xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision 3a9a231d)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 #include <linux/nl80211.h>
56 
57 #include <net/ieee80211_radiotap.h>
58 
59 #include <asm/unaligned.h>
60 
61 #include "base.h"
62 #include "reg.h"
63 #include "debug.h"
64 #include "ani.h"
65 #include "ath5k.h"
66 #include "../regd.h"
67 
68 #define CREATE_TRACE_POINTS
69 #include "trace.h"
70 
71 int ath5k_modparam_nohwcrypt;
72 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
73 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
74 
75 static int modparam_all_channels;
76 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
77 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
78 
79 static int modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 
84 /* Module info */
85 MODULE_AUTHOR("Jiri Slaby");
86 MODULE_AUTHOR("Nick Kossifidis");
87 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
88 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
89 MODULE_LICENSE("Dual BSD/GPL");
90 
91 static int ath5k_init(struct ieee80211_hw *hw);
92 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
93 								bool skip_pcu);
94 
95 /* Known SREVs */
96 static const struct ath5k_srev_name srev_names[] = {
97 #ifdef CONFIG_ATHEROS_AR231X
98 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
99 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
100 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
101 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
102 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
103 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
104 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
105 #else
106 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
107 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
108 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
109 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
110 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
111 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
112 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
113 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
114 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
115 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
116 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
117 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
118 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
119 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
120 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
121 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
122 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
123 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
124 #endif
125 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
126 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
127 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
128 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
129 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
130 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
131 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
132 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
133 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
134 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
135 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
136 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
137 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
138 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
139 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
140 #ifdef CONFIG_ATHEROS_AR231X
141 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
142 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
143 #endif
144 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
145 };
146 
147 static const struct ieee80211_rate ath5k_rates[] = {
148 	{ .bitrate = 10,
149 	  .hw_value = ATH5K_RATE_CODE_1M, },
150 	{ .bitrate = 20,
151 	  .hw_value = ATH5K_RATE_CODE_2M,
152 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
153 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
154 	{ .bitrate = 55,
155 	  .hw_value = ATH5K_RATE_CODE_5_5M,
156 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
157 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 	{ .bitrate = 110,
159 	  .hw_value = ATH5K_RATE_CODE_11M,
160 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
161 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 	{ .bitrate = 60,
163 	  .hw_value = ATH5K_RATE_CODE_6M,
164 	  .flags = 0 },
165 	{ .bitrate = 90,
166 	  .hw_value = ATH5K_RATE_CODE_9M,
167 	  .flags = 0 },
168 	{ .bitrate = 120,
169 	  .hw_value = ATH5K_RATE_CODE_12M,
170 	  .flags = 0 },
171 	{ .bitrate = 180,
172 	  .hw_value = ATH5K_RATE_CODE_18M,
173 	  .flags = 0 },
174 	{ .bitrate = 240,
175 	  .hw_value = ATH5K_RATE_CODE_24M,
176 	  .flags = 0 },
177 	{ .bitrate = 360,
178 	  .hw_value = ATH5K_RATE_CODE_36M,
179 	  .flags = 0 },
180 	{ .bitrate = 480,
181 	  .hw_value = ATH5K_RATE_CODE_48M,
182 	  .flags = 0 },
183 	{ .bitrate = 540,
184 	  .hw_value = ATH5K_RATE_CODE_54M,
185 	  .flags = 0 },
186 	/* XR missing */
187 };
188 
189 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
190 {
191 	u64 tsf = ath5k_hw_get_tsf64(ah);
192 
193 	if ((tsf & 0x7fff) < rstamp)
194 		tsf -= 0x8000;
195 
196 	return (tsf & ~0x7fff) | rstamp;
197 }
198 
199 const char *
200 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
201 {
202 	const char *name = "xxxxx";
203 	unsigned int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
206 		if (srev_names[i].sr_type != type)
207 			continue;
208 
209 		if ((val & 0xf0) == srev_names[i].sr_val)
210 			name = srev_names[i].sr_name;
211 
212 		if ((val & 0xff) == srev_names[i].sr_val) {
213 			name = srev_names[i].sr_name;
214 			break;
215 		}
216 	}
217 
218 	return name;
219 }
220 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
221 {
222 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
223 	return ath5k_hw_reg_read(ah, reg_offset);
224 }
225 
226 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
227 {
228 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
229 	ath5k_hw_reg_write(ah, val, reg_offset);
230 }
231 
232 static const struct ath_ops ath5k_common_ops = {
233 	.read = ath5k_ioread32,
234 	.write = ath5k_iowrite32,
235 };
236 
237 /***********************\
238 * Driver Initialization *
239 \***********************/
240 
241 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
242 {
243 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
244 	struct ath5k_hw *ah = hw->priv;
245 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
246 
247 	return ath_reg_notifier_apply(wiphy, request, regulatory);
248 }
249 
250 /********************\
251 * Channel/mode setup *
252 \********************/
253 
254 /*
255  * Returns true for the channel numbers used without all_channels modparam.
256  */
257 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
258 {
259 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
260 		return true;
261 
262 	return	/* UNII 1,2 */
263 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
264 		/* midband */
265 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
266 		/* UNII-3 */
267 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
268 		/* 802.11j 5.030-5.080 GHz (20MHz) */
269 		(chan == 8 || chan == 12 || chan == 16) ||
270 		/* 802.11j 4.9GHz (20MHz) */
271 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
272 }
273 
274 static unsigned int
275 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
276 		unsigned int mode, unsigned int max)
277 {
278 	unsigned int count, size, freq, ch;
279 	enum ieee80211_band band;
280 
281 	switch (mode) {
282 	case AR5K_MODE_11A:
283 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
284 		size = 220;
285 		band = IEEE80211_BAND_5GHZ;
286 		break;
287 	case AR5K_MODE_11B:
288 	case AR5K_MODE_11G:
289 		size = 26;
290 		band = IEEE80211_BAND_2GHZ;
291 		break;
292 	default:
293 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
294 		return 0;
295 	}
296 
297 	count = 0;
298 	for (ch = 1; ch <= size && count < max; ch++) {
299 		freq = ieee80211_channel_to_frequency(ch, band);
300 
301 		if (freq == 0) /* mapping failed - not a standard channel */
302 			continue;
303 
304 		/* Write channel info, needed for ath5k_channel_ok() */
305 		channels[count].center_freq = freq;
306 		channels[count].band = band;
307 		channels[count].hw_value = mode;
308 
309 		/* Check if channel is supported by the chipset */
310 		if (!ath5k_channel_ok(ah, &channels[count]))
311 			continue;
312 
313 		if (!modparam_all_channels &&
314 		    !ath5k_is_standard_channel(ch, band))
315 			continue;
316 
317 		count++;
318 	}
319 
320 	return count;
321 }
322 
323 static void
324 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
325 {
326 	u8 i;
327 
328 	for (i = 0; i < AR5K_MAX_RATES; i++)
329 		ah->rate_idx[b->band][i] = -1;
330 
331 	for (i = 0; i < b->n_bitrates; i++) {
332 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
333 		if (b->bitrates[i].hw_value_short)
334 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
335 	}
336 }
337 
338 static int
339 ath5k_setup_bands(struct ieee80211_hw *hw)
340 {
341 	struct ath5k_hw *ah = hw->priv;
342 	struct ieee80211_supported_band *sband;
343 	int max_c, count_c = 0;
344 	int i;
345 
346 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
347 	max_c = ARRAY_SIZE(ah->channels);
348 
349 	/* 2GHz band */
350 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
351 	sband->band = IEEE80211_BAND_2GHZ;
352 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
353 
354 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
355 		/* G mode */
356 		memcpy(sband->bitrates, &ath5k_rates[0],
357 		       sizeof(struct ieee80211_rate) * 12);
358 		sband->n_bitrates = 12;
359 
360 		sband->channels = ah->channels;
361 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
362 					AR5K_MODE_11G, max_c);
363 
364 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
365 		count_c = sband->n_channels;
366 		max_c -= count_c;
367 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
368 		/* B mode */
369 		memcpy(sband->bitrates, &ath5k_rates[0],
370 		       sizeof(struct ieee80211_rate) * 4);
371 		sband->n_bitrates = 4;
372 
373 		/* 5211 only supports B rates and uses 4bit rate codes
374 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
375 		 * fix them up here:
376 		 */
377 		if (ah->ah_version == AR5K_AR5211) {
378 			for (i = 0; i < 4; i++) {
379 				sband->bitrates[i].hw_value =
380 					sband->bitrates[i].hw_value & 0xF;
381 				sband->bitrates[i].hw_value_short =
382 					sband->bitrates[i].hw_value_short & 0xF;
383 			}
384 		}
385 
386 		sband->channels = ah->channels;
387 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
388 					AR5K_MODE_11B, max_c);
389 
390 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
391 		count_c = sband->n_channels;
392 		max_c -= count_c;
393 	}
394 	ath5k_setup_rate_idx(ah, sband);
395 
396 	/* 5GHz band, A mode */
397 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
398 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
399 		sband->band = IEEE80211_BAND_5GHZ;
400 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
401 
402 		memcpy(sband->bitrates, &ath5k_rates[4],
403 		       sizeof(struct ieee80211_rate) * 8);
404 		sband->n_bitrates = 8;
405 
406 		sband->channels = &ah->channels[count_c];
407 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 					AR5K_MODE_11A, max_c);
409 
410 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
411 	}
412 	ath5k_setup_rate_idx(ah, sband);
413 
414 	ath5k_debug_dump_bands(ah);
415 
416 	return 0;
417 }
418 
419 /*
420  * Set/change channels. We always reset the chip.
421  * To accomplish this we must first cleanup any pending DMA,
422  * then restart stuff after a la  ath5k_init.
423  *
424  * Called with ah->lock.
425  */
426 int
427 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
428 {
429 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
430 		  "channel set, resetting (%u -> %u MHz)\n",
431 		  ah->curchan->center_freq, chan->center_freq);
432 
433 	/*
434 	 * To switch channels clear any pending DMA operations;
435 	 * wait long enough for the RX fifo to drain, reset the
436 	 * hardware at the new frequency, and then re-enable
437 	 * the relevant bits of the h/w.
438 	 */
439 	return ath5k_reset(ah, chan, true);
440 }
441 
442 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
443 {
444 	struct ath5k_vif_iter_data *iter_data = data;
445 	int i;
446 	struct ath5k_vif *avf = (void *)vif->drv_priv;
447 
448 	if (iter_data->hw_macaddr)
449 		for (i = 0; i < ETH_ALEN; i++)
450 			iter_data->mask[i] &=
451 				~(iter_data->hw_macaddr[i] ^ mac[i]);
452 
453 	if (!iter_data->found_active) {
454 		iter_data->found_active = true;
455 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
456 	}
457 
458 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
459 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
460 			iter_data->need_set_hw_addr = false;
461 
462 	if (!iter_data->any_assoc) {
463 		if (avf->assoc)
464 			iter_data->any_assoc = true;
465 	}
466 
467 	/* Calculate combined mode - when APs are active, operate in AP mode.
