1 /*- 2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 3 * Copyright (c) 2004-2005 Atheros Communications, Inc. 4 * Copyright (c) 2006 Devicescape Software, Inc. 5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 7 * 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer, 15 * without modification. 16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 18 * redistribution must be conditioned upon including a substantially 19 * similar Disclaimer requirement for further binary redistribution. 20 * 3. Neither the names of the above-listed copyright holders nor the names 21 * of any contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * Alternatively, this software may be distributed under the terms of the 25 * GNU General Public License ("GPL") version 2 as published by the Free 26 * Software Foundation. 27 * 28 * NO WARRANTY 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 39 * THE POSSIBILITY OF SUCH DAMAGES. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/delay.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/hardirq.h> 47 #include <linux/if.h> 48 #include <linux/io.h> 49 #include <linux/netdevice.h> 50 #include <linux/cache.h> 51 #include <linux/ethtool.h> 52 #include <linux/uaccess.h> 53 #include <linux/slab.h> 54 #include <linux/etherdevice.h> 55 #include <linux/nl80211.h> 56 57 #include <net/ieee80211_radiotap.h> 58 59 #include <asm/unaligned.h> 60 61 #include "base.h" 62 #include "reg.h" 63 #include "debug.h" 64 #include "ani.h" 65 #include "ath5k.h" 66 #include "../regd.h" 67 68 #define CREATE_TRACE_POINTS 69 #include "trace.h" 70 71 int ath5k_modparam_nohwcrypt; 72 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO); 73 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 74 75 static int modparam_all_channels; 76 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO); 77 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use."); 78 79 static int modparam_fastchanswitch; 80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO); 81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios."); 82 83 84 /* Module info */ 85 MODULE_AUTHOR("Jiri Slaby"); 86 MODULE_AUTHOR("Nick Kossifidis"); 87 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards."); 88 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards"); 89 MODULE_LICENSE("Dual BSD/GPL"); 90 91 static int ath5k_init(struct ieee80211_hw *hw); 92 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 93 bool skip_pcu); 94 95 /* Known SREVs */ 96 static const struct ath5k_srev_name srev_names[] = { 97 #ifdef CONFIG_ATHEROS_AR231X 98 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 }, 99 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 }, 100 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 }, 101 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 }, 102 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 }, 103 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 }, 104 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 }, 105 #else 106 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 }, 107 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 }, 108 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A }, 109 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B }, 110 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 }, 111 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 }, 112 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 }, 113 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A }, 114 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 }, 115 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 }, 116 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 }, 117 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 }, 118 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 }, 119 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 }, 120 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 }, 121 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 }, 122 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 }, 123 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 }, 124 #endif 125 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN }, 126 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 }, 127 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 }, 128 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A }, 129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 }, 130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 }, 131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A }, 132 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B }, 133 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 }, 134 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A }, 135 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B }, 136 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 }, 137 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 }, 138 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 }, 139 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 }, 140 #ifdef CONFIG_ATHEROS_AR231X 141 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 }, 142 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 }, 143 #endif 144 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN }, 145 }; 146 147 static const struct ieee80211_rate ath5k_rates[] = { 148 { .bitrate = 10, 149 .hw_value = ATH5K_RATE_CODE_1M, }, 150 { .bitrate = 20, 151 .hw_value = ATH5K_RATE_CODE_2M, 152 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE, 153 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 154 { .bitrate = 55, 155 .hw_value = ATH5K_RATE_CODE_5_5M, 156 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE, 157 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 158 { .bitrate = 110, 159 .hw_value = ATH5K_RATE_CODE_11M, 160 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE, 161 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 162 { .bitrate = 60, 163 .hw_value = ATH5K_RATE_CODE_6M, 164 .flags = 0 }, 165 { .bitrate = 90, 166 .hw_value = ATH5K_RATE_CODE_9M, 167 .flags = 0 }, 168 { .bitrate = 120, 169 .hw_value = ATH5K_RATE_CODE_12M, 170 .flags = 0 }, 171 { .bitrate = 180, 172 .hw_value = ATH5K_RATE_CODE_18M, 173 .flags = 0 }, 174 { .bitrate = 240, 175 .hw_value = ATH5K_RATE_CODE_24M, 176 .flags = 0 }, 177 { .bitrate = 360, 178 .hw_value = ATH5K_RATE_CODE_36M, 179 .flags = 0 }, 180 { .bitrate = 480, 181 .hw_value = ATH5K_RATE_CODE_48M, 182 .flags = 0 }, 183 { .bitrate = 540, 184 .hw_value = ATH5K_RATE_CODE_54M, 185 .flags = 0 }, 186 /* XR missing */ 187 }; 188 189 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp) 190 { 191 u64 tsf = ath5k_hw_get_tsf64(ah); 192 193 if ((tsf & 0x7fff) < rstamp) 194 tsf -= 0x8000; 195 196 return (tsf & ~0x7fff) | rstamp; 197 } 198 199 const char * 200 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val) 201 { 202 const char *name = "xxxxx"; 203 unsigned int i; 204 205 for (i = 0; i < ARRAY_SIZE(srev_names); i++) { 206 if (srev_names[i].sr_type != type) 207 continue; 208 209 if ((val & 0xf0) == srev_names[i].sr_val) 210 name = srev_names[i].sr_name; 211 212 if ((val & 0xff) == srev_names[i].sr_val) { 213 name = srev_names[i].sr_name; 214 break; 215 } 216 } 217 218 return name; 219 } 220 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset) 221 { 222 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 223 return ath5k_hw_reg_read(ah, reg_offset); 224 } 225 226 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) 227 { 228 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 229 ath5k_hw_reg_write(ah, val, reg_offset); 230 } 231 232 static const struct ath_ops ath5k_common_ops = { 233 .read = ath5k_ioread32, 234 .write = ath5k_iowrite32, 235 }; 236 237 /***********************\ 238 * Driver Initialization * 239 \***********************/ 240 241 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) 242 { 243 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 244 struct ath5k_hw *ah = hw->priv; 245 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 246 247 return ath_reg_notifier_apply(wiphy, request, regulatory); 248 } 249 250 /********************\ 251 * Channel/mode setup * 252 \********************/ 253 254 /* 255 * Returns true for the channel numbers used without all_channels modparam. 256 */ 257 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) 258 { 259 if (band == IEEE80211_BAND_2GHZ && chan <= 14) 260 return true; 261 262 return /* UNII 1,2 */ 263 (((chan & 3) == 0 && chan >= 36 && chan <= 64) || 264 /* midband */ 265 ((chan & 3) == 0 && chan >= 100 && chan <= 140) || 266 /* UNII-3 */ 267 ((chan & 3) == 1 && chan >= 149 && chan <= 165) || 268 /* 802.11j 5.030-5.080 GHz (20MHz) */ 269 (chan == 8 || chan == 12 || chan == 16) || 270 /* 802.11j 4.9GHz (20MHz) */ 271 (chan == 184 || chan == 188 || chan == 192 || chan == 196)); 272 } 273 274 static unsigned int 275 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, 276 unsigned int mode, unsigned int max) 277 { 278 unsigned int count, size, freq, ch; 279 enum ieee80211_band band; 280 281 switch (mode) { 282 case AR5K_MODE_11A: 283 /* 1..220, but 2GHz frequencies are filtered by check_channel */ 284 size = 220; 285 band = IEEE80211_BAND_5GHZ; 286 break; 287 case AR5K_MODE_11B: 288 case AR5K_MODE_11G: 289 size = 26; 290 band = IEEE80211_BAND_2GHZ; 291 break; 292 default: 293 ATH5K_WARN(ah, "bad mode, not copying channels\n"); 294 return 0; 295 } 296 297 count = 0; 298 for (ch = 1; ch <= size && count < max; ch++) { 299 freq = ieee80211_channel_to_frequency(ch, band); 300 301 if (freq == 0) /* mapping failed - not a standard channel */ 302 continue; 303 304 /* Write channel info, needed for ath5k_channel_ok() */ 305 channels[count].center_freq = freq; 306 channels[count].band = band; 307 channels[count].hw_value = mode; 308 309 /* Check if channel is supported by the chipset */ 310 if (!ath5k_channel_ok(ah, &channels[count])) 311 continue; 312 313 if (!modparam_all_channels && 314 !ath5k_is_standard_channel(ch, band)) 315 continue; 316 317 count++; 318 } 319 320 return count; 321 } 322 323 static void 324 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b) 325 { 326 u8 i; 327 328 for (i = 0; i < AR5K_MAX_RATES; i++) 329 ah->rate_idx[b->band][i] = -1; 330 331 for (i = 0; i < b->n_bitrates; i++) { 332 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i; 333 if (b->bitrates[i].hw_value_short) 334 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i; 335 } 336 } 337 338 static int 339 ath5k_setup_bands(struct ieee80211_hw *hw) 340 { 341 struct ath5k_hw *ah = hw->priv; 342 struct ieee80211_supported_band *sband; 343 int max_c, count_c = 0; 344 int i; 345 346 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS); 347 max_c = ARRAY_SIZE(ah->channels); 348 349 /* 2GHz band */ 350 sband = &ah->sbands[IEEE80211_BAND_2GHZ]; 351 sband->band = IEEE80211_BAND_2GHZ; 352 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0]; 353 354 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) { 355 /* G mode */ 356 memcpy(sband->bitrates, &ath5k_rates[0], 357 sizeof(struct