xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision 81d67439)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 
56 #include <net/ieee80211_radiotap.h>
57 
58 #include <asm/unaligned.h>
59 
60 #include "base.h"
61 #include "reg.h"
62 #include "debug.h"
63 #include "ani.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include "trace.h"
67 
68 int ath5k_modparam_nohwcrypt;
69 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
70 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
71 
72 static int modparam_all_channels;
73 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
74 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
75 
76 static int modparam_fastchanswitch;
77 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
78 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
79 
80 
81 /* Module info */
82 MODULE_AUTHOR("Jiri Slaby");
83 MODULE_AUTHOR("Nick Kossifidis");
84 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
85 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
86 MODULE_LICENSE("Dual BSD/GPL");
87 
88 static int ath5k_init(struct ieee80211_hw *hw);
89 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
90 								bool skip_pcu);
91 
92 /* Known SREVs */
93 static const struct ath5k_srev_name srev_names[] = {
94 #ifdef CONFIG_ATHEROS_AR231X
95 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
96 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
97 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
98 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
99 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
100 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
101 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
102 #else
103 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
104 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
105 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
106 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
107 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
108 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
109 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
110 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
111 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
112 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
113 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
114 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
115 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
116 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
117 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
118 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
119 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
120 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
121 #endif
122 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
123 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
124 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
125 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
126 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
127 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
128 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
129 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
130 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
131 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
132 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
133 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
134 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
135 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
136 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
137 #ifdef CONFIG_ATHEROS_AR231X
138 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
139 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
140 #endif
141 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
142 };
143 
144 static const struct ieee80211_rate ath5k_rates[] = {
145 	{ .bitrate = 10,
146 	  .hw_value = ATH5K_RATE_CODE_1M, },
147 	{ .bitrate = 20,
148 	  .hw_value = ATH5K_RATE_CODE_2M,
149 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
150 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
151 	{ .bitrate = 55,
152 	  .hw_value = ATH5K_RATE_CODE_5_5M,
153 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
154 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
155 	{ .bitrate = 110,
156 	  .hw_value = ATH5K_RATE_CODE_11M,
157 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
158 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 	{ .bitrate = 60,
160 	  .hw_value = ATH5K_RATE_CODE_6M,
161 	  .flags = 0 },
162 	{ .bitrate = 90,
163 	  .hw_value = ATH5K_RATE_CODE_9M,
164 	  .flags = 0 },
165 	{ .bitrate = 120,
166 	  .hw_value = ATH5K_RATE_CODE_12M,
167 	  .flags = 0 },
168 	{ .bitrate = 180,
169 	  .hw_value = ATH5K_RATE_CODE_18M,
170 	  .flags = 0 },
171 	{ .bitrate = 240,
172 	  .hw_value = ATH5K_RATE_CODE_24M,
173 	  .flags = 0 },
174 	{ .bitrate = 360,
175 	  .hw_value = ATH5K_RATE_CODE_36M,
176 	  .flags = 0 },
177 	{ .bitrate = 480,
178 	  .hw_value = ATH5K_RATE_CODE_48M,
179 	  .flags = 0 },
180 	{ .bitrate = 540,
181 	  .hw_value = ATH5K_RATE_CODE_54M,
182 	  .flags = 0 },
183 	/* XR missing */
184 };
185 
186 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
187 {
188 	u64 tsf = ath5k_hw_get_tsf64(ah);
189 
190 	if ((tsf & 0x7fff) < rstamp)
191 		tsf -= 0x8000;
192 
193 	return (tsf & ~0x7fff) | rstamp;
194 }
195 
196 const char *
197 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
198 {
199 	const char *name = "xxxxx";
200 	unsigned int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
203 		if (srev_names[i].sr_type != type)
204 			continue;
205 
206 		if ((val & 0xf0) == srev_names[i].sr_val)
207 			name = srev_names[i].sr_name;
208 
209 		if ((val & 0xff) == srev_names[i].sr_val) {
210 			name = srev_names[i].sr_name;
211 			break;
212 		}
213 	}
214 
215 	return name;
216 }
217 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
218 {
219 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
220 	return ath5k_hw_reg_read(ah, reg_offset);
221 }
222 
223 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
224 {
225 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
226 	ath5k_hw_reg_write(ah, val, reg_offset);
227 }
228 
229 static const struct ath_ops ath5k_common_ops = {
230 	.read = ath5k_ioread32,
231 	.write = ath5k_iowrite32,
232 };
233 
234 /***********************\
235 * Driver Initialization *
236 \***********************/
237 
238 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
239 {
240 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
241 	struct ath5k_softc *sc = hw->priv;
242 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
243 
244 	return ath_reg_notifier_apply(wiphy, request, regulatory);
245 }
246 
247 /********************\
248 * Channel/mode setup *
249 \********************/
250 
251 /*
252  * Returns true for the channel numbers used without all_channels modparam.
253  */
254 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
255 {
256 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
257 		return true;
258 
259 	return	/* UNII 1,2 */
260 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
261 		/* midband */
262 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
263 		/* UNII-3 */
264 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
265 		/* 802.11j 5.030-5.080 GHz (20MHz) */
266 		(chan == 8 || chan == 12 || chan == 16) ||
267 		/* 802.11j 4.9GHz (20MHz) */
268 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
269 }
270 
271 static unsigned int
272 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
273 		unsigned int mode, unsigned int max)
274 {
275 	unsigned int count, size, chfreq, freq, ch;
276 	enum ieee80211_band band;
277 
278 	switch (mode) {
279 	case AR5K_MODE_11A:
280 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
281 		size = 220;
282 		chfreq = CHANNEL_5GHZ;
283 		band = IEEE80211_BAND_5GHZ;
284 		break;
285 	case AR5K_MODE_11B:
286 	case AR5K_MODE_11G:
287 		size = 26;
288 		chfreq = CHANNEL_2GHZ;
289 		band = IEEE80211_BAND_2GHZ;
290 		break;
291 	default:
292 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
293 		return 0;
294 	}
295 
296 	count = 0;
297 	for (ch = 1; ch <= size && count < max; ch++) {
298 		freq = ieee80211_channel_to_frequency(ch, band);
299 
300 		if (freq == 0) /* mapping failed - not a standard channel */
301 			continue;
302 
303 		/* Check if channel is supported by the chipset */
304 		if (!ath5k_channel_ok(ah, freq, chfreq))
305 			continue;
306 
307 		if (!modparam_all_channels &&
308 		    !ath5k_is_standard_channel(ch, band))
309 			continue;
310 
311 		/* Write channel info and increment counter */
312 		channels[count].center_freq = freq;
313 		channels[count].band = band;
314 		switch (mode) {
315 		case AR5K_MODE_11A:
316 		case AR5K_MODE_11G:
317 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
318 			break;
319 		case AR5K_MODE_11B:
320 			channels[count].hw_value = CHANNEL_B;
321 		}
322 
323 		count++;
324 	}
325 
326 	return count;
327 }
328 
329 static void
330 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
331 {
332 	u8 i;
333 
334 	for (i = 0; i < AR5K_MAX_RATES; i++)
335 		sc->rate_idx[b->band][i] = -1;
336 
337 	for (i = 0; i < b->n_bitrates; i++) {
338 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339 		if (b->bitrates[i].hw_value_short)
340 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341 	}
342 }
343 
344 static int
345 ath5k_setup_bands(struct ieee80211_hw *hw)
346 {
347 	struct ath5k_softc *sc = hw->priv;
348 	struct ath5k_hw *ah = sc->ah;
349 	struct ieee80211_supported_band *sband;
350 	int max_c, count_c = 0;
351 	int i;
352 
353 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
354 	max_c = ARRAY_SIZE(sc->channels);
355 
356 	/* 2GHz band */
357 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
358 	sband->band = IEEE80211_BAND_2GHZ;
359 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
360 
361 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
362 		/* G mode */
363 		memcpy(sband->bitrates, &ath5k_rates[0],
364 		       sizeof(struct ieee80211_rate) * 12);
365 		sband->n_bitrates = 12;
366 
367 		sband->channels = sc->channels;
368 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
369 					AR5K_MODE_11G, max_c);
370 
371 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
372 		count_c = sband->n_channels;
373 		max_c -= count_c;
374 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
375 		/* B mode */
376 		memcpy(sband->bitrates, &ath5k_rates[0],
377 		       sizeof(struct ieee80211_rate) * 4);
378 		sband->n_bitrates = 4;
379 
380 		/* 5211 only supports B rates and uses 4bit rate codes
381 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
382 		 * fix them up here:
383 		 */
384 		if (ah->ah_version == AR5K_AR5211) {
385 			for (i = 0; i < 4; i++) {
386 				sband->bitrates[i].hw_value =
387 					sband->bitrates[i].hw_value & 0xF;
388 				sband->bitrates[i].hw_value_short =
389 					sband->bitrates[i].hw_value_short & 0xF;
390 			}
391 		}
392 
393 		sband->channels = sc->channels;
394 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
395 					AR5K_MODE_11B, max_c);
396 
397 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
398 		count_c = sband->n_channels;
399 		max_c -= count_c;
400 	}
401 	ath5k_setup_rate_idx(sc, sband);
402 
403 	/* 5GHz band, A mode */
404 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
405 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
406 		sband->band = IEEE80211_BAND_5GHZ;
407 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
408 
409 		memcpy(sband->bitrates, &ath5k_rates[4],
410 		       sizeof(struct ieee80211_rate) * 8);
411 		sband->n_bitrates = 8;
412 
413 		sband->channels = &sc->channels[count_c];
414 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
415 					AR5K_MODE_11A, max_c);
416 
417 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
418 	}
419 	ath5k_setup_rate_idx(sc, sband);
420 
421 	ath5k_debug_dump_bands(sc);
422 
423 	return 0;
424 }
425 
426 /*
427  * Set/change channels. We always reset the chip.
428  * To accomplish this we must first cleanup any pending DMA,
429  * then restart stuff after a la  ath5k_init.
430  *
431  * Called with sc->lock.
432  */
433 int
434 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
435 {
436 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
437 		  "channel set, resetting (%u -> %u MHz)\n",
438 		  sc->curchan->center_freq, chan->center_freq);
439 
440 	/*
441 	 * To switch channels clear any pending DMA operations;
442 	 * wait long enough for the RX fifo to drain, reset the
443 	 * hardware at the new frequency, and then re-enable
444 	 * the relevant bits of the h/w.
445 	 */
446 	return ath5k_reset(sc, chan, true);
447 }
448 
449 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
450 {
451 	struct ath5k_vif_iter_data *iter_data = data;
452 	int i;
453 	struct ath5k_vif *avf = (void *)vif->drv_priv;
454 
455 	if (iter_data->hw_macaddr)
456 		for (i = 0; i < ETH_ALEN; i++)
457 			iter_data->mask[i] &=
458 				~(iter_data->hw_macaddr[i] ^ mac[i]);
459 
460 	if (!iter_data->found_active) {
461 		iter_data->found_active = true;
462 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
463 	}
464 
465 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
466 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
467 			iter_data->need_set_hw_addr = false;
468 
469 	if (!iter_data->any_assoc) {
470 		if (avf->assoc)
471 			iter_data->any_assoc = true;
472 	}
473 
474 	/* Calculate combined mode - when APs are active, operate in AP mode.
475 	 * Otherwise use the mode of the new interface. This can currently
476 	 * only deal with combinations of APs and STAs. Only one ad-hoc
477 	 * interfaces is allowed.