468 	 * Otherwise use the mode of the new interface. This can currently
469 	 * only deal with combinations of APs and STAs. Only one ad-hoc
470 	 * interfaces is allowed.
471 	 */
472 	if (avf->opmode == NL80211_IFTYPE_AP)
473 		iter_data->opmode = NL80211_IFTYPE_AP;
474 	else {
475 		if (avf->opmode == NL80211_IFTYPE_STATION)
476 			iter_data->n_stas++;
477 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
478 			iter_data->opmode = avf->opmode;
479 	}
480 }
481 
482 void
483 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
484 				   struct ieee80211_vif *vif)
485 {
486 	struct ath_common *common = ath5k_hw_common(ah);
487 	struct ath5k_vif_iter_data iter_data;
488 	u32 rfilt;
489 
490 	/*
491 	 * Use the hardware MAC address as reference, the hardware uses it
492 	 * together with the BSSID mask when matching addresses.
493 	 */
494 	iter_data.hw_macaddr = common->macaddr;
495 	memset(&iter_data.mask, 0xff, ETH_ALEN);
496 	iter_data.found_active = false;
497 	iter_data.need_set_hw_addr = true;
498 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
499 	iter_data.n_stas = 0;
500 
501 	if (vif)
502 		ath5k_vif_iter(&iter_data, vif->addr, vif);
503 
504 	/* Get list of all active MAC addresses */
505 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
506 						   &iter_data);
507 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
508 
509 	ah->opmode = iter_data.opmode;
510 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
511 		/* Nothing active, default to station mode */
512 		ah->opmode = NL80211_IFTYPE_STATION;
513 
514 	ath5k_hw_set_opmode(ah, ah->opmode);
515 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
516 		  ah->opmode, ath_opmode_to_string(ah->opmode));
517 
518 	if (iter_data.need_set_hw_addr && iter_data.found_active)
519 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
520 
521 	if (ath5k_hw_hasbssidmask(ah))
522 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
523 
524 	/* Set up RX Filter */
525 	if (iter_data.n_stas > 1) {
526 		/* If you have multiple STA interfaces connected to
527 		 * different APs, ARPs are not received (most of the time?)
528 		 * Enabling PROMISC appears to fix that problem.
529 		 */
530 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
531 	}
532 
533 	rfilt = ah->filter_flags;
534 	ath5k_hw_set_rx_filter(ah, rfilt);
535 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
536 }
537 
538 static inline int
539 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
540 {
541 	int rix;
542 
543 	/* return base rate on errors */
544 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
545 			"hw_rix out of bounds: %x\n", hw_rix))
546 		return 0;
547 
548 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
549 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
550 		rix = 0;
551 
552 	return rix;
553 }
554 
555 /***************\
556 * Buffers setup *
557 \***************/
558 
559 static
560 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
561 {
562 	struct ath_common *common = ath5k_hw_common(ah);
563 	struct sk_buff *skb;
564 
565 	/*
566 	 * Allocate buffer with headroom_needed space for the
567 	 * fake physical layer header at the start.
568 	 */
569 	skb = ath_rxbuf_alloc(common,
570 			      common->rx_bufsize,
571 			      GFP_ATOMIC);
572 
573 	if (!skb) {
574 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
575 				common->rx_bufsize);
576 		return NULL;
577 	}
578 
579 	*skb_addr = dma_map_single(ah->dev,
580 				   skb->data, common->rx_bufsize,
581 				   DMA_FROM_DEVICE);
582 
583 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
584 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
585 		dev_kfree_skb(skb);
586 		return NULL;
587 	}
588 	return skb;
589 }
590 
591 static int
592 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
593 {
594 	struct sk_buff *skb = bf->skb;
595 	struct ath5k_desc *ds;
596 	int ret;
597 
598 	if (!skb) {
599 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
600 		if (!skb)
601 			return -ENOMEM;
602 		bf->skb = skb;
603 	}
604 
605 	/*
606 	 * Setup descriptors.  For receive we always terminate
607 	 * the descriptor list with a self-linked entry so we'll
608 	 * not get overrun under high load (as can happen with a
609 	 * 5212 when ANI processing enables PHY error frames).
610 	 *
611 	 * To ensure the last descriptor is self-linked we create
612 	 * each descriptor as self-linked and add it to the end.  As
613 	 * each additional descriptor is added the previous self-linked
614 	 * entry is "fixed" naturally.  This should be safe even
615 	 * if DMA is happening.  When processing RX interrupts we
616 	 * never remove/process the last, self-linked, entry on the
617 	 * descriptor list.  This ensures the hardware always has
618 	 * someplace to write a new frame.
619 	 */
620 	ds = bf->desc;
621 	ds->ds_link = bf->daddr;	/* link to self */
622 	ds->ds_data = bf->skbaddr;
623 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
624 	if (ret) {
625 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
626 		return ret;
627 	}
628 
629 	if (ah->rxlink != NULL)
630 		*ah->rxlink = bf->daddr;
631 	ah->rxlink = &ds->ds_link;
632 	return 0;
633 }
634 
635 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
636 {
637 	struct ieee80211_hdr *hdr;
638 	enum ath5k_pkt_type htype;
639 	__le16 fc;
640 
641 	hdr = (struct ieee80211_hdr *)skb->data;
642 	fc = hdr->frame_control;
643 
644 	if (ieee80211_is_beacon(fc))
645 		htype = AR5K_PKT_TYPE_BEACON;
646 	else if (ieee80211_is_probe_resp(fc))
647 		htype = AR5K_PKT_TYPE_PROBE_RESP;
648 	else if (ieee80211_is_atim(fc))
649 		htype = AR5K_PKT_TYPE_ATIM;
650 	else if (ieee80211_is_pspoll(fc))
651 		htype = AR5K_PKT_TYPE_PSPOLL;
652 	else
653 		htype = AR5K_PKT_TYPE_NORMAL;
654 
655 	return htype;
656 }
657 
658 static int
659 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
660 		  struct ath5k_txq *txq, int padsize)
661 {
662 	struct ath5k_desc *ds = bf->desc;
663 	struct sk_buff *skb = bf->skb;
664 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
665 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
666 	struct ieee80211_rate *rate;
667 	unsigned int mrr_rate[3], mrr_tries[3];
668 	int i, ret;
669 	u16 hw_rate;
670 	u16 cts_rate = 0;
671 	u16 duration = 0;
672 	u8 rc_flags;
673 
674 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
675 
676 	/* XXX endianness */
677 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
678 			DMA_TO_DEVICE);
679 
680 	rate = ieee80211_get_tx_rate(ah->hw, info);
681 	if (!rate) {
682 		ret = -EINVAL;
683 		goto err_unmap;
684 	}
685 
686 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
687 		flags |= AR5K_TXDESC_NOACK;
688 
689 	rc_flags = info->control.rates[0].flags;
690 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
691 		rate->hw_value_short : rate->hw_value;
692 
693 	pktlen = skb->len;
694 
695 	/* FIXME: If we are in g mode and rate is a CCK rate
696 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
697 	 * from tx power (value is in dB units already) */
698 	if (info->control.hw_key) {
699 		keyidx = info->control.hw_key->hw_key_idx;
700 		pktlen += info->control.hw_key->icv_len;
701 	}
702 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
703 		flags |= AR5K_TXDESC_RTSENA;
704 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
705 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
706 			info->control.vif, pktlen, info));
707 	}
708 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
709 		flags |= AR5K_TXDESC_CTSENA;
710 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
712 			info->control.vif, pktlen, info));
713 	}
714 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
715 		ieee80211_get_hdrlen_from_skb(skb), padsize,
716 		get_hw_packet_type(skb),
717 		(ah->power_level * 2),
718 		hw_rate,
719 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
720 		cts_rate, duration);
721 	if (ret)
722 		goto err_unmap;
723 
724 	memset(mrr_rate, 0, sizeof(mrr_rate));
725 	memset(mrr_tries, 0, sizeof(mrr_tries));
726 	for (i = 0; i < 3; i++) {
727 		rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
728 		if (!rate)
729 			break;
730 
731 		mrr_rate[i] = rate->hw_value;
732 		mrr_tries[i] = info->control.rates[i + 1].count;
733 	}
734 
735 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
736 		mrr_rate[0], mrr_tries[0],
737 		mrr_rate[1], mrr_tries[1],
738 		mrr_rate[2], mrr_tries[2]);
739 
740 	ds->ds_link = 0;
741 	ds->ds_data = bf->skbaddr;
742 
743 	spin_lock_bh(&txq->lock);
744 	list_add_tail(&bf->list, &txq->q);
745 	txq->txq_len++;
746 	if (txq->link == NULL) /* is this first packet? */
747 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
748 	else /* no, so only link it */
749 		*txq->link = bf->daddr;
750 
751 	txq->link = &ds->ds_link;
752 	ath5k_hw_start_tx_dma(ah, txq->qnum);
753 	mmiowb();
754 	spin_unlock_bh(&txq->lock);
755 
756 	return 0;
757 err_unmap:
758 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
759 	return ret;
760 }
761 
762 /*******************\
763 * Descriptors setup *
764 \*******************/
765 
766 static int
767 ath5k_desc_alloc(struct ath5k_hw *ah)
768 {
769 	struct ath5k_desc *ds;
770 	struct ath5k_buf *bf;
771 	dma_addr_t da;
772 	unsigned int i;
773 	int ret;
774 
775 	/* allocate descriptors */
776 	ah->desc_len = sizeof(struct ath5k_desc) *
777 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
778 
779 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
780 				&ah->desc_daddr, GFP_KERNEL);
781 	if (ah->desc == NULL) {
782 		ATH5K_ERR(ah, "can't allocate descriptors\n");
783 		ret = -ENOMEM;
784 		goto err;
785 	}
786 	ds = ah->desc;
787 	da = ah->desc_daddr;
788 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
789 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
790 
791 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
792 			sizeof(struct ath5k_buf), GFP_KERNEL);
793 	if (bf == NULL) {
794 		ATH5K_ERR(ah, "can't allocate bufptr\n");
795 		ret = -ENOMEM;
796 		goto err_free;
797 	}
798 	ah->bufptr = bf;
799 
800 	INIT_LIST_HEAD(&ah->rxbuf);
801 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
802 		bf->desc = ds;
803 		bf->daddr = da;
804 		list_add_tail(&bf->list, &ah->rxbuf);
805 	}
806 
807 	INIT_LIST_HEAD(&ah->txbuf);
808 	ah->txbuf_len = ATH_TXBUF;
809 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
810 		bf->desc = ds;
811 		bf->daddr = da;
812 		list_add_tail(&bf->list, &ah->txbuf);
813 	}
814 
815 	/* beacon buffers */
816 	INIT_LIST_HEAD(&ah->bcbuf);
817 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
818 		bf->desc = ds;
819 		bf->daddr = da;
820 		list_add_tail(&bf->list, &ah->bcbuf);
821 	}
822 
823 	return 0;
824 err_free:
825 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
826 err:
827 	ah->desc = NULL;
828 	return ret;
829 }
830 
831 void
832 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
833 {
834 	BUG_ON(!bf);
835 	if (!bf->skb)
836 		return;
837 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
838 			DMA_TO_DEVICE);
839 	dev_kfree_skb_any(bf->skb);
840 	bf->skb = NULL;
841 	bf->skbaddr = 0;
842 	bf->desc->ds_data = 0;
843 }
844 
845 void
846 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
847 {
848 	struct ath_common *common = ath5k_hw_common(ah);
849 
850 	BUG_ON(!bf);
851 	if (!bf->skb)
852 		return;
853 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
854 			DMA_FROM_DEVICE);
855 	dev_kfree_skb_any(bf->skb);
856 	bf->skb = NULL;
857 	bf->skbaddr = 0;
858 	bf->desc->ds_data = 0;
859 }
860 
861 static void
862 ath5k_desc_free(struct ath5k_hw *ah)
863 {
864 	struct ath5k_buf *bf;
865 
866 	list_for_each_entry(bf, &ah->txbuf, list)
867 		ath5k_txbuf_free_skb(ah, bf);
868 	list_for_each_entry(bf, &ah->rxbuf, list)
869 		ath5k_rxbuf_free_skb(ah, bf);
870 	list_for_each_entry(bf, &ah->bcbuf, list)
871 		ath5k_txbuf_free_skb(ah, bf);
872 
873 	/* Free memory associated with all descriptors */
874 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
875 	ah->desc = NULL;
876 	ah->desc_daddr = 0;
877 
878 	kfree(ah->bufptr);
879 	ah->bufptr = NULL;
880 }
881 
882 
883 /**************\
884 * Queues setup *
885 \**************/
886 
887 static struct ath5k_txq *
888 ath5k_txq_setup(struct ath5k_hw *ah,
889 		int qtype, int subtype)
890 {
891 	struct ath5k_txq *txq;
892 	struct ath5k_txq_info qi = {
893 		.tqi_subtype = subtype,
894 		/* XXX: default values not correct for B and XR channels,
895 		 * but who cares? */
896 		.tqi_aifs = AR5K_TUNE_AIFS,
897 		.tqi_cw_min = AR5K_TUNE_CWMIN,
898 		.tqi_cw_max = AR5K_TUNE_CWMAX
899 	};
900 	int qnum;
901 
902 	/*
903 	 * Enable interrupts only for EOL and DESC conditions.