ieee80211_rate) * 12); 358 sband->n_bitrates = 12; 359 360 sband->channels = ah->channels; 361 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 362 AR5K_MODE_11G, max_c); 363 364 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 365 count_c = sband->n_channels; 366 max_c -= count_c; 367 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) { 368 /* B mode */ 369 memcpy(sband->bitrates, &ath5k_rates[0], 370 sizeof(struct ieee80211_rate) * 4); 371 sband->n_bitrates = 4; 372 373 /* 5211 only supports B rates and uses 4bit rate codes 374 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B) 375 * fix them up here: 376 */ 377 if (ah->ah_version == AR5K_AR5211) { 378 for (i = 0; i < 4; i++) { 379 sband->bitrates[i].hw_value = 380 sband->bitrates[i].hw_value & 0xF; 381 sband->bitrates[i].hw_value_short = 382 sband->bitrates[i].hw_value_short & 0xF; 383 } 384 } 385 386 sband->channels = ah->channels; 387 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 388 AR5K_MODE_11B, max_c); 389 390 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 391 count_c = sband->n_channels; 392 max_c -= count_c; 393 } 394 ath5k_setup_rate_idx(ah, sband); 395 396 /* 5GHz band, A mode */ 397 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) { 398 sband = &ah->sbands[IEEE80211_BAND_5GHZ]; 399 sband->band = IEEE80211_BAND_5GHZ; 400 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0]; 401 402 memcpy(sband->bitrates, &ath5k_rates[4], 403 sizeof(struct ieee80211_rate) * 8); 404 sband->n_bitrates = 8; 405 406 sband->channels = &ah->channels[count_c]; 407 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 408 AR5K_MODE_11A, max_c); 409 410 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; 411 } 412 ath5k_setup_rate_idx(ah, sband); 413 414 ath5k_debug_dump_bands(ah); 415 416 return 0; 417 } 418 419 /* 420 * Set/change channels. We always reset the chip. 421 * To accomplish this we must first cleanup any pending DMA, 422 * then restart stuff after a la ath5k_init. 423 * 424 * Called with ah->lock. 425 */ 426 int 427 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan) 428 { 429 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 430 "channel set, resetting (%u -> %u MHz)\n", 431 ah->curchan->center_freq, chan->center_freq); 432 433 /* 434 * To switch channels clear any pending DMA operations; 435 * wait long enough for the RX fifo to drain, reset the 436 * hardware at the new frequency, and then re-enable 437 * the relevant bits of the h/w. 438 */ 439 return ath5k_reset(ah, chan, true); 440 } 441 442 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 443 { 444 struct ath5k_vif_iter_data *iter_data = data; 445 int i; 446 struct ath5k_vif *avf = (void *)vif->drv_priv; 447 448 if (iter_data->hw_macaddr) 449 for (i = 0; i < ETH_ALEN; i++) 450 iter_data->mask[i] &= 451 ~(iter_data->hw_macaddr[i] ^ mac[i]); 452 453 if (!iter_data->found_active) { 454 iter_data->found_active = true; 455 memcpy(iter_data->active_mac, mac, ETH_ALEN); 456 } 457 458 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr) 459 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0) 460 iter_data->need_set_hw_addr = false; 461 462 if (!iter_data->any_assoc) { 463 if (avf->assoc) 464 iter_data->any_assoc = true; 465 } 466 467 /* Calculate combined mode - when APs are active, operate in AP mode. 468 * Otherwise use the mode of the new interface. This can currently 469 * only deal with combinations of APs and STAs. Only one ad-hoc 470 * interfaces is allowed. 471 */ 472 if (avf->opmode == NL80211_IFTYPE_AP) 473 iter_data->opmode = NL80211_IFTYPE_AP; 474 else { 475 if (avf->opmode == NL80211_IFTYPE_STATION) 476 iter_data->n_stas++; 477 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED) 478 iter_data->opmode = avf->opmode; 479 } 480 } 481 482 void 483 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah, 484 struct ieee80211_vif *vif) 485 { 486 struct ath_common *common = ath5k_hw_common(ah); 487 struct ath5k_vif_iter_data iter_data; 488 u32 rfilt; 489 490 /* 491 * Use the hardware MAC address as reference, the hardware uses it 492 * together with the BSSID mask when matching addresses. 493 */ 494 iter_data.hw_macaddr = common->macaddr; 495 memset(&iter_data.mask, 0xff, ETH_ALEN); 496 iter_data.found_active = false; 497 iter_data.need_set_hw_addr = true; 498 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED; 499 iter_data.n_stas = 0; 500 501 if (vif) 502 ath5k_vif_iter(&iter_data, vif->addr, vif); 503 504 /* Get list of all active MAC addresses */ 505 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter, 506 &iter_data); 507 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN); 508 509 ah->opmode = iter_data.opmode; 510 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED) 511 /* Nothing active, default to station mode */ 512 ah->opmode = NL80211_IFTYPE_STATION; 513 514 ath5k_hw_set_opmode(ah, ah->opmode); 515 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n", 516 ah->opmode, ath_opmode_to_string(ah->opmode)); 517 518 if (iter_data.need_set_hw_addr && iter_data.found_active) 519 ath5k_hw_set_lladdr(ah, iter_data.active_mac); 520 521 if (ath5k_hw_hasbssidmask(ah)) 522 ath5k_hw_set_bssid_mask(ah, ah->bssidmask); 523 524 /* Set up RX Filter */ 525 if (iter_data.n_stas > 1) { 526 /* If you have multiple STA interfaces connected to 527 * different APs, ARPs are not received (most of the time?) 528 * Enabling PROMISC appears to fix that problem. 529 */ 530 ah->filter_flags |= AR5K_RX_FILTER_PROM; 531 } 532 533 rfilt = ah->filter_flags; 534 ath5k_hw_set_rx_filter(ah, rfilt); 535 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt); 536 } 537 538 static inline int 539 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix) 540 { 541 int rix; 542 543 /* return base rate on errors */ 544 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, 545 "hw_rix out of bounds: %x\n", hw_rix)) 546 return 0; 547 548 rix = ah->rate_idx[ah->curchan->band][hw_rix]; 549 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix)) 550 rix = 0; 551 552 return rix; 553 } 554 555 /***************\ 556 * Buffers setup * 557 \***************/ 558 559 static 560 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr) 561 { 562 struct ath_common *common = ath5k_hw_common(ah); 563 struct sk_buff *skb; 564 565 /* 566 * Allocate buffer with headroom_needed space for the 567 * fake physical layer header at the start. 568 */ 569 skb = ath_rxbuf_alloc(common, 570 common->rx_bufsize, 571 GFP_ATOMIC); 572 573 if (!skb) { 574 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n", 575 common->rx_bufsize); 576 return NULL; 577 } 578 579 *skb_addr = dma_map_single(ah->dev, 580 skb->data, common->rx_bufsize, 581 DMA_FROM_DEVICE); 582 583 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) { 584 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__); 585 dev_kfree_skb(skb); 586 return NULL; 587 } 588 return skb; 589 } 590 591 static int 592 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 593 { 594 struct sk_buff *skb = bf->skb; 595 struct ath5k_desc *ds; 596 int ret; 597 598 if (!skb) { 599 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr); 600 if (!skb) 601 return -ENOMEM; 602 bf->skb = skb; 603 } 604 605 /* 606 * Setup descriptors. For receive we always terminate 607 * the descriptor list with a self-linked entry so we'll 608 * not get overrun under high load (as can happen with a 609 * 5212 when ANI processing enables PHY error frames). 610 * 611 * To ensure the last descriptor is self-linked we create 612 * each descriptor as self-linked and add it to the end. As 613 * each additional descriptor is added the previous self-linked 614 * entry is "fixed" naturally. This should be safe even 615 * if DMA is happening. When processing RX interrupts we 616 * never remove/process the last, self-linked, entry on the 617 * descriptor list. This ensures the hardware always has 618 * someplace to write a new frame. 619 */ 620 ds = bf->desc; 621 ds->ds_link = bf->daddr; /* link to self */ 622 ds->ds_data = bf->skbaddr; 623 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0); 624 if (ret) { 625 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__); 626 return ret; 627 } 628 629 if (ah->rxlink != NULL) 630 *ah->rxlink = bf->daddr; 631 ah->rxlink = &ds->ds_link; 632 return 0; 633 } 634 635 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb) 636 { 637 struct ieee80211_hdr *hdr; 638 enum ath5k_pkt_type htype; 639 __le16 fc; 640 641 hdr = (struct ieee80211_hdr *)skb->data; 642 fc = hdr->frame_control; 643 644 if (ieee80211_is_beacon(fc)) 645 htype = AR5K_PKT_TYPE_BEACON; 646 else if (ieee80211_is_probe_resp(fc)) 647 htype = AR5K_PKT_TYPE_PROBE_RESP; 648 else if (ieee80211_is_atim(fc)) 649 htype = AR5K_PKT_TYPE_ATIM; 650 else if (ieee80211_is_pspoll(fc)) 651 htype = AR5K_PKT_TYPE_PSPOLL; 652 else 653 htype = AR5K_PKT_TYPE_NORMAL; 654 655 return htype; 656 } 657 658 static int 659 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf, 660 struct ath5k_txq *txq, int padsize) 661 { 662 struct ath5k_desc *ds = bf->desc; 663 struct sk_buff *skb = bf->skb; 664 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 665 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID; 666 struct ieee80211_rate *rate; 667 unsigned int mrr_rate[3], mrr_tries[3]; 668 int i, ret; 669 u16 hw_rate; 670 u16 cts_rate = 0; 671 u16 duration = 0; 672 u8 rc_flags; 673 674 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK; 675 676 /* XXX endianness */ 677 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 678 DMA_TO_DEVICE); 679 680 rate = ieee80211_get_tx_rate(ah->hw, info); 681 if (!rate) { 682 ret = -EINVAL; 683 goto err_unmap; 684 } 685 686 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 687 flags |= AR5K_TXDESC_NOACK; 688 689 rc_flags = info->control.rates[0].flags; 690 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ? 