISC appears to fix that problem.
539 		 */
540 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
541 	}
542 
543 	rfilt = ah->filter_flags;
544 	ath5k_hw_set_rx_filter(ah, rfilt);
545 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
546 }
547 
548 static inline int
549 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
550 {
551 	int rix;
552 
553 	/* return base rate on errors */
554 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
555 			"hw_rix out of bounds: %x\n", hw_rix))
556 		return 0;
557 
558 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
559 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
560 		rix = 0;
561 
562 	return rix;
563 }
564 
565 /***************\
566 * Buffers setup *
567 \***************/
568 
569 static
570 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
571 {
572 	struct ath_common *common = ath5k_hw_common(ah);
573 	struct sk_buff *skb;
574 
575 	/*
576 	 * Allocate buffer with headroom_needed space for the
577 	 * fake physical layer header at the start.
578 	 */
579 	skb = ath_rxbuf_alloc(common,
580 			      common->rx_bufsize,
581 			      GFP_ATOMIC);
582 
583 	if (!skb) {
584 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
585 				common->rx_bufsize);
586 		return NULL;
587 	}
588 
589 	*skb_addr = dma_map_single(ah->dev,
590 				   skb->data, common->rx_bufsize,
591 				   DMA_FROM_DEVICE);
592 
593 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
594 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
595 		dev_kfree_skb(skb);
596 		return NULL;
597 	}
598 	return skb;
599 }
600 
601 static int
602 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
603 {
604 	struct sk_buff *skb = bf->skb;
605 	struct ath5k_desc *ds;
606 	int ret;
607 
608 	if (!skb) {
609 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
610 		if (!skb)
611 			return -ENOMEM;
612 		bf->skb = skb;
613 	}
614 
615 	/*
616 	 * Setup descriptors.  For receive we always terminate
617 	 * the descriptor list with a self-linked entry so we'll
618 	 * not get overrun under high load (as can happen with a
619 	 * 5212 when ANI processing enables PHY error frames).
620 	 *
621 	 * To ensure the last descriptor is self-linked we create
622 	 * each descriptor as self-linked and add it to the end.  As
623 	 * each additional descriptor is added the previous self-linked
624 	 * entry is "fixed" naturally.  This should be safe even
625 	 * if DMA is happening.  When processing RX interrupts we
626 	 * never remove/process the last, self-linked, entry on the
627 	 * descriptor list.  This ensures the hardware always has
628 	 * someplace to write a new frame.
629 	 */
630 	ds = bf->desc;
631 	ds->ds_link = bf->daddr;	/* link to self */
632 	ds->ds_data = bf->skbaddr;
633 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
634 	if (ret) {
635 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
636 		return ret;
637 	}
638 
639 	if (ah->rxlink != NULL)
640 		*ah->rxlink = bf->daddr;
641 	ah->rxlink = &ds->ds_link;
642 	return 0;
643 }
644 
645 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
646 {
647 	struct ieee80211_hdr *hdr;
648 	enum ath5k_pkt_type htype;
649 	__le16 fc;
650 
651 	hdr = (struct ieee80211_hdr *)skb->data;
652 	fc = hdr->frame_control;
653 
654 	if (ieee80211_is_beacon(fc))
655 		htype = AR5K_PKT_TYPE_BEACON;
656 	else if (ieee80211_is_probe_resp(fc))
657 		htype = AR5K_PKT_TYPE_PROBE_RESP;
658 	else if (ieee80211_is_atim(fc))
659 		htype = AR5K_PKT_TYPE_ATIM;
660 	else if (ieee80211_is_pspoll(fc))
661 		htype = AR5K_PKT_TYPE_PSPOLL;
662 	else
663 		htype = AR5K_PKT_TYPE_NORMAL;
664 
665 	return htype;
666 }
667 
668 static int
669 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
670 		  struct ath5k_txq *txq, int padsize)
671 {
672 	struct ath5k_desc *ds = bf->desc;
673 	struct sk_buff *skb = bf->skb;
674 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
675 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
676 	struct ieee80211_rate *rate;
677 	unsigned int mrr_rate[3], mrr_tries[3];
678 	int i, ret;
679 	u16 hw_rate;
680 	u16 cts_rate = 0;
681 	u16 duration = 0;
682 	u8 rc_flags;
683 
684 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
685 
686 	/* XXX endianness */
687 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
688 			DMA_TO_DEVICE);
689 
690 	rate = ieee80211_get_tx_rate(ah->hw, info);
691 	if (!rate) {
692 		ret = -EINVAL;
693 		goto err_unmap;
694 	}
695 
696 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
697 		flags |= AR5K_TXDESC_NOACK;
698 
699 	rc_flags = info->control.rates[0].flags;
700 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
701 		rate->hw_value_short : rate->hw_value;
702 
703 	pktlen = skb->len;
704 
705 	/* FIXME: If we are in g mode and rate is a CCK rate
706 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
707 	 * from tx power (value is in dB units already) */
708 	if (info->control.hw_key) {
709 		keyidx = info->control.hw_key->hw_key_idx;
710 		pktlen += info->control.hw_key->icv_len;
711 	}
712 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
713 		flags |= AR5K_TXDESC_RTSENA;
714 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
715 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
716 			info->control.vif, pktlen, info));
717 	}
718 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
719 		flags |= AR5K_TXDESC_CTSENA;
720 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
721 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
722 			info->control.vif, pktlen, info));
723 	}
724 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
725 		ieee80211_get_hdrlen_from_skb(skb), padsize,
726 		get_hw_packet_type(skb),
727 		(ah->ah_txpower.txp_requested * 2),
728 		hw_rate,
729 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
730 		cts_rate, duration);
731 	if (ret)
732 		goto err_unmap;
733 
734 	/* Set up MRR descriptor */
735 	if (ah->ah_capabilities.cap_has_mrr_support) {
736 		memset(mrr_rate, 0, sizeof(mrr_rate));
737 		memset(mrr_tries, 0, sizeof(mrr_tries));
738 		for (i = 0; i < 3; i++) {
739 			rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
740 			if (!rate)
741 				break;
742 
743 			mrr_rate[i] = rate->hw_value;
744 			mrr_tries[i] = info->control.rates[i + 1].count;
745 		}
746 
747 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
748 			mrr_rate[0], mrr_tries[0],
749 			mrr_rate[1], mrr_tries[1],
750 			mrr_rate[2], mrr_tries[2]);
751 	}
752 
753 	ds->ds_link = 0;
754 	ds->ds_data = bf->skbaddr;
755 
756 	spin_lock_bh(&txq->lock);
757 	list_add_tail(&bf->list, &txq->q);
758 	txq->txq_len++;
759 	if (txq->link == NULL) /* is this first packet? */
760 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
761 	else /* no, so only link it */
762 		*txq->link = bf->daddr;
763 
764 	txq->link = &ds->ds_link;
765 	ath5k_hw_start_tx_dma(ah, txq->qnum);
766 	mmiowb();
767 	spin_unlock_bh(&txq->lock);
768 
769 	return 0;
770 err_unmap:
771 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
772 	return ret;
773 }
774 
775 /*******************\
776 * Descriptors setup *
777 \*******************/
778 
779 static int
780 ath5k_desc_alloc(struct ath5k_hw *ah)
781 {
782 	struct ath5k_desc *ds;
783 	struct ath5k_buf *bf;
784 	dma_addr_t da;
785 	unsigned int i;
786 	int ret;
787 
788 	/* allocate descriptors */
789 	ah->desc_len = sizeof(struct ath5k_desc) *
790 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
791 
792 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
793 				&ah->desc_daddr, GFP_KERNEL);
794 	if (ah->desc == NULL) {
795 		ATH5K_ERR(ah, "can't allocate descriptors\n");
796 		ret = -ENOMEM;
797 		goto err;
798 	}
799 	ds = ah->desc;
800 	da = ah->desc_daddr;
801 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
802 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
803 
804 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
805 			sizeof(struct ath5k_buf), GFP_KERNEL);
806 	if (bf == NULL) {
807 		ATH5K_ERR(ah, "can't allocate bufptr\n");
808 		ret = -ENOMEM;
809 		goto err_free;
810 	}
811 	ah->bufptr = bf;
812 
813 	INIT_LIST_HEAD(&ah->rxbuf);
814 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
815 		bf->desc = ds;
816 		bf->daddr = da;
817 		list_add_tail(&bf->list, &ah->rxbuf);
818 	}
819 
820 	INIT_LIST_HEAD(&ah->txbuf);
821 	ah->txbuf_len = ATH_TXBUF;
822 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
823 		bf->desc = ds;
824 		bf->daddr = da;
825 		list_add_tail(&bf->list, &ah->txbuf);
826 	}
827 
828 	/* beacon buffers */
829 	INIT_LIST_HEAD(&ah->bcbuf);
830 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
831 		bf->desc = ds;
832 		bf->daddr = da;
833 		list_add_tail(&bf->list, &ah->bcbuf);
834 	}
835 
836 	return 0;
837 err_free:
838 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
839 err:
840 	ah->desc = NULL;
841 	return ret;
842 }
843 
844 void
845 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
846 {
847 	BUG_ON(!bf);
848 	if (!bf->skb)
849 		return;
850 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
851 			DMA_TO_DEVICE);
852 	ieee80211_free_txskb(ah->hw, bf->skb);
853 	bf->skb = NULL;
854 	bf->skbaddr = 0;
855 	bf->desc->ds_data = 0;
856 }
857 
858 void
859 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
860 {
861 	struct ath_common *common = ath5k_hw_common(ah);
862 
863 	BUG_ON(!bf);
864 	if (!bf->skb)
865 		return;
866 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
867 			DMA_FROM_DEVICE);
868 	dev_kfree_skb_any(bf->skb);
869 	bf->skb = NULL;
870 	bf->skbaddr = 0;
871 	bf->desc->ds_data = 0;
872 }
873 
874 static void
875 ath5k_desc_free(struct ath5k_hw *ah)
876 {
877 	struct ath5k_buf *bf;
878 
879 	list_for_each_entry(bf, &ah->txbuf, list)
880 		ath5k_txbuf_free_skb(ah, bf);
881 	list_for_each_entry(bf, &ah->rxbuf, list)
882 		ath5k_rxbuf_free_skb(ah, bf);
883 	list_for_each_entry(bf, &ah->bcbuf, list)
884 		ath5k_txbuf_free_skb(ah, bf);
885 
886 	/* Free memory associated with all descriptors */
887 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
888 	ah->desc = NULL;
889 	ah->desc_daddr = 0;
890 
891 	kfree(ah->bufptr);
892 	ah->bufptr = NULL;
893 }
894 
895 
896 /**************\
897 * Queues setup *
898 \**************/
899 
900 static struct ath5k_txq *
901 ath5k_txq_setup(struct ath5k_hw *ah,
902 		int qtype, int subtype)
903 {
904 	struct ath5k_txq *txq;
905 	struct ath5k_txq_info qi = {
906 		.tqi_subtype = subtype,
907 		/* XXX: default values not correct for B and XR channels,
908 		 * but who cares? */
909 		.tqi_aifs = AR5K_TUNE_AIFS,
910 		.tqi_cw_min = AR5K_TUNE_CWMIN,
911 		.tqi_cw_max = AR5K_TUNE_CWMAX
912 	};
913 	int qnum;
914 
915 	/*
916 	 * Enable interrupts only for EOL and DESC conditions.