904 	 * We mark tx descriptors to receive a DESC interrupt
905 	 * when a tx queue gets deep; otherwise we wait for the
906 	 * EOL to reap descriptors.  Note that this is done to
907 	 * reduce interrupt load and this only defers reaping
908 	 * descriptors, never transmitting frames.  Aside from
909 	 * reducing interrupts this also permits more concurrency.
910 	 * The only potential downside is if the tx queue backs
911 	 * up in which case the top half of the kernel may backup
912 	 * due to a lack of tx descriptors.
913 	 */
914 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
915 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
916 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
917 	if (qnum < 0) {
918 		/*
919 		 * NB: don't print a message, this happens
920 		 * normally on parts with too few tx queues
921 		 */
922 		return ERR_PTR(qnum);
923 	}
924 	txq = &ah->txqs[qnum];
925 	if (!txq->setup) {
926 		txq->qnum = qnum;
927 		txq->link = NULL;
928 		INIT_LIST_HEAD(&txq->q);
929 		spin_lock_init(&txq->lock);
930 		txq->setup = true;
931 		txq->txq_len = 0;
932 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
933 		txq->txq_poll_mark = false;
934 		txq->txq_stuck = 0;
935 	}
936 	return &ah->txqs[qnum];
937 }
938 
939 static int
940 ath5k_beaconq_setup(struct ath5k_hw *ah)
941 {
942 	struct ath5k_txq_info qi = {
943 		/* XXX: default values not correct for B and XR channels,
944 		 * but who cares? */
945 		.tqi_aifs = AR5K_TUNE_AIFS,
946 		.tqi_cw_min = AR5K_TUNE_CWMIN,
947 		.tqi_cw_max = AR5K_TUNE_CWMAX,
948 		/* NB: for dynamic turbo, don't enable any other interrupts */
949 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
950 	};
951 
952 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
953 }
954 
955 static int
956 ath5k_beaconq_config(struct ath5k_hw *ah)
957 {
958 	struct ath5k_txq_info qi;
959 	int ret;
960 
961 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
962 	if (ret)
963 		goto err;
964 
965 	if (ah->opmode == NL80211_IFTYPE_AP ||
966 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
967 		/*
968 		 * Always burst out beacon and CAB traffic
969 		 * (aifs = cwmin = cwmax = 0)
970 		 */
971 		qi.tqi_aifs = 0;
972 		qi.tqi_cw_min = 0;
973 		qi.tqi_cw_max = 0;
974 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
975 		/*
976 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
977 		 */
978 		qi.tqi_aifs = 0;
979 		qi.tqi_cw_min = 0;
980 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
981 	}
982 
983 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
984 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
985 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
986 
987 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
988 	if (ret) {
989 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
990 			"hardware queue!\n", __func__);
991 		goto err;
992 	}
993 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
994 	if (ret)
995 		goto err;
996 
997 	/* reconfigure cabq with ready time to 80% of beacon_interval */
998 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
999 	if (ret)
1000 		goto err;
1001 
1002 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1003 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1004 	if (ret)
1005 		goto err;
1006 
1007 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1008 err:
1009 	return ret;
1010 }
1011 
1012 /**
1013  * ath5k_drain_tx_buffs - Empty tx buffers
1014  *
1015  * @ah The &struct ath5k_hw
1016  *
1017  * Empty tx buffers from all queues in preparation
1018  * of a reset or during shutdown.
1019  *
1020  * NB:	this assumes output has been stopped and
1021  *	we do not need to block ath5k_tx_tasklet
1022  */
1023 static void
1024 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1025 {
1026 	struct ath5k_txq *txq;
1027 	struct ath5k_buf *bf, *bf0;
1028 	int i;
1029 
1030 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1031 		if (ah->txqs[i].setup) {
1032 			txq = &ah->txqs[i];
1033 			spin_lock_bh(&txq->lock);
1034 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1035 				ath5k_debug_printtxbuf(ah, bf);
1036 
1037 				ath5k_txbuf_free_skb(ah, bf);
1038 
1039 				spin_lock_bh(&ah->txbuflock);
1040 				list_move_tail(&bf->list, &ah->txbuf);
1041 				ah->txbuf_len++;
1042 				txq->txq_len--;
1043 				spin_unlock_bh(&ah->txbuflock);
1044 			}
1045 			txq->link = NULL;
1046 			txq->txq_poll_mark = false;
1047 			spin_unlock_bh(&txq->lock);
1048 		}
1049 	}
1050 }
1051 
1052 static void
1053 ath5k_txq_release(struct ath5k_hw *ah)
1054 {
1055 	struct ath5k_txq *txq = ah->txqs;
1056 	unsigned int i;
1057 
1058 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1059 		if (txq->setup) {
1060 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1061 			txq->setup = false;
1062 		}
1063 }
1064 
1065 
1066 /*************\
1067 * RX Handling *
1068 \*************/
1069 
1070 /*
1071  * Enable the receive h/w following a reset.
1072  */
1073 static int
1074 ath5k_rx_start(struct ath5k_hw *ah)
1075 {
1076 	struct ath_common *common = ath5k_hw_common(ah);
1077 	struct ath5k_buf *bf;
1078 	int ret;
1079 
1080 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1081 
1082 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1083 		  common->cachelsz, common->rx_bufsize);
1084 
1085 	spin_lock_bh(&ah->rxbuflock);
1086 	ah->rxlink = NULL;
1087 	list_for_each_entry(bf, &ah->rxbuf, list) {
1088 		ret = ath5k_rxbuf_setup(ah, bf);
1089 		if (ret != 0) {
1090 			spin_unlock_bh(&ah->rxbuflock);
1091 			goto err;
1092 		}
1093 	}
1094 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1095 	ath5k_hw_set_rxdp(ah, bf->daddr);
1096 	spin_unlock_bh(&ah->rxbuflock);
1097 
1098 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1099 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1100 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1101 
1102 	return 0;
1103 err:
1104 	return ret;
1105 }
1106 
1107 /*
1108  * Disable the receive logic on PCU (DRU)
1109  * In preparation for a shutdown.
1110  *
1111  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1112  * does.
1113  */
1114 static void
1115 ath5k_rx_stop(struct ath5k_hw *ah)
1116 {
1117 
1118 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1119 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1120 
1121 	ath5k_debug_printrxbuffs(ah);
1122 }
1123 
1124 static unsigned int
1125 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1126 		   struct ath5k_rx_status *rs)
1127 {
1128 	struct ath_common *common = ath5k_hw_common(ah);
1129 	struct ieee80211_hdr *hdr = (void *)skb->data;
1130 	unsigned int keyix, hlen;
1131 
1132 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1133 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1134 		return RX_FLAG_DECRYPTED;
1135 
1136 	/* Apparently when a default key is used to decrypt the packet
1137 	   the hw does not set the index used to decrypt.  In such cases
1138 	   get the index from the packet. */
1139 	hlen = ieee80211_hdrlen(hdr->frame_control);
1140 	if (ieee80211_has_protected(hdr->frame_control) &&
1141 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1142 	    skb->len >= hlen + 4) {
1143 		keyix = skb->data[hlen + 3] >> 6;
1144 
1145 		if (test_bit(keyix, common->keymap))
1146 			return RX_FLAG_DECRYPTED;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 
1153 static void
1154 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1155 		     struct ieee80211_rx_status *rxs)
1156 {
1157 	struct ath_common *common = ath5k_hw_common(ah);
1158 	u64 tsf, bc_tstamp;
1159 	u32 hw_tu;
1160 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1161 
1162 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1163 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1164 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1165 		/*
1166 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1167 		 * have updated the local TSF. We have to work around various
1168 		 * hardware bugs, though...
1169 		 */
1170 		tsf = ath5k_hw_get_tsf64(ah);
1171 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1172 		hw_tu = TSF_TO_TU(tsf);
1173 
1174 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1175 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1176 			(unsigned long long)bc_tstamp,
1177 			(unsigned long long)rxs->mactime,
1178 			(unsigned long long)(rxs->mactime - bc_tstamp),
1179 			(unsigned long long)tsf);
1180 
1181 		/*
1182 		 * Sometimes the HW will give us a wrong tstamp in the rx
1183 		 * status, causing the timestamp extension to go wrong.
1184 		 * (This seems to happen especially with beacon frames bigger
1185 		 * than 78 byte (incl. FCS))
1186 		 * But we know that the receive timestamp must be later than the
1187 		 * timestamp of the beacon since HW must have synced to that.
1188 		 *
1189 		 * NOTE: here we assume mactime to be after the frame was
1190 		 * received, not like mac80211 which defines it at the start.