691 rate->hw_value_short : rate->hw_value; 692 693 pktlen = skb->len; 694 695 /* FIXME: If we are in g mode and rate is a CCK rate 696 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 697 * from tx power (value is in dB units already) */ 698 if (info->control.hw_key) { 699 keyidx = info->control.hw_key->hw_key_idx; 700 pktlen += info->control.hw_key->icv_len; 701 } 702 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 703 flags |= AR5K_TXDESC_RTSENA; 704 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 705 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw, 706 info->control.vif, pktlen, info)); 707 } 708 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 709 flags |= AR5K_TXDESC_CTSENA; 710 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 711 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw, 712 info->control.vif, pktlen, info)); 713 } 714 ret = ah->ah_setup_tx_desc(ah, ds, pktlen, 715 ieee80211_get_hdrlen_from_skb(skb), padsize, 716 get_hw_packet_type(skb), 717 (ah->power_level * 2), 718 hw_rate, 719 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags, 720 cts_rate, duration); 721 if (ret) 722 goto err_unmap; 723 724 memset(mrr_rate, 0, sizeof(mrr_rate)); 725 memset(mrr_tries, 0, sizeof(mrr_tries)); 726 for (i = 0; i < 3; i++) { 727 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i); 728 if (!rate) 729 break; 730 731 mrr_rate[i] = rate->hw_value; 732 mrr_tries[i] = info->control.rates[i + 1].count; 733 } 734 735 ath5k_hw_setup_mrr_tx_desc(ah, ds, 736 mrr_rate[0], mrr_tries[0], 737 mrr_rate[1], mrr_tries[1], 738 mrr_rate[2], mrr_tries[2]); 739 740 ds->ds_link = 0; 741 ds->ds_data = bf->skbaddr; 742 743 spin_lock_bh(&txq->lock); 744 list_add_tail(&bf->list, &txq->q); 745 txq->txq_len++; 746 if (txq->link == NULL) /* is this first packet? */ 747 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr); 748 else /* no, so only link it */ 749 *txq->link = bf->daddr; 750 751 txq->link = &ds->ds_link; 752 ath5k_hw_start_tx_dma(ah, txq->qnum); 753 mmiowb(); 754 spin_unlock_bh(&txq->lock); 755 756 return 0; 757 err_unmap: 758 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 759 return ret; 760 } 761 762 /*******************\ 763 * Descriptors setup * 764 \*******************/ 765 766 static int 767 ath5k_desc_alloc(struct ath5k_hw *ah) 768 { 769 struct ath5k_desc *ds; 770 struct ath5k_buf *bf; 771 dma_addr_t da; 772 unsigned int i; 773 int ret; 774 775 /* allocate descriptors */ 776 ah->desc_len = sizeof(struct ath5k_desc) * 777 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1); 778 779 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len, 780 &ah->desc_daddr, GFP_KERNEL); 781 if (ah->desc == NULL) { 782 ATH5K_ERR(ah, "can't allocate descriptors\n"); 783 ret = -ENOMEM; 784 goto err; 785 } 786 ds = ah->desc; 787 da = ah->desc_daddr; 788 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n", 789 ds, ah->desc_len, (unsigned long long)ah->desc_daddr); 790 791 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF, 792 sizeof(struct ath5k_buf), GFP_KERNEL); 793 if (bf == NULL) { 794 ATH5K_ERR(ah, "can't allocate bufptr\n"); 795 ret = -ENOMEM; 796 goto err_free; 797 } 798 ah->bufptr = bf; 799 800 INIT_LIST_HEAD(&ah->rxbuf); 801 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 802 bf->desc = ds; 803 bf->daddr = da; 804 list_add_tail(&bf->list, &ah->rxbuf); 805 } 806 807 INIT_LIST_HEAD(&ah->txbuf); 808 ah->txbuf_len = ATH_TXBUF; 809 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 810 bf->desc = ds; 811 bf->daddr = da; 812 list_add_tail(&bf->list, &ah->txbuf); 813 } 814 815 /* beacon buffers */ 816 INIT_LIST_HEAD(&ah->bcbuf); 817 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) { 818 bf->desc = ds; 819 bf->daddr = da; 820 list_add_tail(&bf->list, &ah->bcbuf); 821 } 822 823 return 0; 824 err_free: 825 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 826 err: 827 ah->desc = NULL; 828 return ret; 829 } 830 831 void 832 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 833 { 834 BUG_ON(!bf); 835 if (!bf->skb) 836 return; 837 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len, 838 DMA_TO_DEVICE); 839 dev_kfree_skb_any(bf->skb); 840 bf->skb = NULL; 841 bf->skbaddr = 0; 842 bf->desc->ds_data = 0; 843 } 844 845 void 846 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 847 { 848 struct ath_common *common = ath5k_hw_common(ah); 849 850 BUG_ON(!bf); 851 if (!bf->skb) 852 return; 853 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize, 854 DMA_FROM_DEVICE); 855 dev_kfree_skb_any(bf->skb); 856 bf->skb = NULL; 857 bf->skbaddr = 0; 858 bf->desc->ds_data = 0; 859 } 860 861 static void 862 ath5k_desc_free(struct ath5k_hw *ah) 863 { 864 struct ath5k_buf *bf; 865 866 list_for_each_entry(bf, &ah->txbuf, list) 867 ath5k_txbuf_free_skb(ah, bf); 868 list_for_each_entry(bf, &ah->rxbuf, list) 869 ath5k_rxbuf_free_skb(ah, bf); 870 list_for_each_entry(bf, &ah->bcbuf, list) 871 ath5k_txbuf_free_skb(ah, bf); 872 873 /* Free memory associated with all descriptors */ 874 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 875 ah->desc = NULL; 876 ah->desc_daddr = 0; 877 878 kfree(ah->bufptr); 879 ah->bufptr = NULL; 880 } 881 882 883 /**************\ 884 * Queues setup * 885 \**************/ 886 887 static struct ath5k_txq * 888 ath5k_txq_setup(struct ath5k_hw *ah, 889 int qtype, int subtype) 890 { 891 struct ath5k_txq *txq; 892 struct ath5k_txq_info qi = { 893 .tqi_subtype = subtype, 894 /* XXX: default values not correct for B and XR channels, 895 * but who cares? */ 896 .tqi_aifs = AR5K_TUNE_AIFS, 897 .tqi_cw_min = AR5K_TUNE_CWMIN, 898 .tqi_cw_max = AR5K_TUNE_CWMAX 899 }; 900 int qnum; 901 902 /* 903 * Enable interrupts only for EOL and DESC conditions. 904 * We mark tx descriptors to receive a DESC interrupt 905 * when a tx queue gets deep; otherwise we wait for the 906 * EOL to reap descriptors. Note that this is done to 907 * reduce interrupt load and this only defers reaping 908 * descriptors, never transmitting frames. Aside from 909 * reducing interrupts this also permits more concurrency. 910 * The only potential downside is if the tx queue backs 911 * up in which case the top half of the kernel may backup 912 * due to a lack of tx descriptors. 913 */ 914 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE | 915 AR5K_TXQ_FLAG_TXDESCINT_ENABLE; 916 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi); 917 if (qnum < 0) { 918 /* 919 * NB: don't print a message, this happens 920 * normally on parts with too few tx queues 921 */ 922 return ERR_PTR(qnum); 923 } 924 txq = &ah->txqs[qnum]; 925 if (!txq->setup) { 926 txq->qnum = qnum; 927 txq->link = NULL; 928 INIT_LIST_HEAD(&txq->q); 929 spin_lock_init(&txq->lock); 930 txq->setup = true; 931 txq->txq_len = 0; 932 txq->txq_max = ATH5K_TXQ_LEN_MAX; 933 txq->txq_poll_mark = false; 934 txq->txq_stuck = 0; 935 } 936 return &ah->txqs[qnum]; 937 } 938 939 static int 940 ath5k_beaconq_setup(struct ath5k_hw *ah) 941 { 942 struct ath5k_txq_info qi = { 943 /* XXX: default values not correct for B and XR channels, 944 * but who cares? */ 945 .tqi_aifs = AR5K_TUNE_AIFS, 946 .tqi_cw_min = AR5K_TUNE_CWMIN, 947 .tqi_cw_max = AR5K_TUNE_CWMAX, 948 /* NB: for dynamic turbo, don't enable any other interrupts */ 949 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE 950 }; 951 952 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi); 953 } 954 955 static int 956 ath5k_beaconq_config(struct ath5k_hw *ah) 957 { 958 struct ath5k_txq_info qi; 959 int ret; 960 961 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi); 962 if (ret) 963 goto err; 964 965 if (ah->opmode == NL80211_IFTYPE_AP || 966 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 967 /* 968 * Always burst out beacon and CAB traffic 969 * (aifs = cwmin = cwmax = 0) 970 */ 971 qi.tqi_aifs = 0; 972 qi.tqi_cw_min = 0; 973 qi.tqi_cw_max = 0; 974 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) { 975 /* 976 * Adhoc mode; backoff between 0 and (2 * cw_min). 977 */ 978 qi.tqi_aifs = 0; 979 qi.tqi_cw_min = 0; 980 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN; 981 } 982 983 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 984 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", 985 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); 986 987 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi); 988 if (ret) { 989 ATH5K_ERR(ah, "%s: unable to update parameters for beacon " 990 "hardware queue!\n", __func__); 991 goto err; 992 } 993 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */ 994 if (ret) 995 goto err; 996 997 /* reconfigure cabq with ready time to 80% of beacon_interval */ 998 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 999 if (ret) 1000 goto err; 1001 1002 qi.tqi_ready_time = (ah->bintval * 80) / 100; 1003 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 1004 if (ret) 1005 goto err; 1006 1007 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB); 1008 err: 1009 return ret; 1010 } 1011 1012 /** 1013 * ath5k_drain_tx_buffs - Empty tx buffers 1014 * 1015 * @ah The &struct ath5k_hw 1016 * 1017 * Empty tx buffers from all queues in preparation 1018 * of a reset or during shutdown. 1019 * 1020 * NB: this assumes output has been stopped and 1021 * we do not need to block ath5k_tx_tasklet 1022 */ 1023 static void 1024 ath5k_drain_tx_buffs(struct ath5k_hw *ah) 1025 { 1026 struct ath5k_txq *txq; 1027 struct ath5k_buf *bf, *bf0; 1028 int i; 1029 1030 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 1031 if (ah->txqs[i].setup) { 1032 txq = &ah->txqs[i]; 1033 spin_lock_bh(&txq->lock); 1034 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1035 ath5k_debug_printtxbuf(ah, bf); 1036 1037 ath5k_txbuf_free_skb(ah, bf); 1038 1039 spin_lock_bh(&ah->txbuflock); 1040 list_move_tail(&bf->list, &ah->txbuf); 1041 ah->txbuf_len++; 1042 txq->txq_len--; 1043 spin_unlock_bh(&ah->txbuflock); 1044 } 1045 txq->link = NULL; 1046 txq->txq_poll_mark = false; 1047 spin_unlock_bh(&txq->lock); 1048 } 1049 } 1050 } 1051 1052 static void 1053 ath5k_txq_release(struct ath5k_hw *ah) 1054 { 1055 struct ath5k_txq *txq = ah->txqs; 1056 unsigned int i; 1057 1058 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++) 1059 if (txq->setup) { 1060 ath5k_hw_release_tx_queue(ah, txq->qnum); 1061 txq->setup = false; 1062 } 1063 } 1064 1065 1066 /*************\ 1067 * RX Handling * 1068 \*************/ 1069 1070 /* 1071 * Enable the receive h/w following a reset. 1072 */ 1073 static int 1074 ath5k_rx_start(struct ath5k_hw *ah) 1075 { 1076 struct ath_common *common = ath5k_hw_common(ah); 1077 struct ath5k_buf *bf; 1078 int ret; 1079 1080 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz); 1081 1082 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n", 1083 common->cachelsz, common->rx_bufsize); 1084 1085 spin_lock_bh(&ah->rxbuflock); 1086 ah->rxlink = NULL; 1087 list_for_each_entry(bf, &ah->rxbuf, list) { 1088 ret = ath5k_rxbuf_setup(ah, bf); 1089 if (ret != 0) { 1090 spin_unlock_bh(&ah->rxbuflock); 1091 goto err; 1092 } 1093 } 1094 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1095 ath5k_hw_set_rxdp(ah, bf->daddr); 1096 spin_unlock_bh(&ah->rxbuflock); 1097 1098 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */ 1099 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */ 1100 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ 1101 1102 return 0; 1103 err: 1104 return ret; 1105 } 1106 1107 /* 1108 * Disable the receive logic on PCU (DRU) 1109 * In preparation for a shutdown. 1110 * 1111 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop 1112 * does. 1113 */ 1114 static void 1115 ath5k_rx_stop(struct ath5k_hw *ah) 1116 { 1117 1118 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ 1119 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */ 1120 1121 ath5k_debug_printrxbuffs(ah); 1122 } 1123 1124 static unsigned int 1125 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb, 1126 struct ath5k_rx_status *rs) 1127 { 1128 struct ath_common *common = ath5k_hw_common(ah); 1129 struct ieee80211_hdr *hdr = (void *)skb->data; 1130 unsigned int keyix, hlen; 1131 1132 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) && 1133 rs->rs_keyix != AR5K_RXKEYIX_INVALID) 1134 return RX_FLAG_DECRYPTED; 1135 1136 /* Apparently when a default key is used to decrypt the packet 1137 the hw does not set the index used to decrypt. In such cases 1138 get the index from the packet. */ 1139 hlen = ieee80211_hdrlen(hdr->frame_control); 1140 if (ieee80211_has_protected(hdr->frame_control) && 1141 !