478 	 */
479 	if (avf->opmode == NL80211_IFTYPE_AP)
480 		iter_data->opmode = NL80211_IFTYPE_AP;
481 	else {
482 		if (avf->opmode == NL80211_IFTYPE_STATION)
483 			iter_data->n_stas++;
484 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
485 			iter_data->opmode = avf->opmode;
486 	}
487 }
488 
489 void
490 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
491 				   struct ieee80211_vif *vif)
492 {
493 	struct ath_common *common = ath5k_hw_common(sc->ah);
494 	struct ath5k_vif_iter_data iter_data;
495 	u32 rfilt;
496 
497 	/*
498 	 * Use the hardware MAC address as reference, the hardware uses it
499 	 * together with the BSSID mask when matching addresses.
500 	 */
501 	iter_data.hw_macaddr = common->macaddr;
502 	memset(&iter_data.mask, 0xff, ETH_ALEN);
503 	iter_data.found_active = false;
504 	iter_data.need_set_hw_addr = true;
505 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
506 	iter_data.n_stas = 0;
507 
508 	if (vif)
509 		ath5k_vif_iter(&iter_data, vif->addr, vif);
510 
511 	/* Get list of all active MAC addresses */
512 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
513 						   &iter_data);
514 	memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
515 
516 	sc->opmode = iter_data.opmode;
517 	if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
518 		/* Nothing active, default to station mode */
519 		sc->opmode = NL80211_IFTYPE_STATION;
520 
521 	ath5k_hw_set_opmode(sc->ah, sc->opmode);
522 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
523 		  sc->opmode, ath_opmode_to_string(sc->opmode));
524 
525 	if (iter_data.need_set_hw_addr && iter_data.found_active)
526 		ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
527 
528 	if (ath5k_hw_hasbssidmask(sc->ah))
529 		ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
530 
531 	/* Set up RX Filter */
532 	if (iter_data.n_stas > 1) {
533 		/* If you have multiple STA interfaces connected to
534 		 * different APs, ARPs are not received (most of the time?)
535 		 * Enabling PROMISC appears to fix that problem.
536 		 */
537 		sc->filter_flags |= AR5K_RX_FILTER_PROM;
538 	}
539 
540 	rfilt = sc->filter_flags;
541 	ath5k_hw_set_rx_filter(sc->ah, rfilt);
542 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
543 }
544 
545 static inline int
546 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
547 {
548 	int rix;
549 
550 	/* return base rate on errors */
551 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
552 			"hw_rix out of bounds: %x\n", hw_rix))
553 		return 0;
554 
555 	rix = sc->rate_idx[sc->curchan->band][hw_rix];
556 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
557 		rix = 0;
558 
559 	return rix;
560 }
561 
562 /***************\
563 * Buffers setup *
564 \***************/
565 
566 static
567 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
568 {
569 	struct ath_common *common = ath5k_hw_common(sc->ah);
570 	struct sk_buff *skb;
571 
572 	/*
573 	 * Allocate buffer with headroom_needed space for the
574 	 * fake physical layer header at the start.
575 	 */
576 	skb = ath_rxbuf_alloc(common,
577 			      common->rx_bufsize,
578 			      GFP_ATOMIC);
579 
580 	if (!skb) {
581 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
582 				common->rx_bufsize);
583 		return NULL;
584 	}
585 
586 	*skb_addr = dma_map_single(sc->dev,
587 				   skb->data, common->rx_bufsize,
588 				   DMA_FROM_DEVICE);
589 
590 	if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
591 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
592 		dev_kfree_skb(skb);
593 		return NULL;
594 	}
595 	return skb;
596 }
597 
598 static int
599 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
600 {
601 	struct ath5k_hw *ah = sc->ah;
602 	struct sk_buff *skb = bf->skb;
603 	struct ath5k_desc *ds;
604 	int ret;
605 
606 	if (!skb) {
607 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
608 		if (!skb)
609 			return -ENOMEM;
610 		bf->skb = skb;
611 	}
612 
613 	/*
614 	 * Setup descriptors.  For receive we always terminate
615 	 * the descriptor list with a self-linked entry so we'll
616 	 * not get overrun under high load (as can happen with a
617 	 * 5212 when ANI processing enables PHY error frames).
618 	 *
619 	 * To ensure the last descriptor is self-linked we create
620 	 * each descriptor as self-linked and add it to the end.  As
621 	 * each additional descriptor is added the previous self-linked
622 	 * entry is "fixed" naturally.  This should be safe even
623 	 * if DMA is happening.  When processing RX interrupts we
624 	 * never remove/process the last, self-linked, entry on the
625 	 * descriptor list.  This ensures the hardware always has
626 	 * someplace to write a new frame.
627 	 */
628 	ds = bf->desc;
629 	ds->ds_link = bf->daddr;	/* link to self */
630 	ds->ds_data = bf->skbaddr;
631 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
632 	if (ret) {
633 		ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
634 		return ret;
635 	}
636 
637 	if (sc->rxlink != NULL)
638 		*sc->rxlink = bf->daddr;
639 	sc->rxlink = &ds->ds_link;
640 	return 0;
641 }
642 
643 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
644 {
645 	struct ieee80211_hdr *hdr;
646 	enum ath5k_pkt_type htype;
647 	__le16 fc;
648 
649 	hdr = (struct ieee80211_hdr *)skb->data;
650 	fc = hdr->frame_control;
651 
652 	if (ieee80211_is_beacon(fc))
653 		htype = AR5K_PKT_TYPE_BEACON;
654 	else if (ieee80211_is_probe_resp(fc))
655 		htype = AR5K_PKT_TYPE_PROBE_RESP;
656 	else if (ieee80211_is_atim(fc))
657 		htype = AR5K_PKT_TYPE_ATIM;
658 	else if (ieee80211_is_pspoll(fc))
659 		htype = AR5K_PKT_TYPE_PSPOLL;
660 	else
661 		htype = AR5K_PKT_TYPE_NORMAL;
662 
663 	return htype;
664 }
665 
666 static int
667 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
668 		  struct ath5k_txq *txq, int padsize)
669 {
670 	struct ath5k_hw *ah = sc->ah;
671 	struct ath5k_desc *ds = bf->desc;
672 	struct sk_buff *skb = bf->skb;
673 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
674 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
675 	struct ieee80211_rate *rate;
676 	unsigned int mrr_rate[3], mrr_tries[3];
677 	int i, ret;
678 	u16 hw_rate;
679 	u16 cts_rate = 0;
680 	u16 duration = 0;
681 	u8 rc_flags;
682 
683 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
684 
685 	/* XXX endianness */
686 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
687 			DMA_TO_DEVICE);
688 
689 	rate = ieee80211_get_tx_rate(sc->hw, info);
690 	if (!rate) {
691 		ret = -EINVAL;
692 		goto err_unmap;
693 	}
694 
695 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
696 		flags |= AR5K_TXDESC_NOACK;
697 
698 	rc_flags = info->control.rates[0].flags;
699 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
700 		rate->hw_value_short : rate->hw_value;
701 
702 	pktlen = skb->len;
703 
704 	/* FIXME: If we are in g mode and rate is a CCK rate
705 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
706 	 * from tx power (value is in dB units already) */
707 	if (info->control.hw_key) {
708 		keyidx = info->control.hw_key->hw_key_idx;
709 		pktlen += info->control.hw_key->icv_len;
710 	}
711 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
712 		flags |= AR5K_TXDESC_RTSENA;
713 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
714 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
715 			info->control.vif, pktlen, info));
716 	}
717 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
718 		flags |= AR5K_TXDESC_CTSENA;
719 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
720 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
721 			info->control.vif, pktlen, info));
722 	}
723 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
724 		ieee80211_get_hdrlen_from_skb(skb), padsize,
725 		get_hw_packet_type(skb),
726 		(sc->power_level * 2),
727 		hw_rate,
728 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
729 		cts_rate, duration);
730 	if (ret)
731 		goto err_unmap;
732 
733 	memset(mrr_rate, 0, sizeof(mrr_rate));
734 	memset(mrr_tries, 0, sizeof(mrr_tries));
735 	for (i = 0; i < 3; i++) {
736 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
737 		if (!rate)
738 			break;
739 
740 		mrr_rate[i] = rate->hw_value;
741 		mrr_tries[i] = info->control.rates[i + 1].count;
742 	}
743 
744 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
745 		mrr_rate[0], mrr_tries[0],
746 		mrr_rate[1], mrr_tries[1],
747 		mrr_rate[2], mrr_tries[2]);
748 
749 	ds->ds_link = 0;
750 	ds->ds_data = bf->skbaddr;
751 
752 	spin_lock_bh(&txq->lock);
753 	list_add_tail(&bf->list, &txq->q);
754 	txq->txq_len++;
755 	if (txq->link == NULL) /* is this first packet? */
756 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
757 	else /* no, so only link it */
758 		*txq->link = bf->daddr;
759 
760 	txq->link = &ds->ds_link;
761 	ath5k_hw_start_tx_dma(ah, txq->qnum);
762 	mmiowb();
763 	spin_unlock_bh(&txq->lock);
764 
765 	return 0;
766 err_unmap:
767 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
768 	return ret;
769 }
770 
771 /*******************\
772 * Descriptors setup *
773 \*******************/
774 
775 static int
776 ath5k_desc_alloc(struct ath5k_softc *sc)
777 {
778 	struct ath5k_desc *ds;
779 	struct ath5k_buf *bf;
780 	dma_addr_t da;
781 	unsigned int i;
782 	int ret;
783 
784 	/* allocate descriptors */
785 	sc->desc_len = sizeof(struct ath5k_desc) *
786 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
787 
788 	sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
789 				&sc->desc_daddr, GFP_KERNEL);
790 	if (sc->desc == NULL) {
791 		ATH5K_ERR(sc, "can't allocate descriptors\n");
792 		ret = -ENOMEM;
793 		goto err;
794 	}
795 	ds = sc->desc;
796 	da = sc->desc_daddr;
797 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
798 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
799 
800 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
801 			sizeof(struct ath5k_buf), GFP_KERNEL);
802 	if (bf == NULL) {
803 		ATH5K_ERR(sc, "can't allocate bufptr\n");
804 		ret = -ENOMEM;
805 		goto err_free;
806 	}
807 	sc->bufptr = bf;
808 
809 	INIT_LIST_HEAD(&sc->rxbuf);
810 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
811 		bf->desc = ds;
812 		bf->daddr = da;
813 		list_add_tail(&bf->list, &sc->rxbuf);
814 	}
815 
816 	INIT_LIST_HEAD(&sc->txbuf);
817 	sc->txbuf_len = ATH_TXBUF;
818 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
819 		bf->desc = ds;
820 		bf->daddr = da;
821 		list_add_tail(&bf->list, &sc->txbuf);
822 	}
823 
824 	/* beacon buffers */
825 	INIT_LIST_HEAD(&sc->bcbuf);
826 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
827 		bf->desc = ds;
828 		bf->daddr = da;
829 		list_add_tail(&bf->list, &sc->bcbuf);
830 	}
831 
832 	return 0;
833 err_free:
834 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
835 err:
836 	sc->desc = NULL;
837 	return ret;
838 }
839 
840 void
841 ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
842 {
843 	BUG_ON(!bf);
844 	if (!bf->skb)
845 		return;
846 	dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
847 			DMA_TO_DEVICE);
848 	dev_kfree_skb_any(bf->skb);
849 	bf->skb = NULL;
850 	bf->skbaddr = 0;
851 	bf->desc->ds_data = 0;
852 }
853 
854 void
855 ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
856 {
857 	struct ath5k_hw *ah = sc->ah;
858 	struct ath_common *common = ath5k_hw_common(ah);
859 
860 	BUG_ON(!bf);
861 	if (!bf->skb)
862 		return;
863 	dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
864 			DMA_FROM_DEVICE);
865 	dev_kfree_skb_any(bf->skb);
866 	bf->skb = NULL;
867 	bf->skbaddr = 0;
868 	bf->desc->ds_data = 0;
869 }
870 
871 static void
872 ath5k_desc_free(struct ath5k_softc *sc)
873 {
874 	struct ath5k_buf *bf;
875 
876 	list_for_each_entry(bf, &sc->txbuf, list)
877 		ath5k_txbuf_free_skb(sc, bf);
878 	list_for_each_entry(bf, &sc->rxbuf, list)
879 		ath5k_rxbuf_free_skb(sc, bf);
880 	list_for_each_entry(bf, &sc->bcbuf, list)
881 		ath5k_txbuf_free_skb(sc, bf);
882 
883 	/* Free memory associated with all descriptors */
884 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
885 	sc->desc = NULL;
886 	sc->desc_daddr = 0;
887 
888 	kfree(sc->bufptr);
889 	sc->bufptr = NULL;
890 }
891 
892 
893 /**************\
894 * Queues setup *
895 \**************/
896 
897 static struct ath5k_txq *
898 ath5k_txq_setup(struct ath5k_softc *sc,
899 		int qtype, int subtype)
900 {
901 	struct ath5k_hw *ah = sc->ah;
902 	struct ath5k_txq *txq;
903 	struct ath5k_txq_info qi = {
904 		.tqi_subtype = subtype,
905 		/* XXX: default values not correct for B and XR channels,
906 		 * but who cares? */
907 		.tqi_aifs = AR5K_TUNE_AIFS,
908 		.tqi_cw_min = AR5K_TUNE_CWMIN,
909 		.tqi_cw_max = AR5K_TUNE_CWMAX
910 	};
911 	int qnum;
912 
913 	/*
914 	 * Enable interrupts only for EOL and DESC conditions.
