1 /*- 2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 3 * Copyright (c) 2004-2005 Atheros Communications, Inc. 4 * Copyright (c) 2006 Devicescape Software, Inc. 5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 7 * 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer, 15 * without modification. 16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 18 * redistribution must be conditioned upon including a substantially 19 * similar Disclaimer requirement for further binary redistribution. 20 * 3. Neither the names of the above-listed copyright holders nor the names 21 * of any contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * Alternatively, this software may be distributed under the terms of the 25 * GNU General Public License ("GPL") version 2 as published by the Free 26 * Software Foundation. 27 * 28 * NO WARRANTY 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 39 * THE POSSIBILITY OF SUCH DAMAGES. 40 * 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/module.h> 46 #include <linux/delay.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/hardirq.h> 49 #include <linux/if.h> 50 #include <linux/io.h> 51 #include <linux/netdevice.h> 52 #include <linux/cache.h> 53 #include <linux/ethtool.h> 54 #include <linux/uaccess.h> 55 #include <linux/slab.h> 56 #include <linux/etherdevice.h> 57 #include <linux/nl80211.h> 58 59 #include <net/ieee80211_radiotap.h> 60 61 #include <asm/unaligned.h> 62 63 #include "base.h" 64 #include "reg.h" 65 #include "debug.h" 66 #include "ani.h" 67 #include "ath5k.h" 68 #include "../regd.h" 69 70 #define CREATE_TRACE_POINTS 71 #include "trace.h" 72 73 bool ath5k_modparam_nohwcrypt; 74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO); 75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 76 77 static bool modparam_fastchanswitch; 78 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO); 79 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios."); 80 81 static bool ath5k_modparam_no_hw_rfkill_switch; 82 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch, 83 bool, S_IRUGO); 84 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state"); 85 86 87 /* Module info */ 88 MODULE_AUTHOR("Jiri Slaby"); 89 MODULE_AUTHOR("Nick Kossifidis"); 90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards."); 91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards"); 92 MODULE_LICENSE("Dual BSD/GPL"); 93 94 static int ath5k_init(struct ieee80211_hw *hw); 95 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 96 bool skip_pcu); 97 98 /* Known SREVs */ 99 static const struct ath5k_srev_name srev_names[] = { 100 #ifdef CONFIG_ATHEROS_AR231X 101 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 }, 102 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 }, 103 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 }, 104 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 }, 105 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 }, 106 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 }, 107 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 }, 108 #else 109 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 }, 110 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 }, 111 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A }, 112 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B }, 113 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 }, 114 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 }, 115 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 }, 116 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A }, 117 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 }, 118 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 }, 119 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 }, 120 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 }, 121 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 }, 122 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 }, 123 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 }, 124 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 }, 125 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 }, 126 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 }, 127 #endif 128 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN }, 129 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 }, 130 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 }, 131 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A }, 132 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 }, 133 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 }, 134 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A }, 135 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B }, 136 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 }, 137 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A }, 138 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B }, 139 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 }, 140 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 }, 141 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 }, 142 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 }, 143 #ifdef CONFIG_ATHEROS_AR231X 144 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 }, 145 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 }, 146 #endif 147 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN }, 148 }; 149 150 static const struct ieee80211_rate ath5k_rates[] = { 151 { .bitrate = 10, 152 .hw_value = ATH5K_RATE_CODE_1M, }, 153 { .bitrate = 20, 154 .hw_value = ATH5K_RATE_CODE_2M, 155 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE, 156 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 157 { .bitrate = 55, 158 .hw_value = ATH5K_RATE_CODE_5_5M, 159 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE, 160 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 161 { .bitrate = 110, 162 .hw_value = ATH5K_RATE_CODE_11M, 163 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE, 164 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 165 { .bitrate = 60, 166 .hw_value = ATH5K_RATE_CODE_6M, 167 .flags = 0 }, 168 { .bitrate = 90, 169 .hw_value = ATH5K_RATE_CODE_9M, 170 .flags = 0 }, 171 { .bitrate = 120, 172 .hw_value = ATH5K_RATE_CODE_12M, 173 .flags = 0 }, 174 { .bitrate = 180, 175 .hw_value = ATH5K_RATE_CODE_18M, 176 .flags = 0 }, 177 { .bitrate = 240, 178 .hw_value = ATH5K_RATE_CODE_24M, 179 .flags = 0 }, 180 { .bitrate = 360, 181 .hw_value = ATH5K_RATE_CODE_36M, 182 .flags = 0 }, 183 { .bitrate = 480, 184 .hw_value = ATH5K_RATE_CODE_48M, 185 .flags = 0 }, 186 { .bitrate = 540, 187 .hw_value = ATH5K_RATE_CODE_54M, 188 .flags = 0 }, 189 }; 190 191 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp) 192 { 193 u64 tsf = ath5k_hw_get_tsf64(ah); 194 195 if ((tsf & 0x7fff) < rstamp) 196 tsf -= 0x8000; 197 198 return (tsf & ~0x7fff) | rstamp; 199 } 200 201 const char * 202 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val) 203 { 204 const char *name = "xxxxx"; 205 unsigned int i; 206 207 for (i = 0; i < ARRAY_SIZE(srev_names); i++) { 208 if (srev_names[i].sr_type != type) 209 continue; 210 211 if ((val & 0xf0) == srev_names[i].sr_val) 212 name = srev_names[i].sr_name; 213 214 if ((val & 0xff) == srev_names[i].sr_val) { 215 name = srev_names[i].sr_name; 216 break; 217 } 218 } 219 220 return name; 221 } 222 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset) 223 { 224 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 225 return ath5k_hw_reg_read(ah, reg_offset); 226 } 227 228 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) 229 { 230 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 231 ath5k_hw_reg_write(ah, val, reg_offset); 232 } 233 234 static const struct ath_ops ath5k_common_ops = { 235 .read = ath5k_ioread32, 236 .write = ath5k_iowrite32, 237 }; 238 239 /***********************\ 240 * Driver Initialization * 241 \***********************/ 242 243 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) 244 { 245 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 246 struct ath5k_hw *ah = hw->priv; 247 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 248 249 return ath_reg_notifier_apply(wiphy, request, regulatory); 250 } 251 252 /********************\ 253 * Channel/mode setup * 254 \********************/ 255 256 /* 257 * Returns true for the channel numbers used. 258 */ 259 #ifdef CONFIG_ATH5K_TEST_CHANNELS 260 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) 261 { 262 return true; 263 } 264 265 #else 266 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) 267 { 268 if (band == IEEE80211_BAND_2GHZ && chan <= 14) 269 return true; 270 271 return /* UNII 1,2 */ 272 (((chan & 3) == 0 && chan >= 36 && chan <= 64) || 273 /* midband */ 274 ((chan & 3) == 0 && chan >= 100 && chan <= 140) || 275 /* UNII-3 */ 276 ((chan & 3) == 1 && chan >= 149 && chan <= 165) || 277 /* 802.11j 5.030-5.080 GHz (20MHz) */ 278 (chan == 8 || chan == 12 || chan == 16) || 279 /* 802.11j 4.9GHz (20MHz) */ 280 (chan == 184 || chan == 188 || chan == 192 || chan == 196)); 281 } 282 #endif 283 284 static unsigned int 285 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, 286 unsigned int mode, unsigned int max) 287 { 288 unsigned int count, size, freq, ch; 289 enum ieee80211_band band; 290 291 switch (mode) { 292 case AR5K_MODE_11A: 293 /* 1..220, but 2GHz frequencies are filtered by check_channel */ 294 size = 220; 295 band = IEEE80211_BAND_5GHZ; 296 break; 297 case AR5K_MODE_11B: 298 case AR5K_MODE_11G: 299 size = 26; 300 band = IEEE80211_BAND_2GHZ; 301 break; 302 default: 303 ATH5K_WARN(ah, "bad mode, not copying channels\n"); 304 return 0; 305 } 306 307 count = 0; 308 for (ch = 1; ch <= size && count < max; ch++) { 309 freq = ieee80211_channel_to_frequency(ch, band); 310 311 if (freq == 0) /* mapping failed - not a standard channel */ 312 continue; 313 314 /* Write channel info, needed for ath5k_channel_ok() */ 315 channels[count].center_freq = freq; 316 channels[count].band = band; 317 channels[count].hw_value = mode; 318 319 /* Check if channel is supported by the chipset */ 320 if (!ath5k_channel_ok(ah, &channels[count])) 321 continue; 322 323 if (!ath5k_is_standard_channel(ch, band)) 324 continue; 325 326 count++; 327 } 328 329 return count; 330 } 331 332 static void 333 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b) 334 { 335 u8 i; 336 337 for (i = 0; i < AR5K_MAX_RATES; i++) 338 ah->rate_idx[b->band][i] = -1; 339 340 for (i = 0; i < b->n_bitrates; i++) { 341 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i; 342 if (b->bitrates[i].hw_value_short) 343 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i; 344 } 345 } 346 347 static int 348 ath5k_setup_bands(struct ieee80211_hw *hw) 349 { 350 struct ath5k_hw *ah = hw->priv; 351 struct ieee80211_supported_band *sband; 352 int max_c, count_c = 0; 353 int i; 354 355 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS); 356 max_c = ARRAY_SIZE(ah->channels); 357 358 /* 2GHz band */ 359 sband = &ah->sbands[IEEE80211_BAND_2GHZ]; 360 sband->band = IEEE80211_BAND_2GHZ; 361 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0]; 362 363 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) { 364 /* G mode */ 365 memcpy(sband->bitrates, &ath5k_rates[0], 366 sizeof(struct ieee80211_rate) * 12); 367 sband->n_bitrates = 12; 368 369 sband->channels = ah->channels; 370 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 371 AR5K_MODE_11G, max_c); 372 373 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 