(rs->rs_status & AR5K_RXERR_DECRYPT) && 1142 skb->len >= hlen + 4) { 1143 keyix = skb->data[hlen + 3] >> 6; 1144 1145 if (test_bit(keyix, common->keymap)) 1146 return RX_FLAG_DECRYPTED; 1147 } 1148 1149 return 0; 1150 } 1151 1152 1153 static void 1154 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb, 1155 struct ieee80211_rx_status *rxs) 1156 { 1157 struct ath_common *common = ath5k_hw_common(ah); 1158 u64 tsf, bc_tstamp; 1159 u32 hw_tu; 1160 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; 1161 1162 if (ieee80211_is_beacon(mgmt->frame_control) && 1163 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS && 1164 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) { 1165 /* 1166 * Received an IBSS beacon with the same BSSID. Hardware *must* 1167 * have updated the local TSF. We have to work around various 1168 * hardware bugs, though... 1169 */ 1170 tsf = ath5k_hw_get_tsf64(ah); 1171 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp); 1172 hw_tu = TSF_TO_TU(tsf); 1173 1174 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1175 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n", 1176 (unsigned long long)bc_tstamp, 1177 (unsigned long long)rxs->mactime, 1178 (unsigned long long)(rxs->mactime - bc_tstamp), 1179 (unsigned long long)tsf); 1180 1181 /* 1182 * Sometimes the HW will give us a wrong tstamp in the rx 1183 * status, causing the timestamp extension to go wrong. 1184 * (This seems to happen especially with beacon frames bigger 1185 * than 78 byte (incl. FCS)) 1186 * But we know that the receive timestamp must be later than the 1187 * timestamp of the beacon since HW must have synced to that. 1188 * 1189 * NOTE: here we assume mactime to be after the frame was 1190 * received, not like mac80211 which defines it at the start. 1191 */ 1192 if (bc_tstamp > rxs->mactime) { 1193 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1194 "fixing mactime from %llx to %llx\n", 1195 (unsigned long long)rxs->mactime, 1196 (unsigned long long)tsf); 1197 rxs->mactime = tsf; 1198 } 1199 1200 /* 1201 * Local TSF might have moved higher than our beacon timers, 1202 * in that case we have to update them to continue sending 1203 * beacons. This also takes care of synchronizing beacon sending 1204 * times with other stations. 1205 */ 1206 if (hw_tu >= ah->nexttbtt) 1207 ath5k_beacon_update_timers(ah, bc_tstamp); 1208 1209 /* Check if the beacon timers are still correct, because a TSF 1210 * update might have created a window between them - for a 1211 * longer description see the comment of this function: */ 1212 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) { 1213 ath5k_beacon_update_timers(ah, bc_tstamp); 1214 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1215 "fixed beacon timers after beacon receive\n"); 1216 } 1217 } 1218 } 1219 1220 static void 1221 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi) 1222 { 1223 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; 1224 struct ath_common *common = ath5k_hw_common(ah); 1225 1226 /* only beacons from our BSSID */ 1227 if (!ieee80211_is_beacon(mgmt->frame_control) || 1228 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0) 1229 return; 1230 1231 ewma_add(&ah->ah_beacon_rssi_avg, rssi); 1232 1233 /* in IBSS mode we should keep RSSI statistics per neighbour */ 1234 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */ 1235 } 1236 1237 /* 1238 * Compute padding position. skb must contain an IEEE 802.11 frame 1239 */ 1240 static int ath5k_common_padpos(struct sk_buff *skb) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1243 __le16 frame_control = hdr->frame_control; 1244 int padpos = 24; 1245 1246 if (ieee80211_has_a4(frame_control)) 1247 padpos += ETH_ALEN; 1248 1249 if (ieee80211_is_data_qos(frame_control)) 1250 padpos += IEEE80211_QOS_CTL_LEN; 1251 1252 return padpos; 1253 } 1254 1255 /* 1256 * This function expects an 802.11 frame and returns the number of 1257 * bytes added, or -1 if we don't have enough header room. 1258 */ 1259 static int ath5k_add_padding(struct sk_buff *skb) 1260 { 1261 int padpos = ath5k_common_padpos(skb); 1262 int padsize = padpos & 3; 1263 1264 if (padsize && skb->len > padpos) { 1265 1266 if (skb_headroom(skb) < padsize) 1267 return -1; 1268 1269 skb_push(skb, padsize); 1270 memmove(skb->data, skb->data + padsize, padpos); 1271 return padsize; 1272 } 1273 1274 return 0; 1275 } 1276 1277 /* 1278 * The MAC header is padded to have 32-bit boundary if the 1279 * packet payload is non-zero. The general calculation for 1280 * padsize would take into account odd header lengths: 1281 * padsize = 4 - (hdrlen & 3); however, since only 1282 * even-length headers are used, padding can only be 0 or 2 1283 * bytes and we can optimize this a bit. We must not try to 1284 * remove padding from short control frames that do not have a 1285 * payload. 1286 * 1287 * This function expects an 802.11 frame and returns the number of 1288 * bytes removed. 1289 */ 1290 static int ath5k_remove_padding(struct sk_buff *skb) 1291 { 1292 int padpos = ath5k_common_padpos(skb); 1293 int padsize = padpos & 3; 1294 1295 if (padsize && skb->len >= padpos + padsize) { 1296 memmove(skb->data + padsize, skb->data, padpos); 1297 skb_pull(skb, padsize); 1298 return padsize; 1299 } 1300 1301 return 0; 1302 } 1303 1304 static void 1305 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb, 1306 struct ath5k_rx_status *rs) 1307 { 1308 struct ieee80211_rx_status *rxs; 1309 1310 ath5k_remove_padding(skb); 1311 1312 rxs = IEEE80211_SKB_RXCB(skb); 1313 1314 rxs->flag = 0; 1315 if (unlikely(rs->rs_status & AR5K_RXERR_MIC)) 1316 rxs->flag |= RX_FLAG_MMIC_ERROR; 1317 1318 /* 1319 * always extend the mac timestamp, since this information is 1320 * also needed for proper IBSS merging. 1321 * 1322 * XXX: it might be too late to do it here, since rs_tstamp is 1323 * 15bit only. that means TSF extension has to be done within 1324 * 32768usec (about 32ms). it might be necessary to move this to 1325 * the interrupt handler, like it is done in madwifi. 1326 * 1327 * Unfortunately we don't know when the hardware takes the rx 1328 * timestamp (beginning of phy frame, data frame, end of rx?). 1329 * The only thing we know is that it is hardware specific... 1330 * On AR5213 it seems the rx timestamp is at the end of the 1331 * frame, but I'm not sure. 1332 * 1333 * NOTE: mac80211 defines mactime at the beginning of the first 1334 * data symbol. Since we don't have any time references it's 1335 * impossible to comply to that. This affects IBSS merge only 1336 * right now, so it's not too bad... 1337 */ 1338 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp); 1339 rxs->flag |= RX_FLAG_MACTIME_MPDU; 1340 1341 rxs->freq = ah->curchan->center_freq; 1342 rxs->band = ah->curchan->band; 1343 1344 rxs->signal = ah->ah_noise_floor + rs->rs_rssi; 1345 1346 rxs->antenna = rs->rs_antenna; 1347 1348 if (rs->rs_antenna > 0 && rs->rs_antenna < 5) 1349 ah->stats.antenna_rx[rs->rs_antenna]++; 1350 else 1351 ah->stats.antenna_rx[0]++; /* invalid */ 1352 1353 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate); 1354 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs); 1355 1356 if (rxs->rate_idx >= 0 && rs->rs_rate == 1357 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short) 1358 rxs->flag |= RX_FLAG_SHORTPRE; 1359 1360 trace_ath5k_rx(ah, skb); 1361 1362 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi); 1363 1364 /* check beacons in IBSS mode */ 1365 if (ah->opmode == NL80211_IFTYPE_ADHOC) 1366 ath5k_check_ibss_tsf(ah, skb, rxs); 1367 1368 ieee80211_rx(ah->hw, skb); 1369 } 1370 1371 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not? 1372 * 1373 * Check if we want to further process this frame or not. Also update 1374 * statistics. Return true if we want this frame, false if not. 1375 */ 1376 static bool 1377 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs) 1378 { 1379 ah->stats.rx_all_count++; 1380 ah->stats.rx_bytes_count += rs->rs_datalen; 1381 1382 if (unlikely(rs->rs_status)) { 1383 if (rs->rs_status & AR5K_RXERR_CRC) 1384 ah->stats.rxerr_crc++; 1385 if (rs->rs_status & AR5K_RXERR_FIFO) 1386 ah->stats.rxerr_fifo++; 1387 if (rs->rs_status & AR5K_RXERR_PHY) { 1388 ah->stats.rxerr_phy++; 1389 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32) 1390 ah->stats.rxerr_phy_code[rs->rs_phyerr]++; 1391 return false; 1392 } 1393 if (rs->rs_status & AR5K_RXERR_DECRYPT) { 1394 /* 1395 * Decrypt error. If the error occurred 1396 * because there was no hardware key, then 1397 * let the frame through so the upper layers 1398 * can process it. This is necessary for 5210 1399 * parts which have no way to setup a ``clear'' 1400 * key cache entry. 1401 * 1402 * XXX do key cache faulting 1403 */ 1404 ah->stats.rxerr_decrypt++; 1405 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID && 1406 !(rs->rs_status & AR5K_RXERR_CRC)) 1407 return true; 1408 } 1409 if (rs->rs_status & AR5K_RXERR_MIC) { 1410 ah->stats.rxerr_mic++; 1411 return true; 1412 } 1413 1414 /* reject any frames with non-crypto errors */ 1415 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT)) 1416 return false; 1417 } 1418 1419 if (unlikely(rs->rs_more)) { 1420 ah->stats.rxerr_jumbo++; 1421 return false; 1422 } 1423 return true; 1424 } 1425 1426 static void 1427 ath5k_set_current_imask(struct ath5k_hw *ah) 1428 { 1429 enum ath5k_int imask; 1430 unsigned long flags; 1431 1432 spin_lock_irqsave(&ah->irqlock, flags); 1433 imask = ah->imask; 1434 if (ah->rx_pending) 1435 imask &= ~AR5K_INT_RX_ALL; 1436 if (ah->tx_pending) 1437 imask &= ~AR5K_INT_TX_ALL; 1438 ath5k_hw_set_imr(ah, imask); 1439 spin_unlock_irqrestore(&ah->irqlock, flags); 1440 } 1441 1442 static void 1443 ath5k_tasklet_rx(unsigned long data) 1444 { 1445 struct ath5k_rx_status rs = {}; 1446 struct sk_buff *skb, *next_skb; 1447 dma_addr_t next_skb_addr; 1448 struct ath5k_hw *ah = (void *)data; 1449 struct ath_common *common = ath5k_hw_common(ah); 1450 struct ath5k_buf *bf; 1451 struct ath5k_desc *ds; 1452 int ret; 1453 1454 spin_lock(&ah->rxbuflock); 1455 if (list_empty(&ah->rxbuf)) { 1456 ATH5K_WARN(ah, "empty rx buf pool\n"); 1457 goto unlock; 1458 } 1459 do { 1460 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1461 BUG_ON(bf->skb == NULL); 1462 skb = bf->skb; 1463 ds = bf->desc; 1464 1465 /* bail if HW is still using self-linked descriptor */ 1466 if (ath5k_hw_get_rxdp(ah) == bf->daddr) 1467 break; 1468 1469 ret = ah->ah_proc_rx_desc(ah, ds, &rs); 1470 if (unlikely(ret == -EINPROGRESS)) 1471 break; 1472 else if (unlikely(ret)) { 1473 ATH5K_ERR(ah, "error in processing rx descriptor\n"); 1474 ah->stats.rxerr_proc++; 1475 break; 1476 } 1477 1478 if (ath5k_receive_frame_ok(ah, &rs)) { 1479 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr); 1480 1481 /* 1482 * If we can't replace bf->skb with a new skb under 1483 * memory pressure, just skip this packet 1484 */ 1485 if (!next_skb) 1486 goto next; 1487 1488 dma_unmap_single(ah->dev, bf->skbaddr, 1489 common->rx_bufsize, 1490 DMA_FROM_DEVICE); 1491 1492 skb_put(skb, rs.rs_datalen); 1493 1494 ath5k_receive_frame(ah, skb, &rs); 1495 1496 bf->skb = next_skb; 1497 bf->skbaddr = next_skb_addr; 1498 } 1499 next: 1500 list_move_tail(&bf->list, &ah->rxbuf); 1501 } while (ath5k_rxbuf_setup(ah, bf) == 0); 1502 unlock: 1503 spin_unlock(&ah->rxbuflock); 1504 ah->rx_pending = false; 1505 ath5k_set_current_imask(ah); 1506 } 1507 1508 1509 /*************\ 1510 * TX Handling * 1511 \*************/ 1512 1513 void 1514 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb, 1515 struct ath5k_txq *txq) 1516 { 1517 struct ath5k_hw *ah = hw->priv; 1518 struct ath5k_buf *bf; 1519 unsigned long flags; 1520 int padsize; 1521 1522 trace_ath5k_tx(ah, skb, txq); 1523 1524 /* 1525 * The hardware expects the header padded to 4 byte boundaries. 