xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision 37be287c)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61 
62 #include <asm/unaligned.h>
63 
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74 
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78 
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 								bool, S_IRUGO);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87 
88 
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
95 
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 								bool skip_pcu);
99 
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATHEROS_AR231X
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
104 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
105 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
107 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
109 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
110 #else
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 #endif
130 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
144 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATHEROS_AR231X
146 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
147 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
148 #endif
149 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
150 };
151 
152 static const struct ieee80211_rate ath5k_rates[] = {
153 	{ .bitrate = 10,
154 	  .hw_value = ATH5K_RATE_CODE_1M, },
155 	{ .bitrate = 20,
156 	  .hw_value = ATH5K_RATE_CODE_2M,
157 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 	{ .bitrate = 55,
160 	  .hw_value = ATH5K_RATE_CODE_5_5M,
161 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 	{ .bitrate = 110,
164 	  .hw_value = ATH5K_RATE_CODE_11M,
165 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 	{ .bitrate = 60,
168 	  .hw_value = ATH5K_RATE_CODE_6M,
169 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 		   IEEE80211_RATE_SUPPORTS_10MHZ },
171 	{ .bitrate = 90,
172 	  .hw_value = ATH5K_RATE_CODE_9M,
173 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 		   IEEE80211_RATE_SUPPORTS_10MHZ },
175 	{ .bitrate = 120,
176 	  .hw_value = ATH5K_RATE_CODE_12M,
177 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 		   IEEE80211_RATE_SUPPORTS_10MHZ },
179 	{ .bitrate = 180,
180 	  .hw_value = ATH5K_RATE_CODE_18M,
181 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 		   IEEE80211_RATE_SUPPORTS_10MHZ },
183 	{ .bitrate = 240,
184 	  .hw_value = ATH5K_RATE_CODE_24M,
185 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 		   IEEE80211_RATE_SUPPORTS_10MHZ },
187 	{ .bitrate = 360,
188 	  .hw_value = ATH5K_RATE_CODE_36M,
189 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 		   IEEE80211_RATE_SUPPORTS_10MHZ },
191 	{ .bitrate = 480,
192 	  .hw_value = ATH5K_RATE_CODE_48M,
193 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 		   IEEE80211_RATE_SUPPORTS_10MHZ },
195 	{ .bitrate = 540,
196 	  .hw_value = ATH5K_RATE_CODE_54M,
197 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 		   IEEE80211_RATE_SUPPORTS_10MHZ },
199 };
200 
201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202 {
203 	u64 tsf = ath5k_hw_get_tsf64(ah);
204 
205 	if ((tsf & 0x7fff) < rstamp)
206 		tsf -= 0x8000;
207 
208 	return (tsf & ~0x7fff) | rstamp;
209 }
210 
211 const char *
212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213 {
214 	const char *name = "xxxxx";
215 	unsigned int i;
216 
217 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 		if (srev_names[i].sr_type != type)
219 			continue;
220 
221 		if ((val & 0xf0) == srev_names[i].sr_val)
222 			name = srev_names[i].sr_name;
223 
224 		if ((val & 0xff) == srev_names[i].sr_val) {
225 			name = srev_names[i].sr_name;
226 			break;
227 		}
228 	}
229 
230 	return name;
231 }
232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233 {
234 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 	return ath5k_hw_reg_read(ah, reg_offset);
236 }
237 
238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239 {
240 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 	ath5k_hw_reg_write(ah, val, reg_offset);
242 }
243 
244 static const struct ath_ops ath5k_common_ops = {
245 	.read = ath5k_ioread32,
246 	.write = ath5k_iowrite32,
247 };
248 
249 /***********************\
250 * Driver Initialization *
251 \***********************/
252 
253 static void ath5k_reg_notifier(struct wiphy *wiphy,
254 			       struct regulatory_request *request)
255 {
256 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 	struct ath5k_hw *ah = hw->priv;
258 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259 
260 	ath_reg_notifier_apply(wiphy, request, regulatory);
261 }
262 
263 /********************\
264 * Channel/mode setup *
265 \********************/
266 
267 /*
268  * Returns true for the channel numbers used.
269  */
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
271 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
272 {
273 	return true;
274 }
275 
276 #else
277 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
278 {
279 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
280 		return true;
281 
282 	return	/* UNII 1,2 */
283 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 		/* midband */
285 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 		/* UNII-3 */
287 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 		/* 802.11j 5.030-5.080 GHz (20MHz) */
289 		(chan == 8 || chan == 12 || chan == 16) ||
290 		/* 802.11j 4.9GHz (20MHz) */
291 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
292 }
293 #endif
294 
295 static unsigned int
296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 		unsigned int mode, unsigned int max)
298 {
299 	unsigned int count, size, freq, ch;
300 	enum ieee80211_band band;
301 
302 	switch (mode) {
303 	case AR5K_MODE_11A:
304 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
305 		size = 220;
306 		band = IEEE80211_BAND_5GHZ;
307 		break;
308 	case AR5K_MODE_11B:
309 	case AR5K_MODE_11G:
310 		size = 26;
311 		band = IEEE80211_BAND_2GHZ;
312 		break;
313 	default:
314 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 		return 0;
316 	}
317 
318 	count = 0;
319 	for (ch = 1; ch <= size && count < max; ch++) {
320 		freq = ieee80211_channel_to_frequency(ch, band);
321 
322 		if (freq == 0) /* mapping failed - not a standard channel */
323 			continue;
324 
325 		/* Write channel info, needed for ath5k_channel_ok() */
326 		channels[count].center_freq = freq;
327 		channels[count].band = band;
328 		channels[count].hw_value = mode;
329 
330 		/* Check if channel is supported by the chipset */
331 		if (!ath5k_channel_ok(ah, &channels[count]))
332 			continue;
333 
334 		if (!ath5k_is_standard_channel(ch, band))
335 			continue;
336 
337 		count++;
338 	}
339 
340 	return count;
341 }
342 
343 static void
344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345 {
346 	u8 i;
347 
348 	for (i = 0; i < AR5K_MAX_RATES; i++)
349 		ah->rate_idx[b->band][i] = -1;
350 
351 	for (i = 0; i < b->n_bitrates; i++) {
352 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 		if (b->bitrates[i].hw_value_short)
354 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355 	}
356 }
357 
358 static int
359 ath5k_setup_bands(struct ieee80211_hw *hw)
360 {
361 	struct ath5k_hw *ah = hw->priv;
362 	struct ieee80211_supported_band *sband;
363 	int max_c, count_c = 0;
364 	int i;
365 
366 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
367 	max_c = ARRAY_SIZE(ah->channels);
368 
369 	/* 2GHz band */
370 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
371 	sband->band = IEEE80211_BAND_2GHZ;
372 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
373 
374 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 		/* G mode */
376 		memcpy(sband->bitrates, &ath5k_rates[0],
377 		       sizeof(struct ieee80211_rate) * 12);
378 		sband->n_bitrates = 12;
379 
380 		sband->channels = ah->channels;
381 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 					AR5K_MODE_11G, max_c);
383 
384 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
385 		count_c = sband->n_channels;
386 		max_c -= count_c;
387 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 		/* B mode */
389 		memcpy(sband->bitrates, &ath5k_rates[0],
390 		       sizeof(struct ieee80211_rate) * 4);
391 		sband->n_bitrates = 4;
392 
393 		/* 5211 only supports B rates and uses 4bit rate codes
394 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 		 * fix them up here:
396 		 */
397 		if (ah->ah_version == AR5K_AR5211) {
398 			for (i = 0; i < 4; i++) {
399 				sband->bitrates[i].hw_value =
400 					sband->bitrates[i].hw_value & 0xF;
401 				sband->bitrates[i].hw_value_short =
402 					sband->bitrates[i].hw_value_short & 0xF;
403 			}
404 		}
405 
406 		sband->channels = ah->channels;
407 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 					AR5K_MODE_11B, max_c);
409 
410 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
411 		count_c = sband->n_channels;
412 		max_c -= count_c;
413 	}
414 	ath5k_setup_rate_idx(ah, sband);
415 
416 	/* 5GHz band, A mode */
417 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
419 		sband->band = IEEE80211_BAND_5GHZ;
420 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
421 
422 		memcpy(sband->bitrates, &ath5k_rates[4],
423 		       sizeof(struct ieee80211_rate) * 8);
424 		sband->n_bitrates = 8;
425 
426 		sband->channels = &ah->channels[count_c];
427 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 					AR5K_MODE_11A, max_c);
429 
430 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
431 	}
432 	ath5k_setup_rate_idx(ah, sband);
433 
434 	ath5k_debug_dump_bands(ah);
435 
436 	return 0;
437 }
438 
439 /*
440  * Set/change channels. We always reset the chip.