374 count_c = sband->n_channels; 375 max_c -= count_c; 376 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) { 377 /* B mode */ 378 memcpy(sband->bitrates, &ath5k_rates[0], 379 sizeof(struct ieee80211_rate) * 4); 380 sband->n_bitrates = 4; 381 382 /* 5211 only supports B rates and uses 4bit rate codes 383 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B) 384 * fix them up here: 385 */ 386 if (ah->ah_version == AR5K_AR5211) { 387 for (i = 0; i < 4; i++) { 388 sband->bitrates[i].hw_value = 389 sband->bitrates[i].hw_value & 0xF; 390 sband->bitrates[i].hw_value_short = 391 sband->bitrates[i].hw_value_short & 0xF; 392 } 393 } 394 395 sband->channels = ah->channels; 396 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 397 AR5K_MODE_11B, max_c); 398 399 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 400 count_c = sband->n_channels; 401 max_c -= count_c; 402 } 403 ath5k_setup_rate_idx(ah, sband); 404 405 /* 5GHz band, A mode */ 406 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) { 407 sband = &ah->sbands[IEEE80211_BAND_5GHZ]; 408 sband->band = IEEE80211_BAND_5GHZ; 409 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0]; 410 411 memcpy(sband->bitrates, &ath5k_rates[4], 412 sizeof(struct ieee80211_rate) * 8); 413 sband->n_bitrates = 8; 414 415 sband->channels = &ah->channels[count_c]; 416 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 417 AR5K_MODE_11A, max_c); 418 419 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; 420 } 421 ath5k_setup_rate_idx(ah, sband); 422 423 ath5k_debug_dump_bands(ah); 424 425 return 0; 426 } 427 428 /* 429 * Set/change channels. We always reset the chip. 430 * To accomplish this we must first cleanup any pending DMA, 431 * then restart stuff after a la ath5k_init. 432 * 433 * Called with ah->lock. 434 */ 435 int 436 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan) 437 { 438 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 439 "channel set, resetting (%u -> %u MHz)\n", 440 ah->curchan->center_freq, chan->center_freq); 441 442 /* 443 * To switch channels clear any pending DMA operations; 444 * wait long enough for the RX fifo to drain, reset the 445 * hardware at the new frequency, and then re-enable 446 * the relevant bits of the h/w. 447 */ 448 return ath5k_reset(ah, chan, true); 449 } 450 451 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 452 { 453 struct ath5k_vif_iter_data *iter_data = data; 454 int i; 455 struct ath5k_vif *avf = (void *)vif->drv_priv; 456 457 if (iter_data->hw_macaddr) 458 for (i = 0; i < ETH_ALEN; i++) 459 iter_data->mask[i] &= 460 ~(iter_data->hw_macaddr[i] ^ mac[i]); 461 462 if (!iter_data->found_active) { 463 iter_data->found_active = true; 464 memcpy(iter_data->active_mac, mac, ETH_ALEN); 465 } 466 467 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr) 468 if (ether_addr_equal(iter_data->hw_macaddr, mac)) 469 iter_data->need_set_hw_addr = false; 470 471 if (!iter_data->any_assoc) { 472 if (avf->assoc) 473 iter_data->any_assoc = true; 474 } 475 476 /* Calculate combined mode - when APs are active, operate in AP mode. 477 * Otherwise use the mode of the new interface. This can currently 478 * only deal with combinations of APs and STAs. Only one ad-hoc 479 * interfaces is allowed. 480 */ 481 if (avf->opmode == NL80211_IFTYPE_AP) 482 iter_data->opmode = NL80211_IFTYPE_AP; 483 else { 484 if (avf->opmode == NL80211_IFTYPE_STATION) 485 iter_data->n_stas++; 486 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED) 487 iter_data->opmode = avf->opmode; 488 } 489 } 490 491 void 492 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah, 493 struct ieee80211_vif *vif) 494 { 495 struct ath_common *common = ath5k_hw_common(ah); 496 struct ath5k_vif_iter_data iter_data; 497 u32 rfilt; 498 499 /* 500 * Use the hardware MAC address as reference, the hardware uses it 501 * together with the BSSID mask when matching addresses. 502 */ 503 iter_data.hw_macaddr = common->macaddr; 504 memset(&iter_data.mask, 0xff, ETH_ALEN); 505 iter_data.found_active = false; 506 iter_data.need_set_hw_addr = true; 507 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED; 508 iter_data.n_stas = 0; 509 510 if (vif) 511 ath5k_vif_iter(&iter_data, vif->addr, vif); 512 513 /* Get list of all active MAC addresses */ 514 ieee80211_iterate_active_interfaces_atomic( 515 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 516 ath5k_vif_iter, &iter_data); 517 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN); 518 519 ah->opmode = iter_data.opmode; 520 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED) 521 /* Nothing active, default to station mode */ 522 ah->opmode = NL80211_IFTYPE_STATION; 523 524 ath5k_hw_set_opmode(ah, ah->opmode); 525 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n", 526 ah->opmode, ath_opmode_to_string(ah->opmode)); 527 528 if (iter_data.need_set_hw_addr && iter_data.found_active) 529 ath5k_hw_set_lladdr(ah, iter_data.active_mac); 530 531 if (ath5k_hw_hasbssidmask(ah)) 532 ath5k_hw_set_bssid_mask(ah, ah->bssidmask); 533 534 /* Set up RX Filter */ 535 if (iter_data.n_stas > 1) { 536 /* If you have multiple STA interfaces connected to 537 * different APs, ARPs are not received (most of the time?) 538 * Enabling PROMISC appears to fix that problem. 539 */ 540 ah->filter_flags |= AR5K_RX_FILTER_PROM; 541 } 542 543 rfilt = ah->filter_flags; 544 ath5k_hw_set_rx_filter(ah, rfilt); 545 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt); 546 } 547 548 static inline int 549 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix) 550 { 551 int rix; 552 553 /* return base rate on errors */ 554 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, 555 "hw_rix out of bounds: %x\n", hw_rix)) 556 return 0; 557 558 rix = ah->rate_idx[ah->curchan->band][hw_rix]; 559 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix)) 560 rix = 0; 561 562 return rix; 563 } 564 565 /***************\ 566 * Buffers setup * 567 \***************/ 568 569 static 570 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr) 571 { 572 struct ath_common *common = ath5k_hw_common(ah); 573 struct sk_buff *skb; 574 575 /* 576 * Allocate buffer with headroom_needed space for the 577 * fake physical layer header at the start. 578 */ 579 skb = ath_rxbuf_alloc(common, 580 common->rx_bufsize, 581 GFP_ATOMIC); 582 583 if (!skb) { 584 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n", 585 common->rx_bufsize); 586 return NULL; 587 } 588 589 *skb_addr = dma_map_single(ah->dev, 590 skb->data, common->rx_bufsize, 591 DMA_FROM_DEVICE); 592 593 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) { 594 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__); 595 dev_kfree_skb(skb); 596 return NULL; 597 } 598 return skb; 599 } 600 601 static int 602 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 603 { 604 struct sk_buff *skb = bf->skb; 605 struct ath5k_desc *ds; 606 int ret; 607 608 if (!skb) { 609 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr); 610 if (!skb) 611 return -ENOMEM; 612 bf->skb = skb; 613 } 614 615 /* 616 * Setup descriptors. For receive we always terminate 617 * the descriptor list with a self-linked entry so we'll 618 * not get overrun under high load (as can happen with a 619 * 5212 when ANI processing enables PHY error frames). 620 * 621 * To ensure the last descriptor is self-linked we create 622 * each descriptor as self-linked and add it to the end. As 623 * each additional descriptor is added the previous self-linked 624 * entry is "fixed" naturally. This should be safe even 625 * if DMA is happening. When processing RX interrupts we 626 * never remove/process the last, self-linked, entry on the 627 * descriptor list. This ensures the hardware always has 628 * someplace to write a new frame. 629 */ 630 ds = bf->desc; 631 ds->ds_link = bf->daddr; /* link to self */ 632 ds->ds_data = bf->skbaddr; 633 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0); 634 if (ret) { 635 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__); 636 return ret; 637 } 638 639 if (ah->rxlink != NULL) 640 *ah->rxlink = bf->daddr; 641 ah->rxlink = &ds->ds_link; 642 return 0; 643 } 644 645 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb) 646 { 647 struct ieee80211_hdr *hdr; 648 enum ath5k_pkt_type htype; 649 __le16 fc; 650 651 hdr = (struct ieee80211_hdr *)skb->data; 652 fc = hdr->frame_control; 653 654 if (ieee80211_is_beacon(fc)) 655 htype = AR5K_PKT_TYPE_BEACON; 656 else if (ieee80211_is_probe_resp(fc)) 657 htype = AR5K_PKT_TYPE_PROBE_RESP; 658 else if (ieee80211_is_atim(fc)) 659 htype = AR5K_PKT_TYPE_ATIM; 660 else if (ieee80211_is_pspoll(fc)) 661 htype = AR5K_PKT_TYPE_PSPOLL; 662 else 663 htype = AR5K_PKT_TYPE_NORMAL; 664 665 return htype; 666 } 667 668 static int 669 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf, 670 struct ath5k_txq *txq, int padsize) 671 { 672 struct ath5k_desc *ds = bf->desc; 673 struct sk_buff *skb = bf->skb; 674 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 675 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID; 676 struct ieee80211_rate *rate; 677 unsigned int mrr_rate[3], mrr_tries[3]; 678 int i, ret; 679 u16 hw_rate; 680 u16 cts_rate = 0; 681 u16 duration = 0; 682 u8 rc_flags; 683 684 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK; 685 686 /* XXX endianness */ 687 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 688 DMA_TO_DEVICE); 689 690 rate = ieee80211_get_tx_rate(ah->hw, info); 691 if (!rate) { 692 ret = -EINVAL; 693 goto err_unmap; 694 } 695 696 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 697 flags |= AR5K_TXDESC_NOACK; 698 699 rc_flags = info->control.rates[0].flags; 700 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ? 701 rate->hw_value_short : rate->hw_value; 702 703 pktlen = skb->len; 704 705 /* FIXME: If we are in g mode and rate is a CCK rate 706 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 707 * from tx power (value is in dB units already) */ 708 if (info->control.hw_key) { 709 keyidx = info->control.hw_key->hw_key_idx; 710 pktlen += info->control.hw_key->icv_len; 711 } 712 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 713 flags |= AR5K_TXDESC_RTSENA; 714 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 715 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw, 716 info->control.vif, pktlen, info)); 717 } 718 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 719 flags |= AR5K_TXDESC_CTSENA; 720 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 721 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw, 722 info->control.vif, pktlen, info)); 723 } 724 ret = ah->ah_setup_tx_desc(ah, ds, pktlen, 725 ieee80211_get_hdrlen_from_skb(skb), padsize, 726 get_hw_packet_type(skb), 727 (ah->ah_txpower.txp_requested * 2), 728 hw_rate, 729 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags, 730 cts_rate, duration); 731 if (ret) 732 goto err_unmap; 733 734 /* Set up MRR descriptor */ 735 if (ah->ah_capabilities.cap_has_mrr_support) { 736 memset(mrr_rate, 0, sizeof(mrr_rate)); 737 memset(mrr_tries, 0, sizeof(mrr_tries)); 738 for (i = 0; i < 3; i++) { 739 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i); 740 if (!rate) 741 break; 742 743 mrr_rate[i] = rate->hw_value; 744 mrr_tries[i] = info->control.rates[i + 1].count; 745 } 746 747 ath5k_hw_setup_mrr_tx_desc(ah, ds, 748 mrr_rate[0], mrr_tries[0], 749 mrr_rate[1], mrr_tries[1], 750 mrr_rate[2], mrr_tries[2]); 751 } 752 753 ds->ds_link = 0; 754 ds->ds_data = bf->skbaddr; 755 