1526 * If this is not the case, we add the padding after the header. 1527 */ 1528 padsize = ath5k_add_padding(skb); 1529 if (padsize < 0) { 1530 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough" 1531 " headroom to pad"); 1532 goto drop_packet; 1533 } 1534 1535 if (txq->txq_len >= txq->txq_max && 1536 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX) 1537 ieee80211_stop_queue(hw, txq->qnum); 1538 1539 spin_lock_irqsave(&ah->txbuflock, flags); 1540 if (list_empty(&ah->txbuf)) { 1541 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n"); 1542 spin_unlock_irqrestore(&ah->txbuflock, flags); 1543 ieee80211_stop_queues(hw); 1544 goto drop_packet; 1545 } 1546 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list); 1547 list_del(&bf->list); 1548 ah->txbuf_len--; 1549 if (list_empty(&ah->txbuf)) 1550 ieee80211_stop_queues(hw); 1551 spin_unlock_irqrestore(&ah->txbuflock, flags); 1552 1553 bf->skb = skb; 1554 1555 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) { 1556 bf->skb = NULL; 1557 spin_lock_irqsave(&ah->txbuflock, flags); 1558 list_add_tail(&bf->list, &ah->txbuf); 1559 ah->txbuf_len++; 1560 spin_unlock_irqrestore(&ah->txbuflock, flags); 1561 goto drop_packet; 1562 } 1563 return; 1564 1565 drop_packet: 1566 dev_kfree_skb_any(skb); 1567 } 1568 1569 static void 1570 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb, 1571 struct ath5k_txq *txq, struct ath5k_tx_status *ts) 1572 { 1573 struct ieee80211_tx_info *info; 1574 u8 tries[3]; 1575 int i; 1576 1577 ah->stats.tx_all_count++; 1578 ah->stats.tx_bytes_count += skb->len; 1579 info = IEEE80211_SKB_CB(skb); 1580 1581 tries[0] = info->status.rates[0].count; 1582 tries[1] = info->status.rates[1].count; 1583 tries[2] = info->status.rates[2].count; 1584 1585 ieee80211_tx_info_clear_status(info); 1586 1587 for (i = 0; i < ts->ts_final_idx; i++) { 1588 struct ieee80211_tx_rate *r = 1589 &info->status.rates[i]; 1590 1591 r->count = tries[i]; 1592 } 1593 1594 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry; 1595 info->status.rates[ts->ts_final_idx + 1].idx = -1; 1596 1597 if (unlikely(ts->ts_status)) { 1598 ah->stats.ack_fail++; 1599 if (ts->ts_status & AR5K_TXERR_FILT) { 1600 info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1601 ah->stats.txerr_filt++; 1602 } 1603 if (ts->ts_status & AR5K_TXERR_XRETRY) 1604 ah->stats.txerr_retry++; 1605 if (ts->ts_status & AR5K_TXERR_FIFO) 1606 ah->stats.txerr_fifo++; 1607 } else { 1608 info->flags |= IEEE80211_TX_STAT_ACK; 1609 info->status.ack_signal = ts->ts_rssi; 1610 1611 /* count the successful attempt as well */ 1612 info->status.rates[ts->ts_final_idx].count++; 1613 } 1614 1615 /* 1616 * Remove MAC header padding before giving the frame 1617 * back to mac80211. 1618 */ 1619 ath5k_remove_padding(skb); 1620 1621 if (ts->ts_antenna > 0 && ts->ts_antenna < 5) 1622 ah->stats.antenna_tx[ts->ts_antenna]++; 1623 else 1624 ah->stats.antenna_tx[0]++; /* invalid */ 1625 1626 trace_ath5k_tx_complete(ah, skb, txq, ts); 1627 ieee80211_tx_status(ah->hw, skb); 1628 } 1629 1630 static void 1631 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq) 1632 { 1633 struct ath5k_tx_status ts = {}; 1634 struct ath5k_buf *bf, *bf0; 1635 struct ath5k_desc *ds; 1636 struct sk_buff *skb; 1637 int ret; 1638 1639 spin_lock(&txq->lock); 1640 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1641 1642 txq->txq_poll_mark = false; 1643 1644 /* skb might already have been processed last time. */ 1645 if (bf->skb != NULL) { 1646 ds = bf->desc; 1647 1648 ret = ah->ah_proc_tx_desc(ah, ds, &ts); 1649 if (unlikely(ret == -EINPROGRESS)) 1650 break; 1651 else if (unlikely(ret)) { 1652 ATH5K_ERR(ah, 1653 "error %d while processing " 1654 "queue %u\n", ret, txq->qnum); 1655 break; 1656 } 1657 1658 skb = bf->skb; 1659 bf->skb = NULL; 1660 1661 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, 1662 DMA_TO_DEVICE); 1663 ath5k_tx_frame_completed(ah, skb, txq, &ts); 1664 } 1665 1666 /* 1667 * It's possible that the hardware can say the buffer is 1668 * completed when it hasn't yet loaded the ds_link from 1669 * host memory and moved on. 1670 * Always keep the last descriptor to avoid HW races... 1671 */ 1672 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) { 1673 spin_lock(&ah->txbuflock); 1674 list_move_tail(&bf->list, &ah->txbuf); 1675 ah->txbuf_len++; 1676 txq->txq_len--; 1677 spin_unlock(&ah->txbuflock); 1678 } 1679 } 1680 spin_unlock(&txq->lock); 1681 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4) 1682 ieee80211_wake_queue(ah->hw, txq->qnum); 1683 } 1684 1685 static void 1686 ath5k_tasklet_tx(unsigned long data) 1687 { 1688 int i; 1689 struct ath5k_hw *ah = (void *)data; 1690 1691 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++) 1692 if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i))) 1693 ath5k_tx_processq(ah, &ah->txqs[i]); 1694 1695 ah->tx_pending = false; 1696 ath5k_set_current_imask(ah); 1697 } 1698 1699 1700 /*****************\ 1701 * Beacon handling * 1702 \*****************/ 1703 1704 /* 1705 * Setup the beacon frame for transmit. 1706 */ 1707 static int 1708 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 1709 { 1710 struct sk_buff *skb = bf->skb; 1711 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1712 struct ath5k_desc *ds; 1713 int ret = 0; 1714 u8 antenna; 1715 u32 flags; 1716 const int padsize = 0; 1717 1718 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 1719 DMA_TO_DEVICE); 1720 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] " 1721 "skbaddr %llx\n", skb, skb->data, skb->len, 1722 (unsigned long long)bf->skbaddr); 1723 1724 if (dma_mapping_error(ah->dev, bf->skbaddr)) { 1725 ATH5K_ERR(ah, "beacon DMA mapping failed\n"); 1726 dev_kfree_skb_any(skb); 1727 bf->skb = NULL; 1728 return -EIO; 1729 } 1730 1731 ds = bf->desc; 1732 antenna = ah->ah_tx_ant; 1733 1734 flags = AR5K_TXDESC_NOACK; 1735 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) { 1736 ds->ds_link = bf->daddr; /* self-linked */ 1737 flags |= AR5K_TXDESC_VEOL; 1738 } else 1739 ds->ds_link = 0; 1740 1741 /* 1742 * If we use multiple antennas on AP and use 1743 * the Sectored AP scenario, switch antenna every 1744 * 4 beacons to make sure everybody hears our AP. 1745 * When a client tries to associate, hw will keep 1746 * track of the tx antenna to be used for this client 1747 * automatically, based on ACKed packets. 1748 * 1749 * Note: AP still listens and transmits RTS on the 1750 * default antenna which is supposed to be an omni. 1751 * 1752 * Note2: On sectored scenarios it's possible to have 1753 * multiple antennas (1 omni -- the default -- and 14 1754 * sectors), so if we choose to actually support this 1755 * mode, we need to allow the user to set how many antennas 1756 * we have and tweak the code below to send beacons 1757 * on all of them. 1758 */ 1759 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP) 1760 antenna = ah->bsent & 4 ? 2 : 1; 1761 1762 1763 /* FIXME: If we are in g mode and rate is a CCK rate 1764 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 1765 * from tx power (value is in dB units already) */ 1766 ds->ds_data = bf->skbaddr; 1767 ret = ah->ah_setup_tx_desc(ah, ds, skb->len, 1768 ieee80211_get_hdrlen_from_skb(skb), padsize, 1769 AR5K_PKT_TYPE_BEACON, (ah->power_level * 2), 1770 ieee80211_get_tx_rate(ah->hw, info)->hw_value, 1771 1, AR5K_TXKEYIX_INVALID, 1772 antenna, flags, 0, 0); 1773 if (ret) 1774 goto err_unmap; 1775 1776 return 0; 1777 err_unmap: 1778 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 1779 return ret; 1780 } 1781 1782 /* 1783 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc, 1784 * this is called only once at config_bss time, for AP we do it every 1785 * SWBA interrupt so that the TIM will reflect buffered frames. 1786 * 1787 * Called with the beacon lock. 1788 */ 1789 int 1790 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1791 { 1792 int ret; 1793 struct ath5k_hw *ah = hw->priv; 1794 struct ath5k_vif *avf = (void *)vif->drv_priv; 1795 struct sk_buff *skb; 1796 1797 if (WARN_ON(!vif)) { 1798 ret = -EINVAL; 1799 goto out; 1800 } 1801 1802 skb = ieee80211_beacon_get(hw, vif); 1803 1804 if (!skb) { 1805 ret = -ENOMEM; 1806 goto out; 1807 } 1808 1809 ath5k_txbuf_free_skb(ah, avf->bbuf); 1810 avf->bbuf->skb = skb; 1811 ret = ath5k_beacon_setup(ah, avf->bbuf); 1812 out: 1813 return ret; 1814 } 1815 1816 /* 1817 * Transmit a beacon frame at SWBA. Dynamic updates to the 1818 * frame contents are done as needed and the slot time is 1819 * also adjusted based on current state. 1820 * 1821 * This is called from software irq context (beacontq tasklets) 1822 * or user context from ath5k_beacon_config. 1823 */ 1824 static void 1825 ath5k_beacon_send(struct ath5k_hw *ah) 1826 { 1827 struct ieee80211_vif *vif; 1828 struct ath5k_vif *avf; 1829 struct ath5k_buf *bf; 1830 struct sk_buff *skb; 1831 int err; 1832 1833 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n"); 1834 1835 /* 1836 * Check if the previous beacon has gone out. If 1837 * not, don't don't try to post another: skip this 1838 * period and wait for the next. Missed beacons 1839 * indicate a problem and should not occur. If we 1840 * miss too many consecutive beacons reset the device. 1841 */ 1842 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) { 1843 ah->bmisscount++; 1844 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1845 "missed %u consecutive beacons\n", ah->bmisscount); 1846 if (ah->bmisscount > 10) { /* NB: 10 is a guess */ 1847 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1848 "stuck beacon time (%u missed)\n", 1849 ah->bmisscount); 1850 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 1851 "stuck beacon, resetting\n"); 1852 ieee80211_queue_work(ah->hw, &ah->reset_work); 1853 } 1854 return; 1855 } 1856 if (unlikely(ah->bmisscount != 0)) { 1857 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1858 "resume beacon xmit after %u misses\n", 1859 ah->bmisscount); 1860 ah->bmisscount = 0; 1861 } 1862 1863 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) || 1864 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1865 u64 tsf = ath5k_hw_get_tsf64(ah); 1866 u32 tsftu = TSF_TO_TU(tsf); 1867 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval; 1868 vif = ah->bslot[(slot + 1) % ATH_BCBUF]; 1869 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1870 "tsf %llx tsftu %x intval %u slot %u vif %p\n", 1871 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif); 1872 } else /* only one interface */ 1873 vif = ah->bslot[0]; 1874 1875 if (!vif) 1876 return; 1877 1878 avf = (void *)vif->drv_priv; 1879 bf = avf->bbuf; 1880 1881 /* 1882 * Stop any current dma and put the new frame on the queue. 