915 	 * We mark tx descriptors to receive a DESC interrupt
916 	 * when a tx queue gets deep; otherwise we wait for the
917 	 * EOL to reap descriptors.  Note that this is done to
918 	 * reduce interrupt load and this only defers reaping
919 	 * descriptors, never transmitting frames.  Aside from
920 	 * reducing interrupts this also permits more concurrency.
921 	 * The only potential downside is if the tx queue backs
922 	 * up in which case the top half of the kernel may backup
923 	 * due to a lack of tx descriptors.
924 	 */
925 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
926 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
927 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
928 	if (qnum < 0) {
929 		/*
930 		 * NB: don't print a message, this happens
931 		 * normally on parts with too few tx queues
932 		 */
933 		return ERR_PTR(qnum);
934 	}
935 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
936 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
937 			qnum, ARRAY_SIZE(sc->txqs));
938 		ath5k_hw_release_tx_queue(ah, qnum);
939 		return ERR_PTR(-EINVAL);
940 	}
941 	txq = &sc->txqs[qnum];
942 	if (!txq->setup) {
943 		txq->qnum = qnum;
944 		txq->link = NULL;
945 		INIT_LIST_HEAD(&txq->q);
946 		spin_lock_init(&txq->lock);
947 		txq->setup = true;
948 		txq->txq_len = 0;
949 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
950 		txq->txq_poll_mark = false;
951 		txq->txq_stuck = 0;
952 	}
953 	return &sc->txqs[qnum];
954 }
955 
956 static int
957 ath5k_beaconq_setup(struct ath5k_hw *ah)
958 {
959 	struct ath5k_txq_info qi = {
960 		/* XXX: default values not correct for B and XR channels,
961 		 * but who cares? */
962 		.tqi_aifs = AR5K_TUNE_AIFS,
963 		.tqi_cw_min = AR5K_TUNE_CWMIN,
964 		.tqi_cw_max = AR5K_TUNE_CWMAX,
965 		/* NB: for dynamic turbo, don't enable any other interrupts */
966 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
967 	};
968 
969 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
970 }
971 
972 static int
973 ath5k_beaconq_config(struct ath5k_softc *sc)
974 {
975 	struct ath5k_hw *ah = sc->ah;
976 	struct ath5k_txq_info qi;
977 	int ret;
978 
979 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
980 	if (ret)
981 		goto err;
982 
983 	if (sc->opmode == NL80211_IFTYPE_AP ||
984 	    sc->opmode == NL80211_IFTYPE_MESH_POINT) {
985 		/*
986 		 * Always burst out beacon and CAB traffic
987 		 * (aifs = cwmin = cwmax = 0)
988 		 */
989 		qi.tqi_aifs = 0;
990 		qi.tqi_cw_min = 0;
991 		qi.tqi_cw_max = 0;
992 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
993 		/*
994 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
995 		 */
996 		qi.tqi_aifs = 0;
997 		qi.tqi_cw_min = 0;
998 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
999 	}
1000 
1001 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1002 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1003 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1004 
1005 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1006 	if (ret) {
1007 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1008 			"hardware queue!\n", __func__);
1009 		goto err;
1010 	}
1011 	ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1012 	if (ret)
1013 		goto err;
1014 
1015 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1016 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1017 	if (ret)
1018 		goto err;
1019 
1020 	qi.tqi_ready_time = (sc->bintval * 80) / 100;
1021 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1022 	if (ret)
1023 		goto err;
1024 
1025 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1026 err:
1027 	return ret;
1028 }
1029 
1030 /**
1031  * ath5k_drain_tx_buffs - Empty tx buffers
1032  *
1033  * @sc The &struct ath5k_softc
1034  *
1035  * Empty tx buffers from all queues in preparation
1036  * of a reset or during shutdown.
1037  *
1038  * NB:	this assumes output has been stopped and
1039  *	we do not need to block ath5k_tx_tasklet
1040  */
1041 static void
1042 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1043 {
1044 	struct ath5k_txq *txq;
1045 	struct ath5k_buf *bf, *bf0;
1046 	int i;
1047 
1048 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1049 		if (sc->txqs[i].setup) {
1050 			txq = &sc->txqs[i];
1051 			spin_lock_bh(&txq->lock);
1052 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1053 				ath5k_debug_printtxbuf(sc, bf);
1054 
1055 				ath5k_txbuf_free_skb(sc, bf);
1056 
1057 				spin_lock_bh(&sc->txbuflock);
1058 				list_move_tail(&bf->list, &sc->txbuf);
1059 				sc->txbuf_len++;
1060 				txq->txq_len--;
1061 				spin_unlock_bh(&sc->txbuflock);
1062 			}
1063 			txq->link = NULL;
1064 			txq->txq_poll_mark = false;
1065 			spin_unlock_bh(&txq->lock);
1066 		}
1067 	}
1068 }
1069 
1070 static void
1071 ath5k_txq_release(struct ath5k_softc *sc)
1072 {
1073 	struct ath5k_txq *txq = sc->txqs;
1074 	unsigned int i;
1075 
1076 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1077 		if (txq->setup) {
1078 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1079 			txq->setup = false;
1080 		}
1081 }
1082 
1083 
1084 /*************\
1085 * RX Handling *
1086 \*************/
1087 
1088 /*
1089  * Enable the receive h/w following a reset.
1090  */
1091 static int
1092 ath5k_rx_start(struct ath5k_softc *sc)
1093 {
1094 	struct ath5k_hw *ah = sc->ah;
1095 	struct ath_common *common = ath5k_hw_common(ah);
1096 	struct ath5k_buf *bf;
1097 	int ret;
1098 
1099 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1100 
1101 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1102 		  common->cachelsz, common->rx_bufsize);
1103 
1104 	spin_lock_bh(&sc->rxbuflock);
1105 	sc->rxlink = NULL;
1106 	list_for_each_entry(bf, &sc->rxbuf, list) {
1107 		ret = ath5k_rxbuf_setup(sc, bf);
1108 		if (ret != 0) {
1109 			spin_unlock_bh(&sc->rxbuflock);
1110 			goto err;
1111 		}
1112 	}
1113 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1114 	ath5k_hw_set_rxdp(ah, bf->daddr);
1115 	spin_unlock_bh(&sc->rxbuflock);
1116 
1117 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1118 	ath5k_update_bssid_mask_and_opmode(sc, NULL); /* set filters, etc. */
1119 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1120 
1121 	return 0;
1122 err:
1123 	return ret;
1124 }
1125 
1126 /*
1127  * Disable the receive logic on PCU (DRU)
1128  * In preparation for a shutdown.
1129  *
1130  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1131  * does.
1132  */
1133 static void
1134 ath5k_rx_stop(struct ath5k_softc *sc)
1135 {
1136 	struct ath5k_hw *ah = sc->ah;
1137 
1138 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1139 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1140 
1141 	ath5k_debug_printrxbuffs(sc, ah);
1142 }
1143 
1144 static unsigned int
1145 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1146 		   struct ath5k_rx_status *rs)
1147 {
1148 	struct ath5k_hw *ah = sc->ah;
1149 	struct ath_common *common = ath5k_hw_common(ah);
1150 	struct ieee80211_hdr *hdr = (void *)skb->data;
1151 	unsigned int keyix, hlen;
1152 
1153 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1155 		return RX_FLAG_DECRYPTED;
1156 
1157 	/* Apparently when a default key is used to decrypt the packet
1158 	   the hw does not set the index used to decrypt.  In such cases
1159 	   get the index from the packet. */
1160 	hlen = ieee80211_hdrlen(hdr->frame_control);
1161 	if (ieee80211_has_protected(hdr->frame_control) &&
1162 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1163 	    skb->len >= hlen + 4) {
1164 		keyix = skb->data[hlen + 3] >> 6;
1165 
1166 		if (test_bit(keyix, common->keymap))
1167 			return RX_FLAG_DECRYPTED;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 
1174 static void
1175 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1176 		     struct ieee80211_rx_status *rxs)
1177 {
1178 	struct ath_common *common = ath5k_hw_common(sc->ah);
1179 	u64 tsf, bc_tstamp;
1180 	u32 hw_tu;
1181 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1182 
1183 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1184 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1185 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1186 		/*
1187 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1188 		 * have updated the local TSF. We have to work around various
1189 		 * hardware bugs, though...
1190 		 */
1191 		tsf = ath5k_hw_get_tsf64(sc->ah);
1192 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1193 		hw_tu = TSF_TO_TU(tsf);
1194 
1195 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1196 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1197 			(unsigned long long)bc_tstamp,
1198 			(unsigned long long)rxs->mactime,
1199 			(unsigned long long)(rxs->mactime - bc_tstamp),
1200 			(unsigned long long)tsf);
1201 
1202 		/*
1203 		 * Sometimes the HW will give us a wrong tstamp in the rx
1204 		 * status, causing the timestamp extension to go wrong.
1205 		 * (This seems to happen especially with beacon frames bigger
1206 		 * than 78 byte (incl. FCS))
1207 		 * But we know that the receive timestamp must be later than the
1208 		 * timestamp of the beacon since HW must have synced to that.
1209 		 *
1210 		 * NOTE: here we assume mactime to be after the frame was
1211 		 * received, not like mac80211 which defines it at the start.
1212 		 */
1213 		if (bc_tstamp > rxs->mactime) {
1214 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1215 				"fixing mactime from %llx to %llx\n",
1216 				(unsigned long long)rxs->mactime,
1217 				(unsigned long long)tsf);
1218 			rxs->mactime = tsf;
1219 		}
1220 
1221 		/*
1222 		 * Local TSF might have moved higher than our beacon timers,
1223 		 * in that case we have to update them to continue sending
1224 		 * beacons. This also takes care of synchronizing beacon sending
1225 		 * times with other stations.