441  * To accomplish this we must first cleanup any pending DMA,
442  * then restart stuff after a la  ath5k_init.
443  *
444  * Called with ah->lock.
445  */
446 int
447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448 {
449 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 		  "channel set, resetting (%u -> %u MHz)\n",
451 		  ah->curchan->center_freq, chandef->chan->center_freq);
452 
453 	switch (chandef->width) {
454 	case NL80211_CHAN_WIDTH_20:
455 	case NL80211_CHAN_WIDTH_20_NOHT:
456 		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 		break;
458 	case NL80211_CHAN_WIDTH_5:
459 		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 		break;
461 	case NL80211_CHAN_WIDTH_10:
462 		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 		break;
464 	default:
465 		WARN_ON(1);
466 		return -EINVAL;
467 	}
468 
469 	/*
470 	 * To switch channels clear any pending DMA operations;
471 	 * wait long enough for the RX fifo to drain, reset the
472 	 * hardware at the new frequency, and then re-enable
473 	 * the relevant bits of the h/w.
474 	 */
475 	return ath5k_reset(ah, chandef->chan, true);
476 }
477 
478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479 {
480 	struct ath5k_vif_iter_data *iter_data = data;
481 	int i;
482 	struct ath5k_vif *avf = (void *)vif->drv_priv;
483 
484 	if (iter_data->hw_macaddr)
485 		for (i = 0; i < ETH_ALEN; i++)
486 			iter_data->mask[i] &=
487 				~(iter_data->hw_macaddr[i] ^ mac[i]);
488 
489 	if (!iter_data->found_active) {
490 		iter_data->found_active = true;
491 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
492 	}
493 
494 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 			iter_data->need_set_hw_addr = false;
497 
498 	if (!iter_data->any_assoc) {
499 		if (avf->assoc)
500 			iter_data->any_assoc = true;
501 	}
502 
503 	/* Calculate combined mode - when APs are active, operate in AP mode.
504 	 * Otherwise use the mode of the new interface. This can currently
505 	 * only deal with combinations of APs and STAs. Only one ad-hoc
506 	 * interfaces is allowed.
507 	 */
508 	if (avf->opmode == NL80211_IFTYPE_AP)
509 		iter_data->opmode = NL80211_IFTYPE_AP;
510 	else {
511 		if (avf->opmode == NL80211_IFTYPE_STATION)
512 			iter_data->n_stas++;
513 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 			iter_data->opmode = avf->opmode;
515 	}
516 }
517 
518 void
519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 				   struct ieee80211_vif *vif)
521 {
522 	struct ath_common *common = ath5k_hw_common(ah);
523 	struct ath5k_vif_iter_data iter_data;
524 	u32 rfilt;
525 
526 	/*
527 	 * Use the hardware MAC address as reference, the hardware uses it
528 	 * together with the BSSID mask when matching addresses.
529 	 */
530 	iter_data.hw_macaddr = common->macaddr;
531 	memset(&iter_data.mask, 0xff, ETH_ALEN);
532 	iter_data.found_active = false;
533 	iter_data.need_set_hw_addr = true;
534 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 	iter_data.n_stas = 0;
536 
537 	if (vif)
538 		ath5k_vif_iter(&iter_data, vif->addr, vif);
539 
540 	/* Get list of all active MAC addresses */
541 	ieee80211_iterate_active_interfaces_atomic(
542 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 		ath5k_vif_iter, &iter_data);
544 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545 
546 	ah->opmode = iter_data.opmode;
547 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 		/* Nothing active, default to station mode */
549 		ah->opmode = NL80211_IFTYPE_STATION;
550 
551 	ath5k_hw_set_opmode(ah, ah->opmode);
552 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 		  ah->opmode, ath_opmode_to_string(ah->opmode));
554 
555 	if (iter_data.need_set_hw_addr && iter_data.found_active)
556 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557 
558 	if (ath5k_hw_hasbssidmask(ah))
559 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560 
561 	/* Set up RX Filter */
562 	if (iter_data.n_stas > 1) {
563 		/* If you have multiple STA interfaces connected to
564 		 * different APs, ARPs are not received (most of the time?)
565 		 * Enabling PROMISC appears to fix that problem.
566 		 */
567 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
568 	}
569 
570 	rfilt = ah->filter_flags;
571 	ath5k_hw_set_rx_filter(ah, rfilt);
572 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573 }
574 
575 static inline int
576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577 {
578 	int rix;
579 
580 	/* return base rate on errors */
581 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 			"hw_rix out of bounds: %x\n", hw_rix))
583 		return 0;
584 
585 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 		rix = 0;
588 
589 	return rix;
590 }
591 
592 /***************\
593 * Buffers setup *
594 \***************/
595 
596 static
597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598 {
599 	struct ath_common *common = ath5k_hw_common(ah);
600 	struct sk_buff *skb;
601 
602 	/*
603 	 * Allocate buffer with headroom_needed space for the
604 	 * fake physical layer header at the start.
605 	 */
606 	skb = ath_rxbuf_alloc(common,
607 			      common->rx_bufsize,
608 			      GFP_ATOMIC);
609 
610 	if (!skb) {
611 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 				common->rx_bufsize);
613 		return NULL;
614 	}
615 
616 	*skb_addr = dma_map_single(ah->dev,
617 				   skb->data, common->rx_bufsize,
618 				   DMA_FROM_DEVICE);
619 
620 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 		dev_kfree_skb(skb);
623 		return NULL;
624 	}
625 	return skb;
626 }
627 
628 static int
629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630 {
631 	struct sk_buff *skb = bf->skb;
632 	struct ath5k_desc *ds;
633 	int ret;
634 
635 	if (!skb) {
636 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 		if (!skb)
638 			return -ENOMEM;
639 		bf->skb = skb;
640 	}
641 
642 	/*
643 	 * Setup descriptors.  For receive we always terminate
644 	 * the descriptor list with a self-linked entry so we'll
645 	 * not get overrun under high load (as can happen with a
646 	 * 5212 when ANI processing enables PHY error frames).