1883 * This should never fail since we check above that no frames 1884 * are still pending on the queue. 1885 */ 1886 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) { 1887 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq); 1888 /* NB: hw still stops DMA, so proceed */ 1889 } 1890 1891 /* refresh the beacon for AP or MESH mode */ 1892 if (ah->opmode == NL80211_IFTYPE_AP || 1893 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1894 err = ath5k_beacon_update(ah->hw, vif); 1895 if (err) 1896 return; 1897 } 1898 1899 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION || 1900 ah->opmode == NL80211_IFTYPE_MONITOR)) { 1901 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb); 1902 return; 1903 } 1904 1905 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]); 1906 1907 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr); 1908 ath5k_hw_start_tx_dma(ah, ah->bhalq); 1909 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", 1910 ah->bhalq, (unsigned long long)bf->daddr, bf->desc); 1911 1912 skb = ieee80211_get_buffered_bc(ah->hw, vif); 1913 while (skb) { 1914 ath5k_tx_queue(ah->hw, skb, ah->cabq); 1915 1916 if (ah->cabq->txq_len >= ah->cabq->txq_max) 1917 break; 1918 1919 skb = ieee80211_get_buffered_bc(ah->hw, vif); 1920 } 1921 1922 ah->bsent++; 1923 } 1924 1925 /** 1926 * ath5k_beacon_update_timers - update beacon timers 1927 * 1928 * @ah: struct ath5k_hw pointer we are operating on 1929 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a 1930 * beacon timer update based on the current HW TSF. 1931 * 1932 * Calculate the next target beacon transmit time (TBTT) based on the timestamp 1933 * of a received beacon or the current local hardware TSF and write it to the 1934 * beacon timer registers. 1935 * 1936 * This is called in a variety of situations, e.g. when a beacon is received, 1937 * when a TSF update has been detected, but also when an new IBSS is created or 1938 * when we otherwise know we have to update the timers, but we keep it in this 1939 * function to have it all together in one place. 1940 */ 1941 void 1942 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf) 1943 { 1944 u32 nexttbtt, intval, hw_tu, bc_tu; 1945 u64 hw_tsf; 1946 1947 intval = ah->bintval & AR5K_BEACON_PERIOD; 1948 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) { 1949 intval /= ATH_BCBUF; /* staggered multi-bss beacons */ 1950 if (intval < 15) 1951 ATH5K_WARN(ah, "intval %u is too low, min 15\n", 1952 intval); 1953 } 1954 if (WARN_ON(!intval)) 1955 return; 1956 1957 /* beacon TSF converted to TU */ 1958 bc_tu = TSF_TO_TU(bc_tsf); 1959 1960 /* current TSF converted to TU */ 1961 hw_tsf = ath5k_hw_get_tsf64(ah); 1962 hw_tu = TSF_TO_TU(hw_tsf); 1963 1964 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3) 1965 /* We use FUDGE to make sure the next TBTT is ahead of the current TU. 1966 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer 1967 * configuration we need to make sure it is bigger than that. */ 1968 1969 if (bc_tsf == -1) { 1970 /* 1971 * no beacons received, called internally. 1972 * just need to refresh timers based on HW TSF. 1973 */ 1974 nexttbtt = roundup(hw_tu + FUDGE, intval); 1975 } else if (bc_tsf == 0) { 1976 /* 1977 * no beacon received, probably called by ath5k_reset_tsf(). 1978 * reset TSF to start with 0. 1979 */ 1980 nexttbtt = intval; 1981 intval |= AR5K_BEACON_RESET_TSF; 1982 } else if (bc_tsf > hw_tsf) { 1983 /* 1984 * beacon received, SW merge happened but HW TSF not yet updated. 1985 * not possible to reconfigure timers yet, but next time we 1986 * receive a beacon with the same BSSID, the hardware will 1987 * automatically update the TSF and then we need to reconfigure 1988 * the timers. 1989 */ 1990 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1991 "need to wait for HW TSF sync\n"); 1992 return; 1993 } else { 1994 /* 1995 * most important case for beacon synchronization between STA. 1996 * 1997 * beacon received and HW TSF has been already updated by HW. 1998 * update next TBTT based on the TSF of the beacon, but make 1999 * sure it is ahead of our local TSF timer. 2000 */ 2001 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval); 2002 } 2003 #undef FUDGE 2004 2005 ah->nexttbtt = nexttbtt; 2006 2007 intval |= AR5K_BEACON_ENA; 2008 ath5k_hw_init_beacon(ah, nexttbtt, intval); 2009 2010 /* 2011 * debugging output last in order to preserve the time critical aspect 2012 * of this function 2013 */ 2014 if (bc_tsf == -1) 2015 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2016 "reconfigured timers based on HW TSF\n"); 2017 else if (bc_tsf == 0) 2018 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2019 "reset HW TSF and timers\n"); 2020 else 2021 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2022 "updated timers based on beacon TSF\n"); 2023 2024 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2025 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n", 2026 (unsigned long long) bc_tsf, 2027 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt); 2028 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n", 2029 intval & AR5K_BEACON_PERIOD, 2030 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "", 2031 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : ""); 2032 } 2033 2034 /** 2035 * ath5k_beacon_config - Configure the beacon queues and interrupts 2036 * 2037 * @ah: struct ath5k_hw pointer we are operating on 2038 * 2039 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA 2040 * interrupts to detect TSF updates only. 2041 */ 2042 void 2043 ath5k_beacon_config(struct ath5k_hw *ah) 2044 { 2045 unsigned long flags; 2046 2047 spin_lock_irqsave(&ah->block, flags); 2048 ah->bmisscount = 0; 2049 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA); 2050 2051 if (ah->enable_beacon) { 2052 /* 2053 * In IBSS mode we use a self-linked tx descriptor and let the 2054 * hardware send the beacons automatically. We have to load it 2055 * only once here. 2056 * We use the SWBA interrupt only to keep track of the beacon 2057 * timers in order to detect automatic TSF updates. 2058 */ 2059 ath5k_beaconq_config(ah); 2060 2061 ah->imask |= AR5K_INT_SWBA; 2062 2063 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2064 if (ath5k_hw_hasveol(ah)) 2065 ath5k_beacon_send(ah); 2066 } else 2067 ath5k_beacon_update_timers(ah, -1); 2068 } else { 2069 ath5k_hw_stop_beacon_queue(ah, ah->bhalq); 2070 } 2071 2072 ath5k_hw_set_imr(ah, ah->imask); 2073 mmiowb(); 2074 spin_unlock_irqrestore(&ah->block, flags); 2075 } 2076 2077 static void ath5k_tasklet_beacon(unsigned long data) 2078 { 2079 struct ath5k_hw *ah = (struct ath5k_hw *) data; 2080 2081 /* 2082 * Software beacon alert--time to send a beacon. 2083 * 2084 * In IBSS mode we use this interrupt just to 2085 * keep track of the next TBTT (target beacon 2086 * transmission time) in order to detect whether 2087 * automatic TSF updates happened. 2088 */ 2089 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2090 /* XXX: only if VEOL supported */ 2091 u64 tsf = ath5k_hw_get_tsf64(ah); 2092 ah->nexttbtt += ah->bintval; 2093 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 2094 "SWBA nexttbtt: %x hw_tu: %x " 2095 "TSF: %llx\n", 2096 ah->nexttbtt, 2097 TSF_TO_TU(tsf), 2098 (unsigned long long) tsf); 2099 } else { 2100 spin_lock(&ah->block); 2101 ath5k_beacon_send(ah); 2102 spin_unlock(&ah->block); 2103 } 2104 } 2105 2106 2107 /********************\ 2108 * Interrupt handling * 2109 \********************/ 2110 2111 static void 2112 ath5k_intr_calibration_poll(struct ath5k_hw *ah) 2113 { 2114 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) && 2115 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) { 2116 /* run ANI only when full calibration is not active */ 2117 ah->ah_cal_next_ani = jiffies + 2118 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); 2119 tasklet_schedule(&ah->ani_tasklet); 2120 2121 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) { 2122 ah->ah_cal_next_full = jiffies + 2123 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); 2124 tasklet_schedule(&ah->calib); 2125 } 2126 /* we could use SWI to generate enough interrupts to meet our 2127 * calibration interval requirements, if necessary: 2128 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */ 2129 } 2130 2131 static void 2132 ath5k_schedule_rx(struct ath5k_hw *ah) 2133 { 2134 ah->rx_pending = true; 2135 tasklet_schedule(&ah->rxtq); 2136 } 2137 2138 static void 2139 ath5k_schedule_tx(struct ath5k_hw *ah) 2140 { 2141 ah->tx_pending = true; 2142 tasklet_schedule(&ah->txtq); 2143 } 2144 2145 static irqreturn_t 2146 ath5k_intr(int irq, void *dev_id) 2147 { 2148 struct ath5k_hw *ah = dev_id; 2149 enum ath5k_int status; 2150 unsigned int counter = 1000; 2151 2152 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) || 2153 ((ath5k_get_bus_type(ah) != ATH_AHB) && 2154 !ath5k_hw_is_intr_pending(ah)))) 2155 return IRQ_NONE; 2156 2157 do { 2158 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */ 2159 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n", 2160 status, ah->imask); 2161 if (unlikely(status & AR5K_INT_FATAL)) { 2162 /* 2163 * Fatal errors are unrecoverable. 2164 * Typically these are caused by DMA errors. 2165 */ 2166 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2167 "fatal int, resetting\n"); 2168 ieee80211_queue_work(ah->hw, &ah->reset_work); 2169 } else if (unlikely(status & AR5K_INT_RXORN)) { 2170 /* 2171 * Receive buffers are full. Either the bus is busy or 2172 * the CPU is not fast enough to process all received 2173 * frames. 2174 * Older chipsets need a reset to come out of this 2175 * condition, but we treat it as RX for newer chips. 