917 	 * We mark tx descriptors to receive a DESC interrupt
918 	 * when a tx queue gets deep; otherwise we wait for the
919 	 * EOL to reap descriptors.  Note that this is done to
920 	 * reduce interrupt load and this only defers reaping
921 	 * descriptors, never transmitting frames.  Aside from
922 	 * reducing interrupts this also permits more concurrency.
923 	 * The only potential downside is if the tx queue backs
924 	 * up in which case the top half of the kernel may backup
925 	 * due to a lack of tx descriptors.
926 	 */
927 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
928 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
929 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
930 	if (qnum < 0) {
931 		/*
932 		 * NB: don't print a message, this happens
933 		 * normally on parts with too few tx queues
934 		 */
935 		return ERR_PTR(qnum);
936 	}
937 	txq = &ah->txqs[qnum];
938 	if (!txq->setup) {
939 		txq->qnum = qnum;
940 		txq->link = NULL;
941 		INIT_LIST_HEAD(&txq->q);
942 		spin_lock_init(&txq->lock);
943 		txq->setup = true;
944 		txq->txq_len = 0;
945 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
946 		txq->txq_poll_mark = false;
947 		txq->txq_stuck = 0;
948 	}
949 	return &ah->txqs[qnum];
950 }
951 
952 static int
953 ath5k_beaconq_setup(struct ath5k_hw *ah)
954 {
955 	struct ath5k_txq_info qi = {
956 		/* XXX: default values not correct for B and XR channels,
957 		 * but who cares? */
958 		.tqi_aifs = AR5K_TUNE_AIFS,
959 		.tqi_cw_min = AR5K_TUNE_CWMIN,
960 		.tqi_cw_max = AR5K_TUNE_CWMAX,
961 		/* NB: for dynamic turbo, don't enable any other interrupts */
962 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
963 	};
964 
965 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
966 }
967 
968 static int
969 ath5k_beaconq_config(struct ath5k_hw *ah)
970 {
971 	struct ath5k_txq_info qi;
972 	int ret;
973 
974 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
975 	if (ret)
976 		goto err;
977 
978 	if (ah->opmode == NL80211_IFTYPE_AP ||
979 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
980 		/*
981 		 * Always burst out beacon and CAB traffic
982 		 * (aifs = cwmin = cwmax = 0)
983 		 */
984 		qi.tqi_aifs = 0;
985 		qi.tqi_cw_min = 0;
986 		qi.tqi_cw_max = 0;
987 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
988 		/*
989 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
990 		 */
991 		qi.tqi_aifs = 0;
992 		qi.tqi_cw_min = 0;
993 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
994 	}
995 
996 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
997 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
998 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
999 
1000 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1001 	if (ret) {
1002 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1003 			"hardware queue!\n", __func__);
1004 		goto err;
1005 	}
1006 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1007 	if (ret)
1008 		goto err;
1009 
1010 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1011 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1012 	if (ret)
1013 		goto err;
1014 
1015 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1016 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1017 	if (ret)
1018 		goto err;
1019 
1020 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1021 err:
1022 	return ret;
1023 }
1024 
1025 /**
1026  * ath5k_drain_tx_buffs - Empty tx buffers
1027  *
1028  * @ah The &struct ath5k_hw
1029  *
1030  * Empty tx buffers from all queues in preparation
1031  * of a reset or during shutdown.
1032  *
1033  * NB:	this assumes output has been stopped and
1034  *	we do not need to block ath5k_tx_tasklet
1035  */
1036 static void
1037 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1038 {
1039 	struct ath5k_txq *txq;
1040 	struct ath5k_buf *bf, *bf0;
1041 	int i;
1042 
1043 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1044 		if (ah->txqs[i].setup) {
1045 			txq = &ah->txqs[i];
1046 			spin_lock_bh(&txq->lock);
1047 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1048 				ath5k_debug_printtxbuf(ah, bf);
1049 
1050 				ath5k_txbuf_free_skb(ah, bf);
1051 
1052 				spin_lock(&ah->txbuflock);
1053 				list_move_tail(&bf->list, &ah->txbuf);
1054 				ah->txbuf_len++;
1055 				txq->txq_len--;
1056 				spin_unlock(&ah->txbuflock);
1057 			}
1058 			txq->link = NULL;
1059 			txq->txq_poll_mark = false;
1060 			spin_unlock_bh(&txq->lock);
1061 		}
1062 	}
1063 }
1064 
1065 static void
1066 ath5k_txq_release(struct ath5k_hw *ah)
1067 {
1068 	struct ath5k_txq *txq = ah->txqs;
1069 	unsigned int i;
1070 
1071 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1072 		if (txq->setup) {
1073 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1074 			txq->setup = false;
1075 		}
1076 }
1077 
1078 
1079 /*************\
1080 * RX Handling *
1081 \*************/
1082 
1083 /*
1084  * Enable the receive h/w following a reset.
1085  */
1086 static int
1087 ath5k_rx_start(struct ath5k_hw *ah)
1088 {
1089 	struct ath_common *common = ath5k_hw_common(ah);
1090 	struct ath5k_buf *bf;
1091 	int ret;
1092 
1093 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1094 
1095 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1096 		  common->cachelsz, common->rx_bufsize);
1097 
1098 	spin_lock_bh(&ah->rxbuflock);
1099 	ah->rxlink = NULL;
1100 	list_for_each_entry(bf, &ah->rxbuf, list) {
1101 		ret = ath5k_rxbuf_setup(ah, bf);
1102 		if (ret != 0) {
1103 			spin_unlock_bh(&ah->rxbuflock);
1104 			goto err;
1105 		}
1106 	}
1107 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1108 	ath5k_hw_set_rxdp(ah, bf->daddr);
1109 	spin_unlock_bh(&ah->rxbuflock);
1110 
1111 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1112 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1113 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1114 
1115 	return 0;
1116 err:
1117 	return ret;
1118 }
1119 
1120 /*
1121  * Disable the receive logic on PCU (DRU)
1122  * In preparation for a shutdown.
1123  *
1124  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1125  * does.
1126  */
1127 static void
1128 ath5k_rx_stop(struct ath5k_hw *ah)
1129 {
1130 
1131 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1132 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1133 
1134 	ath5k_debug_printrxbuffs(ah);
1135 }
1136 
1137 static unsigned int
1138 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1139 		   struct ath5k_rx_status *rs)
1140 {
1141 	struct ath_common *common = ath5k_hw_common(ah);
1142 	struct ieee80211_hdr *hdr = (void *)skb->data;
1143 	unsigned int keyix, hlen;
1144 
1145 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1146 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1147 		return RX_FLAG_DECRYPTED;
1148 
1149 	/* Apparently when a default key is used to decrypt the packet
1150 	   the hw does not set the index used to decrypt.  In such cases
1151 	   get the index from the packet. */
1152 	hlen = ieee80211_hdrlen(hdr->frame_control);
1153 	if (ieee80211_has_protected(hdr->frame_control) &&
1154 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1155 	    skb->len >= hlen + 4) {
1156 		keyix = skb->data[hlen + 3] >> 6;
1157 
1158 		if (test_bit(keyix, common->keymap))
1159 			return RX_FLAG_DECRYPTED;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 
1166 static void
1167 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1168 		     struct ieee80211_rx_status *rxs)
1169 {
1170 	struct ath_common *common = ath5k_hw_common(ah);
1171 	u64 tsf, bc_tstamp;
1172 	u32 hw_tu;
1173 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1174 
1175 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1176 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1177 	    ether_addr_equal(mgmt->bssid, common->curbssid)) {
1178 		/*
1179 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1180 		 * have updated the local TSF. We have to work around various
1181 		 * hardware bugs, though...
1182 		 */
1183 		tsf = ath5k_hw_get_tsf64(ah);
1184 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1185 		hw_tu = TSF_TO_TU(tsf);
1186 
1187 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1188 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1189 			(unsigned long long)bc_tstamp,
1190 			(unsigned long long)rxs->mactime,
1191 			(unsigned long long)(rxs->mactime - bc_tstamp),
1192 			(unsigned long long)tsf);
1193 
1194 		/*
1195 		 * Sometimes the HW will give us a wrong tstamp in the rx
1196 		 * status, causing the timestamp extension to go wrong.