647 	 *
648 	 * To ensure the last descriptor is self-linked we create
649 	 * each descriptor as self-linked and add it to the end.  As
650 	 * each additional descriptor is added the previous self-linked
651 	 * entry is "fixed" naturally.  This should be safe even
652 	 * if DMA is happening.  When processing RX interrupts we
653 	 * never remove/process the last, self-linked, entry on the
654 	 * descriptor list.  This ensures the hardware always has
655 	 * someplace to write a new frame.
656 	 */
657 	ds = bf->desc;
658 	ds->ds_link = bf->daddr;	/* link to self */
659 	ds->ds_data = bf->skbaddr;
660 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 	if (ret) {
662 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 		return ret;
664 	}
665 
666 	if (ah->rxlink != NULL)
667 		*ah->rxlink = bf->daddr;
668 	ah->rxlink = &ds->ds_link;
669 	return 0;
670 }
671 
672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673 {
674 	struct ieee80211_hdr *hdr;
675 	enum ath5k_pkt_type htype;
676 	__le16 fc;
677 
678 	hdr = (struct ieee80211_hdr *)skb->data;
679 	fc = hdr->frame_control;
680 
681 	if (ieee80211_is_beacon(fc))
682 		htype = AR5K_PKT_TYPE_BEACON;
683 	else if (ieee80211_is_probe_resp(fc))
684 		htype = AR5K_PKT_TYPE_PROBE_RESP;
685 	else if (ieee80211_is_atim(fc))
686 		htype = AR5K_PKT_TYPE_ATIM;
687 	else if (ieee80211_is_pspoll(fc))
688 		htype = AR5K_PKT_TYPE_PSPOLL;
689 	else
690 		htype = AR5K_PKT_TYPE_NORMAL;
691 
692 	return htype;
693 }
694 
695 static struct ieee80211_rate *
696 ath5k_get_rate(const struct ieee80211_hw *hw,
697 	       const struct ieee80211_tx_info *info,
698 	       struct ath5k_buf *bf, int idx)
699 {
700 	/*
701 	* convert a ieee80211_tx_rate RC-table entry to
702 	* the respective ieee80211_rate struct
703 	*/
704 	if (bf->rates[idx].idx < 0) {
705 		return NULL;
706 	}
707 
708 	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709 }
710 
711 static u16
712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 			const struct ieee80211_tx_info *info,
714 			struct ath5k_buf *bf, int idx)
715 {
716 	struct ieee80211_rate *rate;
717 	u16 hw_rate;
718 	u8 rc_flags;
719 
720 	rate = ath5k_get_rate(hw, info, bf, idx);
721 	if (!rate)
722 		return 0;
723 
724 	rc_flags = bf->rates[idx].flags;
725 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 		   rate->hw_value_short : rate->hw_value;
727 
728 	return hw_rate;
729 }
730 
731 static int
732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 		  struct ath5k_txq *txq, int padsize,
734 		  struct ieee80211_tx_control *control)
735 {
736 	struct ath5k_desc *ds = bf->desc;
737 	struct sk_buff *skb = bf->skb;
738 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 	struct ieee80211_rate *rate;
741 	unsigned int mrr_rate[3], mrr_tries[3];
742 	int i, ret;
743 	u16 hw_rate;
744 	u16 cts_rate = 0;
745 	u16 duration = 0;
746 	u8 rc_flags;
747 
748 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749 
750 	/* XXX endianness */
751 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 			DMA_TO_DEVICE);
753 
754 	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
755 			       ARRAY_SIZE(bf->rates));
756 
757 	rate = ath5k_get_rate(ah->hw, info, bf, 0);
758 
759 	if (!rate) {
760 		ret = -EINVAL;
761 		goto err_unmap;
762 	}
763 
764 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
765 		flags |= AR5K_TXDESC_NOACK;
766 
767 	rc_flags = info->control.rates[0].flags;
768 
769 	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
770 
771 	pktlen = skb->len;
772 
773 	/* FIXME: If we are in g mode and rate is a CCK rate
774 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
775 	 * from tx power (value is in dB units already) */
776 	if (info->control.hw_key) {
777 		keyidx = info->control.hw_key->hw_key_idx;
778 		pktlen += info->control.hw_key->icv_len;
779 	}
780 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
781 		flags |= AR5K_TXDESC_RTSENA;
782 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
783 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
784 			info->control.vif, pktlen, info));
785 	}
786 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
787 		flags |= AR5K_TXDESC_CTSENA;
788 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
789 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
790 			info->control.vif, pktlen, info));
791 	}
792 
793 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
794 		ieee80211_get_hdrlen_from_skb(skb), padsize,
795 		get_hw_packet_type(skb),
796 		(ah->ah_txpower.txp_requested * 2),
797 		hw_rate,
798 		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
799 		cts_rate, duration);
800 	if (ret)
801 		goto err_unmap;
802 
803 	/* Set up MRR descriptor */
804 	if (ah->ah_capabilities.cap_has_mrr_support) {
805 		memset(mrr_rate, 0, sizeof(mrr_rate));
806 		memset(mrr_tries, 0, sizeof(mrr_tries));
807 
808 		for (i = 0; i < 3; i++) {
809 
810 			rate = ath5k_get_rate(ah->hw, info, bf, i);
811 			if (!rate)
812 				break;
813 
814 			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
815 			mrr_tries[i] = bf->rates[i].count;
816 		}
817 
818 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
819 			mrr_rate[0], mrr_tries[0],
820 			mrr_rate[1], mrr_tries[1],
821 			mrr_rate[2], mrr_tries[2]);
822 	}
823 
824 	ds->ds_link = 0;
825 	ds->ds_data = bf->skbaddr;
826 
827 	spin_lock_bh(&txq->lock);
828 	list_add_tail(&bf->list, &txq->q);
829 	txq->txq_len++;
830 	if (txq->link == NULL) /* is this first packet? */
831 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
832 	else /* no, so only link it */
833 		*txq->link = bf->daddr;
834 
835 	txq->link = &ds->ds_link;
836 	ath5k_hw_start_tx_dma(ah, txq->qnum);
837 	mmiowb();
838 	spin_unlock_bh(&txq->lock);
839 
840 	return 0;
841 err_unmap:
842 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
843 	return ret;
844 }
845 
846 /*******************\
847 * Descriptors setup *
848 \*******************/
849 
850 static int
851 ath5k_desc_alloc(struct ath5k_hw *ah)
852 {
853 	struct ath5k_desc *ds;
854 	struct ath5k_buf *bf;
855 	dma_addr_t da;
856 	unsigned int i;
857 	int ret;
858 
859 	/* allocate descriptors */
860 	ah->desc_len = sizeof(struct ath5k_desc) *
861 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
862 
863 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
864 				&ah->desc_daddr, GFP_KERNEL);
865 	if (ah->desc == NULL) {
866 		ATH5K_ERR(ah, "can't allocate descriptors\n");
867 		ret = -ENOMEM;
868 		goto err;
869 	}
870 	ds = ah->desc;
871 	da = ah->desc_daddr;
872 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
873 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
874 
875 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
876 			sizeof(struct ath5k_buf), GFP_KERNEL);
877 	if (bf == NULL) {
878 		ATH5K_ERR(ah, "can't allocate bufptr\n");
879 		ret = -ENOMEM;
880 		goto err_free;
881 	}
882 	ah->bufptr = bf;
883 
884 	INIT_LIST_HEAD(&ah->rxbuf);
885 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
886 		bf->desc = ds;
887 		bf->daddr = da;
888 		list_add_tail(&bf->list, &ah->rxbuf);
889 	}
890 
891 	INIT_LIST_HEAD(&ah->txbuf);
892 	ah->txbuf_len = ATH_TXBUF;
893 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
894 		bf->desc = ds;
895 		bf->daddr = da;