2176 * We don't know exactly which versions need a reset - 2177 * this guess is copied from the HAL. 2178 */ 2179 ah->stats.rxorn_intr++; 2180 if (ah->ah_mac_srev < AR5K_SREV_AR5212) { 2181 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2182 "rx overrun, resetting\n"); 2183 ieee80211_queue_work(ah->hw, &ah->reset_work); 2184 } else 2185 ath5k_schedule_rx(ah); 2186 } else { 2187 if (status & AR5K_INT_SWBA) 2188 tasklet_hi_schedule(&ah->beacontq); 2189 2190 if (status & AR5K_INT_RXEOL) { 2191 /* 2192 * NB: the hardware should re-read the link when 2193 * RXE bit is written, but it doesn't work at 2194 * least on older hardware revs. 2195 */ 2196 ah->stats.rxeol_intr++; 2197 } 2198 if (status & AR5K_INT_TXURN) { 2199 /* bump tx trigger level */ 2200 ath5k_hw_update_tx_triglevel(ah, true); 2201 } 2202 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR)) 2203 ath5k_schedule_rx(ah); 2204 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC 2205 | AR5K_INT_TXERR | AR5K_INT_TXEOL)) 2206 ath5k_schedule_tx(ah); 2207 if (status & AR5K_INT_BMISS) { 2208 /* TODO */ 2209 } 2210 if (status & AR5K_INT_MIB) { 2211 ah->stats.mib_intr++; 2212 ath5k_hw_update_mib_counters(ah); 2213 ath5k_ani_mib_intr(ah); 2214 } 2215 if (status & AR5K_INT_GPIO) 2216 tasklet_schedule(&ah->rf_kill.toggleq); 2217 2218 } 2219 2220 if (ath5k_get_bus_type(ah) == ATH_AHB) 2221 break; 2222 2223 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0); 2224 2225 if (ah->rx_pending || ah->tx_pending) 2226 ath5k_set_current_imask(ah); 2227 2228 if (unlikely(!counter)) 2229 ATH5K_WARN(ah, "too many interrupts, giving up for now\n"); 2230 2231 ath5k_intr_calibration_poll(ah); 2232 2233 return IRQ_HANDLED; 2234 } 2235 2236 /* 2237 * Periodically recalibrate the PHY to account 2238 * for temperature/environment changes. 2239 */ 2240 static void 2241 ath5k_tasklet_calibrate(unsigned long data) 2242 { 2243 struct ath5k_hw *ah = (void *)data; 2244 2245 /* Only full calibration for now */ 2246 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL; 2247 2248 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n", 2249 ieee80211_frequency_to_channel(ah->curchan->center_freq), 2250 ah->curchan->hw_value); 2251 2252 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) { 2253 /* 2254 * Rfgain is out of bounds, reset the chip 2255 * to load new gain values. 2256 */ 2257 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n"); 2258 ieee80211_queue_work(ah->hw, &ah->reset_work); 2259 } 2260 if (ath5k_hw_phy_calibrate(ah, ah->curchan)) 2261 ATH5K_ERR(ah, "calibration of channel %u failed\n", 2262 ieee80211_frequency_to_channel( 2263 ah->curchan->center_freq)); 2264 2265 /* Noise floor calibration interrupts rx/tx path while I/Q calibration 2266 * doesn't. 2267 * TODO: We should stop TX here, so that it doesn't interfere. 2268 * Note that stopping the queues is not enough to stop TX! */ 2269 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) { 2270 ah->ah_cal_next_nf = jiffies + 2271 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF); 2272 ath5k_hw_update_noise_floor(ah); 2273 } 2274 2275 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL; 2276 } 2277 2278 2279 static void 2280 ath5k_tasklet_ani(unsigned long data) 2281 { 2282 struct ath5k_hw *ah = (void *)data; 2283 2284 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI; 2285 ath5k_ani_calibration(ah); 2286 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI; 2287 } 2288 2289 2290 static void 2291 ath5k_tx_complete_poll_work(struct work_struct *work) 2292 { 2293 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2294 tx_complete_work.work); 2295 struct ath5k_txq *txq; 2296 int i; 2297 bool needreset = false; 2298 2299 mutex_lock(&ah->lock); 2300 2301 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 2302 if (ah->txqs[i].setup) { 2303 txq = &ah->txqs[i]; 2304 spin_lock_bh(&txq->lock); 2305 if (txq->txq_len > 1) { 2306 if (txq->txq_poll_mark) { 2307 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT, 2308 "TX queue stuck %d\n", 2309 txq->qnum); 2310 needreset = true; 2311 txq->txq_stuck++; 2312 spin_unlock_bh(&txq->lock); 2313 break; 2314 } else { 2315 txq->txq_poll_mark = true; 2316 } 2317 } 2318 spin_unlock_bh(&txq->lock); 2319 } 2320 } 2321 2322 if (needreset) { 2323 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2324 "TX queues stuck, resetting\n"); 2325 ath5k_reset(ah, NULL, true); 2326 } 2327 2328 mutex_unlock(&ah->lock); 2329 2330 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2331 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2332 } 2333 2334 2335 /*************************\ 2336 * Initialization routines * 2337 \*************************/ 2338 2339 int __devinit 2340 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops) 2341 { 2342 struct ieee80211_hw *hw = ah->hw; 2343 struct ath_common *common; 2344 int ret; 2345 int csz; 2346 2347 /* Initialize driver private data */ 2348 SET_IEEE80211_DEV(hw, ah->dev); 2349 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | 2350 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | 2351 IEEE80211_HW_SIGNAL_DBM | 2352 IEEE80211_HW_REPORTS_TX_ACK_STATUS; 2353 2354 hw->wiphy->interface_modes = 2355 BIT(NL80211_IFTYPE_AP) | 2356 BIT(NL80211_IFTYPE_STATION) | 2357 BIT(NL80211_IFTYPE_ADHOC) | 2358 BIT(NL80211_IFTYPE_MESH_POINT); 2359 2360 /* both antennas can be configured as RX or TX */ 2361 hw->wiphy->available_antennas_tx = 0x3; 2362 hw->wiphy->available_antennas_rx = 0x3; 2363 2364 hw->extra_tx_headroom = 2; 2365 hw->channel_change_time = 5000; 2366 2367 /* 2368 * Mark the device as detached to avoid processing 2369 * interrupts until setup is complete. 2370 */ 2371 __set_bit(ATH_STAT_INVALID, ah->status); 2372 2373 ah->opmode = NL80211_IFTYPE_STATION; 2374 ah->bintval = 1000; 2375 mutex_init(&ah->lock); 2376 spin_lock_init(&ah->rxbuflock); 2377 spin_lock_init(&ah->txbuflock); 2378 spin_lock_init(&ah->block); 2379 spin_lock_init(&ah->irqlock); 2380 2381 /* Setup interrupt handler */ 2382 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah); 2383 if (ret) { 2384 ATH5K_ERR(ah, "request_irq failed\n"); 2385 goto err; 2386 } 2387 2388 common = ath5k_hw_common(ah); 2389 common->ops = &ath5k_common_ops; 2390 common->bus_ops = bus_ops; 2391 common->ah = ah; 2392 common->hw = hw; 2393 common->priv = ah; 2394 common->clockrate = 40; 2395 2396 /* 2397 * Cache line size is used to size and align various 2398 * structures used to communicate with the hardware. 2399 */ 2400 ath5k_read_cachesize(common, &csz); 2401 common->cachelsz = csz << 2; /* convert to bytes */ 2402 2403 spin_lock_init(&common->cc_lock); 2404 2405 /* Initialize device */ 2406 ret = ath5k_hw_init(ah); 2407 if (ret) 2408 goto err_irq; 2409 2410 /* set up multi-rate retry capabilities */ 2411 if (ah->ah_version == AR5K_AR5212) { 2412 hw->max_rates = 4; 2413 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT, 2414 AR5K_INIT_RETRY_LONG); 2415 } 2416 2417 hw->vif_data_size = sizeof(struct ath5k_vif); 2418 2419 /* Finish private driver data initialization */ 2420 ret = ath5k_init(hw); 2421 if (ret) 2422 goto err_ah; 2423 2424 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n", 2425 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev), 2426 ah->ah_mac_srev, 2427 ah->ah_phy_revision); 2428 2429 if (!ah->ah_single_chip) { 2430 /* Single chip radio (!RF5111) */ 2431 if (ah->ah_radio_5ghz_revision && 2432 !ah->ah_radio_2ghz_revision) { 2433 /* No 5GHz support -> report 2GHz radio */ 2434 if (!test_bit(AR5K_MODE_11A, 2435 ah->ah_capabilities.cap_mode)) { 2436 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2437 ath5k_chip_name(AR5K_VERSION_RAD, 2438 ah->ah_radio_5ghz_revision), 2439 ah->ah_radio_5ghz_revision); 2440 /* No 2GHz support (5110 and some 2441 * 5GHz only cards) -> report 5GHz radio */ 2442 } else if (!test_bit(AR5K_MODE_11B, 2443 ah->ah_capabilities.cap_mode)) { 2444 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2445 ath5k_chip_name(AR5K_VERSION_RAD, 2446 ah->ah_radio_5ghz_revision), 2447 ah->ah_radio_5ghz_revision); 2448 /* Multiband radio */ 2449 } else { 2450 ATH5K_INFO(ah, "RF%s multiband radio found" 2451 " (0x%x)\n", 2452 ath5k_chip_name(AR5K_VERSION_RAD, 2453 ah->ah_radio_5ghz_revision), 2454 ah->ah_radio_5ghz_revision); 2455 } 2456 } 2457 /* Multi chip radio (RF5111 - RF2111) -> 2458 * report both 2GHz/5GHz radios */ 2459 else if (ah->ah_radio_5ghz_revision && 2460 ah->ah_radio_2ghz_revision) { 2461 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2462 ath5k_chip_name(AR5K_VERSION_RAD, 2463 ah->ah_radio_5ghz_revision), 2464 ah->ah_radio_5ghz_revision); 2465 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2466 ath5k_chip_name(AR5K_VERSION_RAD, 2467 ah->ah_radio_2ghz_revision), 2468 ah->ah_radio_2ghz_revision); 2469 } 2470 } 2471 2472 ath5k_debug_init_device(ah); 2473 2474 /* ready to process interrupts */ 2475 __clear_bit(ATH_STAT_INVALID, ah->status); 2476 2477 return 0; 2478 err_ah: 2479 ath5k_hw_deinit(ah); 2480 err_irq: 2481 free_irq(ah->irq, ah); 2482 err: 2483 return ret; 2484 } 2485 2486 static int 2487 ath5k_stop_locked(struct ath5k_hw *ah) 2488 { 2489 2490 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n", 2491 test_bit(ATH_STAT_INVALID, ah->status)); 2492 2493 /* 2494 * Shutdown the hardware and driver: 2495 * stop output from above 2496 * disable interrupts 2497 * turn off timers 2498 * turn off the radio 2499 * clear transmit machinery 2500 * clear receive machinery 2501 * drain and release tx queues 2502 * reclaim beacon resources 2503 * power down hardware 2504 * 2505 * Note that some of this work is not possible if the 2506 * hardware is gone (invalid). 2507 */ 2508 ieee80211_stop_queues(ah->hw); 2509 2510 if (!test_bit(ATH_STAT_INVALID, ah->status)) { 2511 ath5k_led_off(ah); 2512 ath5k_hw_set_imr(ah, 0); 2513 synchronize_irq(ah->irq); 2514 ath5k_rx_stop(ah); 2515 ath5k_hw_dma_stop(ah); 2516 ath5k_drain_tx_buffs(ah); 2517 ath5k_hw_phy_disable(ah); 2518 } 2519 2520 return 0; 2521 } 2522 2523 int ath5k_start(struct ieee80211_hw *hw) 2524 { 2525 struct ath5k_hw *ah = hw->priv; 2526 struct ath_common *common = ath5k_hw_common(ah); 2527 int ret, i; 2528 2529 mutex_lock(&ah->lock); 2530 2531 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode); 2532 2533 /* 2534 * Stop anything previously setup. This is safe 2535 * no matter this is the first time through or not. 2536 */ 2537 ath5k_stop_locked(ah); 2538 2539 /* 2540 * The basic interface to setting the hardware in a good 2541 * state is ``reset''. On return the hardware is known to 2542 * be powered up and with interrupts disabled. This must 2543 * be followed by initialization of the appropriate bits 2544 * and then setup of the interrupt mask. 2545 */ 2546 ah->curchan = ah->hw->conf.channel; 2547 ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL | 2548 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL | 2549 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB; 2550 2551 ret = ath5k_reset(ah, NULL, false); 2552 if (ret) 2553 goto done; 2554 2555 ath5k_rfkill_hw_start(ah); 2556 2557 /* 2558 * Reset the key cache since some parts do not reset the 2559 * contents on initial power up or resume from suspend. 2560 */ 2561 for (i = 0; i < common->keymax; i++) 2562 ath_hw_keyreset(common, (u16) i); 2563 2564 /* Use higher rates for acks instead of base 2565 * rate */ 2566 ah->ah_ack_bitrate_high = true; 2567 2568 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++) 2569 ah->bslot[i] = NULL; 2570 2571 ret = 0; 2572 done: 2573 mmiowb(); 2574 mutex_unlock(&ah->lock); 2575 2576 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2577 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2578 2579 return ret; 2580 } 2581 2582 static void ath5k_stop_tasklets(struct ath5k_hw *ah) 2583 { 2584 ah->rx_pending = false; 2585 ah->tx_pending = false; 2586 tasklet_kill(&ah->rxtq); 2587 tasklet_kill(&ah->txtq); 2588 tasklet_kill(&ah->calib); 2589 tasklet_kill(&ah->beacontq); 2590 tasklet_kill(&ah->ani_tasklet); 2591 } 2592 2593 /* 2594 * Stop the device, grabbing the top-level lock to protect 2595 * against concurrent entry through ath5k_init (which can happen 2596 * if another thread does a system call and the thread doing the 2597 * stop is preempted). 