1197 		 * (This seems to happen especially with beacon frames bigger
1198 		 * than 78 byte (incl. FCS))
1199 		 * But we know that the receive timestamp must be later than the
1200 		 * timestamp of the beacon since HW must have synced to that.
1201 		 *
1202 		 * NOTE: here we assume mactime to be after the frame was
1203 		 * received, not like mac80211 which defines it at the start.
1204 		 */
1205 		if (bc_tstamp > rxs->mactime) {
1206 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1207 				"fixing mactime from %llx to %llx\n",
1208 				(unsigned long long)rxs->mactime,
1209 				(unsigned long long)tsf);
1210 			rxs->mactime = tsf;
1211 		}
1212 
1213 		/*
1214 		 * Local TSF might have moved higher than our beacon timers,
1215 		 * in that case we have to update them to continue sending
1216 		 * beacons. This also takes care of synchronizing beacon sending
1217 		 * times with other stations.
1218 		 */
1219 		if (hw_tu >= ah->nexttbtt)
1220 			ath5k_beacon_update_timers(ah, bc_tstamp);
1221 
1222 		/* Check if the beacon timers are still correct, because a TSF
1223 		 * update might have created a window between them - for a
1224 		 * longer description see the comment of this function: */
1225 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1226 			ath5k_beacon_update_timers(ah, bc_tstamp);
1227 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1228 				"fixed beacon timers after beacon receive\n");
1229 		}
1230 	}
1231 }
1232 
1233 static void
1234 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1235 {
1236 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1237 	struct ath_common *common = ath5k_hw_common(ah);
1238 
1239 	/* only beacons from our BSSID */
1240 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1241 	    !ether_addr_equal(mgmt->bssid, common->curbssid))
1242 		return;
1243 
1244 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1245 
1246 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1247 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1248 }
1249 
1250 /*
1251  * Compute padding position. skb must contain an IEEE 802.11 frame
1252  */
1253 static int ath5k_common_padpos(struct sk_buff *skb)
1254 {
1255 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1256 	__le16 frame_control = hdr->frame_control;
1257 	int padpos = 24;
1258 
1259 	if (ieee80211_has_a4(frame_control))
1260 		padpos += ETH_ALEN;
1261 
1262 	if (ieee80211_is_data_qos(frame_control))
1263 		padpos += IEEE80211_QOS_CTL_LEN;
1264 
1265 	return padpos;
1266 }
1267 
1268 /*
1269  * This function expects an 802.11 frame and returns the number of
1270  * bytes added, or -1 if we don't have enough header room.
1271  */
1272 static int ath5k_add_padding(struct sk_buff *skb)
1273 {
1274 	int padpos = ath5k_common_padpos(skb);
1275 	int padsize = padpos & 3;
1276 
1277 	if (padsize && skb->len > padpos) {
1278 
1279 		if (skb_headroom(skb) < padsize)
1280 			return -1;
1281 
1282 		skb_push(skb, padsize);
1283 		memmove(skb->data, skb->data + padsize, padpos);
1284 		return padsize;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * The MAC header is padded to have 32-bit boundary if the
1292  * packet payload is non-zero. The general calculation for
1293  * padsize would take into account odd header lengths:
1294  * padsize = 4 - (hdrlen & 3); however, since only
1295  * even-length headers are used, padding can only be 0 or 2
1296  * bytes and we can optimize this a bit.  We must not try to
1297  * remove padding from short control frames that do not have a
1298  * payload.
1299  *
1300  * This function expects an 802.11 frame and returns the number of
1301  * bytes removed.
1302  */
1303 static int ath5k_remove_padding(struct sk_buff *skb)
1304 {
1305 	int padpos = ath5k_common_padpos(skb);
1306 	int padsize = padpos & 3;
1307 
1308 	if (padsize && skb->len >= padpos + padsize) {
1309 		memmove(skb->data + padsize, skb->data, padpos);
1310 		skb_pull(skb, padsize);
1311 		return padsize;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 static void
1318 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1319 		    struct ath5k_rx_status *rs)
1320 {
1321 	struct ieee80211_rx_status *rxs;
1322 
1323 	ath5k_remove_padding(skb);
1324 
1325 	rxs = IEEE80211_SKB_RXCB(skb);
1326 
1327 	rxs->flag = 0;
1328 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1329 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1330 
1331 	/*
1332 	 * always extend the mac timestamp, since this information is
1333 	 * also needed for proper IBSS merging.
1334 	 *
1335 	 * XXX: it might be too late to do it here, since rs_tstamp is
1336 	 * 15bit only. that means TSF extension has to be done within
1337 	 * 32768usec (about 32ms). it might be necessary to move this to
1338 	 * the interrupt handler, like it is done in madwifi.
1339 	 */
1340 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1341 	rxs->flag |= RX_FLAG_MACTIME_END;
1342 
1343 	rxs->freq = ah->curchan->center_freq;
1344 	rxs->band = ah->curchan->band;
1345 
1346 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1347 
1348 	rxs->antenna = rs->rs_antenna;
1349 
1350 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1351 		ah->stats.antenna_rx[rs->rs_antenna]++;
1352 	else
1353 		ah->stats.antenna_rx[0]++; /* invalid */
1354 
1355 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1356 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1357 
1358 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1359 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1360 		rxs->flag |= RX_FLAG_SHORTPRE;
1361 
1362 	trace_ath5k_rx(ah, skb);
1363 
1364 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1365 
1366 	/* check beacons in IBSS mode */
1367 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1368 		ath5k_check_ibss_tsf(ah, skb, rxs);
1369 
1370 	ieee80211_rx(ah->hw, skb);
1371 }
1372 
1373 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1374  *
1375  * Check if we want to further process this frame or not. Also update
1376  * statistics. Return true if we want this frame, false if not.
1377  */
1378 static bool
1379 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1380 {
1381 	ah->stats.rx_all_count++;
1382 	ah->stats.rx_bytes_count += rs->rs_datalen;
1383 
1384 	if (unlikely(rs->rs_status)) {
1385 		if (rs->rs_status & AR5K_RXERR_CRC)
1386 			ah->stats.rxerr_crc++;
1387 		if (rs->rs_status & AR5K_RXERR_FIFO)
1388 			ah->stats.rxerr_fifo++;
1389 		if (rs->rs_status & AR5K_RXERR_PHY) {
1390 			ah->stats.rxerr_phy++;
1391 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1392 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1393 			return false;
1394 		}
1395 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1396 			/*
1397 			 * Decrypt error.  If the error occurred
1398 			 * because there was no hardware key, then
1399 			 * let the frame through so the upper layers
1400 			 * can process it.  This is necessary for 5210
1401 			 * parts which have no way to setup a ``clear''
1402 			 * key cache entry.
1403 			 *
1404 			 * XXX do key cache faulting
1405 			 */
1406 			ah->stats.rxerr_decrypt++;
1407 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1408 			    !(rs->rs_status & AR5K_RXERR_CRC))
1409 				return true;
1410 		}
1411 		if (rs->rs_status & AR5K_RXERR_MIC) {
1412 			ah->stats.rxerr_mic++;
1413 			return true;
1414 		}
1415 
1416 		/* reject any frames with non-crypto errors */
1417 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1418 			return false;
1419 	}
1420 
1421 	if (unlikely(rs->rs_more)) {
1422 		ah->stats.rxerr_jumbo++;
1423 		return false;
1424 	}
1425 	return true;
1426 }
1427 
1428 static void
1429 ath5k_set_current_imask(struct ath5k_hw *ah)
1430 {
1431 	enum ath5k_int imask;
1432 	unsigned long flags;
1433 
1434 	spin_lock_irqsave(&ah->irqlock, flags);
1435 	imask = ah->imask;
1436 	if (ah->rx_pending)
1437 		imask &= ~AR5K_INT_RX_ALL;
1438 	if (ah->tx_pending)
1439 		imask &= ~AR5K_INT_TX_ALL;
1440 	ath5k_hw_set_imr(ah, imask);
1441 	spin_unlock_irqrestore(&ah->irqlock, flags);
1442 }
1443 
1444 static void
1445 ath5k_tasklet_rx(unsigned long data)
1446 {
1447 	struct ath5k_rx_status rs = {};
1448 	struct sk_buff *skb, *next_skb;
1449 	dma_addr_t next_skb_addr;
1450 	struct ath5k_hw *ah = (void *)data;
1451 	struct ath_common *common = ath5k_hw_common(ah);
1452 	struct ath5k_buf *bf;
1453 	struct ath5k_desc *ds;
1454 	int ret;
1455 
1456 	spin_lock(&ah->rxbuflock);
1457 	if (list_empty(&ah->rxbuf)) {
1458 		ATH5K_WARN(ah, "empty rx buf pool\n");
1459 		goto unlock;
1460 	}
1461 	do {
1462 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1463 		BUG_ON(bf->skb == NULL);
1464 		skb = bf->skb;
1465 		ds = bf->desc;
1466 
1467 		/* bail if HW is still using self-linked descriptor */
1468 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1469 			break;
1470 
1471 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1472 		if (unlikely(ret == -EINPROGRESS))
1473 			break;
1474 		else if (unlikely(ret)) {
1475 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1476 			ah->stats.rxerr_proc++;
1477 			break;
1478 		}
1479 
1480 		if (ath5k_receive_frame_ok(ah, &rs)) {
1481 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1482 
1483 			/*
1484 			 * If we can't replace bf->skb with a new skb under
1485 			 * memory pressure, just skip this packet
1486 			 */
1487 			if (!next_skb)
1488 				goto next;
1489 
1490 			dma_unmap_single(ah->dev, bf->skbaddr,
1491 					 common->rx_bufsize,
1492 					 DMA_FROM_DEVICE);
1493 
1494 			skb_put(skb, rs.rs_datalen);
1495 
1496 			ath5k_receive_frame(ah, skb, &rs);
1497 
1498 			bf->skb = next_skb;
1499 			bf->skbaddr = next_skb_addr;
1500 		}
1501 next:
1502 		list_move_tail(&bf->list, &ah->rxbuf);
1503 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1504 unlock:
1505 	spin_unlock(&ah->rxbuflock);
1506 	ah->rx_pending = false;
1507 	ath5k_set_current_imask(ah);
1508 }
1509 
1510 
1511 /*************\
1512 * TX Handling *
1513 \*************/
1514 
1515 void
1516 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1517 	       struct ath5k_txq *txq)
1518 {
1519 	struct ath5k_hw *ah = hw->priv;
1520 	struct ath5k_buf *bf;
1521 	unsigned long flags;
1522 	int padsize;
1523 
1524 	trace_ath5k_tx(ah, skb, txq);
1525 
1526 	/*
1527 	 * The hardware expects the header padded to 4 byte boundaries.