1226 		 */
1227 		if (hw_tu >= sc->nexttbtt)
1228 			ath5k_beacon_update_timers(sc, bc_tstamp);
1229 
1230 		/* Check if the beacon timers are still correct, because a TSF
1231 		 * update might have created a window between them - for a
1232 		 * longer description see the comment of this function: */
1233 		if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1234 			ath5k_beacon_update_timers(sc, bc_tstamp);
1235 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1236 				"fixed beacon timers after beacon receive\n");
1237 		}
1238 	}
1239 }
1240 
1241 static void
1242 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1243 {
1244 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1245 	struct ath5k_hw *ah = sc->ah;
1246 	struct ath_common *common = ath5k_hw_common(ah);
1247 
1248 	/* only beacons from our BSSID */
1249 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1250 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1251 		return;
1252 
1253 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1254 
1255 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1256 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1257 }
1258 
1259 /*
1260  * Compute padding position. skb must contain an IEEE 802.11 frame
1261  */
1262 static int ath5k_common_padpos(struct sk_buff *skb)
1263 {
1264 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1265 	__le16 frame_control = hdr->frame_control;
1266 	int padpos = 24;
1267 
1268 	if (ieee80211_has_a4(frame_control))
1269 		padpos += ETH_ALEN;
1270 
1271 	if (ieee80211_is_data_qos(frame_control))
1272 		padpos += IEEE80211_QOS_CTL_LEN;
1273 
1274 	return padpos;
1275 }
1276 
1277 /*
1278  * This function expects an 802.11 frame and returns the number of
1279  * bytes added, or -1 if we don't have enough header room.
1280  */
1281 static int ath5k_add_padding(struct sk_buff *skb)
1282 {
1283 	int padpos = ath5k_common_padpos(skb);
1284 	int padsize = padpos & 3;
1285 
1286 	if (padsize && skb->len > padpos) {
1287 
1288 		if (skb_headroom(skb) < padsize)
1289 			return -1;
1290 
1291 		skb_push(skb, padsize);
1292 		memmove(skb->data, skb->data + padsize, padpos);
1293 		return padsize;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * The MAC header is padded to have 32-bit boundary if the
1301  * packet payload is non-zero. The general calculation for
1302  * padsize would take into account odd header lengths:
1303  * padsize = 4 - (hdrlen & 3); however, since only
1304  * even-length headers are used, padding can only be 0 or 2
1305  * bytes and we can optimize this a bit.  We must not try to
1306  * remove padding from short control frames that do not have a
1307  * payload.
1308  *
1309  * This function expects an 802.11 frame and returns the number of
1310  * bytes removed.
1311  */
1312 static int ath5k_remove_padding(struct sk_buff *skb)
1313 {
1314 	int padpos = ath5k_common_padpos(skb);
1315 	int padsize = padpos & 3;
1316 
1317 	if (padsize && skb->len >= padpos + padsize) {
1318 		memmove(skb->data + padsize, skb->data, padpos);
1319 		skb_pull(skb, padsize);
1320 		return padsize;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static void
1327 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1328 		    struct ath5k_rx_status *rs)
1329 {
1330 	struct ieee80211_rx_status *rxs;
1331 
1332 	ath5k_remove_padding(skb);
1333 
1334 	rxs = IEEE80211_SKB_RXCB(skb);
1335 
1336 	rxs->flag = 0;
1337 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1338 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1339 
1340 	/*
1341 	 * always extend the mac timestamp, since this information is
1342 	 * also needed for proper IBSS merging.
1343 	 *
1344 	 * XXX: it might be too late to do it here, since rs_tstamp is
1345 	 * 15bit only. that means TSF extension has to be done within
1346 	 * 32768usec (about 32ms). it might be necessary to move this to
1347 	 * the interrupt handler, like it is done in madwifi.
1348 	 *
1349 	 * Unfortunately we don't know when the hardware takes the rx
1350 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1351 	 * The only thing we know is that it is hardware specific...
1352 	 * On AR5213 it seems the rx timestamp is at the end of the
1353 	 * frame, but I'm not sure.
1354 	 *
1355 	 * NOTE: mac80211 defines mactime at the beginning of the first
1356 	 * data symbol. Since we don't have any time references it's
1357 	 * impossible to comply to that. This affects IBSS merge only
1358 	 * right now, so it's not too bad...
1359 	 */
1360 	rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1361 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1362 
1363 	rxs->freq = sc->curchan->center_freq;
1364 	rxs->band = sc->curchan->band;
1365 
1366 	rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1367 
1368 	rxs->antenna = rs->rs_antenna;
1369 
1370 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1371 		sc->stats.antenna_rx[rs->rs_antenna]++;
1372 	else
1373 		sc->stats.antenna_rx[0]++; /* invalid */
1374 
1375 	rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1376 	rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1377 
1378 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1379 	    sc->sbands[sc->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1380 		rxs->flag |= RX_FLAG_SHORTPRE;
1381 
1382 	trace_ath5k_rx(sc, skb);
1383 
1384 	ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1385 
1386 	/* check beacons in IBSS mode */
1387 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
1388 		ath5k_check_ibss_tsf(sc, skb, rxs);
1389 
1390 	ieee80211_rx(sc->hw, skb);
1391 }
1392 
1393 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1394  *
1395  * Check if we want to further process this frame or not. Also update
1396  * statistics. Return true if we want this frame, false if not.
1397  */
1398 static bool
1399 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1400 {
1401 	sc->stats.rx_all_count++;
1402 	sc->stats.rx_bytes_count += rs->rs_datalen;
1403 
1404 	if (unlikely(rs->rs_status)) {
1405 		if (rs->rs_status & AR5K_RXERR_CRC)
1406 			sc->stats.rxerr_crc++;
1407 		if (rs->rs_status & AR5K_RXERR_FIFO)
1408 			sc->stats.rxerr_fifo++;
1409 		if (rs->rs_status & AR5K_RXERR_PHY) {
1410 			sc->stats.rxerr_phy++;
1411 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1412 				sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1413 			return false;
1414 		}
1415 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1416 			/*
1417 			 * Decrypt error.  If the error occurred
1418 			 * because there was no hardware key, then
1419 			 * let the frame through so the upper layers
1420 			 * can process it.  This is necessary for 5210
1421 			 * parts which have no way to setup a ``clear''
1422 			 * key cache entry.
1423 			 *
1424 			 * XXX do key cache faulting
1425 			 */
1426 			sc->stats.rxerr_decrypt++;
1427 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1428 			    !(rs->rs_status & AR5K_RXERR_CRC))
1429 				return true;
1430 		}
1431 		if (rs->rs_status & AR5K_RXERR_MIC) {
1432 			sc->stats.rxerr_mic++;
1433 			return true;
1434 		}
1435 
1436 		/* reject any frames with non-crypto errors */
1437 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1438 			return false;
1439 	}
1440 
1441 	if (unlikely(rs->rs_more)) {
1442 		sc->stats.rxerr_jumbo++;
1443 		return false;
1444 	}
1445 	return true;
1446 }
1447 
1448 static void
1449 ath5k_set_current_imask(struct ath5k_softc *sc)
1450 {
1451 	enum ath5k_int imask;
1452 	unsigned long flags;
1453 
1454 	spin_lock_irqsave(&sc->irqlock, flags);
1455 	imask = sc->imask;
1456 	if (sc->rx_pending)
1457 		imask &= ~AR5K_INT_RX_ALL;
1458 	if (sc->tx_pending)
1459 		imask &= ~AR5K_INT_TX_ALL;
1460 	ath5k_hw_set_imr(sc->ah, imask);
1461 	spin_unlock_irqrestore(&sc->irqlock, flags);
1462 }
1463 
1464 static void
1465 ath5k_tasklet_rx(unsigned long data)
1466 {
1467 	struct ath5k_rx_status rs = {};
1468 	struct sk_buff *skb, *next_skb;
1469 	dma_addr_t next_skb_addr;
1470 	struct ath5k_softc *sc = (void *)data;
1471 	struct ath5k_hw *ah = sc->ah;
1472 	struct ath_common *common = ath5k_hw_common(ah);
1473 	struct ath5k_buf *bf;
1474 	struct ath5k_desc *ds;
1475 	int ret;
1476 
1477 	spin_lock(&sc->rxbuflock);
1478 	if (list_empty(&sc->rxbuf)) {
1479 		ATH5K_WARN(sc, "empty rx buf pool\n");
1480 		goto unlock;
1481 	}
1482 	do {
1483 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1484 		BUG_ON(bf->skb == NULL);
1485 		skb = bf->skb;
1486 		ds = bf->desc;
1487 
1488 		/* bail if HW is still using self-linked descriptor */
1489 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1490 			break;
1491 
1492 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1493 		if (unlikely(ret == -EINPROGRESS))
1494 			break;
1495 		else if (unlikely(ret)) {
1496 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1497 			sc->stats.rxerr_proc++;
1498 			break;
1499 		}
1500 
1501 		if (ath5k_receive_frame_ok(sc, &rs)) {
1502 			next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1503 
1504 			/*
1505 			 * If we can't replace bf->skb with a new skb under
1506 			 * memory pressure, just skip this packet
1507 			 */
1508 			if (!next_skb)
1509 				goto next;
1510 
1511 			dma_unmap_single(sc->dev, bf->skbaddr,
1512 					 common->rx_bufsize,
1513 					 DMA_FROM_DEVICE);
1514 
1515 			skb_put(skb, rs.rs_datalen);
1516 
1517 			ath5k_receive_frame(sc, skb, &rs);
1518 
1519 			bf->skb = next_skb;
1520 			bf->skbaddr = next_skb_addr;
1521 		}
1522 next:
1523 		list_move_tail(&bf->list, &sc->rxbuf);
1524 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1525 unlock:
1526 	spin_unlock(&sc->rxbuflock);
1527 	sc->rx_pending = false;
1528 	ath5k_set_current_imask(sc);
1529 }
1530 
1531 
1532 /*************\
1533 * TX Handling *
1534 \*************/
1535 
1536 void
1537 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1538 	       struct ath5k_txq *txq)
1539 {
1540 	struct ath5k_softc *sc = hw->priv;
1541 	struct ath5k_buf *bf;
1542 	unsigned long flags;
1543 	int padsize;
1544 
1545 	trace_ath5k_tx(sc, skb, txq);
1546 
1547 	/*
1548 	 * The hardware expects the header padded to 4 byte boundaries.
1549 	 * If this is not the case, we add the padding after the header.