756 spin_lock_bh(&txq->lock); 757 list_add_tail(&bf->list, &txq->q); 758 txq->txq_len++; 759 if (txq->link == NULL) /* is this first packet? */ 760 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr); 761 else /* no, so only link it */ 762 *txq->link = bf->daddr; 763 764 txq->link = &ds->ds_link; 765 ath5k_hw_start_tx_dma(ah, txq->qnum); 766 mmiowb(); 767 spin_unlock_bh(&txq->lock); 768 769 return 0; 770 err_unmap: 771 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 772 return ret; 773 } 774 775 /*******************\ 776 * Descriptors setup * 777 \*******************/ 778 779 static int 780 ath5k_desc_alloc(struct ath5k_hw *ah) 781 { 782 struct ath5k_desc *ds; 783 struct ath5k_buf *bf; 784 dma_addr_t da; 785 unsigned int i; 786 int ret; 787 788 /* allocate descriptors */ 789 ah->desc_len = sizeof(struct ath5k_desc) * 790 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1); 791 792 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len, 793 &ah->desc_daddr, GFP_KERNEL); 794 if (ah->desc == NULL) { 795 ATH5K_ERR(ah, "can't allocate descriptors\n"); 796 ret = -ENOMEM; 797 goto err; 798 } 799 ds = ah->desc; 800 da = ah->desc_daddr; 801 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n", 802 ds, ah->desc_len, (unsigned long long)ah->desc_daddr); 803 804 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF, 805 sizeof(struct ath5k_buf), GFP_KERNEL); 806 if (bf == NULL) { 807 ATH5K_ERR(ah, "can't allocate bufptr\n"); 808 ret = -ENOMEM; 809 goto err_free; 810 } 811 ah->bufptr = bf; 812 813 INIT_LIST_HEAD(&ah->rxbuf); 814 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 815 bf->desc = ds; 816 bf->daddr = da; 817 list_add_tail(&bf->list, &ah->rxbuf); 818 } 819 820 INIT_LIST_HEAD(&ah->txbuf); 821 ah->txbuf_len = ATH_TXBUF; 822 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 823 bf->desc = ds; 824 bf->daddr = da; 825 list_add_tail(&bf->list, &ah->txbuf); 826 } 827 828 /* beacon buffers */ 829 INIT_LIST_HEAD(&ah->bcbuf); 830 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) { 831 bf->desc = ds; 832 bf->daddr = da; 833 list_add_tail(&bf->list, &ah->bcbuf); 834 } 835 836 return 0; 837 err_free: 838 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 839 err: 840 ah->desc = NULL; 841 return ret; 842 } 843 844 void 845 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 846 { 847 BUG_ON(!bf); 848 if (!bf->skb) 849 return; 850 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len, 851 DMA_TO_DEVICE); 852 ieee80211_free_txskb(ah->hw, bf->skb); 853 bf->skb = NULL; 854 bf->skbaddr = 0; 855 bf->desc->ds_data = 0; 856 } 857 858 void 859 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 860 { 861 struct ath_common *common = ath5k_hw_common(ah); 862 863 BUG_ON(!bf); 864 if (!bf->skb) 865 return; 866 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize, 867 DMA_FROM_DEVICE); 868 dev_kfree_skb_any(bf->skb); 869 bf->skb = NULL; 870 bf->skbaddr = 0; 871 bf->desc->ds_data = 0; 872 } 873 874 static void 875 ath5k_desc_free(struct ath5k_hw *ah) 876 { 877 struct ath5k_buf *bf; 878 879 list_for_each_entry(bf, &ah->txbuf, list) 880 ath5k_txbuf_free_skb(ah, bf); 881 list_for_each_entry(bf, &ah->rxbuf, list) 882 ath5k_rxbuf_free_skb(ah, bf); 883 list_for_each_entry(bf, &ah->bcbuf, list) 884 ath5k_txbuf_free_skb(ah, bf); 885 886 /* Free memory associated with all descriptors */ 887 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 888 ah->desc = NULL; 889 ah->desc_daddr = 0; 890 891 kfree(ah->bufptr); 892 ah->bufptr = NULL; 893 } 894 895 896 /**************\ 897 * Queues setup * 898 \**************/ 899 900 static struct ath5k_txq * 901 ath5k_txq_setup(struct ath5k_hw *ah, 902 int qtype, int subtype) 903 { 904 struct ath5k_txq *txq; 905 struct ath5k_txq_info qi = { 906 .tqi_subtype = subtype, 907 /* XXX: default values not correct for B and XR channels, 908 * but who cares? */ 909 .tqi_aifs = AR5K_TUNE_AIFS, 910 .tqi_cw_min = AR5K_TUNE_CWMIN, 911 .tqi_cw_max = AR5K_TUNE_CWMAX 912 }; 913 int qnum; 914 915 /* 916 * Enable interrupts only for EOL and DESC conditions. 917 * We mark tx descriptors to receive a DESC interrupt 918 * when a tx queue gets deep; otherwise we wait for the 919 * EOL to reap descriptors. Note that this is done to 920 * reduce interrupt load and this only defers reaping 921 * descriptors, never transmitting frames. Aside from 922 * reducing interrupts this also permits more concurrency. 923 * The only potential downside is if the tx queue backs 924 * up in which case the top half of the kernel may backup 925 * due to a lack of tx descriptors. 926 */ 927 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE | 928 AR5K_TXQ_FLAG_TXDESCINT_ENABLE; 929 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi); 930 if (qnum < 0) { 931 /* 932 * NB: don't print a message, this happens 933 * normally on parts with too few tx queues 934 */ 935 return ERR_PTR(qnum); 936 } 937 txq = &ah->txqs[qnum]; 938 if (!txq->setup) { 939 txq->qnum = qnum; 940 txq->link = NULL; 941 INIT_LIST_HEAD(&txq->q); 942 spin_lock_init(&txq->lock); 943 txq->setup = true; 944 txq->txq_len = 0; 945 txq->txq_max = ATH5K_TXQ_LEN_MAX; 946 txq->txq_poll_mark = false; 947 txq->txq_stuck = 0; 948 } 949 return &ah->txqs[qnum]; 950 } 951 952 static int 953 ath5k_beaconq_setup(struct ath5k_hw *ah) 954 { 955 struct ath5k_txq_info qi = { 956 /* XXX: default values not correct for B and XR channels, 957 * but who cares? */ 958 .tqi_aifs = AR5K_TUNE_AIFS, 959 .tqi_cw_min = AR5K_TUNE_CWMIN, 960 .tqi_cw_max = AR5K_TUNE_CWMAX, 961 /* NB: for dynamic turbo, don't enable any other interrupts */ 962 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE 963 }; 964 965 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi); 966 } 967 968 static int 969 ath5k_beaconq_config(struct ath5k_hw *ah) 970 { 971 struct ath5k_txq_info qi; 972 int ret; 973 974 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi); 975 if (ret) 976 goto err; 977 978 if (ah->opmode == NL80211_IFTYPE_AP || 979 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 980 /* 981 * Always burst out beacon and CAB traffic 982 * (aifs = cwmin = cwmax = 0) 983 */ 984 qi.tqi_aifs = 0; 985 qi.tqi_cw_min = 0; 986 qi.tqi_cw_max = 0; 987 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) { 988 /* 989 * Adhoc mode; backoff between 0 and (2 * cw_min). 990 */ 991 qi.tqi_aifs = 0; 992 qi.tqi_cw_min = 0; 993 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN; 994 } 995 996 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 997 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", 998 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); 999 1000 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi); 1001 if (ret) { 1002 ATH5K_ERR(ah, "%s: unable to update parameters for beacon " 1003 "hardware queue!\n", __func__); 1004 goto err; 1005 } 1006 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */ 1007 if (ret) 1008 goto err; 1009 1010 /* reconfigure cabq with ready time to 80% of beacon_interval */ 1011 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 1012 if (ret) 1013 goto err; 1014 1015 qi.tqi_ready_time = (ah->bintval * 80) / 100; 1016 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 1017 if (ret) 1018 goto err; 1019 1020 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB); 1021 err: 1022 return ret; 1023 } 1024 1025 /** 1026 * ath5k_drain_tx_buffs - Empty tx buffers 1027 * 1028 * @ah The &struct ath5k_hw 1029 * 1030 * Empty tx buffers from all queues in preparation 1031 * of a reset or during shutdown. 1032 * 1033 * NB: this assumes output has been stopped and 1034 * we do not need to block ath5k_tx_tasklet 1035 */ 1036 static void 1037 ath5k_drain_tx_buffs(struct ath5k_hw *ah) 1038 { 1039 struct ath5k_txq *txq; 1040 struct ath5k_buf *bf, *bf0; 1041 int i; 1042 1043 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 1044 if (ah->txqs[i].setup) { 1045 txq = &ah->txqs[i]; 1046 spin_lock_bh(&txq->lock); 1047 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1048 ath5k_debug_printtxbuf(ah, bf); 1049 1050 ath5k_txbuf_free_skb(ah, bf); 1051 1052 spin_lock(&ah->txbuflock); 1053 list_move_tail(&bf->list, &ah->txbuf); 1054 ah->txbuf_len++; 1055 txq->txq_len--; 1056 spin_unlock(&ah->txbuflock); 1057 } 1058 txq->link = NULL; 1059 txq->txq_poll_mark = false; 1060 spin_unlock_bh(&txq->lock); 1061 } 1062 } 1063 } 1064 1065 static void 1066 ath5k_txq_release(struct ath5k_hw *ah) 1067 { 1068 struct ath5k_txq *txq = ah->txqs; 1069 unsigned int i; 1070 1071 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++) 1072 if (txq->setup) { 1073 ath5k_hw_release_tx_queue(ah, txq->qnum); 1074 txq->setup = false; 1075 } 1076 } 1077 1078 1079 /*************\ 1080 * RX Handling * 1081 \*************/ 1082 1083 /* 1084 * Enable the receive h/w following a reset. 1085 */ 1086 static int 1087 ath5k_rx_start(struct ath5k_hw *ah) 1088 { 1089 struct ath_common *common = ath5k_hw_common(ah); 1090 struct ath5k_buf *bf; 1091 int ret; 1092 1093 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz); 1094 1095 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n", 1096 common->cachelsz, common->rx_bufsize); 1097 1098 spin_lock_bh(&ah->rxbuflock); 1099 ah->rxlink = NULL; 1100 list_for_each_entry(bf, &ah->rxbuf, list) { 1101 ret = ath5k_rxbuf_setup(ah, bf); 1102 if (ret != 0) { 1103 spin_unlock_bh(&ah->rxbuflock); 1104 goto err; 1105 } 1106 } 1107 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1108 ath5k_hw_set_rxdp(ah, bf->daddr); 1109 spin_unlock_bh(&ah->rxbuflock); 1110 1111 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */ 1112 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */ 1113 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ 1114 1115 return 0; 1116 err: 1117 return ret; 1118 } 1119 1120 /* 1121 * Disable the receive logic on PCU (DRU) 1122 * In preparation for a shutdown. 1123 * 1124 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop 1125 * does. 1126 */ 1127 static void 1128 ath5k_rx_stop(struct ath5k_hw *ah) 1129 { 1130 1131 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ 1132 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */ 1133 1134 ath5k_debug_printrxbuffs(ah); 1135 } 1136 1137 static unsigned int 1138 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb, 1139 struct ath5k_rx_status *rs) 1140 { 1141 struct ath_common *common = ath5k_hw_common(ah); 1142 struct ieee80211_hdr *hdr = (void *)skb->data; 1143 unsigned int keyix, hlen; 1144 1145 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) && 1146 rs->rs_keyix != AR5K_RXKEYIX_INVALID) 1147 return RX_FLAG_DECRYPTED; 1148 1149 /* Apparently when a default key is used to decrypt the packet 1150 the hw does not set the index used to decrypt. In such cases 1151 get the index from the packet. */ 1152 hlen = ieee80211_hdrlen(hdr->frame_control); 1153 if (ieee80211_has_protected(hdr->frame_control) && 1154 !(rs->rs_status & AR5K_RXERR_DECRYPT) && 1155 skb->len >= hlen + 4) { 1156 keyix = skb->data[hlen + 3] >> 6; 1157 1158 if (test_bit(keyix, common->keymap)) 1159 return RX_FLAG_DECRYPTED; 1160 } 1161 1162 return 0; 1163 } 1164 1165 1166 static void 1167 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb, 1168 struct ieee80211_rx_status *rxs) 1169 { 1170 struct ath_common *common = ath5k_hw_common(ah); 1171 u64 tsf, bc_tstamp; 1172 u32 hw_tu; 1173 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; 1174 1175 if (ieee80211_is_beacon(mgmt->frame_control) && 1176 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS && 1177 ether_addr_equal(mgmt->bssid, common->curbssid)) { 1178 /* 1179 * Received an IBSS beacon with the same BSSID. Hardware *must* 1180 * have updated the local TSF. We have to work around various 1181 * hardware bugs, though... 