1528 	 * If this is not the case, we add the padding after the header.
1529 	 */
1530 	padsize = ath5k_add_padding(skb);
1531 	if (padsize < 0) {
1532 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1533 			  " headroom to pad");
1534 		goto drop_packet;
1535 	}
1536 
1537 	if (txq->txq_len >= txq->txq_max &&
1538 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1539 		ieee80211_stop_queue(hw, txq->qnum);
1540 
1541 	spin_lock_irqsave(&ah->txbuflock, flags);
1542 	if (list_empty(&ah->txbuf)) {
1543 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1544 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1545 		ieee80211_stop_queues(hw);
1546 		goto drop_packet;
1547 	}
1548 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1549 	list_del(&bf->list);
1550 	ah->txbuf_len--;
1551 	if (list_empty(&ah->txbuf))
1552 		ieee80211_stop_queues(hw);
1553 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1554 
1555 	bf->skb = skb;
1556 
1557 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1558 		bf->skb = NULL;
1559 		spin_lock_irqsave(&ah->txbuflock, flags);
1560 		list_add_tail(&bf->list, &ah->txbuf);
1561 		ah->txbuf_len++;
1562 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1563 		goto drop_packet;
1564 	}
1565 	return;
1566 
1567 drop_packet:
1568 	ieee80211_free_txskb(hw, skb);
1569 }
1570 
1571 static void
1572 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1573 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1574 {
1575 	struct ieee80211_tx_info *info;
1576 	u8 tries[3];
1577 	int i;
1578 
1579 	ah->stats.tx_all_count++;
1580 	ah->stats.tx_bytes_count += skb->len;
1581 	info = IEEE80211_SKB_CB(skb);
1582 
1583 	tries[0] = info->status.rates[0].count;
1584 	tries[1] = info->status.rates[1].count;
1585 	tries[2] = info->status.rates[2].count;
1586 
1587 	ieee80211_tx_info_clear_status(info);
1588 
1589 	for (i = 0; i < ts->ts_final_idx; i++) {
1590 		struct ieee80211_tx_rate *r =
1591 			&info->status.rates[i];
1592 
1593 		r->count = tries[i];
1594 	}
1595 
1596 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1597 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1598 
1599 	if (unlikely(ts->ts_status)) {
1600 		ah->stats.ack_fail++;
1601 		if (ts->ts_status & AR5K_TXERR_FILT) {
1602 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1603 			ah->stats.txerr_filt++;
1604 		}
1605 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1606 			ah->stats.txerr_retry++;
1607 		if (ts->ts_status & AR5K_TXERR_FIFO)
1608 			ah->stats.txerr_fifo++;
1609 	} else {
1610 		info->flags |= IEEE80211_TX_STAT_ACK;
1611 		info->status.ack_signal = ts->ts_rssi;
1612 
1613 		/* count the successful attempt as well */
1614 		info->status.rates[ts->ts_final_idx].count++;
1615 	}
1616 
1617 	/*
1618 	* Remove MAC header padding before giving the frame
1619 	* back to mac80211.
1620 	*/
1621 	ath5k_remove_padding(skb);
1622 
1623 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1624 		ah->stats.antenna_tx[ts->ts_antenna]++;
1625 	else
1626 		ah->stats.antenna_tx[0]++; /* invalid */
1627 
1628 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1629 	ieee80211_tx_status(ah->hw, skb);
1630 }
1631 
1632 static void
1633 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1634 {
1635 	struct ath5k_tx_status ts = {};
1636 	struct ath5k_buf *bf, *bf0;
1637 	struct ath5k_desc *ds;
1638 	struct sk_buff *skb;
1639 	int ret;
1640 
1641 	spin_lock(&txq->lock);
1642 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1643 
1644 		txq->txq_poll_mark = false;
1645 
1646 		/* skb might already have been processed last time. */
1647 		if (bf->skb != NULL) {
1648 			ds = bf->desc;
1649 
1650 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1651 			if (unlikely(ret == -EINPROGRESS))
1652 				break;
1653 			else if (unlikely(ret)) {
1654 				ATH5K_ERR(ah,
1655 					"error %d while processing "
1656 					"queue %u\n", ret, txq->qnum);
1657 				break;
1658 			}
1659 
1660 			skb = bf->skb;
1661 			bf->skb = NULL;
1662 
1663 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1664 					DMA_TO_DEVICE);
1665 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1666 		}
1667 
1668 		/*
1669 		 * It's possible that the hardware can say the buffer is
1670 		 * completed when it hasn't yet loaded the ds_link from
1671 		 * host memory and moved on.
1672 		 * Always keep the last descriptor to avoid HW races...
1673 		 */
1674 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1675 			spin_lock(&ah->txbuflock);
1676 			list_move_tail(&bf->list, &ah->txbuf);
1677 			ah->txbuf_len++;
1678 			txq->txq_len--;
1679 			spin_unlock(&ah->txbuflock);
1680 		}
1681 	}
1682 	spin_unlock(&txq->lock);
1683 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1684 		ieee80211_wake_queue(ah->hw, txq->qnum);
1685 }
1686 
1687 static void
1688 ath5k_tasklet_tx(unsigned long data)
1689 {
1690 	int i;
1691 	struct ath5k_hw *ah = (void *)data;
1692 
1693 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1694 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1695 			ath5k_tx_processq(ah, &ah->txqs[i]);
1696 
1697 	ah->tx_pending = false;
1698 	ath5k_set_current_imask(ah);
1699 }
1700 
1701 
1702 /*****************\
1703 * Beacon handling *
1704 \*****************/
1705 
1706 /*
1707  * Setup the beacon frame for transmit.
1708  */
1709 static int
1710 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1711 {
1712 	struct sk_buff *skb = bf->skb;
1713 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1714 	struct ath5k_desc *ds;
1715 	int ret = 0;
1716 	u8 antenna;
1717 	u32 flags;
1718 	const int padsize = 0;
1719 
1720 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1721 			DMA_TO_DEVICE);
1722 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1723 			"skbaddr %llx\n", skb, skb->data, skb->len,
1724 			(unsigned long long)bf->skbaddr);
1725 
1726 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1727 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1728 		dev_kfree_skb_any(skb);
1729 		bf->skb = NULL;
1730 		return -EIO;
1731 	}
1732 
1733 	ds = bf->desc;
1734 	antenna = ah->ah_tx_ant;
1735 
1736 	flags = AR5K_TXDESC_NOACK;
1737 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1738 		ds->ds_link = bf->daddr;	/* self-linked */
1739 		flags |= AR5K_TXDESC_VEOL;
1740 	} else
1741 		ds->ds_link = 0;
1742 
1743 	/*
1744 	 * If we use multiple antennas on AP and use
1745 	 * the Sectored AP scenario, switch antenna every
1746 	 * 4 beacons to make sure everybody hears our AP.
1747 	 * When a client tries to associate, hw will keep
1748 	 * track of the tx antenna to be used for this client
1749 	 * automatically, based on ACKed packets.
1750 	 *
1751 	 * Note: AP still listens and transmits RTS on the
1752 	 * default antenna which is supposed to be an omni.
1753 	 *
1754 	 * Note2: On sectored scenarios it's possible to have
1755 	 * multiple antennas (1 omni -- the default -- and 14
1756 	 * sectors), so if we choose to actually support this
1757 	 * mode, we need to allow the user to set how many antennas
1758 	 * we have and tweak the code below to send beacons
1759 	 * on all of them.
1760 	 */
1761 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1762 		antenna = ah->bsent & 4 ? 2 : 1;
1763 
1764 
1765 	/* FIXME: If we are in g mode and rate is a CCK rate
1766 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1767 	 * from tx power (value is in dB units already) */
1768 	ds->ds_data = bf->skbaddr;
1769 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1770 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1771 			AR5K_PKT_TYPE_BEACON,
1772 			(ah->ah_txpower.txp_requested * 2),
1773 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1774 			1, AR5K_TXKEYIX_INVALID,
1775 			antenna, flags, 0, 0);
1776 	if (ret)
1777 		goto err_unmap;
1778 
1779 	return 0;
1780 err_unmap:
1781 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1787  * this is called only once at config_bss time, for AP we do it every
1788  * SWBA interrupt so that the TIM will reflect buffered frames.
1789  *
1790  * Called with the beacon lock.
1791  */
1792 int
1793 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1794 {
1795 	int ret;
1796 	struct ath5k_hw *ah = hw->priv;
1797 	struct ath5k_vif *avf;
1798 	struct sk_buff *skb;
1799 
1800 	if (WARN_ON(!vif)) {
1801 		ret = -EINVAL;
1802 		goto out;
1803 	}
1804 
1805 	skb = ieee80211_beacon_get(hw, vif);
1806 
1807 	if (!skb) {
1808 		ret = -ENOMEM;
1809 		goto out;
1810 	}
1811 
1812 	avf = (void *)vif->drv_priv;
1813 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1814 	avf->bbuf->skb = skb;
1815 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1816 out:
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1822  * frame contents are done as needed and the slot time is
1823  * also adjusted based on current state.