896 		list_add_tail(&bf->list, &ah->txbuf);
897 	}
898 
899 	/* beacon buffers */
900 	INIT_LIST_HEAD(&ah->bcbuf);
901 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
902 		bf->desc = ds;
903 		bf->daddr = da;
904 		list_add_tail(&bf->list, &ah->bcbuf);
905 	}
906 
907 	return 0;
908 err_free:
909 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
910 err:
911 	ah->desc = NULL;
912 	return ret;
913 }
914 
915 void
916 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
917 {
918 	BUG_ON(!bf);
919 	if (!bf->skb)
920 		return;
921 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
922 			DMA_TO_DEVICE);
923 	ieee80211_free_txskb(ah->hw, bf->skb);
924 	bf->skb = NULL;
925 	bf->skbaddr = 0;
926 	bf->desc->ds_data = 0;
927 }
928 
929 void
930 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
931 {
932 	struct ath_common *common = ath5k_hw_common(ah);
933 
934 	BUG_ON(!bf);
935 	if (!bf->skb)
936 		return;
937 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
938 			DMA_FROM_DEVICE);
939 	dev_kfree_skb_any(bf->skb);
940 	bf->skb = NULL;
941 	bf->skbaddr = 0;
942 	bf->desc->ds_data = 0;
943 }
944 
945 static void
946 ath5k_desc_free(struct ath5k_hw *ah)
947 {
948 	struct ath5k_buf *bf;
949 
950 	list_for_each_entry(bf, &ah->txbuf, list)
951 		ath5k_txbuf_free_skb(ah, bf);
952 	list_for_each_entry(bf, &ah->rxbuf, list)
953 		ath5k_rxbuf_free_skb(ah, bf);
954 	list_for_each_entry(bf, &ah->bcbuf, list)
955 		ath5k_txbuf_free_skb(ah, bf);
956 
957 	/* Free memory associated with all descriptors */
958 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
959 	ah->desc = NULL;
960 	ah->desc_daddr = 0;
961 
962 	kfree(ah->bufptr);
963 	ah->bufptr = NULL;
964 }
965 
966 
967 /**************\
968 * Queues setup *
969 \**************/
970 
971 static struct ath5k_txq *
972 ath5k_txq_setup(struct ath5k_hw *ah,
973 		int qtype, int subtype)
974 {
975 	struct ath5k_txq *txq;
976 	struct ath5k_txq_info qi = {
977 		.tqi_subtype = subtype,
978 		/* XXX: default values not correct for B and XR channels,
979 		 * but who cares? */
980 		.tqi_aifs = AR5K_TUNE_AIFS,
981 		.tqi_cw_min = AR5K_TUNE_CWMIN,
982 		.tqi_cw_max = AR5K_TUNE_CWMAX
983 	};
984 	int qnum;
985 
986 	/*
987 	 * Enable interrupts only for EOL and DESC conditions.
988 	 * We mark tx descriptors to receive a DESC interrupt
989 	 * when a tx queue gets deep; otherwise we wait for the
990 	 * EOL to reap descriptors.  Note that this is done to
991 	 * reduce interrupt load and this only defers reaping
992 	 * descriptors, never transmitting frames.  Aside from
993 	 * reducing interrupts this also permits more concurrency.
994 	 * The only potential downside is if the tx queue backs
995 	 * up in which case the top half of the kernel may backup
996 	 * due to a lack of tx descriptors.
997 	 */
998 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
999 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1000 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1001 	if (qnum < 0) {
1002 		/*
1003 		 * NB: don't print a message, this happens
1004 		 * normally on parts with too few tx queues
1005 		 */
1006 		return ERR_PTR(qnum);
1007 	}
1008 	txq = &ah->txqs[qnum];
1009 	if (!txq->setup) {
1010 		txq->qnum = qnum;
1011 		txq->link = NULL;
1012 		INIT_LIST_HEAD(&txq->q);
1013 		spin_lock_init(&txq->lock);
1014 		txq->setup = true;
1015 		txq->txq_len = 0;
1016 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1017 		txq->txq_poll_mark = false;
1018 		txq->txq_stuck = 0;
1019 	}
1020 	return &ah->txqs[qnum];
1021 }
1022 
1023 static int
1024 ath5k_beaconq_setup(struct ath5k_hw *ah)
1025 {
1026 	struct ath5k_txq_info qi = {
1027 		/* XXX: default values not correct for B and XR channels,
1028 		 * but who cares? */
1029 		.tqi_aifs = AR5K_TUNE_AIFS,
1030 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1031 		.tqi_cw_max = AR5K_TUNE_CWMAX,
1032 		/* NB: for dynamic turbo, don't enable any other interrupts */
1033 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1034 	};
1035 
1036 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1037 }
1038 
1039 static int
1040 ath5k_beaconq_config(struct ath5k_hw *ah)
1041 {
1042 	struct ath5k_txq_info qi;
1043 	int ret;
1044 
1045 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1046 	if (ret)
1047 		goto err;
1048 
1049 	if (ah->opmode == NL80211_IFTYPE_AP ||
1050 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1051 		/*
1052 		 * Always burst out beacon and CAB traffic
1053 		 * (aifs = cwmin = cwmax = 0)
1054 		 */
1055 		qi.tqi_aifs = 0;
1056 		qi.tqi_cw_min = 0;
1057 		qi.tqi_cw_max = 0;
1058 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1059 		/*
1060 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1061 		 */
1062 		qi.tqi_aifs = 0;
1063 		qi.tqi_cw_min = 0;
1064 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1065 	}
1066 
1067 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1068 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1069 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1070 
1071 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1072 	if (ret) {
1073 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1074 			"hardware queue!\n", __func__);
1075 		goto err;
1076 	}
1077 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1078 	if (ret)
1079 		goto err;
1080 
1081 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1082 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1083 	if (ret)
1084 		goto err;
1085 
1086 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1087 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1088 	if (ret)
1089 		goto err;
1090 
1091 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1092 err:
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ath5k_drain_tx_buffs - Empty tx buffers
1098  *
1099  * @ah The &struct ath5k_hw
1100  *
1101  * Empty tx buffers from all queues in preparation
1102  * of a reset or during shutdown.
1103  *
1104  * NB:	this assumes output has been stopped and
1105  *	we do not need to block ath5k_tx_tasklet
1106  */
1107 static void
1108 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1109 {
1110 	struct ath5k_txq *txq;
1111 	struct ath5k_buf *bf, *bf0;
1112 	int i;
1113 
1114 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1115 		if (ah->txqs[i].setup) {
1116 			txq = &ah->txqs[i];
1117 			spin_lock_bh(&txq->lock);
1118 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1119 				ath5k_debug_printtxbuf(ah, bf);
1120 
1121 				ath5k_txbuf_free_skb(ah, bf);
1122 
1123 				spin_lock(&ah->txbuflock);
1124 				list_move_tail(&bf->list, &ah->txbuf);
1125 				ah->txbuf_len++;
1126 				txq->txq_len--;
1127 				spin_unlock(&ah->txbuflock);
1128 			}
1129 			txq->link = NULL;
1130 			txq->txq_poll_mark = false;
1131 			spin_unlock_bh(&txq->lock);
1132 		}
1133 	}
1134 }
1135 
1136 static void
1137 ath5k_txq_release(struct ath5k_hw *ah)
1138 {
1139 	struct ath5k_txq *txq = ah->txqs;
1140 	unsigned int i;
1141 
1142 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1143 		if (txq->setup) {
1144 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1145 			txq->setup = false;
1146 		}
1147 }
1148 
1149 
1150 /*************\
1151 * RX Handling *
1152 \*************/
1153 
1154 /*
1155  * Enable the receive h/w following a reset.