1182 */ 1183 tsf = ath5k_hw_get_tsf64(ah); 1184 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp); 1185 hw_tu = TSF_TO_TU(tsf); 1186 1187 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1188 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n", 1189 (unsigned long long)bc_tstamp, 1190 (unsigned long long)rxs->mactime, 1191 (unsigned long long)(rxs->mactime - bc_tstamp), 1192 (unsigned long long)tsf); 1193 1194 /* 1195 * Sometimes the HW will give us a wrong tstamp in the rx 1196 * status, causing the timestamp extension to go wrong. 1197 * (This seems to happen especially with beacon frames bigger 1198 * than 78 byte (incl. FCS)) 1199 * But we know that the receive timestamp must be later than the 1200 * timestamp of the beacon since HW must have synced to that. 1201 * 1202 * NOTE: here we assume mactime to be after the frame was 1203 * received, not like mac80211 which defines it at the start. 1204 */ 1205 if (bc_tstamp > rxs->mactime) { 1206 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1207 "fixing mactime from %llx to %llx\n", 1208 (unsigned long long)rxs->mactime, 1209 (unsigned long long)tsf); 1210 rxs->mactime = tsf; 1211 } 1212 1213 /* 1214 * Local TSF might have moved higher than our beacon timers, 1215 * in that case we have to update them to continue sending 1216 * beacons. This also takes care of synchronizing beacon sending 1217 * times with other stations. 1218 */ 1219 if (hw_tu >= ah->nexttbtt) 1220 ath5k_beacon_update_timers(ah, bc_tstamp); 1221 1222 /* Check if the beacon timers are still correct, because a TSF 1223 * update might have created a window between them - for a 1224 * longer description see the comment of this function: */ 1225 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) { 1226 ath5k_beacon_update_timers(ah, bc_tstamp); 1227 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1228 "fixed beacon timers after beacon receive\n"); 1229 } 1230 } 1231 } 1232 1233 static void 1234 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi) 1235 { 1236 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; 1237 struct ath_common *common = ath5k_hw_common(ah); 1238 1239 /* only beacons from our BSSID */ 1240 if (!ieee80211_is_beacon(mgmt->frame_control) || 1241 !ether_addr_equal(mgmt->bssid, common->curbssid)) 1242 return; 1243 1244 ewma_add(&ah->ah_beacon_rssi_avg, rssi); 1245 1246 /* in IBSS mode we should keep RSSI statistics per neighbour */ 1247 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */ 1248 } 1249 1250 /* 1251 * Compute padding position. skb must contain an IEEE 802.11 frame 1252 */ 1253 static int ath5k_common_padpos(struct sk_buff *skb) 1254 { 1255 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1256 __le16 frame_control = hdr->frame_control; 1257 int padpos = 24; 1258 1259 if (ieee80211_has_a4(frame_control)) 1260 padpos += ETH_ALEN; 1261 1262 if (ieee80211_is_data_qos(frame_control)) 1263 padpos += IEEE80211_QOS_CTL_LEN; 1264 1265 return padpos; 1266 } 1267 1268 /* 1269 * This function expects an 802.11 frame and returns the number of 1270 * bytes added, or -1 if we don't have enough header room. 1271 */ 1272 static int ath5k_add_padding(struct sk_buff *skb) 1273 { 1274 int padpos = ath5k_common_padpos(skb); 1275 int padsize = padpos & 3; 1276 1277 if (padsize && skb->len > padpos) { 1278 1279 if (skb_headroom(skb) < padsize) 1280 return -1; 1281 1282 skb_push(skb, padsize); 1283 memmove(skb->data, skb->data + padsize, padpos); 1284 return padsize; 1285 } 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * The MAC header is padded to have 32-bit boundary if the 1292 * packet payload is non-zero. The general calculation for 1293 * padsize would take into account odd header lengths: 1294 * padsize = 4 - (hdrlen & 3); however, since only 1295 * even-length headers are used, padding can only be 0 or 2 1296 * bytes and we can optimize this a bit. We must not try to 1297 * remove padding from short control frames that do not have a 1298 * payload. 1299 * 1300 * This function expects an 802.11 frame and returns the number of 1301 * bytes removed. 1302 */ 1303 static int ath5k_remove_padding(struct sk_buff *skb) 1304 { 1305 int padpos = ath5k_common_padpos(skb); 1306 int padsize = padpos & 3; 1307 1308 if (padsize && skb->len >= padpos + padsize) { 1309 memmove(skb->data + padsize, skb->data, padpos); 1310 skb_pull(skb, padsize); 1311 return padsize; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static void 1318 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb, 1319 struct ath5k_rx_status *rs) 1320 { 1321 struct ieee80211_rx_status *rxs; 1322 1323 ath5k_remove_padding(skb); 1324 1325 rxs = IEEE80211_SKB_RXCB(skb); 1326 1327 rxs->flag = 0; 1328 if (unlikely(rs->rs_status & AR5K_RXERR_MIC)) 1329 rxs->flag |= RX_FLAG_MMIC_ERROR; 1330 1331 /* 1332 * always extend the mac timestamp, since this information is 1333 * also needed for proper IBSS merging. 1334 * 1335 * XXX: it might be too late to do it here, since rs_tstamp is 1336 * 15bit only. that means TSF extension has to be done within 1337 * 32768usec (about 32ms). it might be necessary to move this to 1338 * the interrupt handler, like it is done in madwifi. 1339 */ 1340 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp); 1341 rxs->flag |= RX_FLAG_MACTIME_END; 1342 1343 rxs->freq = ah->curchan->center_freq; 1344 rxs->band = ah->curchan->band; 1345 1346 rxs->signal = ah->ah_noise_floor + rs->rs_rssi; 1347 1348 rxs->antenna = rs->rs_antenna; 1349 1350 if (rs->rs_antenna > 0 && rs->rs_antenna < 5) 1351 ah->stats.antenna_rx[rs->rs_antenna]++; 1352 else 1353 ah->stats.antenna_rx[0]++; /* invalid */ 1354 1355 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate); 1356 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs); 1357 1358 if (rxs->rate_idx >= 0 && rs->rs_rate == 1359 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short) 1360 rxs->flag |= RX_FLAG_SHORTPRE; 1361 1362 trace_ath5k_rx(ah, skb); 1363 1364 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi); 1365 1366 /* check beacons in IBSS mode */ 1367 if (ah->opmode == NL80211_IFTYPE_ADHOC) 1368 ath5k_check_ibss_tsf(ah, skb, rxs); 1369 1370 ieee80211_rx(ah->hw, skb); 1371 } 1372 1373 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not? 1374 * 1375 * Check if we want to further process this frame or not. Also update 1376 * statistics. Return true if we want this frame, false if not. 1377 */ 1378 static bool 1379 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs) 1380 { 1381 ah->stats.rx_all_count++; 1382 ah->stats.rx_bytes_count += rs->rs_datalen; 1383 1384 if (unlikely(rs->rs_status)) { 1385 if (rs->rs_status & AR5K_RXERR_CRC) 1386 ah->stats.rxerr_crc++; 1387 if (rs->rs_status & AR5K_RXERR_FIFO) 1388 ah->stats.rxerr_fifo++; 1389 if (rs->rs_status & AR5K_RXERR_PHY) { 1390 ah->stats.rxerr_phy++; 1391 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32) 1392 ah->stats.rxerr_phy_code[rs->rs_phyerr]++; 1393 return false; 1394 } 1395 if (rs->rs_status & AR5K_RXERR_DECRYPT) { 1396 /* 1397 * Decrypt error. If the error occurred 1398 * because there was no hardware key, then 1399 * let the frame through so the upper layers 1400 * can process it. This is necessary for 5210 1401 * parts which have no way to setup a ``clear'' 1402 * key cache entry. 1403 * 1404 * XXX do key cache faulting 1405 */ 1406 ah->stats.rxerr_decrypt++; 1407 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID && 1408 !(rs->rs_status & AR5K_RXERR_CRC)) 1409 return true; 1410 } 1411 if (rs->rs_status & AR5K_RXERR_MIC) { 1412 ah->stats.rxerr_mic++; 1413 return true; 1414 } 1415 1416 /* reject any frames with non-crypto errors */ 1417 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT)) 1418 return false; 1419 } 1420 1421 if (unlikely(rs->rs_more)) { 1422 ah->stats.rxerr_jumbo++; 1423 return false; 1424 } 1425 return true; 1426 } 1427 1428 static void 1429 ath5k_set_current_imask(struct ath5k_hw *ah) 1430 { 1431 enum ath5k_int imask; 1432 unsigned long flags; 1433 1434 spin_lock_irqsave(&ah->irqlock, flags); 1435 imask = ah->imask; 1436 if (ah->rx_pending) 1437 imask &= ~AR5K_INT_RX_ALL; 1438 if (ah->tx_pending) 1439 imask &= ~AR5K_INT_TX_ALL; 1440 ath5k_hw_set_imr(ah, imask); 1441 spin_unlock_irqrestore(&ah->irqlock, flags); 1442 } 1443 1444 static void 1445 ath5k_tasklet_rx(unsigned long data) 1446 { 1447 struct ath5k_rx_status rs = {}; 1448 struct sk_buff *skb, *next_skb; 1449 dma_addr_t next_skb_addr; 1450 struct ath5k_hw *ah = (void *)data; 1451 struct ath_common *common = ath5k_hw_common(ah); 1452 struct ath5k_buf *bf; 1453 struct ath5k_desc *ds; 1454 int ret; 1455 1456 spin_lock(&ah->rxbuflock); 1457 if (list_empty(&ah->rxbuf)) { 1458 ATH5K_WARN(ah, "empty rx buf pool\n"); 1459 goto unlock; 1460 } 1461 do { 1462 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1463 BUG_ON(bf->skb == NULL); 1464 skb = bf->skb; 1465 ds = bf->desc; 1466 1467 /* bail if HW is still using self-linked descriptor */ 1468 if (ath5k_hw_get_rxdp(ah) == bf->daddr) 1469 break; 1470 1471 ret = ah->ah_proc_rx_desc(ah, ds, &rs); 1472 if (unlikely(ret == -EINPROGRESS)) 1473 break; 1474 else if (unlikely(ret)) { 1475 ATH5K_ERR(ah, "error in processing rx descriptor\n"); 1476 ah->stats.rxerr_proc++; 1477 break; 1478 } 1479 1480 if (ath5k_receive_frame_ok(ah, &rs)) { 1481 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr); 1482 1483 /* 1484 * If we can't replace bf->skb with a new skb under 1485 * memory pressure, just skip this packet 1486 */ 1487 if (!next_skb) 1488 goto next; 1489 1490 dma_unmap_single(ah->dev, bf->skbaddr, 1491 common->rx_bufsize, 1492 DMA_FROM_DEVICE); 1493 1494 skb_put(skb, rs.rs_datalen); 1495 1496 ath5k_receive_frame(ah, skb, &rs); 1497 1498 bf->skb = next_skb; 1499 bf->skbaddr = next_skb_addr; 1500 } 1501 next: 1502 list_move_tail(&bf->list, &ah->rxbuf); 1503 } while (ath5k_rxbuf_setup(ah, bf) == 0); 1504 unlock: 1505 spin_unlock(&ah->rxbuflock); 1506 ah->rx_pending = false; 1507 ath5k_set_current_imask(ah); 1508 } 1509 1510 1511 /*************\ 1512 * TX Handling * 1513 \*************/ 1514 1515 void 1516 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb, 1517 struct ath5k_txq *txq) 1518 { 1519 struct ath5k_hw *ah = hw->priv; 1520 struct ath5k_buf *bf; 1521 unsigned long flags; 1522 int padsize; 1523 1524 trace_ath5k_tx(ah, skb, txq); 1525 1526 /* 1527 * The hardware expects the header padded to 4 byte boundaries. 1528 * If this is not the case, we add the padding after the header. 