1824  *
1825  * This is called from software irq context (beacontq tasklets)
1826  * or user context from ath5k_beacon_config.
1827  */
1828 static void
1829 ath5k_beacon_send(struct ath5k_hw *ah)
1830 {
1831 	struct ieee80211_vif *vif;
1832 	struct ath5k_vif *avf;
1833 	struct ath5k_buf *bf;
1834 	struct sk_buff *skb;
1835 	int err;
1836 
1837 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1838 
1839 	/*
1840 	 * Check if the previous beacon has gone out.  If
1841 	 * not, don't don't try to post another: skip this
1842 	 * period and wait for the next.  Missed beacons
1843 	 * indicate a problem and should not occur.  If we
1844 	 * miss too many consecutive beacons reset the device.
1845 	 */
1846 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1847 		ah->bmisscount++;
1848 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1849 			"missed %u consecutive beacons\n", ah->bmisscount);
1850 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1851 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1852 				"stuck beacon time (%u missed)\n",
1853 				ah->bmisscount);
1854 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1855 				  "stuck beacon, resetting\n");
1856 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1857 		}
1858 		return;
1859 	}
1860 	if (unlikely(ah->bmisscount != 0)) {
1861 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1862 			"resume beacon xmit after %u misses\n",
1863 			ah->bmisscount);
1864 		ah->bmisscount = 0;
1865 	}
1866 
1867 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1868 			ah->num_mesh_vifs > 1) ||
1869 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1870 		u64 tsf = ath5k_hw_get_tsf64(ah);
1871 		u32 tsftu = TSF_TO_TU(tsf);
1872 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1873 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1874 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1875 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1876 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1877 	} else /* only one interface */
1878 		vif = ah->bslot[0];
1879 
1880 	if (!vif)
1881 		return;
1882 
1883 	avf = (void *)vif->drv_priv;
1884 	bf = avf->bbuf;
1885 
1886 	/*
1887 	 * Stop any current dma and put the new frame on the queue.
1888 	 * This should never fail since we check above that no frames
1889 	 * are still pending on the queue.
1890 	 */
1891 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1892 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1893 		/* NB: hw still stops DMA, so proceed */
1894 	}
1895 
1896 	/* refresh the beacon for AP or MESH mode */
1897 	if (ah->opmode == NL80211_IFTYPE_AP ||
1898 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1899 		err = ath5k_beacon_update(ah->hw, vif);
1900 		if (err)
1901 			return;
1902 	}
1903 
1904 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1905 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1906 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1907 		return;
1908 	}
1909 
1910 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1911 
1912 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1913 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1914 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1915 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1916 
1917 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1918 	while (skb) {
1919 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1920 
1921 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1922 			break;
1923 
1924 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1925 	}
1926 
1927 	ah->bsent++;
1928 }
1929 
1930 /**
1931  * ath5k_beacon_update_timers - update beacon timers
1932  *
1933  * @ah: struct ath5k_hw pointer we are operating on
1934  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1935  *          beacon timer update based on the current HW TSF.
1936  *
1937  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1938  * of a received beacon or the current local hardware TSF and write it to the
1939  * beacon timer registers.
1940  *
1941  * This is called in a variety of situations, e.g. when a beacon is received,
1942  * when a TSF update has been detected, but also when an new IBSS is created or
1943  * when we otherwise know we have to update the timers, but we keep it in this
1944  * function to have it all together in one place.
1945  */
1946 void
1947 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1948 {
1949 	u32 nexttbtt, intval, hw_tu, bc_tu;
1950 	u64 hw_tsf;
1951 
1952 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1953 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1954 		+ ah->num_mesh_vifs > 1) {
1955 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1956 		if (intval < 15)
1957 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1958 				   intval);
1959 	}
1960 	if (WARN_ON(!intval))
1961 		return;
1962 
1963 	/* beacon TSF converted to TU */
1964 	bc_tu = TSF_TO_TU(bc_tsf);
1965 
1966 	/* current TSF converted to TU */
1967 	hw_tsf = ath5k_hw_get_tsf64(ah);
1968 	hw_tu = TSF_TO_TU(hw_tsf);
1969 
1970 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1971 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1972 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1973 	 * configuration we need to make sure it is bigger than that. */
1974 
1975 	if (bc_tsf == -1) {
1976 		/*
1977 		 * no beacons received, called internally.
1978 		 * just need to refresh timers based on HW TSF.
1979 		 */
1980 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1981 	} else if (bc_tsf == 0) {
1982 		/*
1983 		 * no beacon received, probably called by ath5k_reset_tsf().
1984 		 * reset TSF to start with 0.
1985 		 */
1986 		nexttbtt = intval;
1987 		intval |= AR5K_BEACON_RESET_TSF;
1988 	} else if (bc_tsf > hw_tsf) {
1989 		/*
1990 		 * beacon received, SW merge happened but HW TSF not yet updated.
1991 		 * not possible to reconfigure timers yet, but next time we
1992 		 * receive a beacon with the same BSSID, the hardware will
1993 		 * automatically update the TSF and then we need to reconfigure
1994 		 * the timers.
1995 		 */
1996 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1997 			"need to wait for HW TSF sync\n");
1998 		return;
1999 	} else {
2000 		/*
2001 		 * most important case for beacon synchronization between STA.
2002 		 *
2003 		 * beacon received and HW TSF has been already updated by HW.
2004 		 * update next TBTT based on the TSF of the beacon, but make
2005 		 * sure it is ahead of our local TSF timer.
2006 		 */
2007 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2008 	}
2009 #undef FUDGE
2010 
2011 	ah->nexttbtt = nexttbtt;
2012 
2013 	intval |= AR5K_BEACON_ENA;
2014 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2015 
2016 	/*
2017 	 * debugging output last in order to preserve the time critical aspect
2018 	 * of this function
2019 	 */
2020 	if (bc_tsf == -1)
2021 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2022 			"reconfigured timers based on HW TSF\n");
2023 	else if (bc_tsf == 0)
2024 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2025 			"reset HW TSF and timers\n");
2026 	else
2027 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028 			"updated timers based on beacon TSF\n");
2029 
2030 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2032 			  (unsigned long long) bc_tsf,
2033 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2034 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2035 		intval & AR5K_BEACON_PERIOD,
2036 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2037 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2038 }
2039 
2040 /**
2041  * ath5k_beacon_config - Configure the beacon queues and interrupts
2042  *
2043  * @ah: struct ath5k_hw pointer we are operating on
2044  *
2045  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2046  * interrupts to detect TSF updates only.
2047  */
2048 void
2049 ath5k_beacon_config(struct ath5k_hw *ah)
2050 {
2051 	spin_lock_bh(&ah->block);
2052 	ah->bmisscount = 0;
2053 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2054 
2055 	if (ah->enable_beacon) {
2056 		/*
2057 		 * In IBSS mode we use a self-linked tx descriptor and let the
2058 		 * hardware send the beacons automatically. We have to load it
2059 		 * only once here.
2060 		 * We use the SWBA interrupt only to keep track of the beacon
2061 		 * timers in order to detect automatic TSF updates.
2062 		 */
2063 		ath5k_beaconq_config(ah);
2064 
2065 		ah->imask |= AR5K_INT_SWBA;
2066 
2067 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2068 			if (ath5k_hw_hasveol(ah))
2069 				ath5k_beacon_send(ah);
2070 		} else
2071 			ath5k_beacon_update_timers(ah, -1);
2072 	} else {
2073 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2074 	}
2075 
2076 	ath5k_hw_set_imr(ah, ah->imask);
2077 	mmiowb();
2078 	spin_unlock_bh(&ah->block);
2079 }
2080 
2081 static void ath5k_tasklet_beacon(unsigned long data)
2082 {
2083 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2084 
2085 	/*
2086 	 * Software beacon alert--time to send a beacon.
2087 	 *
2088 	 * In IBSS mode we use this interrupt just to
2089 	 * keep track of the next TBTT (target beacon
2090 	 * transmission time) in order to detect whether
2091 	 * automatic TSF updates happened.
2092 	 */
2093 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2094 		/* XXX: only if VEOL supported */
2095 		u64 tsf = ath5k_hw_get_tsf64(ah);
2096 		ah->nexttbtt += ah->bintval;
2097 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2098 				"SWBA nexttbtt: %x hw_tu: %x "
2099 				"TSF: %llx\n",
2100 				ah->nexttbtt,
2101 				TSF_TO_TU(tsf),
2102 				(unsigned long long) tsf);
2103 	} else {
2104 		spin_lock(&ah->block);
2105 		ath5k_beacon_send(ah);
2106 		spin_unlock(&ah->block);
2107 	}
2108 }
2109 
2110 
2111 /********************\
2112 * Interrupt handling *
2113 \********************/
2114 
2115 static void
2116 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2117 {
2118 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2119 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2120 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2121 
2122 		/* Run ANI only when calibration is not active */
2123 
2124 		ah->ah_cal_next_ani = jiffies +
2125 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2126 		tasklet_schedule(&ah->ani_tasklet);
2127 
2128 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2129 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2130 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2131 
2132 		/* Run calibration only when another calibration
2133 		 * is not running.
2134 		 *
2135 		 * Note: This is for both full/short calibration,
2136 		 * if it's time for a full one, ath5k_calibrate_work will deal
2137 		 * with it. */
2138 
2139 		ah->ah_cal_next_short = jiffies +
2140 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2141 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2142 	}
2143 	/* we could use SWI to generate enough interrupts to meet our
2144 	 * calibration interval requirements, if necessary:
2145 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2146 }
2147 
2148 static void
2149 ath5k_schedule_rx(struct ath5k_hw *ah)
2150 {
2151 	ah->rx_pending = true;
2152 	tasklet_schedule(&ah->rxtq);
2153 }
2154 
2155 static void
2156 ath5k_schedule_tx(struct ath5k_hw *ah)
2157 {
2158 	ah->tx_pending = true;
2159 	tasklet_schedule(&ah->txtq);
2160 }
2161 
2162 static irqreturn_t
2163 ath5k_intr(int irq, void *dev_id)
2164 {
2165 	struct ath5k_hw *ah = dev_id;
2166 	enum ath5k_int status;
2167 	unsigned int counter = 1000;
2168 
2169 
2170 	/*
2171 	 * If hw is not ready (or detached) and we get an
2172 	 * interrupt, or if we have no interrupts pending
2173 	 * (that means it's not for us) skip it.