1156  */
1157 static int
1158 ath5k_rx_start(struct ath5k_hw *ah)
1159 {
1160 	struct ath_common *common = ath5k_hw_common(ah);
1161 	struct ath5k_buf *bf;
1162 	int ret;
1163 
1164 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1165 
1166 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1167 		  common->cachelsz, common->rx_bufsize);
1168 
1169 	spin_lock_bh(&ah->rxbuflock);
1170 	ah->rxlink = NULL;
1171 	list_for_each_entry(bf, &ah->rxbuf, list) {
1172 		ret = ath5k_rxbuf_setup(ah, bf);
1173 		if (ret != 0) {
1174 			spin_unlock_bh(&ah->rxbuflock);
1175 			goto err;
1176 		}
1177 	}
1178 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1179 	ath5k_hw_set_rxdp(ah, bf->daddr);
1180 	spin_unlock_bh(&ah->rxbuflock);
1181 
1182 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1183 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1184 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1185 
1186 	return 0;
1187 err:
1188 	return ret;
1189 }
1190 
1191 /*
1192  * Disable the receive logic on PCU (DRU)
1193  * In preparation for a shutdown.
1194  *
1195  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1196  * does.
1197  */
1198 static void
1199 ath5k_rx_stop(struct ath5k_hw *ah)
1200 {
1201 
1202 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1203 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1204 
1205 	ath5k_debug_printrxbuffs(ah);
1206 }
1207 
1208 static unsigned int
1209 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1210 		   struct ath5k_rx_status *rs)
1211 {
1212 	struct ath_common *common = ath5k_hw_common(ah);
1213 	struct ieee80211_hdr *hdr = (void *)skb->data;
1214 	unsigned int keyix, hlen;
1215 
1216 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1217 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1218 		return RX_FLAG_DECRYPTED;
1219 
1220 	/* Apparently when a default key is used to decrypt the packet
1221 	   the hw does not set the index used to decrypt.  In such cases
1222 	   get the index from the packet. */
1223 	hlen = ieee80211_hdrlen(hdr->frame_control);
1224 	if (ieee80211_has_protected(hdr->frame_control) &&
1225 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1226 	    skb->len >= hlen + 4) {
1227 		keyix = skb->data[hlen + 3] >> 6;
1228 
1229 		if (test_bit(keyix, common->keymap))
1230 			return RX_FLAG_DECRYPTED;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 
1237 static void
1238 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1239 		     struct ieee80211_rx_status *rxs)
1240 {
1241 	u64 tsf, bc_tstamp;
1242 	u32 hw_tu;
1243 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1244 
1245 	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1246 		/*
1247 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1248 		 * have updated the local TSF. We have to work around various
1249 		 * hardware bugs, though...
1250 		 */
1251 		tsf = ath5k_hw_get_tsf64(ah);
1252 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1253 		hw_tu = TSF_TO_TU(tsf);
1254 
1255 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1256 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1257 			(unsigned long long)bc_tstamp,
1258 			(unsigned long long)rxs->mactime,
1259 			(unsigned long long)(rxs->mactime - bc_tstamp),
1260 			(unsigned long long)tsf);
1261 
1262 		/*
1263 		 * Sometimes the HW will give us a wrong tstamp in the rx
1264 		 * status, causing the timestamp extension to go wrong.
1265 		 * (This seems to happen especially with beacon frames bigger
1266 		 * than 78 byte (incl. FCS))
1267 		 * But we know that the receive timestamp must be later than the
1268 		 * timestamp of the beacon since HW must have synced to that.
1269 		 *
1270 		 * NOTE: here we assume mactime to be after the frame was
1271 		 * received, not like mac80211 which defines it at the start.
1272 		 */
1273 		if (bc_tstamp > rxs->mactime) {
1274 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1275 				"fixing mactime from %llx to %llx\n",
1276 				(unsigned long long)rxs->mactime,
1277 				(unsigned long long)tsf);
1278 			rxs->mactime = tsf;
1279 		}
1280 
1281 		/*
1282 		 * Local TSF might have moved higher than our beacon timers,
1283 		 * in that case we have to update them to continue sending
1284 		 * beacons. This also takes care of synchronizing beacon sending
1285 		 * times with other stations.
1286 		 */
1287 		if (hw_tu >= ah->nexttbtt)
1288 			ath5k_beacon_update_timers(ah, bc_tstamp);
1289 
1290 		/* Check if the beacon timers are still correct, because a TSF
1291 		 * update might have created a window between them - for a
1292 		 * longer description see the comment of this function: */
1293 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1294 			ath5k_beacon_update_timers(ah, bc_tstamp);
1295 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1296 				"fixed beacon timers after beacon receive\n");
1297 		}
1298 	}
1299 }
1300 
1301 /*
1302  * Compute padding position. skb must contain an IEEE 802.11 frame
1303  */
1304 static int ath5k_common_padpos(struct sk_buff *skb)
1305 {
1306 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1307 	__le16 frame_control = hdr->frame_control;
1308 	int padpos = 24;
1309 
1310 	if (ieee80211_has_a4(frame_control))
1311 		padpos += ETH_ALEN;
1312 
1313 	if (ieee80211_is_data_qos(frame_control))
1314 		padpos += IEEE80211_QOS_CTL_LEN;
1315 
1316 	return padpos;
1317 }
1318 
1319 /*
1320  * This function expects an 802.11 frame and returns the number of
1321  * bytes added, or -1 if we don't have enough header room.
1322  */
1323 static int ath5k_add_padding(struct sk_buff *skb)
1324 {
1325 	int padpos = ath5k_common_padpos(skb);
1326 	int padsize = padpos & 3;
1327 
1328 	if (padsize && skb->len > padpos) {
1329 
1330 		if (skb_headroom(skb) < padsize)
1331 			return -1;
1332 
1333 		skb_push(skb, padsize);
1334 		memmove(skb->data, skb->data + padsize, padpos);
1335 		return padsize;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * The MAC header is padded to have 32-bit boundary if the
1343  * packet payload is non-zero. The general calculation for
1344  * padsize would take into account odd header lengths:
1345  * padsize = 4 - (hdrlen & 3); however, since only
1346  * even-length headers are used, padding can only be 0 or 2
1347  * bytes and we can optimize this a bit.  We must not try to
1348  * remove padding from short control frames that do not have a
1349  * payload.
1350  *
1351  * This function expects an 802.11 frame and returns the number of
1352  * bytes removed.