1529 */ 1530 padsize = ath5k_add_padding(skb); 1531 if (padsize < 0) { 1532 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough" 1533 " headroom to pad"); 1534 goto drop_packet; 1535 } 1536 1537 if (txq->txq_len >= txq->txq_max && 1538 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX) 1539 ieee80211_stop_queue(hw, txq->qnum); 1540 1541 spin_lock_irqsave(&ah->txbuflock, flags); 1542 if (list_empty(&ah->txbuf)) { 1543 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n"); 1544 spin_unlock_irqrestore(&ah->txbuflock, flags); 1545 ieee80211_stop_queues(hw); 1546 goto drop_packet; 1547 } 1548 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list); 1549 list_del(&bf->list); 1550 ah->txbuf_len--; 1551 if (list_empty(&ah->txbuf)) 1552 ieee80211_stop_queues(hw); 1553 spin_unlock_irqrestore(&ah->txbuflock, flags); 1554 1555 bf->skb = skb; 1556 1557 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) { 1558 bf->skb = NULL; 1559 spin_lock_irqsave(&ah->txbuflock, flags); 1560 list_add_tail(&bf->list, &ah->txbuf); 1561 ah->txbuf_len++; 1562 spin_unlock_irqrestore(&ah->txbuflock, flags); 1563 goto drop_packet; 1564 } 1565 return; 1566 1567 drop_packet: 1568 ieee80211_free_txskb(hw, skb); 1569 } 1570 1571 static void 1572 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb, 1573 struct ath5k_txq *txq, struct ath5k_tx_status *ts) 1574 { 1575 struct ieee80211_tx_info *info; 1576 u8 tries[3]; 1577 int i; 1578 1579 ah->stats.tx_all_count++; 1580 ah->stats.tx_bytes_count += skb->len; 1581 info = IEEE80211_SKB_CB(skb); 1582 1583 tries[0] = info->status.rates[0].count; 1584 tries[1] = info->status.rates[1].count; 1585 tries[2] = info->status.rates[2].count; 1586 1587 ieee80211_tx_info_clear_status(info); 1588 1589 for (i = 0; i < ts->ts_final_idx; i++) { 1590 struct ieee80211_tx_rate *r = 1591 &info->status.rates[i]; 1592 1593 r->count = tries[i]; 1594 } 1595 1596 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry; 1597 info->status.rates[ts->ts_final_idx + 1].idx = -1; 1598 1599 if (unlikely(ts->ts_status)) { 1600 ah->stats.ack_fail++; 1601 if (ts->ts_status & AR5K_TXERR_FILT) { 1602 info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1603 ah->stats.txerr_filt++; 1604 } 1605 if (ts->ts_status & AR5K_TXERR_XRETRY) 1606 ah->stats.txerr_retry++; 1607 if (ts->ts_status & AR5K_TXERR_FIFO) 1608 ah->stats.txerr_fifo++; 1609 } else { 1610 info->flags |= IEEE80211_TX_STAT_ACK; 1611 info->status.ack_signal = ts->ts_rssi; 1612 1613 /* count the successful attempt as well */ 1614 info->status.rates[ts->ts_final_idx].count++; 1615 } 1616 1617 /* 1618 * Remove MAC header padding before giving the frame 1619 * back to mac80211. 1620 */ 1621 ath5k_remove_padding(skb); 1622 1623 if (ts->ts_antenna > 0 && ts->ts_antenna < 5) 1624 ah->stats.antenna_tx[ts->ts_antenna]++; 1625 else 1626 ah->stats.antenna_tx[0]++; /* invalid */ 1627 1628 trace_ath5k_tx_complete(ah, skb, txq, ts); 1629 ieee80211_tx_status(ah->hw, skb); 1630 } 1631 1632 static void 1633 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq) 1634 { 1635 struct ath5k_tx_status ts = {}; 1636 struct ath5k_buf *bf, *bf0; 1637 struct ath5k_desc *ds; 1638 struct sk_buff *skb; 1639 int ret; 1640 1641 spin_lock(&txq->lock); 1642 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1643 1644 txq->txq_poll_mark = false; 1645 1646 /* skb might already have been processed last time. */ 1647 if (bf->skb != NULL) { 1648 ds = bf->desc; 1649 1650 ret = ah->ah_proc_tx_desc(ah, ds, &ts); 1651 if (unlikely(ret == -EINPROGRESS)) 1652 break; 1653 else if (unlikely(ret)) { 1654 ATH5K_ERR(ah, 1655 "error %d while processing " 1656 "queue %u\n", ret, txq->qnum); 1657 break; 1658 } 1659 1660 skb = bf->skb; 1661 bf->skb = NULL; 1662 1663 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, 1664 DMA_TO_DEVICE); 1665 ath5k_tx_frame_completed(ah, skb, txq, &ts); 1666 } 1667 1668 /* 1669 * It's possible that the hardware can say the buffer is 1670 * completed when it hasn't yet loaded the ds_link from 1671 * host memory and moved on. 1672 * Always keep the last descriptor to avoid HW races... 1673 */ 1674 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) { 1675 spin_lock(&ah->txbuflock); 1676 list_move_tail(&bf->list, &ah->txbuf); 1677 ah->txbuf_len++; 1678 txq->txq_len--; 1679 spin_unlock(&ah->txbuflock); 1680 } 1681 } 1682 spin_unlock(&txq->lock); 1683 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4) 1684 ieee80211_wake_queue(ah->hw, txq->qnum); 1685 } 1686 1687 static void 1688 ath5k_tasklet_tx(unsigned long data) 1689 { 1690 int i; 1691 struct ath5k_hw *ah = (void *)data; 1692 1693 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++) 1694 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i))) 1695 ath5k_tx_processq(ah, &ah->txqs[i]); 1696 1697 ah->tx_pending = false; 1698 ath5k_set_current_imask(ah); 1699 } 1700 1701 1702 /*****************\ 1703 * Beacon handling * 1704 \*****************/ 1705 1706 /* 1707 * Setup the beacon frame for transmit. 1708 */ 1709 static int 1710 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 1711 { 1712 struct sk_buff *skb = bf->skb; 1713 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1714 struct ath5k_desc *ds; 1715 int ret = 0; 1716 u8 antenna; 1717 u32 flags; 1718 const int padsize = 0; 1719 1720 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 1721 DMA_TO_DEVICE); 1722 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] " 1723 "skbaddr %llx\n", skb, skb->data, skb->len, 1724 (unsigned long long)bf->skbaddr); 1725 1726 if (dma_mapping_error(ah->dev, bf->skbaddr)) { 1727 ATH5K_ERR(ah, "beacon DMA mapping failed\n"); 1728 dev_kfree_skb_any(skb); 1729 bf->skb = NULL; 1730 return -EIO; 1731 } 1732 1733 ds = bf->desc; 1734 antenna = ah->ah_tx_ant; 1735 1736 flags = AR5K_TXDESC_NOACK; 1737 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) { 1738 ds->ds_link = bf->daddr; /* self-linked */ 1739 flags |= AR5K_TXDESC_VEOL; 1740 } else 1741 ds->ds_link = 0; 1742 1743 /* 1744 * If we use multiple antennas on AP and use 1745 * the Sectored AP scenario, switch antenna every 1746 * 4 beacons to make sure everybody hears our AP. 1747 * When a client tries to associate, hw will keep 1748 * track of the tx antenna to be used for this client 1749 * automatically, based on ACKed packets. 1750 * 1751 * Note: AP still listens and transmits RTS on the 1752 * default antenna which is supposed to be an omni. 1753 * 1754 * Note2: On sectored scenarios it's possible to have 1755 * multiple antennas (1 omni -- the default -- and 14 1756 * sectors), so if we choose to actually support this 1757 * mode, we need to allow the user to set how many antennas 1758 * we have and tweak the code below to send beacons 1759 * on all of them. 1760 */ 1761 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP) 1762 antenna = ah->bsent & 4 ? 2 : 1; 1763 1764 1765 /* FIXME: If we are in g mode and rate is a CCK rate 1766 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 1767 * from tx power (value is in dB units already) */ 1768 ds->ds_data = bf->skbaddr; 1769 ret = ah->ah_setup_tx_desc(ah, ds, skb->len, 1770 ieee80211_get_hdrlen_from_skb(skb), padsize, 1771 AR5K_PKT_TYPE_BEACON, 1772 (ah->ah_txpower.txp_requested * 2), 1773 ieee80211_get_tx_rate(ah->hw, info)->hw_value, 1774 1, AR5K_TXKEYIX_INVALID, 1775 antenna, flags, 0, 0); 1776 if (ret) 1777 goto err_unmap; 1778 1779 return 0; 1780 err_unmap: 1781 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 1782 return ret; 1783 } 1784 1785 /* 1786 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc, 1787 * this is called only once at config_bss time, for AP we do it every 1788 * SWBA interrupt so that the TIM will reflect buffered frames. 1789 * 1790 * Called with the beacon lock. 1791 */ 1792 int 1793 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1794 { 1795 int ret; 1796 struct ath5k_hw *ah = hw->priv; 1797 struct ath5k_vif *avf; 1798 struct sk_buff *skb; 1799 1800 if (WARN_ON(!vif)) { 1801 ret = -EINVAL; 1802 goto out; 1803 } 1804 1805 skb = ieee80211_beacon_get(hw, vif); 1806 1807 if (!skb) { 1808 ret = -ENOMEM; 1809 goto out; 1810 } 1811 1812 avf = (void *)vif->drv_priv; 1813 ath5k_txbuf_free_skb(ah, avf->bbuf); 1814 avf->bbuf->skb = skb; 1815 ret = ath5k_beacon_setup(ah, avf->bbuf); 1816 out: 1817 return ret; 1818 } 1819 1820 /* 1821 * Transmit a beacon frame at SWBA. Dynamic updates to the 1822 * frame contents are done as needed and the slot time is 1823 * also adjusted based on current state. 1824 * 1825 * This is called from software irq context (beacontq tasklets) 1826 * or user context from ath5k_beacon_config. 1827 */ 1828 static void 1829 ath5k_beacon_send(struct ath5k_hw *ah) 1830 { 1831 struct ieee80211_vif *vif; 1832 struct ath5k_vif *avf; 1833 struct ath5k_buf *bf; 1834 struct sk_buff *skb; 1835 int err; 1836 1837 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n"); 1838 1839 /* 1840 * Check if the previous beacon has gone out. If 1841 * not, don't don't try to post another: skip this 1842 * period and wait for the next. Missed beacons 1843 * indicate a problem and should not occur. If we 1844 * miss too many consecutive beacons reset the device. 1845 */ 1846 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) { 1847 ah->bmisscount++; 1848 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1849 "missed %u consecutive beacons\n", ah->bmisscount); 1850 if (ah->bmisscount > 10) { /* NB: 10 is a guess */ 1851 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1852 "stuck beacon time (%u missed)\n", 1853 ah->bmisscount); 1854 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 1855 "stuck beacon, resetting\n"); 1856 ieee80211_queue_work(ah->hw, &ah->reset_work); 1857 } 1858 return; 1859 } 1860 if (unlikely(ah->bmisscount != 0)) { 1861 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1862 "resume beacon xmit after %u misses\n", 1863 ah->bmisscount); 1864 ah->bmisscount = 0; 1865 } 1866 1867 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs + 1868 ah->num_mesh_vifs > 1) || 1869 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1870 u64 tsf = ath5k_hw_get_tsf64(ah); 1871 u32 tsftu = TSF_TO_TU(tsf); 1872 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval; 1873 vif = ah->bslot[(slot + 1) % ATH_BCBUF]; 1874 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1875 "tsf %llx tsftu %x intval %u slot %u vif %p\n", 1876 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif); 1877 } else /* only one interface */ 1878 vif = ah->bslot[0]; 1879 1880 if (!vif) 1881 return; 1882 1883 avf = (void *)vif->drv_priv; 1884 bf = avf->bbuf; 1885 1886 /* 1887 * Stop any current dma and put the new frame on the queue. 1888 * This should never fail since we check above that no frames 1889 * are still pending on the queue. 1890 */ 1891 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) { 1892 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq); 1893 /* NB: hw still stops DMA, so proceed */ 1894 } 1895 1896 /* refresh the beacon for AP or MESH mode */ 1897 if (ah->opmode == NL80211_IFTYPE_AP || 1898 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1899 err = ath5k_beacon_update(ah->hw, vif); 1900 if (err) 1901 return; 1902 } 1903 1904 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION || 1905 ah->opmode == NL80211_IFTYPE_MONITOR)) { 1906 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb); 1907 return; 1908 } 1909 1910 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]); 1911 1912 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr); 1913 ath5k_hw_start_tx_dma(ah, ah->bhalq); 1914 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", 1915 ah->bhalq, (unsigned long long)bf->daddr, bf->desc); 1916 1917 skb = ieee80211_get_buffered_bc(ah->hw, vif); 1918 while (skb) { 1919 ath5k_tx_queue(ah->hw, skb, ah->cabq); 1920 1921 if (ah->cabq->txq_len >= ah->cabq->txq_max) 1922 break; 1923 1924 skb = ieee80211_get_buffered_bc(ah->hw, vif); 1925 } 1926 1927 ah->bsent++; 1928 } 1929 1930 /** 1931 * ath5k_beacon_update_timers - update beacon timers 1932 * 1933 * @ah: struct ath5k_hw pointer we are operating on 1934 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a 1935 * beacon timer update based on the current HW TSF. 1936 * 1937 * Calculate the next target beacon transmit time (TBTT) based on the timestamp 1938 * of a received beacon or the current local hardware TSF and write it to the 1939 * beacon timer registers. 