1550 	 */
1551 	padsize = ath5k_add_padding(skb);
1552 	if (padsize < 0) {
1553 		ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1554 			  " headroom to pad");
1555 		goto drop_packet;
1556 	}
1557 
1558 	if (txq->txq_len >= txq->txq_max &&
1559 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1560 		ieee80211_stop_queue(hw, txq->qnum);
1561 
1562 	spin_lock_irqsave(&sc->txbuflock, flags);
1563 	if (list_empty(&sc->txbuf)) {
1564 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1565 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1566 		ieee80211_stop_queues(hw);
1567 		goto drop_packet;
1568 	}
1569 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1570 	list_del(&bf->list);
1571 	sc->txbuf_len--;
1572 	if (list_empty(&sc->txbuf))
1573 		ieee80211_stop_queues(hw);
1574 	spin_unlock_irqrestore(&sc->txbuflock, flags);
1575 
1576 	bf->skb = skb;
1577 
1578 	if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1579 		bf->skb = NULL;
1580 		spin_lock_irqsave(&sc->txbuflock, flags);
1581 		list_add_tail(&bf->list, &sc->txbuf);
1582 		sc->txbuf_len++;
1583 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1584 		goto drop_packet;
1585 	}
1586 	return;
1587 
1588 drop_packet:
1589 	dev_kfree_skb_any(skb);
1590 }
1591 
1592 static void
1593 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1594 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1595 {
1596 	struct ieee80211_tx_info *info;
1597 	u8 tries[3];
1598 	int i;
1599 
1600 	sc->stats.tx_all_count++;
1601 	sc->stats.tx_bytes_count += skb->len;
1602 	info = IEEE80211_SKB_CB(skb);
1603 
1604 	tries[0] = info->status.rates[0].count;
1605 	tries[1] = info->status.rates[1].count;
1606 	tries[2] = info->status.rates[2].count;
1607 
1608 	ieee80211_tx_info_clear_status(info);
1609 
1610 	for (i = 0; i < ts->ts_final_idx; i++) {
1611 		struct ieee80211_tx_rate *r =
1612 			&info->status.rates[i];
1613 
1614 		r->count = tries[i];
1615 	}
1616 
1617 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1618 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1619 
1620 	if (unlikely(ts->ts_status)) {
1621 		sc->stats.ack_fail++;
1622 		if (ts->ts_status & AR5K_TXERR_FILT) {
1623 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1624 			sc->stats.txerr_filt++;
1625 		}
1626 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1627 			sc->stats.txerr_retry++;
1628 		if (ts->ts_status & AR5K_TXERR_FIFO)
1629 			sc->stats.txerr_fifo++;
1630 	} else {
1631 		info->flags |= IEEE80211_TX_STAT_ACK;
1632 		info->status.ack_signal = ts->ts_rssi;
1633 
1634 		/* count the successful attempt as well */
1635 		info->status.rates[ts->ts_final_idx].count++;
1636 	}
1637 
1638 	/*
1639 	* Remove MAC header padding before giving the frame
1640 	* back to mac80211.
1641 	*/
1642 	ath5k_remove_padding(skb);
1643 
1644 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1645 		sc->stats.antenna_tx[ts->ts_antenna]++;
1646 	else
1647 		sc->stats.antenna_tx[0]++; /* invalid */
1648 
1649 	trace_ath5k_tx_complete(sc, skb, txq, ts);
1650 	ieee80211_tx_status(sc->hw, skb);
1651 }
1652 
1653 static void
1654 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1655 {
1656 	struct ath5k_tx_status ts = {};
1657 	struct ath5k_buf *bf, *bf0;
1658 	struct ath5k_desc *ds;
1659 	struct sk_buff *skb;
1660 	int ret;
1661 
1662 	spin_lock(&txq->lock);
1663 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1664 
1665 		txq->txq_poll_mark = false;
1666 
1667 		/* skb might already have been processed last time. */
1668 		if (bf->skb != NULL) {
1669 			ds = bf->desc;
1670 
1671 			ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1672 			if (unlikely(ret == -EINPROGRESS))
1673 				break;
1674 			else if (unlikely(ret)) {
1675 				ATH5K_ERR(sc,
1676 					"error %d while processing "
1677 					"queue %u\n", ret, txq->qnum);
1678 				break;
1679 			}
1680 
1681 			skb = bf->skb;
1682 			bf->skb = NULL;
1683 
1684 			dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1685 					DMA_TO_DEVICE);
1686 			ath5k_tx_frame_completed(sc, skb, txq, &ts);
1687 		}
1688 
1689 		/*
1690 		 * It's possible that the hardware can say the buffer is
1691 		 * completed when it hasn't yet loaded the ds_link from
1692 		 * host memory and moved on.
1693 		 * Always keep the last descriptor to avoid HW races...
1694 		 */
1695 		if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1696 			spin_lock(&sc->txbuflock);
1697 			list_move_tail(&bf->list, &sc->txbuf);
1698 			sc->txbuf_len++;
1699 			txq->txq_len--;
1700 			spin_unlock(&sc->txbuflock);
1701 		}
1702 	}
1703 	spin_unlock(&txq->lock);
1704 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1705 		ieee80211_wake_queue(sc->hw, txq->qnum);
1706 }
1707 
1708 static void
1709 ath5k_tasklet_tx(unsigned long data)
1710 {
1711 	int i;
1712 	struct ath5k_softc *sc = (void *)data;
1713 
1714 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1715 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1716 			ath5k_tx_processq(sc, &sc->txqs[i]);
1717 
1718 	sc->tx_pending = false;
1719 	ath5k_set_current_imask(sc);
1720 }
1721 
1722 
1723 /*****************\
1724 * Beacon handling *
1725 \*****************/
1726 
1727 /*
1728  * Setup the beacon frame for transmit.
1729  */
1730 static int
1731 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1732 {
1733 	struct sk_buff *skb = bf->skb;
1734 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1735 	struct ath5k_hw *ah = sc->ah;
1736 	struct ath5k_desc *ds;
1737 	int ret = 0;
1738 	u8 antenna;
1739 	u32 flags;
1740 	const int padsize = 0;
1741 
1742 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1743 			DMA_TO_DEVICE);
1744 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1745 			"skbaddr %llx\n", skb, skb->data, skb->len,
1746 			(unsigned long long)bf->skbaddr);
1747 
1748 	if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1749 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1750 		return -EIO;
1751 	}
1752 
1753 	ds = bf->desc;
1754 	antenna = ah->ah_tx_ant;
1755 
1756 	flags = AR5K_TXDESC_NOACK;
1757 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1758 		ds->ds_link = bf->daddr;	/* self-linked */
1759 		flags |= AR5K_TXDESC_VEOL;
1760 	} else
1761 		ds->ds_link = 0;
1762 
1763 	/*
1764 	 * If we use multiple antennas on AP and use
1765 	 * the Sectored AP scenario, switch antenna every
1766 	 * 4 beacons to make sure everybody hears our AP.
1767 	 * When a client tries to associate, hw will keep
1768 	 * track of the tx antenna to be used for this client
1769 	 * automatically, based on ACKed packets.
1770 	 *
1771 	 * Note: AP still listens and transmits RTS on the
1772 	 * default antenna which is supposed to be an omni.
1773 	 *
1774 	 * Note2: On sectored scenarios it's possible to have
1775 	 * multiple antennas (1 omni -- the default -- and 14
1776 	 * sectors), so if we choose to actually support this
1777 	 * mode, we need to allow the user to set how many antennas
1778 	 * we have and tweak the code below to send beacons
1779 	 * on all of them.
1780 	 */
1781 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1782 		antenna = sc->bsent & 4 ? 2 : 1;
1783 
1784 
1785 	/* FIXME: If we are in g mode and rate is a CCK rate
1786 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1787 	 * from tx power (value is in dB units already) */
1788 	ds->ds_data = bf->skbaddr;
1789 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1790 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1791 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1792 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1793 			1, AR5K_TXKEYIX_INVALID,
1794 			antenna, flags, 0, 0);
1795 	if (ret)
1796 		goto err_unmap;
1797 
1798 	return 0;
1799 err_unmap:
1800 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1806  * this is called only once at config_bss time, for AP we do it every
1807  * SWBA interrupt so that the TIM will reflect buffered frames.
1808  *
1809  * Called with the beacon lock.
1810  */
1811 int
1812 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1813 {
1814 	int ret;
1815 	struct ath5k_softc *sc = hw->priv;
1816 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1817 	struct sk_buff *skb;
1818 
1819 	if (WARN_ON(!vif)) {
1820 		ret = -EINVAL;
1821 		goto out;
1822 	}
1823 
1824 	skb = ieee80211_beacon_get(hw, vif);
1825 
1826 	if (!skb) {
1827 		ret = -ENOMEM;
1828 		goto out;
1829 	}
1830 
1831 	ath5k_txbuf_free_skb(sc, avf->bbuf);
1832 	avf->bbuf->skb = skb;
1833 	ret = ath5k_beacon_setup(sc, avf->bbuf);
1834 	if (ret)
1835 		avf->bbuf->skb = NULL;
1836 out:
1837 	return ret;
1838 }
1839 
1840 /*
1841  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1842  * frame contents are done as needed and the slot time is
1843  * also adjusted based on current state.
1844  *
1845  * This is called from software irq context (beacontq tasklets)
1846  * or user context from ath5k_beacon_config.
1847  */
1848 static void
1849 ath5k_beacon_send(struct ath5k_softc *sc)
1850 {
1851 	struct ath5k_hw *ah = sc->ah;
1852 	struct ieee80211_vif *vif;
1853 	struct ath5k_vif *avf;
1854 	struct ath5k_buf *bf;
1855 	struct sk_buff *skb;
1856 
1857 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1858 
1859 	/*
1860 	 * Check if the previous beacon has gone out.  If
1861 	 * not, don't don't try to post another: skip this
1862 	 * period and wait for the next.  Missed beacons
1863 	 * indicate a problem and should not occur.  If we
1864 	 * miss too many consecutive beacons reset the device.
1865 	 */
1866 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1867 		sc->bmisscount++;
1868 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1869 			"missed %u consecutive beacons\n", sc->bmisscount);
1870 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
1871 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1872 				"stuck beacon time (%u missed)\n",
1873 				sc->bmisscount);
1874 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1875 				  "stuck beacon, resetting\n");
1876 			ieee80211_queue_work(sc->hw, &sc->reset_work);
1877 		}
1878 		return;
1879 	}
1880 	if (unlikely(sc->bmisscount != 0)) {
1881 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1882 			"resume beacon xmit after %u misses\n",
1883 			sc->bmisscount);
1884 		sc->bmisscount = 0;
1885 	}
1886 
1887 	if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1888 			sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1889 		u64 tsf = ath5k_hw_get_tsf64(ah);
1890 		u32 tsftu = TSF_TO_TU(tsf);
1891 		int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1892 		vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1893 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1894 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1895 			(unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1896 	} else /* only one interface */
1897 		vif = sc->bslot[0];
1898 
1899 	if (!vif)
1900 		return;
1901 
1902 	avf = (void *)vif->drv_priv;
1903 	bf = avf->bbuf;
1904 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1905 		     sc->opmode == NL80211_IFTYPE_MONITOR)) {
1906 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * Stop any current dma and put the new frame on the queue.
1912 	 * This should never fail since we check above that no frames
1913 	 * are still pending on the queue.
1914 	 */
1915 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1916 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1917 		/* NB: hw still stops DMA, so proceed */
1918 	}
1919 
1920 	/* refresh the beacon for AP or MESH mode */
1921 	if (sc->opmode == NL80211_IFTYPE_AP ||
1922 	    sc->opmode == NL80211_IFTYPE_MESH_POINT)
1923 		ath5k_beacon_update(sc->hw, vif);
1924 
1925 	trace_ath5k_tx(sc, bf->skb, &sc->txqs[sc->bhalq]);
1926 
1927 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1928 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
1929 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1930 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1931 
1932 	skb = ieee80211_get_buffered_bc(sc->hw, vif);
1933 	while (skb) {
1934 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
1935 
1936 		if (sc->cabq->txq_len >= sc->cabq->txq_max)
1937 			break;
1938 
1939 		skb = ieee80211_get_buffered_bc(sc->hw, vif);
1940 	}
1941 
1942 	sc->bsent++;
1943 }
1944 
1945 /**
1946  * ath5k_beacon_update_timers - update beacon timers
1947  *
1948  * @sc: struct ath5k_softc pointer we are operating on
1949  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1950  *          beacon timer update based on the current HW TSF.