2174 	 *
2175 	 * NOTE: Group 0/1 PCI interface registers are not
2176 	 * supported on WiSOCs, so we can't check for pending
2177 	 * interrupts (ISR belongs to another register group
2178 	 * so we are ok).
2179 	 */
2180 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2181 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2182 			!ath5k_hw_is_intr_pending(ah))))
2183 		return IRQ_NONE;
2184 
2185 	/** Main loop **/
2186 	do {
2187 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2188 
2189 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2190 				status, ah->imask);
2191 
2192 		/*
2193 		 * Fatal hw error -> Log and reset
2194 		 *
2195 		 * Fatal errors are unrecoverable so we have to
2196 		 * reset the card. These errors include bus and
2197 		 * dma errors.
2198 		 */
2199 		if (unlikely(status & AR5K_INT_FATAL)) {
2200 
2201 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2202 				  "fatal int, resetting\n");
2203 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2204 
2205 		/*
2206 		 * RX Overrun -> Count and reset if needed
2207 		 *
2208 		 * Receive buffers are full. Either the bus is busy or
2209 		 * the CPU is not fast enough to process all received
2210 		 * frames.
2211 		 */
2212 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2213 
2214 			/*
2215 			 * Older chipsets need a reset to come out of this
2216 			 * condition, but we treat it as RX for newer chips.
2217 			 * We don't know exactly which versions need a reset
2218 			 * this guess is copied from the HAL.
2219 			 */
2220 			ah->stats.rxorn_intr++;
2221 
2222 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2223 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2224 					  "rx overrun, resetting\n");
2225 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2226 			} else
2227 				ath5k_schedule_rx(ah);
2228 
2229 		} else {
2230 
2231 			/* Software Beacon Alert -> Schedule beacon tasklet */
2232 			if (status & AR5K_INT_SWBA)
2233 				tasklet_hi_schedule(&ah->beacontq);
2234 
2235 			/*
2236 			 * No more RX descriptors -> Just count
2237 			 *
2238 			 * NB: the hardware should re-read the link when
2239 			 *     RXE bit is written, but it doesn't work at
2240 			 *     least on older hardware revs.
2241 			 */
2242 			if (status & AR5K_INT_RXEOL)
2243 				ah->stats.rxeol_intr++;
2244 
2245 
2246 			/* TX Underrun -> Bump tx trigger level */
2247 			if (status & AR5K_INT_TXURN)
2248 				ath5k_hw_update_tx_triglevel(ah, true);
2249 
2250 			/* RX -> Schedule rx tasklet */
2251 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2252 				ath5k_schedule_rx(ah);
2253 
2254 			/* TX -> Schedule tx tasklet */
2255 			if (status & (AR5K_INT_TXOK
2256 					| AR5K_INT_TXDESC
2257 					| AR5K_INT_TXERR
2258 					| AR5K_INT_TXEOL))
2259 				ath5k_schedule_tx(ah);
2260 
2261 			/* Missed beacon -> TODO
2262 			if (status & AR5K_INT_BMISS)
2263 			*/
2264 
2265 			/* MIB event -> Update counters and notify ANI */
2266 			if (status & AR5K_INT_MIB) {
2267 				ah->stats.mib_intr++;
2268 				ath5k_hw_update_mib_counters(ah);
2269 				ath5k_ani_mib_intr(ah);
2270 			}
2271 
2272 			/* GPIO -> Notify RFKill layer */
2273 			if (status & AR5K_INT_GPIO)
2274 				tasklet_schedule(&ah->rf_kill.toggleq);
2275 
2276 		}
2277 
2278 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2279 			break;
2280 
2281 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2282 
2283 	/*
2284 	 * Until we handle rx/tx interrupts mask them on IMR
2285 	 *
2286 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2287 	 * and unset after we 've handled the interrupts.
2288 	 */
2289 	if (ah->rx_pending || ah->tx_pending)
2290 		ath5k_set_current_imask(ah);
2291 
2292 	if (unlikely(!counter))
2293 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2294 
2295 	/* Fire up calibration poll */
2296 	ath5k_intr_calibration_poll(ah);
2297 
2298 	return IRQ_HANDLED;
2299 }
2300 
2301 /*
2302  * Periodically recalibrate the PHY to account
2303  * for temperature/environment changes.
2304  */
2305 static void
2306 ath5k_calibrate_work(struct work_struct *work)
2307 {
2308 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2309 		calib_work);
2310 
2311 	/* Should we run a full calibration ? */
2312 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2313 
2314 		ah->ah_cal_next_full = jiffies +
2315 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2316 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2317 
2318 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2319 				"running full calibration\n");
2320 
2321 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2322 			/*
2323 			 * Rfgain is out of bounds, reset the chip
2324 			 * to load new gain values.
2325 			 */
2326 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2327 					"got new rfgain, resetting\n");
2328 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2329 		}
2330 	} else
2331 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2332 
2333 
2334 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2335 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2336 		ah->curchan->hw_value);
2337 
2338 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2339 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2340 			ieee80211_frequency_to_channel(
2341 				ah->curchan->center_freq));
2342 
2343 	/* Clear calibration flags */
2344 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2345 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2346 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2347 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2348 }
2349 
2350 
2351 static void
2352 ath5k_tasklet_ani(unsigned long data)
2353 {
2354 	struct ath5k_hw *ah = (void *)data;
2355 
2356 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2357 	ath5k_ani_calibration(ah);
2358 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2359 }
2360 
2361 
2362 static void
2363 ath5k_tx_complete_poll_work(struct work_struct *work)
2364 {
2365 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2366 			tx_complete_work.work);
2367 	struct ath5k_txq *txq;
2368 	int i;
2369 	bool needreset = false;
2370 
2371 	mutex_lock(&ah->lock);
2372 
2373 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2374 		if (ah->txqs[i].setup) {
2375 			txq = &ah->txqs[i];
2376 			spin_lock_bh(&txq->lock);
2377 			if (txq->txq_len > 1) {
2378 				if (txq->txq_poll_mark) {
2379 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2380 						  "TX queue stuck %d\n",
2381 						  txq->qnum);
2382 					needreset = true;
2383 					txq->txq_stuck++;
2384 					spin_unlock_bh(&txq->lock);
2385 					break;
2386 				} else {
2387 					txq->txq_poll_mark = true;
2388 				}
2389 			}
2390 			spin_unlock_bh(&txq->lock);
2391 		}
2392 	}
2393 
2394 	if (needreset) {
2395 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2396 			  "TX queues stuck, resetting\n");
2397 		ath5k_reset(ah, NULL, true);
2398 	}
2399 
2400 	mutex_unlock(&ah->lock);
2401 
2402 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2403 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2404 }
2405 
2406 
2407 /*************************\
2408 * Initialization routines *
2409 \*************************/
2410 
2411 static const struct ieee80211_iface_limit if_limits[] = {
2412 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2413 	{ .max = 4,	.types =
2414 #ifdef CONFIG_MAC80211_MESH
2415 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2416 #endif
2417 				 BIT(NL80211_IFTYPE_AP) },
2418 };
2419 
2420 static const struct ieee80211_iface_combination if_comb = {
2421 	.limits = if_limits,
2422 	.n_limits = ARRAY_SIZE(if_limits),
2423 	.max_interfaces = 2048,
2424 	.num_different_channels = 1,
2425 };
2426 
2427 int
2428 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2429 {
2430 	struct ieee80211_hw *hw = ah->hw;
2431 	struct ath_common *common;
2432 	int ret;
2433 	int csz;
2434 
2435 	/* Initialize driver private data */
2436 	SET_IEEE80211_DEV(hw, ah->dev);
2437 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2438 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2439 			IEEE80211_HW_SIGNAL_DBM |
2440 			IEEE80211_HW_MFP_CAPABLE |
2441 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2442 
2443 	hw->wiphy->interface_modes =
2444 		BIT(NL80211_IFTYPE_AP) |
2445 		BIT(NL80211_IFTYPE_STATION) |
2446 		BIT(NL80211_IFTYPE_ADHOC) |
2447 		BIT(NL80211_IFTYPE_MESH_POINT);
2448 
2449 	hw->wiphy->iface_combinations = &if_comb;
2450 	hw->wiphy->n_iface_combinations = 1;
2451 
2452 	/* SW support for IBSS_RSN is provided by mac80211 */
2453 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2454 
2455 	/* both antennas can be configured as RX or TX */
2456 	hw->wiphy->available_antennas_tx = 0x3;
2457 	hw->wiphy->available_antennas_rx = 0x3;
2458 
2459 	hw->extra_tx_headroom = 2;
2460 	hw->channel_change_time = 5000;
2461 
2462 	/*
2463 	 * Mark the device as detached to avoid processing
2464 	 * interrupts until setup is complete.
2465 	 */
2466 	__set_bit(ATH_STAT_INVALID, ah->status);
2467 
2468 	ah->opmode = NL80211_IFTYPE_STATION;
2469 	ah->bintval = 1000;
2470 	mutex_init(&ah->lock);
2471 	spin_lock_init(&ah->rxbuflock);
2472 	spin_lock_init(&ah->txbuflock);
2473 	spin_lock_init(&ah->block);
2474 	spin_lock_init(&ah->irqlock);
2475 
2476 	/* Setup interrupt handler */
2477 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2478 	if (ret) {
2479 		ATH5K_ERR(ah, "request_irq failed\n");
2480 		goto err;
2481 	}
2482 
2483 	common = ath5k_hw_common(ah);
2484 	common->ops = &ath5k_common_ops;
2485 	common->bus_ops = bus_ops;
2486 	common->ah = ah;
2487 	common->hw = hw;
2488 	common->priv = ah;
2489 	common->clockrate = 40;
2490 
2491 	/*
2492 	 * Cache line size is used to size and align various
2493 	 * structures used to communicate with the hardware.