1191 		 */
1192 		if (bc_tstamp > rxs->mactime) {
1193 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1194 				"fixing mactime from %llx to %llx\n",
1195 				(unsigned long long)rxs->mactime,
1196 				(unsigned long long)tsf);
1197 			rxs->mactime = tsf;
1198 		}
1199 
1200 		/*
1201 		 * Local TSF might have moved higher than our beacon timers,
1202 		 * in that case we have to update them to continue sending
1203 		 * beacons. This also takes care of synchronizing beacon sending
1204 		 * times with other stations.
1205 		 */
1206 		if (hw_tu >= ah->nexttbtt)
1207 			ath5k_beacon_update_timers(ah, bc_tstamp);
1208 
1209 		/* Check if the beacon timers are still correct, because a TSF
1210 		 * update might have created a window between them - for a
1211 		 * longer description see the comment of this function: */
1212 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1213 			ath5k_beacon_update_timers(ah, bc_tstamp);
1214 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1215 				"fixed beacon timers after beacon receive\n");
1216 		}
1217 	}
1218 }
1219 
1220 static void
1221 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1222 {
1223 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1224 	struct ath_common *common = ath5k_hw_common(ah);
1225 
1226 	/* only beacons from our BSSID */
1227 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1228 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1229 		return;
1230 
1231 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1232 
1233 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1234 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1235 }
1236 
1237 /*
1238  * Compute padding position. skb must contain an IEEE 802.11 frame
1239  */
1240 static int ath5k_common_padpos(struct sk_buff *skb)
1241 {
1242 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1243 	__le16 frame_control = hdr->frame_control;
1244 	int padpos = 24;
1245 
1246 	if (ieee80211_has_a4(frame_control))
1247 		padpos += ETH_ALEN;
1248 
1249 	if (ieee80211_is_data_qos(frame_control))
1250 		padpos += IEEE80211_QOS_CTL_LEN;
1251 
1252 	return padpos;
1253 }
1254 
1255 /*
1256  * This function expects an 802.11 frame and returns the number of
1257  * bytes added, or -1 if we don't have enough header room.
1258  */
1259 static int ath5k_add_padding(struct sk_buff *skb)
1260 {
1261 	int padpos = ath5k_common_padpos(skb);
1262 	int padsize = padpos & 3;
1263 
1264 	if (padsize && skb->len > padpos) {
1265 
1266 		if (skb_headroom(skb) < padsize)
1267 			return -1;
1268 
1269 		skb_push(skb, padsize);
1270 		memmove(skb->data, skb->data + padsize, padpos);
1271 		return padsize;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * The MAC header is padded to have 32-bit boundary if the
1279  * packet payload is non-zero. The general calculation for
1280  * padsize would take into account odd header lengths:
1281  * padsize = 4 - (hdrlen & 3); however, since only
1282  * even-length headers are used, padding can only be 0 or 2
1283  * bytes and we can optimize this a bit.  We must not try to
1284  * remove padding from short control frames that do not have a
1285  * payload.
1286  *
1287  * This function expects an 802.11 frame and returns the number of
1288  * bytes removed.
1289  */
1290 static int ath5k_remove_padding(struct sk_buff *skb)
1291 {
1292 	int padpos = ath5k_common_padpos(skb);
1293 	int padsize = padpos & 3;
1294 
1295 	if (padsize && skb->len >= padpos + padsize) {
1296 		memmove(skb->data + padsize, skb->data, padpos);
1297 		skb_pull(skb, padsize);
1298 		return padsize;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static void
1305 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1306 		    struct ath5k_rx_status *rs)
1307 {
1308 	struct ieee80211_rx_status *rxs;
1309 
1310 	ath5k_remove_padding(skb);
1311 
1312 	rxs = IEEE80211_SKB_RXCB(skb);
1313 
1314 	rxs->flag = 0;
1315 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1316 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1317 
1318 	/*
1319 	 * always extend the mac timestamp, since this information is
1320 	 * also needed for proper IBSS merging.
1321 	 *
1322 	 * XXX: it might be too late to do it here, since rs_tstamp is
1323 	 * 15bit only. that means TSF extension has to be done within
1324 	 * 32768usec (about 32ms). it might be necessary to move this to
1325 	 * the interrupt handler, like it is done in madwifi.
1326 	 *
1327 	 * Unfortunately we don't know when the hardware takes the rx
1328 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1329 	 * The only thing we know is that it is hardware specific...
1330 	 * On AR5213 it seems the rx timestamp is at the end of the
1331 	 * frame, but I'm not sure.
1332 	 *
1333 	 * NOTE: mac80211 defines mactime at the beginning of the first
1334 	 * data symbol. Since we don't have any time references it's
1335 	 * impossible to comply to that. This affects IBSS merge only
1336 	 * right now, so it's not too bad...
1337 	 */
1338 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1339 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1340 
1341 	rxs->freq = ah->curchan->center_freq;
1342 	rxs->band = ah->curchan->band;
1343 
1344 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1345 
1346 	rxs->antenna = rs->rs_antenna;
1347 
1348 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1349 		ah->stats.antenna_rx[rs->rs_antenna]++;
1350 	else
1351 		ah->stats.antenna_rx[0]++; /* invalid */
1352 
1353 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1354 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1355 
1356 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1357 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1358 		rxs->flag |= RX_FLAG_SHORTPRE;
1359 
1360 	trace_ath5k_rx(ah, skb);
1361 
1362 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1363 
1364 	/* check beacons in IBSS mode */
1365 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1366 		ath5k_check_ibss_tsf(ah, skb, rxs);
1367 
1368 	ieee80211_rx(ah->hw, skb);
1369 }
1370 
1371 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1372  *
1373  * Check if we want to further process this frame or not. Also update
1374  * statistics. Return true if we want this frame, false if not.
1375  */
1376 static bool
1377 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1378 {
1379 	ah->stats.rx_all_count++;
1380 	ah->stats.rx_bytes_count += rs->rs_datalen;
1381 
1382 	if (unlikely(rs->rs_status)) {
1383 		if (rs->rs_status & AR5K_RXERR_CRC)
1384 			ah->stats.rxerr_crc++;
1385 		if (rs->rs_status & AR5K_RXERR_FIFO)
1386 			ah->stats.rxerr_fifo++;
1387 		if (rs->rs_status & AR5K_RXERR_PHY) {
1388 			ah->stats.rxerr_phy++;
1389 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1390 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1391 			return false;
1392 		}
1393 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1394 			/*
1395 			 * Decrypt error.  If the error occurred
1396 			 * because there was no hardware key, then
1397 			 * let the frame through so the upper layers
1398 			 * can process it.  This is necessary for 5210
1399 			 * parts which have no way to setup a ``clear''
1400 			 * key cache entry.
1401 			 *
1402 			 * XXX do key cache faulting
1403 			 */
1404 			ah->stats.rxerr_decrypt++;
1405 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1406 			    !(rs->rs_status & AR5K_RXERR_CRC))
1407 				return true;
1408 		}
1409 		if (rs->rs_status & AR5K_RXERR_MIC) {
1410 			ah->stats.rxerr_mic++;
1411 			return true;
1412 		}
1413 
1414 		/* reject any frames with non-crypto errors */
1415 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1416 			return false;
1417 	}
1418 
1419 	if (unlikely(rs->rs_more)) {
1420 		ah->stats.rxerr_jumbo++;
1421 		return false;
1422 	}
1423 	return true;
1424 }
1425 
1426 static void
1427 ath5k_set_current_imask(struct ath5k_hw *ah)
1428 {
1429 	enum ath5k_int imask;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&ah->irqlock, flags);
1433 	imask = ah->imask;
1434 	if (ah->rx_pending)
1435 		imask &= ~AR5K_INT_RX_ALL;
1436 	if (ah->tx_pending)
1437 		imask &= ~AR5K_INT_TX_ALL;
1438 	ath5k_hw_set_imr(ah, imask);
1439 	spin_unlock_irqrestore(&ah->irqlock, flags);
1440 }
1441 
1442 static void
1443 ath5k_tasklet_rx(unsigned long data)
1444 {
1445 	struct ath5k_rx_status rs = {};
1446 	struct sk_buff *skb, *next_skb;
1447 	dma_addr_t next_skb_addr;
1448 	struct ath5k_hw *ah = (void *)data;
1449 	struct ath_common *common = ath5k_hw_common(ah);
1450 	struct ath5k_buf *bf;
1451 	struct ath5k_desc *ds;
1452 	int ret;
1453 
1454 	spin_lock(&ah->rxbuflock);
1455 	if (list_empty(&ah->rxbuf)) {
1456 		ATH5K_WARN(ah, "empty rx buf pool\n");
1457 		goto unlock;
1458 	}
1459 	do {
1460 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1461 		BUG_ON(bf->skb == NULL);
1462 		skb = bf->skb;
1463 		ds = bf->desc;
1464 
1465 		/* bail if HW is still using self-linked descriptor */
1466 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1467 			break;
1468 
1469 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1470 		if (unlikely(ret == -EINPROGRESS))
1471 			break;
1472 		else if (unlikely(ret)) {
1473 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1474 			ah->stats.rxerr_proc++;
1475 			break;
1476 		}
1477 
1478 		if (ath5k_receive_frame_ok(ah, &rs)) {
1479 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1480 
1481 			/*
1482 			 * If we can't replace bf->skb with a new skb under
1483 			 * memory pressure, just skip this packet
1484 			 */
1485 			if (!next_skb)
1486 				goto next;
1487 
1488 			dma_unmap_single(ah->dev, bf->skbaddr,
1489 					 common->rx_bufsize,
1490 					 DMA_FROM_DEVICE);
1491 
1492 			skb_put(skb, rs.rs_datalen);
1493 
1494 			ath5k_receive_frame(ah, skb, &rs);
1495 
1496 			bf->skb = next_skb;
1497 			bf->skbaddr = next_skb_addr;
1498 		}
1499 next:
1500 		list_move_tail(&bf->list, &ah->rxbuf);
1501 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1502 unlock:
1503 	spin_unlock(&ah->rxbuflock);
1504 	ah->rx_pending = false;
1505 	ath5k_set_current_imask(ah);
1506 }
1507 
1508 
1509 /*************\
1510 * TX Handling *
1511 \*************/
1512 
1513 void
1514 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1515 	       struct ath5k_txq *txq)
1516 {
1517 	struct ath5k_hw *ah = hw->priv;
1518 	struct ath5k_buf *bf;
1519 	unsigned long flags;
1520 	int padsize;
1521 
1522 	trace_ath5k_tx(ah, skb, txq);
1523 
1524 	/*
1525 	 * The hardware expects the header padded to 4 byte boundaries.
1526 	 * If this is not the case, we add the padding after the header.