1951  *
1952  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1953  * of a received beacon or the current local hardware TSF and write it to the
1954  * beacon timer registers.
1955  *
1956  * This is called in a variety of situations, e.g. when a beacon is received,
1957  * when a TSF update has been detected, but also when an new IBSS is created or
1958  * when we otherwise know we have to update the timers, but we keep it in this
1959  * function to have it all together in one place.
1960  */
1961 void
1962 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1963 {
1964 	struct ath5k_hw *ah = sc->ah;
1965 	u32 nexttbtt, intval, hw_tu, bc_tu;
1966 	u64 hw_tsf;
1967 
1968 	intval = sc->bintval & AR5K_BEACON_PERIOD;
1969 	if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1970 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1971 		if (intval < 15)
1972 			ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1973 				   intval);
1974 	}
1975 	if (WARN_ON(!intval))
1976 		return;
1977 
1978 	/* beacon TSF converted to TU */
1979 	bc_tu = TSF_TO_TU(bc_tsf);
1980 
1981 	/* current TSF converted to TU */
1982 	hw_tsf = ath5k_hw_get_tsf64(ah);
1983 	hw_tu = TSF_TO_TU(hw_tsf);
1984 
1985 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1986 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1987 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1988 	 * configuration we need to make sure it is bigger than that. */
1989 
1990 	if (bc_tsf == -1) {
1991 		/*
1992 		 * no beacons received, called internally.
1993 		 * just need to refresh timers based on HW TSF.
1994 		 */
1995 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1996 	} else if (bc_tsf == 0) {
1997 		/*
1998 		 * no beacon received, probably called by ath5k_reset_tsf().
1999 		 * reset TSF to start with 0.
2000 		 */
2001 		nexttbtt = intval;
2002 		intval |= AR5K_BEACON_RESET_TSF;
2003 	} else if (bc_tsf > hw_tsf) {
2004 		/*
2005 		 * beacon received, SW merge happened but HW TSF not yet updated.
2006 		 * not possible to reconfigure timers yet, but next time we
2007 		 * receive a beacon with the same BSSID, the hardware will
2008 		 * automatically update the TSF and then we need to reconfigure
2009 		 * the timers.
2010 		 */
2011 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2012 			"need to wait for HW TSF sync\n");
2013 		return;
2014 	} else {
2015 		/*
2016 		 * most important case for beacon synchronization between STA.
2017 		 *
2018 		 * beacon received and HW TSF has been already updated by HW.
2019 		 * update next TBTT based on the TSF of the beacon, but make
2020 		 * sure it is ahead of our local TSF timer.
2021 		 */
2022 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2023 	}
2024 #undef FUDGE
2025 
2026 	sc->nexttbtt = nexttbtt;
2027 
2028 	intval |= AR5K_BEACON_ENA;
2029 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2030 
2031 	/*
2032 	 * debugging output last in order to preserve the time critical aspect
2033 	 * of this function
2034 	 */
2035 	if (bc_tsf == -1)
2036 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2037 			"reconfigured timers based on HW TSF\n");
2038 	else if (bc_tsf == 0)
2039 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2040 			"reset HW TSF and timers\n");
2041 	else
2042 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2043 			"updated timers based on beacon TSF\n");
2044 
2045 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2046 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2047 			  (unsigned long long) bc_tsf,
2048 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2049 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2050 		intval & AR5K_BEACON_PERIOD,
2051 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2052 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2053 }
2054 
2055 /**
2056  * ath5k_beacon_config - Configure the beacon queues and interrupts
2057  *
2058  * @sc: struct ath5k_softc pointer we are operating on
2059  *
2060  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2061  * interrupts to detect TSF updates only.
2062  */
2063 void
2064 ath5k_beacon_config(struct ath5k_softc *sc)
2065 {
2066 	struct ath5k_hw *ah = sc->ah;
2067 	unsigned long flags;
2068 
2069 	spin_lock_irqsave(&sc->block, flags);
2070 	sc->bmisscount = 0;
2071 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2072 
2073 	if (sc->enable_beacon) {
2074 		/*
2075 		 * In IBSS mode we use a self-linked tx descriptor and let the
2076 		 * hardware send the beacons automatically. We have to load it
2077 		 * only once here.
2078 		 * We use the SWBA interrupt only to keep track of the beacon
2079 		 * timers in order to detect automatic TSF updates.
2080 		 */
2081 		ath5k_beaconq_config(sc);
2082 
2083 		sc->imask |= AR5K_INT_SWBA;
2084 
2085 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2086 			if (ath5k_hw_hasveol(ah))
2087 				ath5k_beacon_send(sc);
2088 		} else
2089 			ath5k_beacon_update_timers(sc, -1);
2090 	} else {
2091 		ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2092 	}
2093 
2094 	ath5k_hw_set_imr(ah, sc->imask);
2095 	mmiowb();
2096 	spin_unlock_irqrestore(&sc->block, flags);
2097 }
2098 
2099 static void ath5k_tasklet_beacon(unsigned long data)
2100 {
2101 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2102 
2103 	/*
2104 	 * Software beacon alert--time to send a beacon.
2105 	 *
2106 	 * In IBSS mode we use this interrupt just to
2107 	 * keep track of the next TBTT (target beacon
2108 	 * transmission time) in order to detect whether
2109 	 * automatic TSF updates happened.
2110 	 */
2111 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2112 		/* XXX: only if VEOL supported */
2113 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2114 		sc->nexttbtt += sc->bintval;
2115 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2116 				"SWBA nexttbtt: %x hw_tu: %x "
2117 				"TSF: %llx\n",
2118 				sc->nexttbtt,
2119 				TSF_TO_TU(tsf),
2120 				(unsigned long long) tsf);
2121 	} else {
2122 		spin_lock(&sc->block);
2123 		ath5k_beacon_send(sc);
2124 		spin_unlock(&sc->block);
2125 	}
2126 }
2127 
2128 
2129 /********************\
2130 * Interrupt handling *
2131 \********************/
2132 
2133 static void
2134 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2135 {
2136 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2137 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2138 		/* run ANI only when full calibration is not active */
2139 		ah->ah_cal_next_ani = jiffies +
2140 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2141 		tasklet_schedule(&ah->ah_sc->ani_tasklet);
2142 
2143 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2144 		ah->ah_cal_next_full = jiffies +
2145 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2146 		tasklet_schedule(&ah->ah_sc->calib);
2147 	}
2148 	/* we could use SWI to generate enough interrupts to meet our
2149 	 * calibration interval requirements, if necessary:
2150 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2151 }
2152 
2153 static void
2154 ath5k_schedule_rx(struct ath5k_softc *sc)
2155 {
2156 	sc->rx_pending = true;
2157 	tasklet_schedule(&sc->rxtq);
2158 }
2159 
2160 static void
2161 ath5k_schedule_tx(struct ath5k_softc *sc)
2162 {
2163 	sc->tx_pending = true;
2164 	tasklet_schedule(&sc->txtq);
2165 }
2166 
2167 static irqreturn_t
2168 ath5k_intr(int irq, void *dev_id)
2169 {
2170 	struct ath5k_softc *sc = dev_id;
2171 	struct ath5k_hw *ah = sc->ah;
2172 	enum ath5k_int status;
2173 	unsigned int counter = 1000;
2174 
2175 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2176 		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2177 				!ath5k_hw_is_intr_pending(ah))))
2178 		return IRQ_NONE;
2179 
2180 	do {
2181 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2182 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2183 				status, sc->imask);
2184 		if (unlikely(status & AR5K_INT_FATAL)) {
2185 			/*
2186 			 * Fatal errors are unrecoverable.
2187 			 * Typically these are caused by DMA errors.
2188 			 */
2189 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2190 				  "fatal int, resetting\n");
2191 			ieee80211_queue_work(sc->hw, &sc->reset_work);
2192 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2193 			/*
2194 			 * Receive buffers are full. Either the bus is busy or
2195 			 * the CPU is not fast enough to process all received
2196 			 * frames.
2197 			 * Older chipsets need a reset to come out of this
2198 			 * condition, but we treat it as RX for newer chips.
2199 			 * We don't know exactly which versions need a reset -
2200 			 * this guess is copied from the HAL.
2201 			 */
2202 			sc->stats.rxorn_intr++;
2203 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2204 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2205 					  "rx overrun, resetting\n");
2206 				ieee80211_queue_work(sc->hw, &sc->reset_work);
2207 			} else
2208 				ath5k_schedule_rx(sc);
2209 		} else {
2210 			if (status & AR5K_INT_SWBA)
2211 				tasklet_hi_schedule(&sc->beacontq);
2212 
2213 			if (status & AR5K_INT_RXEOL) {
2214 				/*
2215 				* NB: the hardware should re-read the link when
2216 				*     RXE bit is written, but it doesn't work at
2217 				*     least on older hardware revs.
2218 				*/
2219 				sc->stats.rxeol_intr++;
2220 			}
2221 			if (status & AR5K_INT_TXURN) {
2222 				/* bump tx trigger level */
2223 				ath5k_hw_update_tx_triglevel(ah, true);
2224 			}
2225 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2226 				ath5k_schedule_rx(sc);
2227 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2228 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2229 				ath5k_schedule_tx(sc);
2230 			if (status & AR5K_INT_BMISS) {
2231 				/* TODO */
2232 			}
2233 			if (status & AR5K_INT_MIB) {
2234 				sc->stats.mib_intr++;
2235 				ath5k_hw_update_mib_counters(ah);
2236 				ath5k_ani_mib_intr(ah);
2237 			}
2238 			if (status & AR5K_INT_GPIO)
2239 				tasklet_schedule(&sc->rf_kill.toggleq);
2240 
2241 		}
2242 
2243 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2244 			break;
2245 
2246 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2247 
2248 	if (sc->rx_pending || sc->tx_pending)
2249 		ath5k_set_current_imask(sc);
2250 
2251 	if (unlikely(!counter))
2252 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2253 
2254 	ath5k_intr_calibration_poll(ah);
2255 
2256 	return IRQ_HANDLED;
2257 }
2258 
2259 /*
2260  * Periodically recalibrate the PHY to account
2261  * for temperature/environment changes.
2262  */
2263 static void
2264 ath5k_tasklet_calibrate(unsigned long data)
2265 {
2266 	struct ath5k_softc *sc = (void *)data;
2267 	struct ath5k_hw *ah = sc->ah;
2268 
2269 	/* Only full calibration for now */
2270 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2271 
2272 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2273 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2274 		sc->curchan->hw_value);
2275 
2276 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2277 		/*
2278 		 * Rfgain is out of bounds, reset the chip
2279 		 * to load new gain values.
2280 		 */
2281 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2282 		ieee80211_queue_work(sc->hw, &sc->reset_work);
2283 	}
2284 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2285 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2286 			ieee80211_frequency_to_channel(
2287 				sc->curchan->center_freq));
2288 
2289 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2290 	 * doesn't.
2291 	 * TODO: We should stop TX here, so that it doesn't interfere.