2494 	 */
2495 	ath5k_read_cachesize(common, &csz);
2496 	common->cachelsz = csz << 2; /* convert to bytes */
2497 
2498 	spin_lock_init(&common->cc_lock);
2499 
2500 	/* Initialize device */
2501 	ret = ath5k_hw_init(ah);
2502 	if (ret)
2503 		goto err_irq;
2504 
2505 	/* Set up multi-rate retry capabilities */
2506 	if (ah->ah_capabilities.cap_has_mrr_support) {
2507 		hw->max_rates = 4;
2508 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2509 					 AR5K_INIT_RETRY_LONG);
2510 	}
2511 
2512 	hw->vif_data_size = sizeof(struct ath5k_vif);
2513 
2514 	/* Finish private driver data initialization */
2515 	ret = ath5k_init(hw);
2516 	if (ret)
2517 		goto err_ah;
2518 
2519 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2520 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2521 					ah->ah_mac_srev,
2522 					ah->ah_phy_revision);
2523 
2524 	if (!ah->ah_single_chip) {
2525 		/* Single chip radio (!RF5111) */
2526 		if (ah->ah_radio_5ghz_revision &&
2527 			!ah->ah_radio_2ghz_revision) {
2528 			/* No 5GHz support -> report 2GHz radio */
2529 			if (!test_bit(AR5K_MODE_11A,
2530 				ah->ah_capabilities.cap_mode)) {
2531 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2532 					ath5k_chip_name(AR5K_VERSION_RAD,
2533 						ah->ah_radio_5ghz_revision),
2534 						ah->ah_radio_5ghz_revision);
2535 			/* No 2GHz support (5110 and some
2536 			 * 5GHz only cards) -> report 5GHz radio */
2537 			} else if (!test_bit(AR5K_MODE_11B,
2538 				ah->ah_capabilities.cap_mode)) {
2539 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2540 					ath5k_chip_name(AR5K_VERSION_RAD,
2541 						ah->ah_radio_5ghz_revision),
2542 						ah->ah_radio_5ghz_revision);
2543 			/* Multiband radio */
2544 			} else {
2545 				ATH5K_INFO(ah, "RF%s multiband radio found"
2546 					" (0x%x)\n",
2547 					ath5k_chip_name(AR5K_VERSION_RAD,
2548 						ah->ah_radio_5ghz_revision),
2549 						ah->ah_radio_5ghz_revision);
2550 			}
2551 		}
2552 		/* Multi chip radio (RF5111 - RF2111) ->
2553 		 * report both 2GHz/5GHz radios */
2554 		else if (ah->ah_radio_5ghz_revision &&
2555 				ah->ah_radio_2ghz_revision) {
2556 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2557 				ath5k_chip_name(AR5K_VERSION_RAD,
2558 					ah->ah_radio_5ghz_revision),
2559 					ah->ah_radio_5ghz_revision);
2560 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2561 				ath5k_chip_name(AR5K_VERSION_RAD,
2562 					ah->ah_radio_2ghz_revision),
2563 					ah->ah_radio_2ghz_revision);
2564 		}
2565 	}
2566 
2567 	ath5k_debug_init_device(ah);
2568 
2569 	/* ready to process interrupts */
2570 	__clear_bit(ATH_STAT_INVALID, ah->status);
2571 
2572 	return 0;
2573 err_ah:
2574 	ath5k_hw_deinit(ah);
2575 err_irq:
2576 	free_irq(ah->irq, ah);
2577 err:
2578 	return ret;
2579 }
2580 
2581 static int
2582 ath5k_stop_locked(struct ath5k_hw *ah)
2583 {
2584 
2585 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2586 			test_bit(ATH_STAT_INVALID, ah->status));
2587 
2588 	/*
2589 	 * Shutdown the hardware and driver:
2590 	 *    stop output from above
2591 	 *    disable interrupts
2592 	 *    turn off timers
2593 	 *    turn off the radio
2594 	 *    clear transmit machinery
2595 	 *    clear receive machinery
2596 	 *    drain and release tx queues
2597 	 *    reclaim beacon resources
2598 	 *    power down hardware
2599 	 *
2600 	 * Note that some of this work is not possible if the
2601 	 * hardware is gone (invalid).
2602 	 */
2603 	ieee80211_stop_queues(ah->hw);
2604 
2605 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2606 		ath5k_led_off(ah);
2607 		ath5k_hw_set_imr(ah, 0);
2608 		synchronize_irq(ah->irq);
2609 		ath5k_rx_stop(ah);
2610 		ath5k_hw_dma_stop(ah);
2611 		ath5k_drain_tx_buffs(ah);
2612 		ath5k_hw_phy_disable(ah);
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 int ath5k_start(struct ieee80211_hw *hw)
2619 {
2620 	struct ath5k_hw *ah = hw->priv;
2621 	struct ath_common *common = ath5k_hw_common(ah);
2622 	int ret, i;
2623 
2624 	mutex_lock(&ah->lock);
2625 
2626 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2627 
2628 	/*
2629 	 * Stop anything previously setup.  This is safe
2630 	 * no matter this is the first time through or not.
2631 	 */
2632 	ath5k_stop_locked(ah);
2633 
2634 	/*
2635 	 * The basic interface to setting the hardware in a good
2636 	 * state is ``reset''.  On return the hardware is known to
2637 	 * be powered up and with interrupts disabled.  This must
2638 	 * be followed by initialization of the appropriate bits
2639 	 * and then setup of the interrupt mask.
2640 	 */
2641 	ah->curchan = ah->hw->conf.channel;
2642 	ah->imask = AR5K_INT_RXOK
2643 		| AR5K_INT_RXERR
2644 		| AR5K_INT_RXEOL
2645 		| AR5K_INT_RXORN
2646 		| AR5K_INT_TXDESC
2647 		| AR5K_INT_TXEOL
2648 		| AR5K_INT_FATAL
2649 		| AR5K_INT_GLOBAL
2650 		| AR5K_INT_MIB;
2651 
2652 	ret = ath5k_reset(ah, NULL, false);
2653 	if (ret)
2654 		goto done;
2655 
2656 	if (!ath5k_modparam_no_hw_rfkill_switch)
2657 		ath5k_rfkill_hw_start(ah);
2658 
2659 	/*
2660 	 * Reset the key cache since some parts do not reset the
2661 	 * contents on initial power up or resume from suspend.
2662 	 */
2663 	for (i = 0; i < common->keymax; i++)
2664 		ath_hw_keyreset(common, (u16) i);
2665 
2666 	/* Use higher rates for acks instead of base
2667 	 * rate */
2668 	ah->ah_ack_bitrate_high = true;
2669 
2670 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2671 		ah->bslot[i] = NULL;
2672 
2673 	ret = 0;
2674 done:
2675 	mmiowb();
2676 	mutex_unlock(&ah->lock);
2677 
2678 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2679 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2680 
2681 	return ret;
2682 }
2683 
2684 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2685 {
2686 	ah->rx_pending = false;
2687 	ah->tx_pending = false;
2688 	tasklet_kill(&ah->rxtq);
2689 	tasklet_kill(&ah->txtq);
2690 	tasklet_kill(&ah->beacontq);
2691 	tasklet_kill(&ah->ani_tasklet);
2692 }
2693 
2694 /*
2695  * Stop the device, grabbing the top-level lock to protect
2696  * against concurrent entry through ath5k_init (which can happen
2697  * if another thread does a system call and the thread doing the
2698  * stop is preempted).
2699  */
2700 void ath5k_stop(struct ieee80211_hw *hw)
2701 {
2702 	struct ath5k_hw *ah = hw->priv;
2703 	int ret;
2704 
2705 	mutex_lock(&ah->lock);
2706 	ret = ath5k_stop_locked(ah);
2707 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2708 		/*
2709 		 * Don't set the card in full sleep mode!
2710 		 *
2711 		 * a) When the device is in this state it must be carefully
2712 		 * woken up or references to registers in the PCI clock
2713 		 * domain may freeze the bus (and system).  This varies
2714 		 * by chip and is mostly an issue with newer parts
2715 		 * (madwifi sources mentioned srev >= 0x78) that go to
2716 		 * sleep more quickly.
2717 		 *
2718 		 * b) On older chips full sleep results a weird behaviour
2719 		 * during wakeup. I tested various cards with srev < 0x78
2720 		 * and they don't wake up after module reload, a second
2721 		 * module reload is needed to bring the card up again.
2722 		 *
2723 		 * Until we figure out what's going on don't enable
2724 		 * full chip reset on any chip (this is what Legacy HAL
2725 		 * and Sam's HAL do anyway). Instead Perform a full reset
2726 		 * on the device (same as initial state after attach) and
2727 		 * leave it idle (keep MAC/BB on warm reset) */
2728 		ret = ath5k_hw_on_hold(ah);
2729 
2730 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2731 				"putting device to sleep\n");
2732 	}
2733 
2734 	mmiowb();
2735 	mutex_unlock(&ah->lock);
2736 
2737 	ath5k_stop_tasklets(ah);
2738 
2739 	cancel_delayed_work_sync(&ah->tx_complete_work);
2740 
2741 	if (!ath5k_modparam_no_hw_rfkill_switch)
2742 		ath5k_rfkill_hw_stop(ah);
2743 }
2744 
2745 /*
2746  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2747  * and change to the given channel.
2748  *
2749  * This should be called with ah->lock.