1353  */
1354 static int ath5k_remove_padding(struct sk_buff *skb)
1355 {
1356 	int padpos = ath5k_common_padpos(skb);
1357 	int padsize = padpos & 3;
1358 
1359 	if (padsize && skb->len >= padpos + padsize) {
1360 		memmove(skb->data + padsize, skb->data, padpos);
1361 		skb_pull(skb, padsize);
1362 		return padsize;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 static void
1369 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1370 		    struct ath5k_rx_status *rs)
1371 {
1372 	struct ieee80211_rx_status *rxs;
1373 	struct ath_common *common = ath5k_hw_common(ah);
1374 
1375 	ath5k_remove_padding(skb);
1376 
1377 	rxs = IEEE80211_SKB_RXCB(skb);
1378 
1379 	rxs->flag = 0;
1380 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1381 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1382 
1383 	/*
1384 	 * always extend the mac timestamp, since this information is
1385 	 * also needed for proper IBSS merging.
1386 	 *
1387 	 * XXX: it might be too late to do it here, since rs_tstamp is
1388 	 * 15bit only. that means TSF extension has to be done within
1389 	 * 32768usec (about 32ms). it might be necessary to move this to
1390 	 * the interrupt handler, like it is done in madwifi.
1391 	 */
1392 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1393 	rxs->flag |= RX_FLAG_MACTIME_END;
1394 
1395 	rxs->freq = ah->curchan->center_freq;
1396 	rxs->band = ah->curchan->band;
1397 
1398 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1399 
1400 	rxs->antenna = rs->rs_antenna;
1401 
1402 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1403 		ah->stats.antenna_rx[rs->rs_antenna]++;
1404 	else
1405 		ah->stats.antenna_rx[0]++; /* invalid */
1406 
1407 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1408 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1409 	switch (ah->ah_bwmode) {
1410 	case AR5K_BWMODE_5MHZ:
1411 		rxs->flag |= RX_FLAG_5MHZ;
1412 		break;
1413 	case AR5K_BWMODE_10MHZ:
1414 		rxs->flag |= RX_FLAG_10MHZ;
1415 		break;
1416 	default:
1417 		break;
1418 	}
1419 
1420 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1421 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1422 		rxs->flag |= RX_FLAG_SHORTPRE;
1423 
1424 	trace_ath5k_rx(ah, skb);
1425 
1426 	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1427 		ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1428 
1429 		/* check beacons in IBSS mode */
1430 		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1431 			ath5k_check_ibss_tsf(ah, skb, rxs);
1432 	}
1433 
1434 	ieee80211_rx(ah->hw, skb);
1435 }
1436 
1437 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1438  *
1439  * Check if we want to further process this frame or not. Also update
1440  * statistics. Return true if we want this frame, false if not.
1441  */
1442 static bool
1443 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1444 {
1445 	ah->stats.rx_all_count++;
1446 	ah->stats.rx_bytes_count += rs->rs_datalen;
1447 
1448 	if (unlikely(rs->rs_status)) {
1449 		if (rs->rs_status & AR5K_RXERR_CRC)
1450 			ah->stats.rxerr_crc++;
1451 		if (rs->rs_status & AR5K_RXERR_FIFO)
1452 			ah->stats.rxerr_fifo++;
1453 		if (rs->rs_status & AR5K_RXERR_PHY) {
1454 			ah->stats.rxerr_phy++;
1455 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1456 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1457 			return false;
1458 		}
1459 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1460 			/*
1461 			 * Decrypt error.  If the error occurred
1462 			 * because there was no hardware key, then
1463 			 * let the frame through so the upper layers
1464 			 * can process it.  This is necessary for 5210
1465 			 * parts which have no way to setup a ``clear''
1466 			 * key cache entry.
1467 			 *
1468 			 * XXX do key cache faulting
1469 			 */
1470 			ah->stats.rxerr_decrypt++;
1471 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1472 			    !(rs->rs_status & AR5K_RXERR_CRC))
1473 				return true;
1474 		}
1475 		if (rs->rs_status & AR5K_RXERR_MIC) {
1476 			ah->stats.rxerr_mic++;
1477 			return true;
1478 		}
1479 
1480 		/* reject any frames with non-crypto errors */
1481 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1482 			return false;
1483 	}
1484 
1485 	if (unlikely(rs->rs_more)) {
1486 		ah->stats.rxerr_jumbo++;
1487 		return false;
1488 	}
1489 	return true;
1490 }
1491 
1492 static void
1493 ath5k_set_current_imask(struct ath5k_hw *ah)
1494 {
1495 	enum ath5k_int imask;
1496 	unsigned long flags;
1497 
1498 	spin_lock_irqsave(&ah->irqlock, flags);
1499 	imask = ah->imask;
1500 	if (ah->rx_pending)
1501 		imask &= ~AR5K_INT_RX_ALL;
1502 	if (ah->tx_pending)
1503 		imask &= ~AR5K_INT_TX_ALL;
1504 	ath5k_hw_set_imr(ah, imask);
1505 	spin_unlock_irqrestore(&ah->irqlock, flags);
1506 }
1507 
1508 static void
1509 ath5k_tasklet_rx(unsigned long data)
1510 {
1511 	struct ath5k_rx_status rs = {};
1512 	struct sk_buff *skb, *next_skb;
1513 	dma_addr_t next_skb_addr;
1514 	struct ath5k_hw *ah = (void *)data;
1515 	struct ath_common *common = ath5k_hw_common(ah);
1516 	struct ath5k_buf *bf;
1517 	struct ath5k_desc *ds;
1518 	int ret;
1519 
1520 	spin_lock(&ah->rxbuflock);
1521 	if (list_empty(&ah->rxbuf)) {
1522 		ATH5K_WARN(ah, "empty rx buf pool\n");
1523 		goto unlock;
1524 	}
1525 	do {
1526 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1527 		BUG_ON(bf->skb == NULL);
1528 		skb = bf->skb;
1529 		ds = bf->desc;
1530 
1531 		/* bail if HW is still using self-linked descriptor */
1532 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1533 			break;
1534 
1535 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1536 		if (unlikely(ret == -EINPROGRESS))
1537 			break;
1538 		else if (unlikely(ret)) {
1539 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1540 			ah->stats.rxerr_proc++;
1541 			break;
1542 		}
1543 
1544 		if (ath5k_receive_frame_ok(ah, &rs)) {
1545 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1546 
1547 			/*
1548 			 * If we can't replace bf->skb with a new skb under
1549 			 * memory pressure, just skip this packet
1550 			 */
1551 			if (!next_skb)
1552 				goto next;
1553 
1554 			dma_unmap_single(ah->dev, bf->skbaddr,
1555 					 common->rx_bufsize,
1556 					 DMA_FROM_DEVICE);
1557 
1558 			skb_put(skb, rs.rs_datalen);
1559 
1560 			ath5k_receive_frame(ah, skb, &rs);
1561 
1562 			bf->skb = next_skb;
1563 			bf->skbaddr = next_skb_addr;
1564 		}
1565 next:
1566 		list_move_tail(&bf->list, &ah->rxbuf);
1567 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1568 unlock:
1569 	spin_unlock(&ah->rxbuflock);
1570 	ah->rx_pending = false;
1571 	ath5k_set_current_imask(ah);
1572 }
1573 
1574 
1575 /*************\
1576 * TX Handling *
1577 \*************/
1578 
1579 void
1580 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1581 	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1582 {
1583 	struct ath5k_hw *ah = hw->priv;
1584 	struct ath5k_buf *bf;
1585 	unsigned long flags;
1586 	int padsize;
1587 
1588 	trace_ath5k_tx(ah, skb, txq);
1589 
1590 	/*
1591 	 * The hardware expects the header padded to 4 byte boundaries.