1527 	 */
1528 	padsize = ath5k_add_padding(skb);
1529 	if (padsize < 0) {
1530 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1531 			  " headroom to pad");
1532 		goto drop_packet;
1533 	}
1534 
1535 	if (txq->txq_len >= txq->txq_max &&
1536 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1537 		ieee80211_stop_queue(hw, txq->qnum);
1538 
1539 	spin_lock_irqsave(&ah->txbuflock, flags);
1540 	if (list_empty(&ah->txbuf)) {
1541 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1542 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1543 		ieee80211_stop_queues(hw);
1544 		goto drop_packet;
1545 	}
1546 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1547 	list_del(&bf->list);
1548 	ah->txbuf_len--;
1549 	if (list_empty(&ah->txbuf))
1550 		ieee80211_stop_queues(hw);
1551 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1552 
1553 	bf->skb = skb;
1554 
1555 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1556 		bf->skb = NULL;
1557 		spin_lock_irqsave(&ah->txbuflock, flags);
1558 		list_add_tail(&bf->list, &ah->txbuf);
1559 		ah->txbuf_len++;
1560 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1561 		goto drop_packet;
1562 	}
1563 	return;
1564 
1565 drop_packet:
1566 	dev_kfree_skb_any(skb);
1567 }
1568 
1569 static void
1570 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1571 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1572 {
1573 	struct ieee80211_tx_info *info;
1574 	u8 tries[3];
1575 	int i;
1576 
1577 	ah->stats.tx_all_count++;
1578 	ah->stats.tx_bytes_count += skb->len;
1579 	info = IEEE80211_SKB_CB(skb);
1580 
1581 	tries[0] = info->status.rates[0].count;
1582 	tries[1] = info->status.rates[1].count;
1583 	tries[2] = info->status.rates[2].count;
1584 
1585 	ieee80211_tx_info_clear_status(info);
1586 
1587 	for (i = 0; i < ts->ts_final_idx; i++) {
1588 		struct ieee80211_tx_rate *r =
1589 			&info->status.rates[i];
1590 
1591 		r->count = tries[i];
1592 	}
1593 
1594 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1595 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1596 
1597 	if (unlikely(ts->ts_status)) {
1598 		ah->stats.ack_fail++;
1599 		if (ts->ts_status & AR5K_TXERR_FILT) {
1600 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1601 			ah->stats.txerr_filt++;
1602 		}
1603 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1604 			ah->stats.txerr_retry++;
1605 		if (ts->ts_status & AR5K_TXERR_FIFO)
1606 			ah->stats.txerr_fifo++;
1607 	} else {
1608 		info->flags |= IEEE80211_TX_STAT_ACK;
1609 		info->status.ack_signal = ts->ts_rssi;
1610 
1611 		/* count the successful attempt as well */
1612 		info->status.rates[ts->ts_final_idx].count++;
1613 	}
1614 
1615 	/*
1616 	* Remove MAC header padding before giving the frame
1617 	* back to mac80211.
1618 	*/
1619 	ath5k_remove_padding(skb);
1620 
1621 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1622 		ah->stats.antenna_tx[ts->ts_antenna]++;
1623 	else
1624 		ah->stats.antenna_tx[0]++; /* invalid */
1625 
1626 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1627 	ieee80211_tx_status(ah->hw, skb);
1628 }
1629 
1630 static void
1631 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1632 {
1633 	struct ath5k_tx_status ts = {};
1634 	struct ath5k_buf *bf, *bf0;
1635 	struct ath5k_desc *ds;
1636 	struct sk_buff *skb;
1637 	int ret;
1638 
1639 	spin_lock(&txq->lock);
1640 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1641 
1642 		txq->txq_poll_mark = false;
1643 
1644 		/* skb might already have been processed last time. */
1645 		if (bf->skb != NULL) {
1646 			ds = bf->desc;
1647 
1648 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1649 			if (unlikely(ret == -EINPROGRESS))
1650 				break;
1651 			else if (unlikely(ret)) {
1652 				ATH5K_ERR(ah,
1653 					"error %d while processing "
1654 					"queue %u\n", ret, txq->qnum);
1655 				break;
1656 			}
1657 
1658 			skb = bf->skb;
1659 			bf->skb = NULL;
1660 
1661 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1662 					DMA_TO_DEVICE);
1663 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1664 		}
1665 
1666 		/*
1667 		 * It's possible that the hardware can say the buffer is
1668 		 * completed when it hasn't yet loaded the ds_link from
1669 		 * host memory and moved on.
1670 		 * Always keep the last descriptor to avoid HW races...
1671 		 */
1672 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1673 			spin_lock(&ah->txbuflock);
1674 			list_move_tail(&bf->list, &ah->txbuf);
1675 			ah->txbuf_len++;
1676 			txq->txq_len--;
1677 			spin_unlock(&ah->txbuflock);
1678 		}
1679 	}
1680 	spin_unlock(&txq->lock);
1681 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1682 		ieee80211_wake_queue(ah->hw, txq->qnum);
1683 }
1684 
1685 static void
1686 ath5k_tasklet_tx(unsigned long data)
1687 {
1688 	int i;
1689 	struct ath5k_hw *ah = (void *)data;
1690 
1691 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1692 		if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i)))
1693 			ath5k_tx_processq(ah, &ah->txqs[i]);
1694 
1695 	ah->tx_pending = false;
1696 	ath5k_set_current_imask(ah);
1697 }
1698 
1699 
1700 /*****************\
1701 * Beacon handling *
1702 \*****************/
1703 
1704 /*
1705  * Setup the beacon frame for transmit.
1706  */
1707 static int
1708 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1709 {
1710 	struct sk_buff *skb = bf->skb;
1711 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1712 	struct ath5k_desc *ds;
1713 	int ret = 0;
1714 	u8 antenna;
1715 	u32 flags;
1716 	const int padsize = 0;
1717 
1718 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1719 			DMA_TO_DEVICE);
1720 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1721 			"skbaddr %llx\n", skb, skb->data, skb->len,
1722 			(unsigned long long)bf->skbaddr);
1723 
1724 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1725 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1726 		dev_kfree_skb_any(skb);
1727 		bf->skb = NULL;
1728 		return -EIO;
1729 	}
1730 
1731 	ds = bf->desc;
1732 	antenna = ah->ah_tx_ant;
1733 
1734 	flags = AR5K_TXDESC_NOACK;
1735 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1736 		ds->ds_link = bf->daddr;	/* self-linked */
1737 		flags |= AR5K_TXDESC_VEOL;
1738 	} else
1739 		ds->ds_link = 0;
1740 
1741 	/*
1742 	 * If we use multiple antennas on AP and use
1743 	 * the Sectored AP scenario, switch antenna every
1744 	 * 4 beacons to make sure everybody hears our AP.
1745 	 * When a client tries to associate, hw will keep
1746 	 * track of the tx antenna to be used for this client
1747 	 * automatically, based on ACKed packets.
1748 	 *
1749 	 * Note: AP still listens and transmits RTS on the
1750 	 * default antenna which is supposed to be an omni.
1751 	 *
1752 	 * Note2: On sectored scenarios it's possible to have
1753 	 * multiple antennas (1 omni -- the default -- and 14
1754 	 * sectors), so if we choose to actually support this
1755 	 * mode, we need to allow the user to set how many antennas
1756 	 * we have and tweak the code below to send beacons
1757 	 * on all of them.
1758 	 */
1759 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1760 		antenna = ah->bsent & 4 ? 2 : 1;
1761 
1762 
1763 	/* FIXME: If we are in g mode and rate is a CCK rate
1764 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1765 	 * from tx power (value is in dB units already) */
1766 	ds->ds_data = bf->skbaddr;
1767 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1768 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1769 			AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1770 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1771 			1, AR5K_TXKEYIX_INVALID,
1772 			antenna, flags, 0, 0);
1773 	if (ret)
1774 		goto err_unmap;
1775 
1776 	return 0;
1777 err_unmap:
1778 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1779 	return ret;
1780 }
1781 
1782 /*
1783  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1784  * this is called only once at config_bss time, for AP we do it every
1785  * SWBA interrupt so that the TIM will reflect buffered frames.
1786  *
1787  * Called with the beacon lock.
1788  */
1789 int
1790 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1791 {
1792 	int ret;
1793 	struct ath5k_hw *ah = hw->priv;
1794 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1795 	struct sk_buff *skb;
1796 
1797 	if (WARN_ON(!vif)) {
1798 		ret = -EINVAL;
1799 		goto out;
1800 	}
1801 
1802 	skb = ieee80211_beacon_get(hw, vif);
1803 
1804 	if (!skb) {
1805 		ret = -ENOMEM;
1806 		goto out;
1807 	}
1808 
1809 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1810 	avf->bbuf->skb = skb;
1811 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1812 out:
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1818  * frame contents are done as needed and the slot time is
1819  * also adjusted based on current state.
1820  *
1821  * This is called from software irq context (beacontq tasklets)
1822  * or user context from ath5k_beacon_config.
1823  */
1824 static void
1825 ath5k_beacon_send(struct ath5k_hw *ah)
1826 {
1827 	struct ieee80211_vif *vif;
1828 	struct ath5k_vif *avf;
1829 	struct ath5k_buf *bf;
1830 	struct sk_buff *skb;
1831 	int err;
1832 
1833 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1834 
1835 	/*
1836 	 * Check if the previous beacon has gone out.  If
1837 	 * not, don't don't try to post another: skip this
1838 	 * period and wait for the next.  Missed beacons
1839 	 * indicate a problem and should not occur.  If we
1840 	 * miss too many consecutive beacons reset the device.
1841 	 */
1842 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1843 		ah->bmisscount++;
1844 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1845 			"missed %u consecutive beacons\n", ah->bmisscount);
1846 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1847 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1848 				"stuck beacon time (%u missed)\n",
1849 				ah->bmisscount);
1850 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1851 				  "stuck beacon, resetting\n");
1852 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1853 		}
1854 		return;
1855 	}
1856 	if (unlikely(ah->bmisscount != 0)) {
1857 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1858 			"resume beacon xmit after %u misses\n",
1859 			ah->bmisscount);
1860 		ah->bmisscount = 0;
1861 	}
1862 
1863 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) ||
1864 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1865 		u64 tsf = ath5k_hw_get_tsf64(ah);
1866 		u32 tsftu = TSF_TO_TU(tsf);
1867 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1868 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1869 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1870 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1871 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1872 	} else /* only one interface */
1873 		vif = ah->bslot[0];
1874 
1875 	if (!vif)
1876 		return;
1877 
1878 	avf = (void *)vif->drv_priv;
1879 	bf = avf->bbuf;
1880 
1881 	/*
1882 	 * Stop any current dma and put the new frame on the queue.
1883 	 * This should never fail since we check above that no frames
1884 	 * are still pending on the queue.
1885 	 */
1886 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1887 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1888 		/* NB: hw still stops DMA, so proceed */
1889 	}
1890 
1891 	/* refresh the beacon for AP or MESH mode */
1892 	if (ah->opmode == NL80211_IFTYPE_AP ||
1893 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1894 		err = ath5k_beacon_update(ah->hw, vif);
1895 		if (err)
1896 			return;
1897 	}
1898 
1899 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1900 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1901 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1902 		return;
1903 	}
1904 
1905 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1906 
1907 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1908 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1909 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1910 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1911 
1912 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1913 	while (skb) {
1914 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1915 
1916 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1917 			break;
1918 
1919 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1920 	}
1921 
1922 	ah->bsent++;
1923 }
1924 
1925 /**
1926  * ath5k_beacon_update_timers - update beacon timers
1927  *
1928  * @ah: struct ath5k_hw pointer we are operating on
1929  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1930  *          beacon timer update based on the current HW TSF.