2292 	 * Note that stopping the queues is not enough to stop TX! */
2293 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2294 		ah->ah_cal_next_nf = jiffies +
2295 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2296 		ath5k_hw_update_noise_floor(ah);
2297 	}
2298 
2299 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2300 }
2301 
2302 
2303 static void
2304 ath5k_tasklet_ani(unsigned long data)
2305 {
2306 	struct ath5k_softc *sc = (void *)data;
2307 	struct ath5k_hw *ah = sc->ah;
2308 
2309 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2310 	ath5k_ani_calibration(ah);
2311 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2312 }
2313 
2314 
2315 static void
2316 ath5k_tx_complete_poll_work(struct work_struct *work)
2317 {
2318 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2319 			tx_complete_work.work);
2320 	struct ath5k_txq *txq;
2321 	int i;
2322 	bool needreset = false;
2323 
2324 	mutex_lock(&sc->lock);
2325 
2326 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2327 		if (sc->txqs[i].setup) {
2328 			txq = &sc->txqs[i];
2329 			spin_lock_bh(&txq->lock);
2330 			if (txq->txq_len > 1) {
2331 				if (txq->txq_poll_mark) {
2332 					ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2333 						  "TX queue stuck %d\n",
2334 						  txq->qnum);
2335 					needreset = true;
2336 					txq->txq_stuck++;
2337 					spin_unlock_bh(&txq->lock);
2338 					break;
2339 				} else {
2340 					txq->txq_poll_mark = true;
2341 				}
2342 			}
2343 			spin_unlock_bh(&txq->lock);
2344 		}
2345 	}
2346 
2347 	if (needreset) {
2348 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2349 			  "TX queues stuck, resetting\n");
2350 		ath5k_reset(sc, NULL, true);
2351 	}
2352 
2353 	mutex_unlock(&sc->lock);
2354 
2355 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2356 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2357 }
2358 
2359 
2360 /*************************\
2361 * Initialization routines *
2362 \*************************/
2363 
2364 int __devinit
2365 ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2366 {
2367 	struct ieee80211_hw *hw = sc->hw;
2368 	struct ath_common *common;
2369 	int ret;
2370 	int csz;
2371 
2372 	/* Initialize driver private data */
2373 	SET_IEEE80211_DEV(hw, sc->dev);
2374 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2375 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2376 			IEEE80211_HW_SIGNAL_DBM |
2377 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2378 
2379 	hw->wiphy->interface_modes =
2380 		BIT(NL80211_IFTYPE_AP) |
2381 		BIT(NL80211_IFTYPE_STATION) |
2382 		BIT(NL80211_IFTYPE_ADHOC) |
2383 		BIT(NL80211_IFTYPE_MESH_POINT);
2384 
2385 	/* both antennas can be configured as RX or TX */
2386 	hw->wiphy->available_antennas_tx = 0x3;
2387 	hw->wiphy->available_antennas_rx = 0x3;
2388 
2389 	hw->extra_tx_headroom = 2;
2390 	hw->channel_change_time = 5000;
2391 
2392 	/*
2393 	 * Mark the device as detached to avoid processing
2394 	 * interrupts until setup is complete.
2395 	 */
2396 	__set_bit(ATH_STAT_INVALID, sc->status);
2397 
2398 	sc->opmode = NL80211_IFTYPE_STATION;
2399 	sc->bintval = 1000;
2400 	mutex_init(&sc->lock);
2401 	spin_lock_init(&sc->rxbuflock);
2402 	spin_lock_init(&sc->txbuflock);
2403 	spin_lock_init(&sc->block);
2404 	spin_lock_init(&sc->irqlock);
2405 
2406 	/* Setup interrupt handler */
2407 	ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2408 	if (ret) {
2409 		ATH5K_ERR(sc, "request_irq failed\n");
2410 		goto err;
2411 	}
2412 
2413 	/* If we passed the test, malloc an ath5k_hw struct */
2414 	sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2415 	if (!sc->ah) {
2416 		ret = -ENOMEM;
2417 		ATH5K_ERR(sc, "out of memory\n");
2418 		goto err_irq;
2419 	}
2420 
2421 	sc->ah->ah_sc = sc;
2422 	sc->ah->ah_iobase = sc->iobase;
2423 	common = ath5k_hw_common(sc->ah);
2424 	common->ops = &ath5k_common_ops;
2425 	common->bus_ops = bus_ops;
2426 	common->ah = sc->ah;
2427 	common->hw = hw;
2428 	common->priv = sc;
2429 	common->clockrate = 40;
2430 
2431 	/*
2432 	 * Cache line size is used to size and align various
2433 	 * structures used to communicate with the hardware.
2434 	 */
2435 	ath5k_read_cachesize(common, &csz);
2436 	common->cachelsz = csz << 2; /* convert to bytes */
2437 
2438 	spin_lock_init(&common->cc_lock);
2439 
2440 	/* Initialize device */
2441 	ret = ath5k_hw_init(sc);
2442 	if (ret)
2443 		goto err_free_ah;
2444 
2445 	/* set up multi-rate retry capabilities */
2446 	if (sc->ah->ah_version == AR5K_AR5212) {
2447 		hw->max_rates = 4;
2448 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2449 					 AR5K_INIT_RETRY_LONG);
2450 	}
2451 
2452 	hw->vif_data_size = sizeof(struct ath5k_vif);
2453 
2454 	/* Finish private driver data initialization */
2455 	ret = ath5k_init(hw);
2456 	if (ret)
2457 		goto err_ah;
2458 
2459 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2460 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2461 					sc->ah->ah_mac_srev,
2462 					sc->ah->ah_phy_revision);
2463 
2464 	if (!sc->ah->ah_single_chip) {
2465 		/* Single chip radio (!RF5111) */
2466 		if (sc->ah->ah_radio_5ghz_revision &&
2467 			!sc->ah->ah_radio_2ghz_revision) {
2468 			/* No 5GHz support -> report 2GHz radio */
2469 			if (!test_bit(AR5K_MODE_11A,
2470 				sc->ah->ah_capabilities.cap_mode)) {
2471 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2472 					ath5k_chip_name(AR5K_VERSION_RAD,
2473 						sc->ah->ah_radio_5ghz_revision),
2474 						sc->ah->ah_radio_5ghz_revision);
2475 			/* No 2GHz support (5110 and some
2476 			 * 5GHz only cards) -> report 5GHz radio */
2477 			} else if (!test_bit(AR5K_MODE_11B,
2478 				sc->ah->ah_capabilities.cap_mode)) {
2479 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2480 					ath5k_chip_name(AR5K_VERSION_RAD,
2481 						sc->ah->ah_radio_5ghz_revision),
2482 						sc->ah->ah_radio_5ghz_revision);
2483 			/* Multiband radio */
2484 			} else {
2485 				ATH5K_INFO(sc, "RF%s multiband radio found"
2486 					" (0x%x)\n",
2487 					ath5k_chip_name(AR5K_VERSION_RAD,
2488 						sc->ah->ah_radio_5ghz_revision),
2489 						sc->ah->ah_radio_5ghz_revision);
2490 			}
2491 		}
2492 		/* Multi chip radio (RF5111 - RF2111) ->
2493 		 * report both 2GHz/5GHz radios */
2494 		else if (sc->ah->ah_radio_5ghz_revision &&
2495 				sc->ah->ah_radio_2ghz_revision) {
2496 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2497 				ath5k_chip_name(AR5K_VERSION_RAD,
2498 					sc->ah->ah_radio_5ghz_revision),
2499 					sc->ah->ah_radio_5ghz_revision);
2500 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2501 				ath5k_chip_name(AR5K_VERSION_RAD,
2502 					sc->ah->ah_radio_2ghz_revision),
2503 					sc->ah->ah_radio_2ghz_revision);
2504 		}
2505 	}
2506 
2507 	ath5k_debug_init_device(sc);
2508 
2509 	/* ready to process interrupts */
2510 	__clear_bit(ATH_STAT_INVALID, sc->status);
2511 
2512 	return 0;
2513 err_ah:
2514 	ath5k_hw_deinit(sc->ah);
2515 err_free_ah:
2516 	kfree(sc->ah);
2517 err_irq:
2518 	free_irq(sc->irq, sc);
2519 err:
2520 	return ret;
2521 }
2522 
2523 static int
2524 ath5k_stop_locked(struct ath5k_softc *sc)
2525 {
2526 	struct ath5k_hw *ah = sc->ah;
2527 
2528 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2529 			test_bit(ATH_STAT_INVALID, sc->status));
2530 
2531 	/*
2532 	 * Shutdown the hardware and driver:
2533 	 *    stop output from above
2534 	 *    disable interrupts
2535 	 *    turn off timers
2536 	 *    turn off the radio
2537 	 *    clear transmit machinery
2538 	 *    clear receive machinery
2539 	 *    drain and release tx queues
2540 	 *    reclaim beacon resources
2541 	 *    power down hardware
2542 	 *
2543 	 * Note that some of this work is not possible if the
2544 	 * hardware is gone (invalid).
2545 	 */
2546 	ieee80211_stop_queues(sc->hw);
2547 
2548 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2549 		ath5k_led_off(sc);
2550 		ath5k_hw_set_imr(ah, 0);
2551 		synchronize_irq(sc->irq);
2552 		ath5k_rx_stop(sc);
2553 		ath5k_hw_dma_stop(ah);
2554 		ath5k_drain_tx_buffs(sc);
2555 		ath5k_hw_phy_disable(ah);
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 int
2562 ath5k_init_hw(struct ath5k_softc *sc)
2563 {
2564 	struct ath5k_hw *ah = sc->ah;
2565 	struct ath_common *common = ath5k_hw_common(ah);
2566 	int ret, i;
2567 
2568 	mutex_lock(&sc->lock);
2569 
2570 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2571 
2572 	/*
2573 	 * Stop anything previously setup.  This is safe
2574 	 * no matter this is the first time through or not.
2575 	 */
2576 	ath5k_stop_locked(sc);
2577 
2578 	/*
2579 	 * The basic interface to setting the hardware in a good
2580 	 * state is ``reset''.  On return the hardware is known to
2581 	 * be powered up and with interrupts disabled.  This must
2582 	 * be followed by initialization of the appropriate bits
2583 	 * and then setup of the interrupt mask.
2584 	 */
2585 	sc->curchan = sc->hw->conf.channel;
2586 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2587 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2588 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2589 
2590 	ret = ath5k_reset(sc, NULL, false);
2591 	if (ret)
2592 		goto done;
2593 
2594 	ath5k_rfkill_hw_start(ah);
2595 
2596 	/*
2597 	 * Reset the key cache since some parts do not reset the
2598 	 * contents on initial power up or resume from suspend.
2599 	 */
2600 	for (i = 0; i < common->keymax; i++)
2601 		ath_hw_keyreset(common, (u16) i);
2602 
2603 	/* Use higher rates for acks instead of base
2604 	 * rate */
2605 	ah->ah_ack_bitrate_high = true;
2606 
2607 	for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2608 		sc->bslot[i] = NULL;
2609 
2610 	ret = 0;
2611 done:
2612 	mmiowb();
2613 	mutex_unlock(&sc->lock);
2614 
2615 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2616 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2617 
2618 	return ret;
2619 }
2620 
2621 static void ath5k_stop_tasklets(struct ath5k_softc *sc)
2622 {
2623 	sc->rx_pending = false;
2624 	sc->tx_pending = false;
2625 	tasklet_kill(&sc->rxtq);
2626 	tasklet_kill(&sc->txtq);
2627 	tasklet_kill(&sc->calib);
2628 	tasklet_kill(&sc->beacontq);
2629 	tasklet_kill(&sc->ani_tasklet);
2630 }
2631 
2632 /*
2633  * Stop the device, grabbing the top-level lock to protect
2634  * against concurrent entry through ath5k_init (which can happen
2635  * if another thread does a system call and the thread doing the
2636  * stop is preempted).
2637  */
2638 int
2639 ath5k_stop_hw(struct ath5k_softc *sc)
2640 {
2641 	int ret;
2642 
2643 	mutex_lock(&sc->lock);
2644 	ret = ath5k_stop_locked(sc);
2645 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2646 		/*
2647 		 * Don't set the card in full sleep mode!