2598 */ 2599 void ath5k_stop(struct ieee80211_hw *hw) 2600 { 2601 struct ath5k_hw *ah = hw->priv; 2602 int ret; 2603 2604 mutex_lock(&ah->lock); 2605 ret = ath5k_stop_locked(ah); 2606 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) { 2607 /* 2608 * Don't set the card in full sleep mode! 2609 * 2610 * a) When the device is in this state it must be carefully 2611 * woken up or references to registers in the PCI clock 2612 * domain may freeze the bus (and system). This varies 2613 * by chip and is mostly an issue with newer parts 2614 * (madwifi sources mentioned srev >= 0x78) that go to 2615 * sleep more quickly. 2616 * 2617 * b) On older chips full sleep results a weird behaviour 2618 * during wakeup. I tested various cards with srev < 0x78 2619 * and they don't wake up after module reload, a second 2620 * module reload is needed to bring the card up again. 2621 * 2622 * Until we figure out what's going on don't enable 2623 * full chip reset on any chip (this is what Legacy HAL 2624 * and Sam's HAL do anyway). Instead Perform a full reset 2625 * on the device (same as initial state after attach) and 2626 * leave it idle (keep MAC/BB on warm reset) */ 2627 ret = ath5k_hw_on_hold(ah); 2628 2629 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2630 "putting device to sleep\n"); 2631 } 2632 2633 mmiowb(); 2634 mutex_unlock(&ah->lock); 2635 2636 ath5k_stop_tasklets(ah); 2637 2638 cancel_delayed_work_sync(&ah->tx_complete_work); 2639 2640 ath5k_rfkill_hw_stop(ah); 2641 } 2642 2643 /* 2644 * Reset the hardware. If chan is not NULL, then also pause rx/tx 2645 * and change to the given channel. 2646 * 2647 * This should be called with ah->lock. 2648 */ 2649 static int 2650 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 2651 bool skip_pcu) 2652 { 2653 struct ath_common *common = ath5k_hw_common(ah); 2654 int ret, ani_mode; 2655 bool fast; 2656 2657 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n"); 2658 2659 ath5k_hw_set_imr(ah, 0); 2660 synchronize_irq(ah->irq); 2661 ath5k_stop_tasklets(ah); 2662 2663 /* Save ani mode and disable ANI during 2664 * reset. If we don't we might get false 2665 * PHY error interrupts. */ 2666 ani_mode = ah->ani_state.ani_mode; 2667 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF); 2668 2669 /* We are going to empty hw queues 2670 * so we should also free any remaining 2671 * tx buffers */ 2672 ath5k_drain_tx_buffs(ah); 2673 if (chan) 2674 ah->curchan = chan; 2675 2676 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0; 2677 2678 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu); 2679 if (ret) { 2680 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret); 2681 goto err; 2682 } 2683 2684 ret = ath5k_rx_start(ah); 2685 if (ret) { 2686 ATH5K_ERR(ah, "can't start recv logic\n"); 2687 goto err; 2688 } 2689 2690 ath5k_ani_init(ah, ani_mode); 2691 2692 ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100); 2693 ah->ah_cal_next_ani = jiffies; 2694 ah->ah_cal_next_nf = jiffies; 2695 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8); 2696 2697 /* clear survey data and cycle counters */ 2698 memset(&ah->survey, 0, sizeof(ah->survey)); 2699 spin_lock_bh(&common->cc_lock); 2700 ath_hw_cycle_counters_update(common); 2701 memset(&common->cc_survey, 0, sizeof(common->cc_survey)); 2702 memset(&common->cc_ani, 0, sizeof(common->cc_ani)); 2703 spin_unlock_bh(&common->cc_lock); 2704 2705 /* 2706 * Change channels and update the h/w rate map if we're switching; 2707 * e.g. 11a to 11b/g. 2708 * 2709 * We may be doing a reset in response to an ioctl that changes the 2710 * channel so update any state that might change as a result. 2711 * 2712 * XXX needed? 2713 */ 2714 /* ath5k_chan_change(ah, c); */ 2715 2716 ath5k_beacon_config(ah); 2717 /* intrs are enabled by ath5k_beacon_config */ 2718 2719 ieee80211_wake_queues(ah->hw); 2720 2721 return 0; 2722 err: 2723 return ret; 2724 } 2725 2726 static void ath5k_reset_work(struct work_struct *work) 2727 { 2728 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2729 reset_work); 2730 2731 mutex_lock(&ah->lock); 2732 ath5k_reset(ah, NULL, true); 2733 mutex_unlock(&ah->lock); 2734 } 2735 2736 static int __devinit 2737 ath5k_init(struct ieee80211_hw *hw) 2738 { 2739 2740 struct ath5k_hw *ah = hw->priv; 2741 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2742 struct ath5k_txq *txq; 2743 u8 mac[ETH_ALEN] = {}; 2744 int ret; 2745 2746 2747 /* 2748 * Check if the MAC has multi-rate retry support. 2749 * We do this by trying to setup a fake extended 2750 * descriptor. MACs that don't have support will 2751 * return false w/o doing anything. MACs that do 2752 * support it will return true w/o doing anything. 2753 */ 2754 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0); 2755 2756 if (ret < 0) 2757 goto err; 2758 if (ret > 0) 2759 __set_bit(ATH_STAT_MRRETRY, ah->status); 2760 2761 /* 2762 * Collect the channel list. The 802.11 layer 2763 * is responsible for filtering this list based 2764 * on settings like the phy mode and regulatory 2765 * domain restrictions. 2766 */ 2767 ret = ath5k_setup_bands(hw); 2768 if (ret) { 2769 ATH5K_ERR(ah, "can't get channels\n"); 2770 goto err; 2771 } 2772 2773 /* 2774 * Allocate tx+rx descriptors and populate the lists. 2775 */ 2776 ret = ath5k_desc_alloc(ah); 2777 if (ret) { 2778 ATH5K_ERR(ah, "can't allocate descriptors\n"); 2779 goto err; 2780 } 2781 2782 /* 2783 * Allocate hardware transmit queues: one queue for 2784 * beacon frames and one data queue for each QoS 2785 * priority. Note that hw functions handle resetting 2786 * these queues at the needed time. 2787 */ 2788 ret = ath5k_beaconq_setup(ah); 2789 if (ret < 0) { 2790 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n"); 2791 goto err_desc; 2792 } 2793 ah->bhalq = ret; 2794 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0); 2795 if (IS_ERR(ah->cabq)) { 2796 ATH5K_ERR(ah, "can't setup cab queue\n"); 2797 ret = PTR_ERR(ah->cabq); 2798 goto err_bhal; 2799 } 2800 2801 /* 5211 and 5212 usually support 10 queues but we better rely on the 2802 * capability information */ 2803 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) { 2804 /* This order matches mac80211's queue priority, so we can 2805 * directly use the mac80211 queue number without any mapping */ 2806 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO); 2807 if (IS_ERR(txq)) { 2808 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2809 ret = PTR_ERR(txq); 2810 goto err_queues; 2811 } 2812 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI); 2813 if (IS_ERR(txq)) { 2814 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2815 ret = PTR_ERR(txq); 2816 goto err_queues; 2817 } 2818 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 2819 if (IS_ERR(txq)) { 2820 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2821 ret = PTR_ERR(txq); 2822 goto err_queues; 2823 } 2824 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK); 2825 if (IS_ERR(txq)) { 2826 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2827 ret = PTR_ERR(txq); 2828 goto err_queues; 2829 } 2830 hw->queues = 4; 2831 } else { 2832 /* older hardware (5210) can only support one data queue */ 2833 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 2834 if (IS_ERR(txq)) { 2835 ATH5K_ERR(ah, "can't setup xmit queue\n"); 2836 ret = PTR_ERR(txq); 2837 goto err_queues; 2838 } 2839 hw->queues = 1; 2840 } 2841 2842 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah); 2843 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah); 2844 tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah); 2845 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah); 2846 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah); 2847 2848 INIT_WORK(&ah->reset_work, ath5k_reset_work); 2849 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work); 2850 2851 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac); 2852 if (ret) { 2853 ATH5K_ERR(ah, "unable to read address from EEPROM\n"); 2854 goto err_queues; 2855 } 2856 2857 SET_IEEE80211_PERM_ADDR(hw, mac); 2858 /* All MAC address bits matter for ACKs */ 2859 ath5k_update_bssid_mask_and_opmode(ah, NULL); 2860 2861 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain; 2862 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier); 2863 if (ret) { 2864 ATH5K_ERR(ah, "can't initialize regulatory system\n"); 2865 goto err_queues; 2866 } 2867 2868 ret = ieee80211_register_hw(hw); 2869 if (ret) { 2870 ATH5K_ERR(ah, "can't register ieee80211 hw\n"); 2871 goto err_queues; 2872 } 2873 2874 if (!ath_is_world_regd(regulatory)) 2875 regulatory_hint(hw->wiphy, regulatory->alpha2); 2876 2877 ath5k_init_leds(ah); 2878 2879 ath5k_sysfs_register(ah); 2880 2881 return 0; 2882 err_queues: 2883 ath5k_txq_release(ah); 2884 err_bhal: 2885 ath5k_hw_release_tx_queue(ah, ah->bhalq); 2886 err_desc: 2887 ath5k_desc_free(ah); 2888 err: 2889 return ret; 2890 } 2891 2892 void 2893 ath5k_deinit_ah(struct ath5k_hw *ah) 2894 { 2895 struct ieee80211_hw *hw = ah->hw; 2896 2897 /* 2898 * NB: the order of these is important: 2899 * o call the 802.11 layer before detaching ath5k_hw to 2900 * ensure callbacks into the driver to delete global 2901 * key cache entries can be handled 2902 * o reclaim the tx queue data structures after calling 2903 * the 802.11 layer as we'll get called back to reclaim 2904 * node state and potentially want to use them 2905 * o to cleanup the tx queues the hal is called, so detach 2906 * it last 2907 * XXX: ??? detach ath5k_hw ??? 2908 * Other than that, it's straightforward... 2909 */ 2910 ieee80211_unregister_hw(hw); 2911 ath5k_desc_free(ah); 2912 ath5k_txq_release(ah); 2913 ath5k_hw_release_tx_queue(ah, ah->bhalq); 2914 ath5k_unregister_leds(ah); 2915 2916 ath5k_sysfs_unregister(ah); 2917 /* 2918 * NB: can't reclaim these until after ieee80211_ifdetach 2919 * returns because we'll get called back to reclaim node 2920 * state and potentially want to use them. 2921 */ 2922 ath5k_hw_deinit(ah); 2923 free_irq(ah->irq, ah); 2924 } 2925 2926 bool 2927 ath5k_any_vif_assoc(struct ath5k_hw *ah) 2928 { 2929 struct ath5k_vif_iter_data iter_data; 2930 iter_data.hw_macaddr = NULL; 2931 iter_data.any_assoc = false; 2932 iter_data.need_set_hw_addr = false; 2933 iter_data.found_active = true; 2934 2935 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter, 2936 &iter_data); 2937 return iter_data.any_assoc; 2938 } 2939 2940 void 2941 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable) 2942 { 2943 struct ath5k_hw *ah = hw->priv; 2944 u32 rfilt; 2945 rfilt = ath5k_hw_get_rx_filter(ah); 2946 if (enable) 2947 rfilt |= AR5K_RX_FILTER_BEACON; 2948 else 2949 rfilt &= ~AR5K_RX_FILTER_BEACON; 2950 ath5k_hw_set_rx_filter(ah, rfilt); 2951 ah->filter_flags = rfilt; 2952 } 2953