1931  *
1932  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1933  * of a received beacon or the current local hardware TSF and write it to the
1934  * beacon timer registers.
1935  *
1936  * This is called in a variety of situations, e.g. when a beacon is received,
1937  * when a TSF update has been detected, but also when an new IBSS is created or
1938  * when we otherwise know we have to update the timers, but we keep it in this
1939  * function to have it all together in one place.
1940  */
1941 void
1942 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1943 {
1944 	u32 nexttbtt, intval, hw_tu, bc_tu;
1945 	u64 hw_tsf;
1946 
1947 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1948 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) {
1949 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1950 		if (intval < 15)
1951 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1952 				   intval);
1953 	}
1954 	if (WARN_ON(!intval))
1955 		return;
1956 
1957 	/* beacon TSF converted to TU */
1958 	bc_tu = TSF_TO_TU(bc_tsf);
1959 
1960 	/* current TSF converted to TU */
1961 	hw_tsf = ath5k_hw_get_tsf64(ah);
1962 	hw_tu = TSF_TO_TU(hw_tsf);
1963 
1964 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1965 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1966 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1967 	 * configuration we need to make sure it is bigger than that. */
1968 
1969 	if (bc_tsf == -1) {
1970 		/*
1971 		 * no beacons received, called internally.
1972 		 * just need to refresh timers based on HW TSF.
1973 		 */
1974 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1975 	} else if (bc_tsf == 0) {
1976 		/*
1977 		 * no beacon received, probably called by ath5k_reset_tsf().
1978 		 * reset TSF to start with 0.
1979 		 */
1980 		nexttbtt = intval;
1981 		intval |= AR5K_BEACON_RESET_TSF;
1982 	} else if (bc_tsf > hw_tsf) {
1983 		/*
1984 		 * beacon received, SW merge happened but HW TSF not yet updated.
1985 		 * not possible to reconfigure timers yet, but next time we
1986 		 * receive a beacon with the same BSSID, the hardware will
1987 		 * automatically update the TSF and then we need to reconfigure
1988 		 * the timers.
1989 		 */
1990 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1991 			"need to wait for HW TSF sync\n");
1992 		return;
1993 	} else {
1994 		/*
1995 		 * most important case for beacon synchronization between STA.
1996 		 *
1997 		 * beacon received and HW TSF has been already updated by HW.
1998 		 * update next TBTT based on the TSF of the beacon, but make
1999 		 * sure it is ahead of our local TSF timer.
2000 		 */
2001 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2002 	}
2003 #undef FUDGE
2004 
2005 	ah->nexttbtt = nexttbtt;
2006 
2007 	intval |= AR5K_BEACON_ENA;
2008 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2009 
2010 	/*
2011 	 * debugging output last in order to preserve the time critical aspect
2012 	 * of this function
2013 	 */
2014 	if (bc_tsf == -1)
2015 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2016 			"reconfigured timers based on HW TSF\n");
2017 	else if (bc_tsf == 0)
2018 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2019 			"reset HW TSF and timers\n");
2020 	else
2021 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2022 			"updated timers based on beacon TSF\n");
2023 
2024 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2025 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2026 			  (unsigned long long) bc_tsf,
2027 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2028 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2029 		intval & AR5K_BEACON_PERIOD,
2030 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2031 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2032 }
2033 
2034 /**
2035  * ath5k_beacon_config - Configure the beacon queues and interrupts
2036  *
2037  * @ah: struct ath5k_hw pointer we are operating on
2038  *
2039  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2040  * interrupts to detect TSF updates only.
2041  */
2042 void
2043 ath5k_beacon_config(struct ath5k_hw *ah)
2044 {
2045 	unsigned long flags;
2046 
2047 	spin_lock_irqsave(&ah->block, flags);
2048 	ah->bmisscount = 0;
2049 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2050 
2051 	if (ah->enable_beacon) {
2052 		/*
2053 		 * In IBSS mode we use a self-linked tx descriptor and let the
2054 		 * hardware send the beacons automatically. We have to load it
2055 		 * only once here.
2056 		 * We use the SWBA interrupt only to keep track of the beacon
2057 		 * timers in order to detect automatic TSF updates.
2058 		 */
2059 		ath5k_beaconq_config(ah);
2060 
2061 		ah->imask |= AR5K_INT_SWBA;
2062 
2063 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2064 			if (ath5k_hw_hasveol(ah))
2065 				ath5k_beacon_send(ah);
2066 		} else
2067 			ath5k_beacon_update_timers(ah, -1);
2068 	} else {
2069 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2070 	}
2071 
2072 	ath5k_hw_set_imr(ah, ah->imask);
2073 	mmiowb();
2074 	spin_unlock_irqrestore(&ah->block, flags);
2075 }
2076 
2077 static void ath5k_tasklet_beacon(unsigned long data)
2078 {
2079 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2080 
2081 	/*
2082 	 * Software beacon alert--time to send a beacon.
2083 	 *
2084 	 * In IBSS mode we use this interrupt just to
2085 	 * keep track of the next TBTT (target beacon
2086 	 * transmission time) in order to detect whether
2087 	 * automatic TSF updates happened.
2088 	 */
2089 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2090 		/* XXX: only if VEOL supported */
2091 		u64 tsf = ath5k_hw_get_tsf64(ah);
2092 		ah->nexttbtt += ah->bintval;
2093 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2094 				"SWBA nexttbtt: %x hw_tu: %x "
2095 				"TSF: %llx\n",
2096 				ah->nexttbtt,
2097 				TSF_TO_TU(tsf),
2098 				(unsigned long long) tsf);
2099 	} else {
2100 		spin_lock(&ah->block);
2101 		ath5k_beacon_send(ah);
2102 		spin_unlock(&ah->block);
2103 	}
2104 }
2105 
2106 
2107 /********************\
2108 * Interrupt handling *
2109 \********************/
2110 
2111 static void
2112 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2113 {
2114 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2115 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2116 		/* run ANI only when full calibration is not active */
2117 		ah->ah_cal_next_ani = jiffies +
2118 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2119 		tasklet_schedule(&ah->ani_tasklet);
2120 
2121 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2122 		ah->ah_cal_next_full = jiffies +
2123 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2124 		tasklet_schedule(&ah->calib);
2125 	}
2126 	/* we could use SWI to generate enough interrupts to meet our
2127 	 * calibration interval requirements, if necessary:
2128 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2129 }
2130 
2131 static void
2132 ath5k_schedule_rx(struct ath5k_hw *ah)
2133 {
2134 	ah->rx_pending = true;
2135 	tasklet_schedule(&ah->rxtq);
2136 }
2137 
2138 static void
2139 ath5k_schedule_tx(struct ath5k_hw *ah)
2140 {
2141 	ah->tx_pending = true;
2142 	tasklet_schedule(&ah->txtq);
2143 }
2144 
2145 static irqreturn_t
2146 ath5k_intr(int irq, void *dev_id)
2147 {
2148 	struct ath5k_hw *ah = dev_id;
2149 	enum ath5k_int status;
2150 	unsigned int counter = 1000;
2151 
2152 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2153 		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2154 				!ath5k_hw_is_intr_pending(ah))))
2155 		return IRQ_NONE;
2156 
2157 	do {
2158 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2159 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2160 				status, ah->imask);
2161 		if (unlikely(status & AR5K_INT_FATAL)) {
2162 			/*
2163 			 * Fatal errors are unrecoverable.
2164 			 * Typically these are caused by DMA errors.
2165 			 */
2166 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2167 				  "fatal int, resetting\n");
2168 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2169 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2170 			/*
2171 			 * Receive buffers are full. Either the bus is busy or
2172 			 * the CPU is not fast enough to process all received
2173 			 * frames.
2174 			 * Older chipsets need a reset to come out of this
2175 			 * condition, but we treat it as RX for newer chips.
2176 			 * We don't know exactly which versions need a reset -
2177 			 * this guess is copied from the HAL.
2178 			 */
2179 			ah->stats.rxorn_intr++;
2180 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2181 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2182 					  "rx overrun, resetting\n");
2183 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2184 			} else
2185 				ath5k_schedule_rx(ah);
2186 		} else {
2187 			if (status & AR5K_INT_SWBA)
2188 				tasklet_hi_schedule(&ah->beacontq);
2189 
2190 			if (status & AR5K_INT_RXEOL) {
2191 				/*
2192 				* NB: the hardware should re-read the link when
2193 				*     RXE bit is written, but it doesn't work at
2194 				*     least on older hardware revs.
2195 				*/
2196 				ah->stats.rxeol_intr++;
2197 			}
2198 			if (status & AR5K_INT_TXURN) {
2199 				/* bump tx trigger level */
2200 				ath5k_hw_update_tx_triglevel(ah, true);
2201 			}
2202 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2203 				ath5k_schedule_rx(ah);
2204 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2205 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2206 				ath5k_schedule_tx(ah);
2207 			if (status & AR5K_INT_BMISS) {
2208 				/* TODO */
2209 			}
2210 			if (status & AR5K_INT_MIB) {
2211 				ah->stats.mib_intr++;
2212 				ath5k_hw_update_mib_counters(ah);
2213 				ath5k_ani_mib_intr(ah);
2214 			}
2215 			if (status & AR5K_INT_GPIO)
2216 				tasklet_schedule(&ah->rf_kill.toggleq);
2217 
2218 		}
2219 
2220 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2221 			break;
2222 
2223 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2224 
2225 	if (ah->rx_pending || ah->tx_pending)
2226 		ath5k_set_current_imask(ah);
2227 
2228 	if (unlikely(!counter))
2229 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2230 
2231 	ath5k_intr_calibration_poll(ah);
2232 
2233 	return IRQ_HANDLED;
2234 }
2235 
2236 /*
2237  * Periodically recalibrate the PHY to account
2238  * for temperature/environment changes.
2239  */
2240 static void
2241 ath5k_tasklet_calibrate(unsigned long data)
2242 {
2243 	struct ath5k_hw *ah = (void *)data;
2244 
2245 	/* Only full calibration for now */
2246 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2247 
2248 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2249 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2250 		ah->curchan->hw_value);
2251 
2252 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2253 		/*
2254 		 * Rfgain is out of bounds, reset the chip
2255 		 * to load new gain values.
2256 		 */
2257 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2258 		ieee80211_queue_work(ah->hw, &ah->reset_work);
2259 	}
2260 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2261 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2262 			ieee80211_frequency_to_channel(
2263 				ah->curchan->center_freq));
2264 
2265 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2266 	 * doesn't.
2267 	 * TODO: We should stop TX here, so that it doesn't interfere.