2750  */
2751 static int
2752 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2753 							bool skip_pcu)
2754 {
2755 	struct ath_common *common = ath5k_hw_common(ah);
2756 	int ret, ani_mode;
2757 	bool fast;
2758 
2759 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2760 
2761 	ath5k_hw_set_imr(ah, 0);
2762 	synchronize_irq(ah->irq);
2763 	ath5k_stop_tasklets(ah);
2764 
2765 	/* Save ani mode and disable ANI during
2766 	 * reset. If we don't we might get false
2767 	 * PHY error interrupts. */
2768 	ani_mode = ah->ani_state.ani_mode;
2769 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2770 
2771 	/* We are going to empty hw queues
2772 	 * so we should also free any remaining
2773 	 * tx buffers */
2774 	ath5k_drain_tx_buffs(ah);
2775 	if (chan)
2776 		ah->curchan = chan;
2777 
2778 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2779 
2780 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2781 	if (ret) {
2782 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2783 		goto err;
2784 	}
2785 
2786 	ret = ath5k_rx_start(ah);
2787 	if (ret) {
2788 		ATH5K_ERR(ah, "can't start recv logic\n");
2789 		goto err;
2790 	}
2791 
2792 	ath5k_ani_init(ah, ani_mode);
2793 
2794 	/*
2795 	 * Set calibration intervals
2796 	 *
2797 	 * Note: We don't need to run calibration imediately
2798 	 * since some initial calibration is done on reset
2799 	 * even for fast channel switching. Also on scanning
2800 	 * this will get set again and again and it won't get
2801 	 * executed unless we connect somewhere and spend some
2802 	 * time on the channel (that's what calibration needs
2803 	 * anyway to be accurate).
2804 	 */
2805 	ah->ah_cal_next_full = jiffies +
2806 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2807 	ah->ah_cal_next_ani = jiffies +
2808 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2809 	ah->ah_cal_next_short = jiffies +
2810 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2811 
2812 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2813 
2814 	/* clear survey data and cycle counters */
2815 	memset(&ah->survey, 0, sizeof(ah->survey));
2816 	spin_lock_bh(&common->cc_lock);
2817 	ath_hw_cycle_counters_update(common);
2818 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2819 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2820 	spin_unlock_bh(&common->cc_lock);
2821 
2822 	/*
2823 	 * Change channels and update the h/w rate map if we're switching;
2824 	 * e.g. 11a to 11b/g.
2825 	 *
2826 	 * We may be doing a reset in response to an ioctl that changes the
2827 	 * channel so update any state that might change as a result.
2828 	 *
2829 	 * XXX needed?
2830 	 */
2831 /*	ath5k_chan_change(ah, c); */
2832 
2833 	ath5k_beacon_config(ah);
2834 	/* intrs are enabled by ath5k_beacon_config */
2835 
2836 	ieee80211_wake_queues(ah->hw);
2837 
2838 	return 0;
2839 err:
2840 	return ret;
2841 }
2842 
2843 static void ath5k_reset_work(struct work_struct *work)
2844 {
2845 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2846 		reset_work);
2847 
2848 	mutex_lock(&ah->lock);
2849 	ath5k_reset(ah, NULL, true);
2850 	mutex_unlock(&ah->lock);
2851 }
2852 
2853 static int
2854 ath5k_init(struct ieee80211_hw *hw)
2855 {
2856 
2857 	struct ath5k_hw *ah = hw->priv;
2858 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2859 	struct ath5k_txq *txq;
2860 	u8 mac[ETH_ALEN] = {};
2861 	int ret;
2862 
2863 
2864 	/*
2865 	 * Collect the channel list.  The 802.11 layer
2866 	 * is responsible for filtering this list based
2867 	 * on settings like the phy mode and regulatory
2868 	 * domain restrictions.
2869 	 */
2870 	ret = ath5k_setup_bands(hw);
2871 	if (ret) {
2872 		ATH5K_ERR(ah, "can't get channels\n");
2873 		goto err;
2874 	}
2875 
2876 	/*
2877 	 * Allocate tx+rx descriptors and populate the lists.
2878 	 */
2879 	ret = ath5k_desc_alloc(ah);
2880 	if (ret) {
2881 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2882 		goto err;
2883 	}
2884 
2885 	/*
2886 	 * Allocate hardware transmit queues: one queue for
2887 	 * beacon frames and one data queue for each QoS
2888 	 * priority.  Note that hw functions handle resetting
2889 	 * these queues at the needed time.
2890 	 */
2891 	ret = ath5k_beaconq_setup(ah);
2892 	if (ret < 0) {
2893 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2894 		goto err_desc;
2895 	}
2896 	ah->bhalq = ret;
2897 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2898 	if (IS_ERR(ah->cabq)) {
2899 		ATH5K_ERR(ah, "can't setup cab queue\n");
2900 		ret = PTR_ERR(ah->cabq);
2901 		goto err_bhal;
2902 	}
2903 
2904 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2905 	 * capability information */
2906 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2907 		/* This order matches mac80211's queue priority, so we can
2908 		* directly use the mac80211 queue number without any mapping */
2909 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2910 		if (IS_ERR(txq)) {
2911 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2912 			ret = PTR_ERR(txq);
2913 			goto err_queues;
2914 		}
2915 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2916 		if (IS_ERR(txq)) {
2917 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2918 			ret = PTR_ERR(txq);
2919 			goto err_queues;
2920 		}
2921 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2922 		if (IS_ERR(txq)) {
2923 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2924 			ret = PTR_ERR(txq);
2925 			goto err_queues;
2926 		}
2927 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2928 		if (IS_ERR(txq)) {
2929 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2930 			ret = PTR_ERR(txq);
2931 			goto err_queues;
2932 		}
2933 		hw->queues = 4;
2934 	} else {
2935 		/* older hardware (5210) can only support one data queue */
2936 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2937 		if (IS_ERR(txq)) {
2938 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2939 			ret = PTR_ERR(txq);
2940 			goto err_queues;
2941 		}
2942 		hw->queues = 1;
2943 	}
2944 
2945 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2946 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2947 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2948 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2949 
2950 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2951 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2952 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2953 
2954 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2955 	if (ret) {
2956 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2957 		goto err_queues;
2958 	}
2959 
2960 	SET_IEEE80211_PERM_ADDR(hw, mac);
2961 	/* All MAC address bits matter for ACKs */
2962 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2963 
2964 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2965 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2966 	if (ret) {
2967 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2968 		goto err_queues;
2969 	}
2970 
2971 	ret = ieee80211_register_hw(hw);
2972 	if (ret) {
2973 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2974 		goto err_queues;
2975 	}
2976 
2977 	if (!ath_is_world_regd(regulatory))
2978 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2979 
2980 	ath5k_init_leds(ah);
2981 
2982 	ath5k_sysfs_register(ah);
2983 
2984 	return 0;
2985 err_queues:
2986 	ath5k_txq_release(ah);
2987 err_bhal:
2988 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2989 err_desc:
2990 	ath5k_desc_free(ah);
2991 err:
2992 	return ret;
2993 }
2994 
2995 void
2996 ath5k_deinit_ah(struct ath5k_hw *ah)
2997 {
2998 	struct ieee80211_hw *hw = ah->hw;
2999 
3000 	/*
3001 	 * NB: the order of these is important:
3002 	 * o call the 802.11 layer before detaching ath5k_hw to
3003 	 *   ensure callbacks into the driver to delete global
3004 	 *   key cache entries can be handled
3005 	 * o reclaim the tx queue data structures after calling
3006 	 *   the 802.11 layer as we'll get called back to reclaim
3007 	 *   node state and potentially want to use them
3008 	 * o to cleanup the tx queues the hal is called, so detach
3009 	 *   it last
3010 	 * XXX: ??? detach ath5k_hw ???
3011 	 * Other than that, it's straightforward...
3012 	 */
3013 	ieee80211_unregister_hw(hw);
3014 	ath5k_desc_free(ah);
3015 	ath5k_txq_release(ah);
3016 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3017 	ath5k_unregister_leds(ah);
3018 
3019 	ath5k_sysfs_unregister(ah);
3020 	/*
3021 	 * NB: can't reclaim these until after ieee80211_ifdetach
3022 	 * returns because we'll get called back to reclaim node
3023 	 * state and potentially want to use them.
3024 	 */
3025 	ath5k_hw_deinit(ah);
3026 	free_irq(ah->irq, ah);
3027 }
3028 
3029 bool
3030 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3031 {
3032 	struct ath5k_vif_iter_data iter_data;
3033 	iter_data.hw_macaddr = NULL;
3034 	iter_data.any_assoc = false;
3035 	iter_data.need_set_hw_addr = false;
3036 	iter_data.found_active = true;
3037 
3038 	ieee80211_iterate_active_interfaces_atomic(
3039 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3040 		ath5k_vif_iter, &iter_data);
3041 	return iter_data.any_assoc;
3042 }
3043 
3044 void
3045 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3046 {
3047 	struct ath5k_hw *ah = hw->priv;
3048 	u32 rfilt;
3049 	rfilt = ath5k_hw_get_rx_filter(ah);
3050 	if (enable)
3051 		rfilt |= AR5K_RX_FILTER_BEACON;
3052 	else
3053 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3054 	ath5k_hw_set_rx_filter(ah, rfilt);
3055 	ah->filter_flags = rfilt;
3056 }
3057 
3058 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3059 		   const char *fmt, ...)
3060 {
3061 	struct va_format vaf;
3062 	va_list args;
3063 
3064 	va_start(args, fmt);
3065 
3066 	vaf.fmt = fmt;
3067 	vaf.va = &args;
3068 
3069 	if (ah && ah->hw)
3070 		printk("%s" pr_fmt("%s: %pV"),
3071 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3072 	else
3073 		printk("%s" pr_fmt("%pV"), level, &vaf);
3074 
3075 	va_end(args);
3076 }
3077