1940 * 1941 * This is called in a variety of situations, e.g. when a beacon is received, 1942 * when a TSF update has been detected, but also when an new IBSS is created or 1943 * when we otherwise know we have to update the timers, but we keep it in this 1944 * function to have it all together in one place. 1945 */ 1946 void 1947 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf) 1948 { 1949 u32 nexttbtt, intval, hw_tu, bc_tu; 1950 u64 hw_tsf; 1951 1952 intval = ah->bintval & AR5K_BEACON_PERIOD; 1953 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs 1954 + ah->num_mesh_vifs > 1) { 1955 intval /= ATH_BCBUF; /* staggered multi-bss beacons */ 1956 if (intval < 15) 1957 ATH5K_WARN(ah, "intval %u is too low, min 15\n", 1958 intval); 1959 } 1960 if (WARN_ON(!intval)) 1961 return; 1962 1963 /* beacon TSF converted to TU */ 1964 bc_tu = TSF_TO_TU(bc_tsf); 1965 1966 /* current TSF converted to TU */ 1967 hw_tsf = ath5k_hw_get_tsf64(ah); 1968 hw_tu = TSF_TO_TU(hw_tsf); 1969 1970 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3) 1971 /* We use FUDGE to make sure the next TBTT is ahead of the current TU. 1972 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer 1973 * configuration we need to make sure it is bigger than that. */ 1974 1975 if (bc_tsf == -1) { 1976 /* 1977 * no beacons received, called internally. 1978 * just need to refresh timers based on HW TSF. 1979 */ 1980 nexttbtt = roundup(hw_tu + FUDGE, intval); 1981 } else if (bc_tsf == 0) { 1982 /* 1983 * no beacon received, probably called by ath5k_reset_tsf(). 1984 * reset TSF to start with 0. 1985 */ 1986 nexttbtt = intval; 1987 intval |= AR5K_BEACON_RESET_TSF; 1988 } else if (bc_tsf > hw_tsf) { 1989 /* 1990 * beacon received, SW merge happened but HW TSF not yet updated. 1991 * not possible to reconfigure timers yet, but next time we 1992 * receive a beacon with the same BSSID, the hardware will 1993 * automatically update the TSF and then we need to reconfigure 1994 * the timers. 1995 */ 1996 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1997 "need to wait for HW TSF sync\n"); 1998 return; 1999 } else { 2000 /* 2001 * most important case for beacon synchronization between STA. 2002 * 2003 * beacon received and HW TSF has been already updated by HW. 2004 * update next TBTT based on the TSF of the beacon, but make 2005 * sure it is ahead of our local TSF timer. 2006 */ 2007 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval); 2008 } 2009 #undef FUDGE 2010 2011 ah->nexttbtt = nexttbtt; 2012 2013 intval |= AR5K_BEACON_ENA; 2014 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval); 2015 2016 /* 2017 * debugging output last in order to preserve the time critical aspect 2018 * of this function 2019 */ 2020 if (bc_tsf == -1) 2021 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2022 "reconfigured timers based on HW TSF\n"); 2023 else if (bc_tsf == 0) 2024 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2025 "reset HW TSF and timers\n"); 2026 else 2027 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2028 "updated timers based on beacon TSF\n"); 2029 2030 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2031 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n", 2032 (unsigned long long) bc_tsf, 2033 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt); 2034 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n", 2035 intval & AR5K_BEACON_PERIOD, 2036 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "", 2037 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : ""); 2038 } 2039 2040 /** 2041 * ath5k_beacon_config - Configure the beacon queues and interrupts 2042 * 2043 * @ah: struct ath5k_hw pointer we are operating on 2044 * 2045 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA 2046 * interrupts to detect TSF updates only. 2047 */ 2048 void 2049 ath5k_beacon_config(struct ath5k_hw *ah) 2050 { 2051 spin_lock_bh(&ah->block); 2052 ah->bmisscount = 0; 2053 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA); 2054 2055 if (ah->enable_beacon) { 2056 /* 2057 * In IBSS mode we use a self-linked tx descriptor and let the 2058 * hardware send the beacons automatically. We have to load it 2059 * only once here. 2060 * We use the SWBA interrupt only to keep track of the beacon 2061 * timers in order to detect automatic TSF updates. 2062 */ 2063 ath5k_beaconq_config(ah); 2064 2065 ah->imask |= AR5K_INT_SWBA; 2066 2067 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2068 if (ath5k_hw_hasveol(ah)) 2069 ath5k_beacon_send(ah); 2070 } else 2071 ath5k_beacon_update_timers(ah, -1); 2072 } else { 2073 ath5k_hw_stop_beacon_queue(ah, ah->bhalq); 2074 } 2075 2076 ath5k_hw_set_imr(ah, ah->imask); 2077 mmiowb(); 2078 spin_unlock_bh(&ah->block); 2079 } 2080 2081 static void ath5k_tasklet_beacon(unsigned long data) 2082 { 2083 struct ath5k_hw *ah = (struct ath5k_hw *) data; 2084 2085 /* 2086 * Software beacon alert--time to send a beacon. 2087 * 2088 * In IBSS mode we use this interrupt just to 2089 * keep track of the next TBTT (target beacon 2090 * transmission time) in order to detect whether 2091 * automatic TSF updates happened. 2092 */ 2093 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2094 /* XXX: only if VEOL supported */ 2095 u64 tsf = ath5k_hw_get_tsf64(ah); 2096 ah->nexttbtt += ah->bintval; 2097 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 2098 "SWBA nexttbtt: %x hw_tu: %x " 2099 "TSF: %llx\n", 2100 ah->nexttbtt, 2101 TSF_TO_TU(tsf), 2102 (unsigned long long) tsf); 2103 } else { 2104 spin_lock(&ah->block); 2105 ath5k_beacon_send(ah); 2106 spin_unlock(&ah->block); 2107 } 2108 } 2109 2110 2111 /********************\ 2112 * Interrupt handling * 2113 \********************/ 2114 2115 static void 2116 ath5k_intr_calibration_poll(struct ath5k_hw *ah) 2117 { 2118 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) && 2119 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 2120 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) { 2121 2122 /* Run ANI only when calibration is not active */ 2123 2124 ah->ah_cal_next_ani = jiffies + 2125 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); 2126 tasklet_schedule(&ah->ani_tasklet); 2127 2128 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) && 2129 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 2130 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) { 2131 2132 /* Run calibration only when another calibration 2133 * is not running. 2134 * 2135 * Note: This is for both full/short calibration, 2136 * if it's time for a full one, ath5k_calibrate_work will deal 2137 * with it. */ 2138 2139 ah->ah_cal_next_short = jiffies + 2140 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT); 2141 ieee80211_queue_work(ah->hw, &ah->calib_work); 2142 } 2143 /* we could use SWI to generate enough interrupts to meet our 2144 * calibration interval requirements, if necessary: 2145 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */ 2146 } 2147 2148 static void 2149 ath5k_schedule_rx(struct ath5k_hw *ah) 2150 { 2151 ah->rx_pending = true; 2152 tasklet_schedule(&ah->rxtq); 2153 } 2154 2155 static void 2156 ath5k_schedule_tx(struct ath5k_hw *ah) 2157 { 2158 ah->tx_pending = true; 2159 tasklet_schedule(&ah->txtq); 2160 } 2161 2162 static irqreturn_t 2163 ath5k_intr(int irq, void *dev_id) 2164 { 2165 struct ath5k_hw *ah = dev_id; 2166 enum ath5k_int status; 2167 unsigned int counter = 1000; 2168 2169 2170 /* 2171 * If hw is not ready (or detached) and we get an 2172 * interrupt, or if we have no interrupts pending 2173 * (that means it's not for us) skip it. 2174 * 2175 * NOTE: Group 0/1 PCI interface registers are not 2176 * supported on WiSOCs, so we can't check for pending 2177 * interrupts (ISR belongs to another register group 2178 * so we are ok). 2179 */ 2180 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) || 2181 ((ath5k_get_bus_type(ah) != ATH_AHB) && 2182 !ath5k_hw_is_intr_pending(ah)))) 2183 return IRQ_NONE; 2184 2185 /** Main loop **/ 2186 do { 2187 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */ 2188 2189 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n", 2190 status, ah->imask); 2191 2192 /* 2193 * Fatal hw error -> Log and reset 2194 * 2195 * Fatal errors are unrecoverable so we have to 2196 * reset the card. These errors include bus and 2197 * dma errors. 2198 */ 2199 if (unlikely(status & AR5K_INT_FATAL)) { 2200 2201 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2202 "fatal int, resetting\n"); 2203 ieee80211_queue_work(ah->hw, &ah->reset_work); 2204 2205 /* 2206 * RX Overrun -> Count and reset if needed 2207 * 2208 * Receive buffers are full. Either the bus is busy or 2209 * the CPU is not fast enough to process all received 2210 * frames. 2211 */ 2212 } else if (unlikely(status & AR5K_INT_RXORN)) { 2213 2214 /* 2215 * Older chipsets need a reset to come out of this 2216 * condition, but we treat it as RX for newer chips. 2217 * We don't know exactly which versions need a reset 2218 * this guess is copied from the HAL. 2219 */ 2220 ah->stats.rxorn_intr++; 2221 2222 if (ah->ah_mac_srev < AR5K_SREV_AR5212) { 2223 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2224 "rx overrun, resetting\n"); 2225 ieee80211_queue_work(ah->hw, &ah->reset_work); 2226 } else 2227 ath5k_schedule_rx(ah); 2228 2229 } else { 2230 2231 /* Software Beacon Alert -> Schedule beacon tasklet */ 2232 if (status & AR5K_INT_SWBA) 2233 tasklet_hi_schedule(&ah->beacontq); 2234 2235 /* 2236 * No more RX descriptors -> Just count 2237 * 2238 * NB: the hardware should re-read the link when 2239 * RXE bit is written, but it doesn't work at 2240 * least on older hardware revs. 2241 */ 2242 if (status & AR5K_INT_RXEOL) 2243 ah->stats.rxeol_intr++; 2244 2245 2246 /* TX Underrun -> Bump tx trigger level */ 2247 if (status & AR5K_INT_TXURN) 2248 ath5k_hw_update_tx_triglevel(ah, true); 2249 2250 /* RX -> Schedule rx tasklet */ 2251 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR)) 2252 ath5k_schedule_rx(ah); 2253 2254 /* TX -> Schedule tx tasklet */ 2255 if (status & (AR5K_INT_TXOK 2256 | AR5K_INT_TXDESC 2257 | AR5K_INT_TXERR 2258 | AR5K_INT_TXEOL)) 2259 ath5k_schedule_tx(ah); 2260 2261 /* Missed beacon -> TODO 2262 if (status & AR5K_INT_BMISS) 2263 */ 2264 2265 /* MIB event -> Update counters and notify ANI */ 2266 if (status & AR5K_INT_MIB) { 2267 ah->stats.mib_intr++; 2268 ath5k_hw_update_mib_counters(ah); 2269 ath5k_ani_mib_intr(ah); 2270 } 2271 2272 /* GPIO -> Notify RFKill layer */ 2273 if (status & AR5K_INT_GPIO) 2274 tasklet_schedule(&ah->rf_kill.toggleq); 2275 2276 } 2277 2278 if (ath5k_get_bus_type(ah) == ATH_AHB) 2279 break; 2280 2281 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0); 2282 2283 /* 2284 * Until we handle rx/tx interrupts mask them on IMR 2285 * 2286 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets 2287 * and unset after we 've handled the interrupts. 2288 */ 2289 if (ah->rx_pending || ah->tx_pending) 2290 ath5k_set_current_imask(ah); 2291 2292 if (unlikely(!counter)) 2293 ATH5K_WARN(ah, "too many interrupts, giving up for now\n"); 2294 2295 /* Fire up calibration poll */ 2296 ath5k_intr_calibration_poll(ah); 2297 2298 return IRQ_HANDLED; 2299 } 2300 2301 /* 2302 * Periodically recalibrate the PHY to account 2303 * for temperature/environment changes. 