2268 	 * Note that stopping the queues is not enough to stop TX! */
2269 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2270 		ah->ah_cal_next_nf = jiffies +
2271 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2272 		ath5k_hw_update_noise_floor(ah);
2273 	}
2274 
2275 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2276 }
2277 
2278 
2279 static void
2280 ath5k_tasklet_ani(unsigned long data)
2281 {
2282 	struct ath5k_hw *ah = (void *)data;
2283 
2284 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2285 	ath5k_ani_calibration(ah);
2286 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2287 }
2288 
2289 
2290 static void
2291 ath5k_tx_complete_poll_work(struct work_struct *work)
2292 {
2293 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2294 			tx_complete_work.work);
2295 	struct ath5k_txq *txq;
2296 	int i;
2297 	bool needreset = false;
2298 
2299 	mutex_lock(&ah->lock);
2300 
2301 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2302 		if (ah->txqs[i].setup) {
2303 			txq = &ah->txqs[i];
2304 			spin_lock_bh(&txq->lock);
2305 			if (txq->txq_len > 1) {
2306 				if (txq->txq_poll_mark) {
2307 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2308 						  "TX queue stuck %d\n",
2309 						  txq->qnum);
2310 					needreset = true;
2311 					txq->txq_stuck++;
2312 					spin_unlock_bh(&txq->lock);
2313 					break;
2314 				} else {
2315 					txq->txq_poll_mark = true;
2316 				}
2317 			}
2318 			spin_unlock_bh(&txq->lock);
2319 		}
2320 	}
2321 
2322 	if (needreset) {
2323 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2324 			  "TX queues stuck, resetting\n");
2325 		ath5k_reset(ah, NULL, true);
2326 	}
2327 
2328 	mutex_unlock(&ah->lock);
2329 
2330 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2331 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2332 }
2333 
2334 
2335 /*************************\
2336 * Initialization routines *
2337 \*************************/
2338 
2339 int __devinit
2340 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2341 {
2342 	struct ieee80211_hw *hw = ah->hw;
2343 	struct ath_common *common;
2344 	int ret;
2345 	int csz;
2346 
2347 	/* Initialize driver private data */
2348 	SET_IEEE80211_DEV(hw, ah->dev);
2349 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2350 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2351 			IEEE80211_HW_SIGNAL_DBM |
2352 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2353 
2354 	hw->wiphy->interface_modes =
2355 		BIT(NL80211_IFTYPE_AP) |
2356 		BIT(NL80211_IFTYPE_STATION) |
2357 		BIT(NL80211_IFTYPE_ADHOC) |
2358 		BIT(NL80211_IFTYPE_MESH_POINT);
2359 
2360 	/* both antennas can be configured as RX or TX */
2361 	hw->wiphy->available_antennas_tx = 0x3;
2362 	hw->wiphy->available_antennas_rx = 0x3;
2363 
2364 	hw->extra_tx_headroom = 2;
2365 	hw->channel_change_time = 5000;
2366 
2367 	/*
2368 	 * Mark the device as detached to avoid processing
2369 	 * interrupts until setup is complete.
2370 	 */
2371 	__set_bit(ATH_STAT_INVALID, ah->status);
2372 
2373 	ah->opmode = NL80211_IFTYPE_STATION;
2374 	ah->bintval = 1000;
2375 	mutex_init(&ah->lock);
2376 	spin_lock_init(&ah->rxbuflock);
2377 	spin_lock_init(&ah->txbuflock);
2378 	spin_lock_init(&ah->block);
2379 	spin_lock_init(&ah->irqlock);
2380 
2381 	/* Setup interrupt handler */
2382 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2383 	if (ret) {
2384 		ATH5K_ERR(ah, "request_irq failed\n");
2385 		goto err;
2386 	}
2387 
2388 	common = ath5k_hw_common(ah);
2389 	common->ops = &ath5k_common_ops;
2390 	common->bus_ops = bus_ops;
2391 	common->ah = ah;
2392 	common->hw = hw;
2393 	common->priv = ah;
2394 	common->clockrate = 40;
2395 
2396 	/*
2397 	 * Cache line size is used to size and align various
2398 	 * structures used to communicate with the hardware.
2399 	 */
2400 	ath5k_read_cachesize(common, &csz);
2401 	common->cachelsz = csz << 2; /* convert to bytes */
2402 
2403 	spin_lock_init(&common->cc_lock);
2404 
2405 	/* Initialize device */
2406 	ret = ath5k_hw_init(ah);
2407 	if (ret)
2408 		goto err_irq;
2409 
2410 	/* set up multi-rate retry capabilities */
2411 	if (ah->ah_version == AR5K_AR5212) {
2412 		hw->max_rates = 4;
2413 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2414 					 AR5K_INIT_RETRY_LONG);
2415 	}
2416 
2417 	hw->vif_data_size = sizeof(struct ath5k_vif);
2418 
2419 	/* Finish private driver data initialization */
2420 	ret = ath5k_init(hw);
2421 	if (ret)
2422 		goto err_ah;
2423 
2424 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2425 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2426 					ah->ah_mac_srev,
2427 					ah->ah_phy_revision);
2428 
2429 	if (!ah->ah_single_chip) {
2430 		/* Single chip radio (!RF5111) */
2431 		if (ah->ah_radio_5ghz_revision &&
2432 			!ah->ah_radio_2ghz_revision) {
2433 			/* No 5GHz support -> report 2GHz radio */
2434 			if (!test_bit(AR5K_MODE_11A,
2435 				ah->ah_capabilities.cap_mode)) {
2436 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2437 					ath5k_chip_name(AR5K_VERSION_RAD,
2438 						ah->ah_radio_5ghz_revision),
2439 						ah->ah_radio_5ghz_revision);
2440 			/* No 2GHz support (5110 and some
2441 			 * 5GHz only cards) -> report 5GHz radio */
2442 			} else if (!test_bit(AR5K_MODE_11B,
2443 				ah->ah_capabilities.cap_mode)) {
2444 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2445 					ath5k_chip_name(AR5K_VERSION_RAD,
2446 						ah->ah_radio_5ghz_revision),
2447 						ah->ah_radio_5ghz_revision);
2448 			/* Multiband radio */
2449 			} else {
2450 				ATH5K_INFO(ah, "RF%s multiband radio found"
2451 					" (0x%x)\n",
2452 					ath5k_chip_name(AR5K_VERSION_RAD,
2453 						ah->ah_radio_5ghz_revision),
2454 						ah->ah_radio_5ghz_revision);
2455 			}
2456 		}
2457 		/* Multi chip radio (RF5111 - RF2111) ->
2458 		 * report both 2GHz/5GHz radios */
2459 		else if (ah->ah_radio_5ghz_revision &&
2460 				ah->ah_radio_2ghz_revision) {
2461 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2462 				ath5k_chip_name(AR5K_VERSION_RAD,
2463 					ah->ah_radio_5ghz_revision),
2464 					ah->ah_radio_5ghz_revision);
2465 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2466 				ath5k_chip_name(AR5K_VERSION_RAD,
2467 					ah->ah_radio_2ghz_revision),
2468 					ah->ah_radio_2ghz_revision);
2469 		}
2470 	}
2471 
2472 	ath5k_debug_init_device(ah);
2473 
2474 	/* ready to process interrupts */
2475 	__clear_bit(ATH_STAT_INVALID, ah->status);
2476 
2477 	return 0;
2478 err_ah:
2479 	ath5k_hw_deinit(ah);
2480 err_irq:
2481 	free_irq(ah->irq, ah);
2482 err:
2483 	return ret;
2484 }
2485 
2486 static int
2487 ath5k_stop_locked(struct ath5k_hw *ah)
2488 {
2489 
2490 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2491 			test_bit(ATH_STAT_INVALID, ah->status));
2492 
2493 	/*
2494 	 * Shutdown the hardware and driver:
2495 	 *    stop output from above
2496 	 *    disable interrupts
2497 	 *    turn off timers
2498 	 *    turn off the radio
2499 	 *    clear transmit machinery
2500 	 *    clear receive machinery
2501 	 *    drain and release tx queues
2502 	 *    reclaim beacon resources
2503 	 *    power down hardware
2504 	 *
2505 	 * Note that some of this work is not possible if the
2506 	 * hardware is gone (invalid).
2507 	 */
2508 	ieee80211_stop_queues(ah->hw);
2509 
2510 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2511 		ath5k_led_off(ah);
2512 		ath5k_hw_set_imr(ah, 0);
2513 		synchronize_irq(ah->irq);
2514 		ath5k_rx_stop(ah);
2515 		ath5k_hw_dma_stop(ah);
2516 		ath5k_drain_tx_buffs(ah);
2517 		ath5k_hw_phy_disable(ah);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 int ath5k_start(struct ieee80211_hw *hw)
2524 {
2525 	struct ath5k_hw *ah = hw->priv;
2526 	struct ath_common *common = ath5k_hw_common(ah);
2527 	int ret, i;
2528 
2529 	mutex_lock(&ah->lock);
2530 
2531 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2532 
2533 	/*
2534 	 * Stop anything previously setup.  This is safe
2535 	 * no matter this is the first time through or not.
2536 	 */
2537 	ath5k_stop_locked(ah);
2538 
2539 	/*
2540 	 * The basic interface to setting the hardware in a good
2541 	 * state is ``reset''.  On return the hardware is known to
2542 	 * be powered up and with interrupts disabled.  This must
2543 	 * be followed by initialization of the appropriate bits
2544 	 * and then setup of the interrupt mask.
2545 	 */
2546 	ah->curchan = ah->hw->conf.channel;
2547 	ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2548 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2549 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2550 
2551 	ret = ath5k_reset(ah, NULL, false);
2552 	if (ret)
2553 		goto done;
2554 
2555 	ath5k_rfkill_hw_start(ah);
2556 
2557 	/*
2558 	 * Reset the key cache since some parts do not reset the
2559 	 * contents on initial power up or resume from suspend.
2560 	 */
2561 	for (i = 0; i < common->keymax; i++)
2562 		ath_hw_keyreset(common, (u16) i);
2563 
2564 	/* Use higher rates for acks instead of base
2565 	 * rate */
2566 	ah->ah_ack_bitrate_high = true;
2567 
2568 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2569 		ah->bslot[i] = NULL;
2570 
2571 	ret = 0;
2572 done:
2573 	mmiowb();
2574 	mutex_unlock(&ah->lock);
2575 
2576 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2577 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2578 
2579 	return ret;
2580 }
2581 
2582 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2583 {
2584 	ah->rx_pending = false;
2585 	ah->tx_pending = false;
2586 	tasklet_kill(&ah->rxtq);
2587 	tasklet_kill(&ah->txtq);
2588 	tasklet_kill(&ah->calib);
2589 	tasklet_kill(&ah->beacontq);
2590 	tasklet_kill(&ah->ani_tasklet);
2591 }
2592 
2593 /*
2594  * Stop the device, grabbing the top-level lock to protect
2595  * against concurrent entry through ath5k_init (which can happen
2596  * if another thread does a system call and the thread doing the
2597  * stop is preempted).
2598  */
2599 void ath5k_stop(struct ieee80211_hw *hw)
2600 {
2601 	struct ath5k_hw *ah = hw->priv;
2602 	int ret;
2603 
2604 	mutex_lock(&ah->lock);
2605 	ret = ath5k_stop_locked(ah);
2606 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2607 		/*
2608 		 * Don't set the card in full sleep mode!