1592 	 * If this is not the case, we add the padding after the header.
1593 	 */
1594 	padsize = ath5k_add_padding(skb);
1595 	if (padsize < 0) {
1596 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1597 			  " headroom to pad");
1598 		goto drop_packet;
1599 	}
1600 
1601 	if (txq->txq_len >= txq->txq_max &&
1602 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1603 		ieee80211_stop_queue(hw, txq->qnum);
1604 
1605 	spin_lock_irqsave(&ah->txbuflock, flags);
1606 	if (list_empty(&ah->txbuf)) {
1607 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1608 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1609 		ieee80211_stop_queues(hw);
1610 		goto drop_packet;
1611 	}
1612 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1613 	list_del(&bf->list);
1614 	ah->txbuf_len--;
1615 	if (list_empty(&ah->txbuf))
1616 		ieee80211_stop_queues(hw);
1617 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1618 
1619 	bf->skb = skb;
1620 
1621 	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1622 		bf->skb = NULL;
1623 		spin_lock_irqsave(&ah->txbuflock, flags);
1624 		list_add_tail(&bf->list, &ah->txbuf);
1625 		ah->txbuf_len++;
1626 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1627 		goto drop_packet;
1628 	}
1629 	return;
1630 
1631 drop_packet:
1632 	ieee80211_free_txskb(hw, skb);
1633 }
1634 
1635 static void
1636 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1637 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1638 			 struct ath5k_buf *bf)
1639 {
1640 	struct ieee80211_tx_info *info;
1641 	u8 tries[3];
1642 	int i;
1643 	int size = 0;
1644 
1645 	ah->stats.tx_all_count++;
1646 	ah->stats.tx_bytes_count += skb->len;
1647 	info = IEEE80211_SKB_CB(skb);
1648 
1649 	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1650 	memcpy(info->status.rates, bf->rates, size);
1651 
1652 	tries[0] = info->status.rates[0].count;
1653 	tries[1] = info->status.rates[1].count;
1654 	tries[2] = info->status.rates[2].count;
1655 
1656 	ieee80211_tx_info_clear_status(info);
1657 
1658 	for (i = 0; i < ts->ts_final_idx; i++) {
1659 		struct ieee80211_tx_rate *r =
1660 			&info->status.rates[i];
1661 
1662 		r->count = tries[i];
1663 	}
1664 
1665 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1666 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1667 
1668 	if (unlikely(ts->ts_status)) {
1669 		ah->stats.ack_fail++;
1670 		if (ts->ts_status & AR5K_TXERR_FILT) {
1671 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1672 			ah->stats.txerr_filt++;
1673 		}
1674 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1675 			ah->stats.txerr_retry++;
1676 		if (ts->ts_status & AR5K_TXERR_FIFO)
1677 			ah->stats.txerr_fifo++;
1678 	} else {
1679 		info->flags |= IEEE80211_TX_STAT_ACK;
1680 		info->status.ack_signal = ts->ts_rssi;
1681 
1682 		/* count the successful attempt as well */
1683 		info->status.rates[ts->ts_final_idx].count++;
1684 	}
1685 
1686 	/*
1687 	* Remove MAC header padding before giving the frame
1688 	* back to mac80211.
1689 	*/
1690 	ath5k_remove_padding(skb);
1691 
1692 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1693 		ah->stats.antenna_tx[ts->ts_antenna]++;
1694 	else
1695 		ah->stats.antenna_tx[0]++; /* invalid */
1696 
1697 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1698 	ieee80211_tx_status(ah->hw, skb);
1699 }
1700 
1701 static void
1702 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1703 {
1704 	struct ath5k_tx_status ts = {};
1705 	struct ath5k_buf *bf, *bf0;
1706 	struct ath5k_desc *ds;
1707 	struct sk_buff *skb;
1708 	int ret;
1709 
1710 	spin_lock(&txq->lock);
1711 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1712 
1713 		txq->txq_poll_mark = false;
1714 
1715 		/* skb might already have been processed last time. */
1716 		if (bf->skb != NULL) {
1717 			ds = bf->desc;
1718 
1719 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1720 			if (unlikely(ret == -EINPROGRESS))
1721 				break;
1722 			else if (unlikely(ret)) {
1723 				ATH5K_ERR(ah,
1724 					"error %d while processing "
1725 					"queue %u\n", ret, txq->qnum);
1726 				break;
1727 			}
1728 
1729 			skb = bf->skb;
1730 			bf->skb = NULL;
1731 
1732 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1733 					DMA_TO_DEVICE);
1734 			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1735 		}
1736 
1737 		/*
1738 		 * It's possible that the hardware can say the buffer is
1739 		 * completed when it hasn't yet loaded the ds_link from
1740 		 * host memory and moved on.
1741 		 * Always keep the last descriptor to avoid HW races...
1742 		 */
1743 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1744 			spin_lock(&ah->txbuflock);
1745 			list_move_tail(&bf->list, &ah->txbuf);
1746 			ah->txbuf_len++;
1747 			txq->txq_len--;
1748 			spin_unlock(&ah->txbuflock);
1749 		}
1750 	}
1751 	spin_unlock(&txq->lock);
1752 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1753 		ieee80211_wake_queue(ah->hw, txq->qnum);
1754 }
1755 
1756 static void
1757 ath5k_tasklet_tx(unsigned long data)
1758 {
1759 	int i;
1760 	struct ath5k_hw *ah = (void *)data;
1761 
1762 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1763 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1764 			ath5k_tx_processq(ah, &ah->txqs[i]);
1765 
1766 	ah->tx_pending = false;
1767 	ath5k_set_current_imask(ah);
1768 }
1769 
1770 
1771 /*****************\
1772 * Beacon handling *
1773 \*****************/
1774 
1775 /*
1776  * Setup the beacon frame for transmit.
1777  */
1778 static int
1779 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1780 {
1781 	struct sk_buff *skb = bf->skb;
1782 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1783 	struct ath5k_desc *ds;
1784 	int ret = 0;
1785 	u8 antenna;
1786 	u32 flags;
1787 	const int padsize = 0;
1788 
1789 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1790 			DMA_TO_DEVICE);
1791 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1792 			"skbaddr %llx\n", skb, skb->data, skb->len,
1793 			(unsigned long long)bf->skbaddr);
1794 
1795 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1796 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1797 		dev_kfree_skb_any(skb);
1798 		bf->skb = NULL;
1799 		return -EIO;
1800 	}
1801 
1802 	ds = bf->desc;
1803 	antenna = ah->ah_tx_ant;
1804 
1805 	flags = AR5K_TXDESC_NOACK;
1806 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1807 		ds->ds_link = bf->daddr;	/* self-linked */
1808 		flags |= AR5K_TXDESC_VEOL;
1809 	} else
1810 		ds->ds_link = 0;
1811 
1812 	/*
1813 	 * If we use multiple antennas on AP and use
1814 	 * the Sectored AP scenario, switch antenna every
1815 	 * 4 beacons to make sure everybody hears our AP.
1816 	 * When a client tries to associate, hw will keep
1817 	 * track of the tx antenna to be used for this client
1818 	 * automatically, based on ACKed packets.
1819 	 *
1820 	 * Note: AP still listens and transmits RTS on the
1821 	 * default antenna which is supposed to be an omni.