2304 */ 2305 static void 2306 ath5k_calibrate_work(struct work_struct *work) 2307 { 2308 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2309 calib_work); 2310 2311 /* Should we run a full calibration ? */ 2312 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) { 2313 2314 ah->ah_cal_next_full = jiffies + 2315 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); 2316 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL; 2317 2318 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 2319 "running full calibration\n"); 2320 2321 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) { 2322 /* 2323 * Rfgain is out of bounds, reset the chip 2324 * to load new gain values. 2325 */ 2326 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2327 "got new rfgain, resetting\n"); 2328 ieee80211_queue_work(ah->hw, &ah->reset_work); 2329 } 2330 } else 2331 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT; 2332 2333 2334 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n", 2335 ieee80211_frequency_to_channel(ah->curchan->center_freq), 2336 ah->curchan->hw_value); 2337 2338 if (ath5k_hw_phy_calibrate(ah, ah->curchan)) 2339 ATH5K_ERR(ah, "calibration of channel %u failed\n", 2340 ieee80211_frequency_to_channel( 2341 ah->curchan->center_freq)); 2342 2343 /* Clear calibration flags */ 2344 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) 2345 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL; 2346 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT) 2347 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT; 2348 } 2349 2350 2351 static void 2352 ath5k_tasklet_ani(unsigned long data) 2353 { 2354 struct ath5k_hw *ah = (void *)data; 2355 2356 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI; 2357 ath5k_ani_calibration(ah); 2358 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI; 2359 } 2360 2361 2362 static void 2363 ath5k_tx_complete_poll_work(struct work_struct *work) 2364 { 2365 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2366 tx_complete_work.work); 2367 struct ath5k_txq *txq; 2368 int i; 2369 bool needreset = false; 2370 2371 mutex_lock(&ah->lock); 2372 2373 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 2374 if (ah->txqs[i].setup) { 2375 txq = &ah->txqs[i]; 2376 spin_lock_bh(&txq->lock); 2377 if (txq->txq_len > 1) { 2378 if (txq->txq_poll_mark) { 2379 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT, 2380 "TX queue stuck %d\n", 2381 txq->qnum); 2382 needreset = true; 2383 txq->txq_stuck++; 2384 spin_unlock_bh(&txq->lock); 2385 break; 2386 } else { 2387 txq->txq_poll_mark = true; 2388 } 2389 } 2390 spin_unlock_bh(&txq->lock); 2391 } 2392 } 2393 2394 if (needreset) { 2395 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2396 "TX queues stuck, resetting\n"); 2397 ath5k_reset(ah, NULL, true); 2398 } 2399 2400 mutex_unlock(&ah->lock); 2401 2402 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2403 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2404 } 2405 2406 2407 /*************************\ 2408 * Initialization routines * 2409 \*************************/ 2410 2411 static const struct ieee80211_iface_limit if_limits[] = { 2412 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) }, 2413 { .max = 4, .types = 2414 #ifdef CONFIG_MAC80211_MESH 2415 BIT(NL80211_IFTYPE_MESH_POINT) | 2416 #endif 2417 BIT(NL80211_IFTYPE_AP) }, 2418 }; 2419 2420 static const struct ieee80211_iface_combination if_comb = { 2421 .limits = if_limits, 2422 .n_limits = ARRAY_SIZE(if_limits), 2423 .max_interfaces = 2048, 2424 .num_different_channels = 1, 2425 }; 2426 2427 int 2428 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops) 2429 { 2430 struct ieee80211_hw *hw = ah->hw; 2431 struct ath_common *common; 2432 int ret; 2433 int csz; 2434 2435 /* Initialize driver private data */ 2436 SET_IEEE80211_DEV(hw, ah->dev); 2437 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | 2438 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | 2439 IEEE80211_HW_SIGNAL_DBM | 2440 IEEE80211_HW_MFP_CAPABLE | 2441 IEEE80211_HW_REPORTS_TX_ACK_STATUS; 2442 2443 hw->wiphy->interface_modes = 2444 BIT(NL80211_IFTYPE_AP) | 2445 BIT(NL80211_IFTYPE_STATION) | 2446 BIT(NL80211_IFTYPE_ADHOC) | 2447 BIT(NL80211_IFTYPE_MESH_POINT); 2448 2449 hw->wiphy->iface_combinations = &if_comb; 2450 hw->wiphy->n_iface_combinations = 1; 2451 2452 /* SW support for IBSS_RSN is provided by mac80211 */ 2453 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 2454 2455 /* both antennas can be configured as RX or TX */ 2456 hw->wiphy->available_antennas_tx = 0x3; 2457 hw->wiphy->available_antennas_rx = 0x3; 2458 2459 hw->extra_tx_headroom = 2; 2460 hw->channel_change_time = 5000; 2461 2462 /* 2463 * Mark the device as detached to avoid processing 2464 * interrupts until setup is complete. 2465 */ 2466 __set_bit(ATH_STAT_INVALID, ah->status); 2467 2468 ah->opmode = NL80211_IFTYPE_STATION; 2469 ah->bintval = 1000; 2470 mutex_init(&ah->lock); 2471 spin_lock_init(&ah->rxbuflock); 2472 spin_lock_init(&ah->txbuflock); 2473 spin_lock_init(&ah->block); 2474 spin_lock_init(&ah->irqlock); 2475 2476 /* Setup interrupt handler */ 2477 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah); 2478 if (ret) { 2479 ATH5K_ERR(ah, "request_irq failed\n"); 2480 goto err; 2481 } 2482 2483 common = ath5k_hw_common(ah); 2484 common->ops = &ath5k_common_ops; 2485 common->bus_ops = bus_ops; 2486 common->ah = ah; 2487 common->hw = hw; 2488 common->priv = ah; 2489 common->clockrate = 40; 2490 2491 /* 2492 * Cache line size is used to size and align various 2493 * structures used to communicate with the hardware. 2494 */ 2495 ath5k_read_cachesize(common, &csz); 2496 common->cachelsz = csz << 2; /* convert to bytes */ 2497 2498 spin_lock_init(&common->cc_lock); 2499 2500 /* Initialize device */ 2501 ret = ath5k_hw_init(ah); 2502 if (ret) 2503 goto err_irq; 2504 2505 /* Set up multi-rate retry capabilities */ 2506 if (ah->ah_capabilities.cap_has_mrr_support) { 2507 hw->max_rates = 4; 2508 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT, 2509 AR5K_INIT_RETRY_LONG); 2510 } 2511 2512 hw->vif_data_size = sizeof(struct ath5k_vif); 2513 2514 /* Finish private driver data initialization */ 2515 ret = ath5k_init(hw); 2516 if (ret) 2517 goto err_ah; 2518 2519 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n", 2520 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev), 2521 ah->ah_mac_srev, 2522 ah->ah_phy_revision); 2523 2524 if (!ah->ah_single_chip) { 2525 /* Single chip radio (!RF5111) */ 2526 if (ah->ah_radio_5ghz_revision && 2527 !ah->ah_radio_2ghz_revision) { 2528 /* No 5GHz support -> report 2GHz radio */ 2529 if (!test_bit(AR5K_MODE_11A, 2530 ah->ah_capabilities.cap_mode)) { 2531 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2532 ath5k_chip_name(AR5K_VERSION_RAD, 2533 ah->ah_radio_5ghz_revision), 2534 ah->ah_radio_5ghz_revision); 2535 /* No 2GHz support (5110 and some 2536 * 5GHz only cards) -> report 5GHz radio */ 2537 } else if (!test_bit(AR5K_MODE_11B, 2538 ah->ah_capabilities.cap_mode)) { 2539 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2540 ath5k_chip_name(AR5K_VERSION_RAD, 2541 ah->ah_radio_5ghz_revision), 2542 ah->ah_radio_5ghz_revision); 2543 /* Multiband radio */ 2544 } else { 2545 ATH5K_INFO(ah, "RF%s multiband radio found" 2546 " (0x%x)\n", 2547 ath5k_chip_name(AR5K_VERSION_RAD, 2548 ah->ah_radio_5ghz_revision), 2549 ah->ah_radio_5ghz_revision); 2550 } 2551 } 2552 /* Multi chip radio (RF5111 - RF2111) -> 2553 * report both 2GHz/5GHz radios */ 2554 else if (ah->ah_radio_5ghz_revision && 2555 ah->ah_radio_2ghz_revision) { 2556 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2557 ath5k_chip_name(AR5K_VERSION_RAD, 2558 ah->ah_radio_5ghz_revision), 2559 ah->ah_radio_5ghz_revision); 2560 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2561 ath5k_chip_name(AR5K_VERSION_RAD, 2562 ah->ah_radio_2ghz_revision), 2563 ah->ah_radio_2ghz_revision); 2564 } 2565 } 2566 2567 ath5k_debug_init_device(ah); 2568 2569 /* ready to process interrupts */ 2570 __clear_bit(ATH_STAT_INVALID, ah->status); 2571 2572 return 0; 2573 err_ah: 2574 ath5k_hw_deinit(ah); 2575 err_irq: 2576 free_irq(ah->irq, ah); 2577 err: 2578 return ret; 2579 } 2580 2581 static int 2582 ath5k_stop_locked(struct ath5k_hw *ah) 2583 { 2584 2585 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n", 2586 test_bit(ATH_STAT_INVALID, ah->status)); 2587 2588 /* 2589 * Shutdown the hardware and driver: 2590 * stop output from above 2591 * disable interrupts 2592 * turn off timers 2593 * turn off the radio 2594 * clear transmit machinery 2595 * clear receive machinery 2596 * drain and release tx queues 2597 * reclaim beacon resources 2598 * power down hardware 2599 * 2600 * Note that some of this work is not possible if the 2601 * hardware is gone (invalid). 2602 */ 2603 ieee80211_stop_queues(ah->hw); 2604 2605 if (!test_bit(ATH_STAT_INVALID, ah->status)) { 2606 ath5k_led_off(ah); 2607 ath5k_hw_set_imr(ah, 0); 2608 synchronize_irq(ah->irq); 2609 ath5k_rx_stop(ah); 2610 ath5k_hw_dma_stop(ah); 2611 ath5k_drain_tx_buffs(ah); 2612 ath5k_hw_phy_disable(ah); 2613 } 2614 2615 return 0; 2616 } 2617 2618 int ath5k_start(struct ieee80211_hw *hw) 2619 { 2620 struct ath5k_hw *ah = hw->priv; 2621 struct ath_common *common = ath5k_hw_common(ah); 2622 int ret, i; 2623 2624 mutex_lock(&ah->lock); 2625 2626 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode); 2627 2628 /* 2629 * Stop anything previously setup. This is safe 2630 * no matter this is the first time through or not. 2631 */ 2632 ath5k_stop_locked(ah); 2633 2634 /* 2635 * The basic interface to setting the hardware in a good 2636 * state is ``reset''. On return the hardware is known to 2637 * be powered up and with interrupts disabled. This must 2638 * be followed by initialization of the appropriate bits 2639 * and then setup of the interrupt mask. 2640 */ 2641 ah->curchan = ah->hw->conf.channel; 2642 ah->imask = AR5K_INT_RXOK 2643 | AR5K_INT_RXERR 2644 | AR5K_INT_RXEOL 2645 | AR5K_INT_RXORN 2646 | AR5K_INT_TXDESC 2647 | AR5K_INT_TXEOL 2648 | AR5K_INT_FATAL 2649 | AR5K_INT_GLOBAL 2650 | AR5K_INT_MIB; 2651 2652 ret = ath5k_reset(ah, NULL, false); 2653 if (ret) 2654 goto done; 2655 2656 if (!ath5k_modparam_no_hw_rfkill_switch) 2657 ath5k_rfkill_hw_start(ah); 2658 2659 /* 2660 * Reset the key cache since some parts do not reset the 2661 * contents on initial power up or resume from suspend. 2662 */ 2663 for (i = 0; i < common->keymax; i++) 2664 ath_hw_keyreset(common, (u16) i); 2665 2666 /* Use higher rates for acks instead of base 2667 * rate */ 2668 ah->ah_ack_bitrate_high = true; 2669 2670 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++) 2671 ah->bslot[i] = NULL; 2672 2673 ret = 0; 2674 done: 2675 mmiowb(); 2676 mutex_unlock(&ah->lock); 2677 2678 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2679 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2680 2681 return ret; 2682 } 2683 2684 static void ath5k_stop_tasklets(struct ath5k_hw *ah) 2685 { 2686 ah->rx_pending = false; 2687 ah->tx_pending = false; 2688 tasklet_kill(&ah->rxtq); 2689 tasklet_kill(&ah->txtq); 2690 tasklet_kill(&ah->beacontq); 2691 tasklet_kill(&ah->ani_tasklet); 2692 } 2693 2694 /* 2695 * Stop the device, grabbing the top-level lock to protect 2696 * against concurrent entry through ath5k_init (which can happen 2697 * if another thread does a system call and the thread doing the 2698 * stop is preempted). 