2609 		 *
2610 		 * a) When the device is in this state it must be carefully
2611 		 * woken up or references to registers in the PCI clock
2612 		 * domain may freeze the bus (and system).  This varies
2613 		 * by chip and is mostly an issue with newer parts
2614 		 * (madwifi sources mentioned srev >= 0x78) that go to
2615 		 * sleep more quickly.
2616 		 *
2617 		 * b) On older chips full sleep results a weird behaviour
2618 		 * during wakeup. I tested various cards with srev < 0x78
2619 		 * and they don't wake up after module reload, a second
2620 		 * module reload is needed to bring the card up again.
2621 		 *
2622 		 * Until we figure out what's going on don't enable
2623 		 * full chip reset on any chip (this is what Legacy HAL
2624 		 * and Sam's HAL do anyway). Instead Perform a full reset
2625 		 * on the device (same as initial state after attach) and
2626 		 * leave it idle (keep MAC/BB on warm reset) */
2627 		ret = ath5k_hw_on_hold(ah);
2628 
2629 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2630 				"putting device to sleep\n");
2631 	}
2632 
2633 	mmiowb();
2634 	mutex_unlock(&ah->lock);
2635 
2636 	ath5k_stop_tasklets(ah);
2637 
2638 	cancel_delayed_work_sync(&ah->tx_complete_work);
2639 
2640 	ath5k_rfkill_hw_stop(ah);
2641 }
2642 
2643 /*
2644  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2645  * and change to the given channel.
2646  *
2647  * This should be called with ah->lock.
2648  */
2649 static int
2650 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2651 							bool skip_pcu)
2652 {
2653 	struct ath_common *common = ath5k_hw_common(ah);
2654 	int ret, ani_mode;
2655 	bool fast;
2656 
2657 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2658 
2659 	ath5k_hw_set_imr(ah, 0);
2660 	synchronize_irq(ah->irq);
2661 	ath5k_stop_tasklets(ah);
2662 
2663 	/* Save ani mode and disable ANI during
2664 	 * reset. If we don't we might get false
2665 	 * PHY error interrupts. */
2666 	ani_mode = ah->ani_state.ani_mode;
2667 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2668 
2669 	/* We are going to empty hw queues
2670 	 * so we should also free any remaining
2671 	 * tx buffers */
2672 	ath5k_drain_tx_buffs(ah);
2673 	if (chan)
2674 		ah->curchan = chan;
2675 
2676 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2677 
2678 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2679 	if (ret) {
2680 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2681 		goto err;
2682 	}
2683 
2684 	ret = ath5k_rx_start(ah);
2685 	if (ret) {
2686 		ATH5K_ERR(ah, "can't start recv logic\n");
2687 		goto err;
2688 	}
2689 
2690 	ath5k_ani_init(ah, ani_mode);
2691 
2692 	ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2693 	ah->ah_cal_next_ani = jiffies;
2694 	ah->ah_cal_next_nf = jiffies;
2695 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2696 
2697 	/* clear survey data and cycle counters */
2698 	memset(&ah->survey, 0, sizeof(ah->survey));
2699 	spin_lock_bh(&common->cc_lock);
2700 	ath_hw_cycle_counters_update(common);
2701 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2702 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2703 	spin_unlock_bh(&common->cc_lock);
2704 
2705 	/*
2706 	 * Change channels and update the h/w rate map if we're switching;
2707 	 * e.g. 11a to 11b/g.
2708 	 *
2709 	 * We may be doing a reset in response to an ioctl that changes the
2710 	 * channel so update any state that might change as a result.
2711 	 *
2712 	 * XXX needed?
2713 	 */
2714 /*	ath5k_chan_change(ah, c); */
2715 
2716 	ath5k_beacon_config(ah);
2717 	/* intrs are enabled by ath5k_beacon_config */
2718 
2719 	ieee80211_wake_queues(ah->hw);
2720 
2721 	return 0;
2722 err:
2723 	return ret;
2724 }
2725 
2726 static void ath5k_reset_work(struct work_struct *work)
2727 {
2728 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2729 		reset_work);
2730 
2731 	mutex_lock(&ah->lock);
2732 	ath5k_reset(ah, NULL, true);
2733 	mutex_unlock(&ah->lock);
2734 }
2735 
2736 static int __devinit
2737 ath5k_init(struct ieee80211_hw *hw)
2738 {
2739 
2740 	struct ath5k_hw *ah = hw->priv;
2741 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2742 	struct ath5k_txq *txq;
2743 	u8 mac[ETH_ALEN] = {};
2744 	int ret;
2745 
2746 
2747 	/*
2748 	 * Check if the MAC has multi-rate retry support.
2749 	 * We do this by trying to setup a fake extended
2750 	 * descriptor.  MACs that don't have support will
2751 	 * return false w/o doing anything.  MACs that do
2752 	 * support it will return true w/o doing anything.
2753 	 */
2754 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2755 
2756 	if (ret < 0)
2757 		goto err;
2758 	if (ret > 0)
2759 		__set_bit(ATH_STAT_MRRETRY, ah->status);
2760 
2761 	/*
2762 	 * Collect the channel list.  The 802.11 layer
2763 	 * is responsible for filtering this list based
2764 	 * on settings like the phy mode and regulatory
2765 	 * domain restrictions.
2766 	 */
2767 	ret = ath5k_setup_bands(hw);
2768 	if (ret) {
2769 		ATH5K_ERR(ah, "can't get channels\n");
2770 		goto err;
2771 	}
2772 
2773 	/*
2774 	 * Allocate tx+rx descriptors and populate the lists.
2775 	 */
2776 	ret = ath5k_desc_alloc(ah);
2777 	if (ret) {
2778 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2779 		goto err;
2780 	}
2781 
2782 	/*
2783 	 * Allocate hardware transmit queues: one queue for
2784 	 * beacon frames and one data queue for each QoS
2785 	 * priority.  Note that hw functions handle resetting
2786 	 * these queues at the needed time.
2787 	 */
2788 	ret = ath5k_beaconq_setup(ah);
2789 	if (ret < 0) {
2790 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2791 		goto err_desc;
2792 	}
2793 	ah->bhalq = ret;
2794 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2795 	if (IS_ERR(ah->cabq)) {
2796 		ATH5K_ERR(ah, "can't setup cab queue\n");
2797 		ret = PTR_ERR(ah->cabq);
2798 		goto err_bhal;
2799 	}
2800 
2801 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2802 	 * capability information */
2803 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2804 		/* This order matches mac80211's queue priority, so we can
2805 		* directly use the mac80211 queue number without any mapping */
2806 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2807 		if (IS_ERR(txq)) {
2808 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2809 			ret = PTR_ERR(txq);
2810 			goto err_queues;
2811 		}
2812 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2813 		if (IS_ERR(txq)) {
2814 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2815 			ret = PTR_ERR(txq);
2816 			goto err_queues;
2817 		}
2818 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2819 		if (IS_ERR(txq)) {
2820 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2821 			ret = PTR_ERR(txq);
2822 			goto err_queues;
2823 		}
2824 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2825 		if (IS_ERR(txq)) {
2826 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2827 			ret = PTR_ERR(txq);
2828 			goto err_queues;
2829 		}
2830 		hw->queues = 4;
2831 	} else {
2832 		/* older hardware (5210) can only support one data queue */
2833 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2834 		if (IS_ERR(txq)) {
2835 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2836 			ret = PTR_ERR(txq);
2837 			goto err_queues;
2838 		}
2839 		hw->queues = 1;
2840 	}
2841 
2842 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2843 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2844 	tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah);
2845 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2846 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2847 
2848 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2849 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2850 
2851 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2852 	if (ret) {
2853 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2854 		goto err_queues;
2855 	}
2856 
2857 	SET_IEEE80211_PERM_ADDR(hw, mac);
2858 	/* All MAC address bits matter for ACKs */
2859 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2860 
2861 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2862 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2863 	if (ret) {
2864 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2865 		goto err_queues;
2866 	}
2867 
2868 	ret = ieee80211_register_hw(hw);
2869 	if (ret) {
2870 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2871 		goto err_queues;
2872 	}
2873 
2874 	if (!ath_is_world_regd(regulatory))
2875 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2876 
2877 	ath5k_init_leds(ah);
2878 
2879 	ath5k_sysfs_register(ah);
2880 
2881 	return 0;
2882 err_queues:
2883 	ath5k_txq_release(ah);
2884 err_bhal:
2885 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2886 err_desc:
2887 	ath5k_desc_free(ah);
2888 err:
2889 	return ret;
2890 }
2891 
2892 void
2893 ath5k_deinit_ah(struct ath5k_hw *ah)
2894 {
2895 	struct ieee80211_hw *hw = ah->hw;
2896 
2897 	/*
2898 	 * NB: the order of these is important:
2899 	 * o call the 802.11 layer before detaching ath5k_hw to
2900 	 *   ensure callbacks into the driver to delete global
2901 	 *   key cache entries can be handled
2902 	 * o reclaim the tx queue data structures after calling
2903 	 *   the 802.11 layer as we'll get called back to reclaim
2904 	 *   node state and potentially want to use them
2905 	 * o to cleanup the tx queues the hal is called, so detach
2906 	 *   it last
2907 	 * XXX: ??? detach ath5k_hw ???
2908 	 * Other than that, it's straightforward...
2909 	 */
2910 	ieee80211_unregister_hw(hw);
2911 	ath5k_desc_free(ah);
2912 	ath5k_txq_release(ah);
2913 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2914 	ath5k_unregister_leds(ah);
2915 
2916 	ath5k_sysfs_unregister(ah);
2917 	/*
2918 	 * NB: can't reclaim these until after ieee80211_ifdetach
2919 	 * returns because we'll get called back to reclaim node
2920 	 * state and potentially want to use them.
2921 	 */
2922 	ath5k_hw_deinit(ah);
2923 	free_irq(ah->irq, ah);
2924 }
2925 
2926 bool
2927 ath5k_any_vif_assoc(struct ath5k_hw *ah)
2928 {
2929 	struct ath5k_vif_iter_data iter_data;
2930 	iter_data.hw_macaddr = NULL;
2931 	iter_data.any_assoc = false;
2932 	iter_data.need_set_hw_addr = false;
2933 	iter_data.found_active = true;
2934 
2935 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
2936 						   &iter_data);
2937 	return iter_data.any_assoc;
2938 }
2939 
2940 void
2941 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2942 {
2943 	struct ath5k_hw *ah = hw->priv;
2944 	u32 rfilt;
2945 	rfilt = ath5k_hw_get_rx_filter(ah);
2946 	if (enable)
2947 		rfilt |= AR5K_RX_FILTER_BEACON;
2948 	else
2949 		rfilt &= ~AR5K_RX_FILTER_BEACON;
2950 	ath5k_hw_set_rx_filter(ah, rfilt);
2951 	ah->filter_flags = rfilt;
2952 }
2953