2648 		 *
2649 		 * a) When the device is in this state it must be carefully
2650 		 * woken up or references to registers in the PCI clock
2651 		 * domain may freeze the bus (and system).  This varies
2652 		 * by chip and is mostly an issue with newer parts
2653 		 * (madwifi sources mentioned srev >= 0x78) that go to
2654 		 * sleep more quickly.
2655 		 *
2656 		 * b) On older chips full sleep results a weird behaviour
2657 		 * during wakeup. I tested various cards with srev < 0x78
2658 		 * and they don't wake up after module reload, a second
2659 		 * module reload is needed to bring the card up again.
2660 		 *
2661 		 * Until we figure out what's going on don't enable
2662 		 * full chip reset on any chip (this is what Legacy HAL
2663 		 * and Sam's HAL do anyway). Instead Perform a full reset
2664 		 * on the device (same as initial state after attach) and
2665 		 * leave it idle (keep MAC/BB on warm reset) */
2666 		ret = ath5k_hw_on_hold(sc->ah);
2667 
2668 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2669 				"putting device to sleep\n");
2670 	}
2671 
2672 	mmiowb();
2673 	mutex_unlock(&sc->lock);
2674 
2675 	ath5k_stop_tasklets(sc);
2676 
2677 	cancel_delayed_work_sync(&sc->tx_complete_work);
2678 
2679 	ath5k_rfkill_hw_stop(sc->ah);
2680 
2681 	return ret;
2682 }
2683 
2684 /*
2685  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2686  * and change to the given channel.
2687  *
2688  * This should be called with sc->lock.
2689  */
2690 static int
2691 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2692 							bool skip_pcu)
2693 {
2694 	struct ath5k_hw *ah = sc->ah;
2695 	struct ath_common *common = ath5k_hw_common(ah);
2696 	int ret, ani_mode;
2697 	bool fast;
2698 
2699 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2700 
2701 	ath5k_hw_set_imr(ah, 0);
2702 	synchronize_irq(sc->irq);
2703 	ath5k_stop_tasklets(sc);
2704 
2705 	/* Save ani mode and disable ANI during
2706 	 * reset. If we don't we might get false
2707 	 * PHY error interrupts. */
2708 	ani_mode = ah->ah_sc->ani_state.ani_mode;
2709 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2710 
2711 	/* We are going to empty hw queues
2712 	 * so we should also free any remaining
2713 	 * tx buffers */
2714 	ath5k_drain_tx_buffs(sc);
2715 	if (chan)
2716 		sc->curchan = chan;
2717 
2718 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2719 
2720 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, fast, skip_pcu);
2721 	if (ret) {
2722 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2723 		goto err;
2724 	}
2725 
2726 	ret = ath5k_rx_start(sc);
2727 	if (ret) {
2728 		ATH5K_ERR(sc, "can't start recv logic\n");
2729 		goto err;
2730 	}
2731 
2732 	ath5k_ani_init(ah, ani_mode);
2733 
2734 	ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2735 	ah->ah_cal_next_ani = jiffies;
2736 	ah->ah_cal_next_nf = jiffies;
2737 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2738 
2739 	/* clear survey data and cycle counters */
2740 	memset(&sc->survey, 0, sizeof(sc->survey));
2741 	spin_lock_bh(&common->cc_lock);
2742 	ath_hw_cycle_counters_update(common);
2743 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2744 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2745 	spin_unlock_bh(&common->cc_lock);
2746 
2747 	/*
2748 	 * Change channels and update the h/w rate map if we're switching;
2749 	 * e.g. 11a to 11b/g.
2750 	 *
2751 	 * We may be doing a reset in response to an ioctl that changes the
2752 	 * channel so update any state that might change as a result.
2753 	 *
2754 	 * XXX needed?
2755 	 */
2756 /*	ath5k_chan_change(sc, c); */
2757 
2758 	ath5k_beacon_config(sc);
2759 	/* intrs are enabled by ath5k_beacon_config */
2760 
2761 	ieee80211_wake_queues(sc->hw);
2762 
2763 	return 0;
2764 err:
2765 	return ret;
2766 }
2767 
2768 static void ath5k_reset_work(struct work_struct *work)
2769 {
2770 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2771 		reset_work);
2772 
2773 	mutex_lock(&sc->lock);
2774 	ath5k_reset(sc, NULL, true);
2775 	mutex_unlock(&sc->lock);
2776 }
2777 
2778 static int __devinit
2779 ath5k_init(struct ieee80211_hw *hw)
2780 {
2781 
2782 	struct ath5k_softc *sc = hw->priv;
2783 	struct ath5k_hw *ah = sc->ah;
2784 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2785 	struct ath5k_txq *txq;
2786 	u8 mac[ETH_ALEN] = {};
2787 	int ret;
2788 
2789 
2790 	/*
2791 	 * Check if the MAC has multi-rate retry support.
2792 	 * We do this by trying to setup a fake extended
2793 	 * descriptor.  MACs that don't have support will
2794 	 * return false w/o doing anything.  MACs that do
2795 	 * support it will return true w/o doing anything.
2796 	 */
2797 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2798 
2799 	if (ret < 0)
2800 		goto err;
2801 	if (ret > 0)
2802 		__set_bit(ATH_STAT_MRRETRY, sc->status);
2803 
2804 	/*
2805 	 * Collect the channel list.  The 802.11 layer
2806 	 * is responsible for filtering this list based
2807 	 * on settings like the phy mode and regulatory
2808 	 * domain restrictions.
2809 	 */
2810 	ret = ath5k_setup_bands(hw);
2811 	if (ret) {
2812 		ATH5K_ERR(sc, "can't get channels\n");
2813 		goto err;
2814 	}
2815 
2816 	/*
2817 	 * Allocate tx+rx descriptors and populate the lists.
2818 	 */
2819 	ret = ath5k_desc_alloc(sc);
2820 	if (ret) {
2821 		ATH5K_ERR(sc, "can't allocate descriptors\n");
2822 		goto err;
2823 	}
2824 
2825 	/*
2826 	 * Allocate hardware transmit queues: one queue for
2827 	 * beacon frames and one data queue for each QoS
2828 	 * priority.  Note that hw functions handle resetting
2829 	 * these queues at the needed time.
2830 	 */
2831 	ret = ath5k_beaconq_setup(ah);
2832 	if (ret < 0) {
2833 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2834 		goto err_desc;
2835 	}
2836 	sc->bhalq = ret;
2837 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2838 	if (IS_ERR(sc->cabq)) {
2839 		ATH5K_ERR(sc, "can't setup cab queue\n");
2840 		ret = PTR_ERR(sc->cabq);
2841 		goto err_bhal;
2842 	}
2843 
2844 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2845 	 * capability information */
2846 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2847 		/* This order matches mac80211's queue priority, so we can
2848 		* directly use the mac80211 queue number without any mapping */
2849 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2850 		if (IS_ERR(txq)) {
2851 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2852 			ret = PTR_ERR(txq);
2853 			goto err_queues;
2854 		}
2855 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2856 		if (IS_ERR(txq)) {
2857 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2858 			ret = PTR_ERR(txq);
2859 			goto err_queues;
2860 		}
2861 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2862 		if (IS_ERR(txq)) {
2863 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2864 			ret = PTR_ERR(txq);
2865 			goto err_queues;
2866 		}
2867 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2868 		if (IS_ERR(txq)) {
2869 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2870 			ret = PTR_ERR(txq);
2871 			goto err_queues;
2872 		}
2873 		hw->queues = 4;
2874 	} else {
2875 		/* older hardware (5210) can only support one data queue */
2876 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2877 		if (IS_ERR(txq)) {
2878 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2879 			ret = PTR_ERR(txq);
2880 			goto err_queues;
2881 		}
2882 		hw->queues = 1;
2883 	}
2884 
2885 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2886 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2887 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2888 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2889 	tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2890 
2891 	INIT_WORK(&sc->reset_work, ath5k_reset_work);
2892 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2893 
2894 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2895 	if (ret) {
2896 		ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2897 		goto err_queues;
2898 	}
2899 
2900 	SET_IEEE80211_PERM_ADDR(hw, mac);
2901 	memcpy(&sc->lladdr, mac, ETH_ALEN);
2902 	/* All MAC address bits matter for ACKs */
2903 	ath5k_update_bssid_mask_and_opmode(sc, NULL);
2904 
2905 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2906 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2907 	if (ret) {
2908 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
2909 		goto err_queues;
2910 	}
2911 
2912 	ret = ieee80211_register_hw(hw);
2913 	if (ret) {
2914 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2915 		goto err_queues;
2916 	}
2917 
2918 	if (!ath_is_world_regd(regulatory))
2919 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2920 
2921 	ath5k_init_leds(sc);
2922 
2923 	ath5k_sysfs_register(sc);
2924 
2925 	return 0;
2926 err_queues:
2927 	ath5k_txq_release(sc);
2928 err_bhal:
2929 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
2930 err_desc:
2931 	ath5k_desc_free(sc);
2932 err:
2933 	return ret;
2934 }
2935 
2936 void
2937 ath5k_deinit_softc(struct ath5k_softc *sc)
2938 {
2939 	struct ieee80211_hw *hw = sc->hw;
2940 
2941 	/*
2942 	 * NB: the order of these is important:
2943 	 * o call the 802.11 layer before detaching ath5k_hw to
2944 	 *   ensure callbacks into the driver to delete global
2945 	 *   key cache entries can be handled
2946 	 * o reclaim the tx queue data structures after calling
2947 	 *   the 802.11 layer as we'll get called back to reclaim
2948 	 *   node state and potentially want to use them
2949 	 * o to cleanup the tx queues the hal is called, so detach
2950 	 *   it last
2951 	 * XXX: ??? detach ath5k_hw ???
2952 	 * Other than that, it's straightforward...
2953 	 */
2954 	ieee80211_unregister_hw(hw);
2955 	ath5k_desc_free(sc);
2956 	ath5k_txq_release(sc);
2957 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2958 	ath5k_unregister_leds(sc);
2959 
2960 	ath5k_sysfs_unregister(sc);
2961 	/*
2962 	 * NB: can't reclaim these until after ieee80211_ifdetach
2963 	 * returns because we'll get called back to reclaim node
2964 	 * state and potentially want to use them.
2965 	 */
2966 	ath5k_hw_deinit(sc->ah);
2967 	kfree(sc->ah);
2968 	free_irq(sc->irq, sc);
2969 }
2970 
2971 bool
2972 ath5k_any_vif_assoc(struct ath5k_softc *sc)
2973 {
2974 	struct ath5k_vif_iter_data iter_data;
2975 	iter_data.hw_macaddr = NULL;
2976 	iter_data.any_assoc = false;
2977 	iter_data.need_set_hw_addr = false;
2978 	iter_data.found_active = true;
2979 
2980 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
2981 						   &iter_data);
2982 	return iter_data.any_assoc;
2983 }
2984 
2985 void
2986 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2987 {
2988 	struct ath5k_softc *sc = hw->priv;
2989 	struct ath5k_hw *ah = sc->ah;
2990 	u32 rfilt;
2991 	rfilt = ath5k_hw_get_rx_filter(ah);
2992 	if (enable)
2993 		rfilt |= AR5K_RX_FILTER_BEACON;
2994 	else
2995 		rfilt &= ~AR5K_RX_FILTER_BEACON;
2996 	ath5k_hw_set_rx_filter(ah, rfilt);
2997 	sc->filter_flags = rfilt;
2998 }
2999