2699 */ 2700 void ath5k_stop(struct ieee80211_hw *hw) 2701 { 2702 struct ath5k_hw *ah = hw->priv; 2703 int ret; 2704 2705 mutex_lock(&ah->lock); 2706 ret = ath5k_stop_locked(ah); 2707 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) { 2708 /* 2709 * Don't set the card in full sleep mode! 2710 * 2711 * a) When the device is in this state it must be carefully 2712 * woken up or references to registers in the PCI clock 2713 * domain may freeze the bus (and system). This varies 2714 * by chip and is mostly an issue with newer parts 2715 * (madwifi sources mentioned srev >= 0x78) that go to 2716 * sleep more quickly. 2717 * 2718 * b) On older chips full sleep results a weird behaviour 2719 * during wakeup. I tested various cards with srev < 0x78 2720 * and they don't wake up after module reload, a second 2721 * module reload is needed to bring the card up again. 2722 * 2723 * Until we figure out what's going on don't enable 2724 * full chip reset on any chip (this is what Legacy HAL 2725 * and Sam's HAL do anyway). Instead Perform a full reset 2726 * on the device (same as initial state after attach) and 2727 * leave it idle (keep MAC/BB on warm reset) */ 2728 ret = ath5k_hw_on_hold(ah); 2729 2730 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2731 "putting device to sleep\n"); 2732 } 2733 2734 mmiowb(); 2735 mutex_unlock(&ah->lock); 2736 2737 ath5k_stop_tasklets(ah); 2738 2739 cancel_delayed_work_sync(&ah->tx_complete_work); 2740 2741 if (!ath5k_modparam_no_hw_rfkill_switch) 2742 ath5k_rfkill_hw_stop(ah); 2743 } 2744 2745 /* 2746 * Reset the hardware. If chan is not NULL, then also pause rx/tx 2747 * and change to the given channel. 2748 * 2749 * This should be called with ah->lock. 2750 */ 2751 static int 2752 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 2753 bool skip_pcu) 2754 { 2755 struct ath_common *common = ath5k_hw_common(ah); 2756 int ret, ani_mode; 2757 bool fast; 2758 2759 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n"); 2760 2761 ath5k_hw_set_imr(ah, 0); 2762 synchronize_irq(ah->irq); 2763 ath5k_stop_tasklets(ah); 2764 2765 /* Save ani mode and disable ANI during 2766 * reset. If we don't we might get false 2767 * PHY error interrupts. */ 2768 ani_mode = ah->ani_state.ani_mode; 2769 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF); 2770 2771 /* We are going to empty hw queues 2772 * so we should also free any remaining 2773 * tx buffers */ 2774 ath5k_drain_tx_buffs(ah); 2775 if (chan) 2776 ah->curchan = chan; 2777 2778 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0; 2779 2780 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu); 2781 if (ret) { 2782 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret); 2783 goto err; 2784 } 2785 2786 ret = ath5k_rx_start(ah); 2787 if (ret) { 2788 ATH5K_ERR(ah, "can't start recv logic\n"); 2789 goto err; 2790 } 2791 2792 ath5k_ani_init(ah, ani_mode); 2793 2794 /* 2795 * Set calibration intervals 2796 * 2797 * Note: We don't need to run calibration imediately 2798 * since some initial calibration is done on reset 2799 * even for fast channel switching. Also on scanning 2800 * this will get set again and again and it won't get 2801 * executed unless we connect somewhere and spend some 2802 * time on the channel (that's what calibration needs 2803 * anyway to be accurate). 2804 */ 2805 ah->ah_cal_next_full = jiffies + 2806 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); 2807 ah->ah_cal_next_ani = jiffies + 2808 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); 2809 ah->ah_cal_next_short = jiffies + 2810 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT); 2811 2812 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8); 2813 2814 /* clear survey data and cycle counters */ 2815 memset(&ah->survey, 0, sizeof(ah->survey)); 2816 spin_lock_bh(&common->cc_lock); 2817 ath_hw_cycle_counters_update(common); 2818 memset(&common->cc_survey, 0, sizeof(common->cc_survey)); 2819 memset(&common->cc_ani, 0, sizeof(common->cc_ani)); 2820 spin_unlock_bh(&common->cc_lock); 2821 2822 /* 2823 * Change channels and update the h/w rate map if we're switching; 2824 * e.g. 11a to 11b/g. 2825 * 2826 * We may be doing a reset in response to an ioctl that changes the 2827 * channel so update any state that might change as a result. 2828 * 2829 * XXX needed? 2830 */ 2831 /* ath5k_chan_change(ah, c); */ 2832 2833 ath5k_beacon_config(ah); 2834 /* intrs are enabled by ath5k_beacon_config */ 2835 2836 ieee80211_wake_queues(ah->hw); 2837 2838 return 0; 2839 err: 2840 return ret; 2841 } 2842 2843 static void ath5k_reset_work(struct work_struct *work) 2844 { 2845 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2846 reset_work); 2847 2848 mutex_lock(&ah->lock); 2849 ath5k_reset(ah, NULL, true); 2850 mutex_unlock(&ah->lock); 2851 } 2852 2853 static int 2854 ath5k_init(struct ieee80211_hw *hw) 2855 { 2856 2857 struct ath5k_hw *ah = hw->priv; 2858 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2859 struct ath5k_txq *txq; 2860 u8 mac[ETH_ALEN] = {}; 2861 int ret; 2862 2863 2864 /* 2865 * Collect the channel list. The 802.11 layer 2866 * is responsible for filtering this list based 2867 * on settings like the phy mode and regulatory 2868 * domain restrictions. 2869 */ 2870 ret = ath5k_setup_bands(hw); 2871 if (ret) { 2872 ATH5K_ERR(ah, "can't get channels\n"); 2873 goto err; 2874 } 2875 2876 /* 2877 * Allocate tx+rx descriptors and populate the lists. 2878 */ 2879 ret = ath5k_desc_alloc(ah); 2880 if (ret) { 2881 ATH5K_ERR(ah, "can't allocate descriptors\n"); 2882 goto err; 2883 } 2884 2885 /* 2886 * Allocate hardware transmit queues: one queue for 2887 * beacon frames and one data queue for each QoS 2888 * priority. Note that hw functions handle resetting 2889 * these queues at the needed time. 2890 */ 2891 ret = ath5k_beaconq_setup(ah); 2892 if (ret < 0) { 2893 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n"); 2894 goto err_desc; 2895 } 2896 ah->bhalq = ret; 2897 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0); 2898 if (IS_ERR(ah->cabq)) { 2899 ATH5K_ERR(ah, "can't setup cab queue\n"); 2900 ret = PTR_ERR(ah->cabq); 2901 goto err_bhal; 2902 } 2903 2904 /* 5211 and 5212 usually support 10 queues but we better rely on the 2905 * capability information */ 2906 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) { 2907 /* This order matches mac80211's queue priority, so we can 2908 * directly use the mac80211 queue number without any mapping */ 2909 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO); 2910 if (IS_ERR(txq)) { 2911 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2912 ret = PTR_ERR(txq); 2913 goto err_queues; 2914 } 2915 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI); 2916 if (IS_ERR(txq)) { 2917 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2918 ret = PTR_ERR(txq); 2919 goto err_queues; 2920 } 2921 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 2922 if (IS_ERR(txq)) { 2923 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2924 ret = PTR_ERR(txq); 2925 goto err_queues; 2926 } 2927 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK); 2928 if (IS_ERR(txq)) { 2929 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2930 ret = PTR_ERR(txq); 2931 goto err_queues; 2932 } 2933 hw->queues = 4; 2934 } else { 2935 /* older hardware (5210) can only support one data queue */ 2936 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 2937 if (IS_ERR(txq)) { 2938 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2939 ret = PTR_ERR(txq); 2940 goto err_queues; 2941 } 2942 hw->queues = 1; 2943 } 2944 2945 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah); 2946 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah); 2947 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah); 2948 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah); 2949 2950 INIT_WORK(&ah->reset_work, ath5k_reset_work); 2951 INIT_WORK(&ah->calib_work, ath5k_calibrate_work); 2952 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work); 2953 2954 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac); 2955 if (ret) { 2956 ATH5K_ERR(ah, "unable to read address from EEPROM\n"); 2957 goto err_queues; 2958 } 2959 2960 SET_IEEE80211_PERM_ADDR(hw, mac); 2961 /* All MAC address bits matter for ACKs */ 2962 ath5k_update_bssid_mask_and_opmode(ah, NULL); 2963 2964 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain; 2965 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier); 2966 if (ret) { 2967 ATH5K_ERR(ah, "can't initialize regulatory system\n"); 2968 goto err_queues; 2969 } 2970 2971 ret = ieee80211_register_hw(hw); 2972 if (ret) { 2973 ATH5K_ERR(ah, "can't register ieee80211 hw\n"); 2974 goto err_queues; 2975 } 2976 2977 if (!ath_is_world_regd(regulatory)) 2978 regulatory_hint(hw->wiphy, regulatory->alpha2); 2979 2980 ath5k_init_leds(ah); 2981 2982 ath5k_sysfs_register(ah); 2983 2984 return 0; 2985 err_queues: 2986 ath5k_txq_release(ah); 2987 err_bhal: 2988 ath5k_hw_release_tx_queue(ah, ah->bhalq); 2989 err_desc: 2990 ath5k_desc_free(ah); 2991 err: 2992 return ret; 2993 } 2994 2995 void 2996 ath5k_deinit_ah(struct ath5k_hw *ah) 2997 { 2998 struct ieee80211_hw *hw = ah->hw; 2999 3000 /* 3001 * NB: the order of these is important: 3002 * o call the 802.11 layer before detaching ath5k_hw to 3003 * ensure callbacks into the driver to delete global 3004 * key cache entries can be handled 3005 * o reclaim the tx queue data structures after calling 3006 * the 802.11 layer as we'll get called back to reclaim 3007 * node state and potentially want to use them 3008 * o to cleanup the tx queues the hal is called, so detach 3009 * it last 3010 * XXX: ??? detach ath5k_hw ??? 3011 * Other than that, it's straightforward... 3012 */ 3013 ieee80211_unregister_hw(hw); 3014 ath5k_desc_free(ah); 3015 ath5k_txq_release(ah); 3016 ath5k_hw_release_tx_queue(ah, ah->bhalq); 3017 ath5k_unregister_leds(ah); 3018 3019 ath5k_sysfs_unregister(ah); 3020 /* 3021 * NB: can't reclaim these until after ieee80211_ifdetach 3022 * returns because we'll get called back to reclaim node 3023 * state and potentially want to use them. 3024 */ 3025 ath5k_hw_deinit(ah); 3026 free_irq(ah->irq, ah); 3027 } 3028 3029 bool 3030 ath5k_any_vif_assoc(struct ath5k_hw *ah) 3031 { 3032 struct ath5k_vif_iter_data iter_data; 3033 iter_data.hw_macaddr = NULL; 3034 iter_data.any_assoc = false; 3035 iter_data.need_set_hw_addr = false; 3036 iter_data.found_active = true; 3037 3038 ieee80211_iterate_active_interfaces_atomic( 3039 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 3040 ath5k_vif_iter, &iter_data); 3041 return iter_data.any_assoc; 3042 } 3043 3044 void 3045 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable) 3046 { 3047 struct ath5k_hw *ah = hw->priv; 3048 u32 rfilt; 3049 rfilt = ath5k_hw_get_rx_filter(ah); 3050 if (enable) 3051 rfilt |= AR5K_RX_FILTER_BEACON; 3052 else 3053 rfilt &= ~AR5K_RX_FILTER_BEACON; 3054 ath5k_hw_set_rx_filter(ah, rfilt); 3055 ah->filter_flags = rfilt; 3056 } 3057 3058 void _ath5k_printk(const struct ath5k_hw *ah, const char *level, 3059 const char *fmt, ...) 3060 { 3061 struct va_format vaf; 3062 va_list args; 3063 3064 va_start(args, fmt); 3065 3066 vaf.fmt = fmt; 3067 vaf.va = &args; 3068 3069 if (ah && ah->hw) 3070 printk("%s" pr_fmt("%s: %pV"), 3071 level, wiphy_name(ah->hw->wiphy), &vaf); 3072 else 3073 printk("%s" pr_fmt("%pV"), level, &vaf); 3074 3075 va_end(args); 3076 } 3077