1822 	 *
1823 	 * Note2: On sectored scenarios it's possible to have
1824 	 * multiple antennas (1 omni -- the default -- and 14
1825 	 * sectors), so if we choose to actually support this
1826 	 * mode, we need to allow the user to set how many antennas
1827 	 * we have and tweak the code below to send beacons
1828 	 * on all of them.
1829 	 */
1830 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1831 		antenna = ah->bsent & 4 ? 2 : 1;
1832 
1833 
1834 	/* FIXME: If we are in g mode and rate is a CCK rate
1835 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1836 	 * from tx power (value is in dB units already) */
1837 	ds->ds_data = bf->skbaddr;
1838 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1839 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1840 			AR5K_PKT_TYPE_BEACON,
1841 			(ah->ah_txpower.txp_requested * 2),
1842 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1843 			1, AR5K_TXKEYIX_INVALID,
1844 			antenna, flags, 0, 0);
1845 	if (ret)
1846 		goto err_unmap;
1847 
1848 	return 0;
1849 err_unmap:
1850 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1856  * this is called only once at config_bss time, for AP we do it every
1857  * SWBA interrupt so that the TIM will reflect buffered frames.
1858  *
1859  * Called with the beacon lock.
1860  */
1861 int
1862 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1863 {
1864 	int ret;
1865 	struct ath5k_hw *ah = hw->priv;
1866 	struct ath5k_vif *avf;
1867 	struct sk_buff *skb;
1868 
1869 	if (WARN_ON(!vif)) {
1870 		ret = -EINVAL;
1871 		goto out;
1872 	}
1873 
1874 	skb = ieee80211_beacon_get(hw, vif);
1875 
1876 	if (!skb) {
1877 		ret = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	avf = (void *)vif->drv_priv;
1882 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1883 	avf->bbuf->skb = skb;
1884 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1885 out:
1886 	return ret;
1887 }
1888 
1889 /*
1890  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1891  * frame contents are done as needed and the slot time is
1892  * also adjusted based on current state.
1893  *
1894  * This is called from software irq context (beacontq tasklets)
1895  * or user context from ath5k_beacon_config.
1896  */
1897 static void
1898 ath5k_beacon_send(struct ath5k_hw *ah)
1899 {
1900 	struct ieee80211_vif *vif;
1901 	struct ath5k_vif *avf;
1902 	struct ath5k_buf *bf;
1903 	struct sk_buff *skb;
1904 	int err;
1905 
1906 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1907 
1908 	/*
1909 	 * Check if the previous beacon has gone out.  If
1910 	 * not, don't don't try to post another: skip this
1911 	 * period and wait for the next.  Missed beacons
1912 	 * indicate a problem and should not occur.  If we
1913 	 * miss too many consecutive beacons reset the device.
1914 	 */
1915 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1916 		ah->bmisscount++;
1917 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1918 			"missed %u consecutive beacons\n", ah->bmisscount);
1919 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1920 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1921 				"stuck beacon time (%u missed)\n",
1922 				ah->bmisscount);
1923 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1924 				  "stuck beacon, resetting\n");
1925 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1926 		}
1927 		return;
1928 	}
1929 	if (unlikely(ah->bmisscount != 0)) {
1930 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1931 			"resume beacon xmit after %u misses\n",
1932 			ah->bmisscount);
1933 		ah->bmisscount = 0;
1934 	}
1935 
1936 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1937 			ah->num_mesh_vifs > 1) ||
1938 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1939 		u64 tsf = ath5k_hw_get_tsf64(ah);
1940 		u32 tsftu = TSF_TO_TU(tsf);
1941 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1942 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1943 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1944 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1945 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1946 	} else /* only one interface */
1947 		vif = ah->bslot[0];
1948 
1949 	if (!vif)
1950 		return;
1951 
1952 	avf = (void *)vif->drv_priv;
1953 	bf = avf->bbuf;
1954 
1955 	/*
1956 	 * Stop any current dma and put the new frame on the queue.
1957 	 * This should never fail since we check above that no frames
1958 	 * are still pending on the queue.
1959 	 */
1960 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1961 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1962 		/* NB: hw still stops DMA, so proceed */
1963 	}
1964 
1965 	/* refresh the beacon for AP or MESH mode */
1966 	if (ah->opmode == NL80211_IFTYPE_AP ||
1967 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1968 		err = ath5k_beacon_update(ah->hw, vif);
1969 		if (err)
1970 			return;
1971 	}
1972 
1973 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1974 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1975 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1976 		return;
1977 	}
1978 
1979 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1980 
1981 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1982 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1983 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1984 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1985 
1986 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1987 	while (skb) {
1988 		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1989 
1990 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1991 			break;
1992 
1993 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1994 	}
1995 
1996 	ah->bsent++;
1997 }
1998 
1999 /**
2000  * ath5k_beacon_update_timers - update beacon timers
2001  *
2002  * @ah: struct ath5k_hw pointer we are operating on
2003  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2004  *          beacon timer update based on the current HW TSF.
2005  *
2006  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2007  * of a received beacon or the current local hardware TSF and write it to the
2008  * beacon timer registers.
2009  *
2010  * This is called in a variety of situations, e.g. when a beacon is received,
2011  * when a TSF update has been detected, but also when an new IBSS is created or
2012  * when we otherwise know we have to update the timers, but we keep it in this
2013  * function to have it all together in one place.
2014  */
2015 void
2016 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2017 {
2018 	u32 nexttbtt, intval, hw_tu, bc_tu;
2019 	u64 hw_tsf;
2020 
2021 	intval = ah->bintval & AR5K_BEACON_PERIOD;
2022 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2023 		+ ah->num_mesh_vifs > 1) {
2024 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2025 		if (intval < 15)
2026 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2027 				   intval);
2028 	}
2029 	if (WARN_ON(!intval))
2030 		return;
2031 
2032 	/* beacon TSF converted to TU */
2033 	bc_tu = TSF_TO_TU(bc_tsf);
2034 
2035 	/* current TSF converted to TU */
2036 	hw_tsf = ath5k_hw_get_tsf64(ah);
2037 	hw_tu = TSF_TO_TU(hw_tsf);
2038 
2039 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2040 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2041 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2042 	 * configuration we need to make sure it is bigger than that. */
2043 
2044 	if (bc_tsf == -1) {
2045 		/*
2046 		 * no beacons received, called internally.
2047 		 * just need to refresh timers based on HW TSF.
2048 		 */
2049 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2050 	} else if (bc_tsf == 0) {
2051 		/*
2052 		 * no beacon received, probably called by ath5k_reset_tsf().
2053 		 * reset TSF to start with 0.
2054 		 */
2055 		nexttbtt = intval;
2056 		intval |= AR5K_BEACON_RESET_TSF;
2057 	} else if (bc_tsf > hw_tsf) {
2058 		/*
2059 		 * beacon received, SW merge happened but HW TSF not yet updated.
2060 		 * not possible to reconfigure timers yet, but next time we
2061 		 * receive a beacon with the same BSSID, the hardware will
2062 		 * automatically update the TSF and then we need to reconfigure
2063 		 * the timers.
2064 		 */
2065 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2066 			"need to wait for HW TSF sync\n");
2067 		return;
2068 	} else {
2069 		/*
2070 		 * most important case for beacon synchronization between STA.
2071 		 *
2072 		 * beacon received and HW TSF has been already updated by HW.
2073 		 * update next TBTT based on the TSF of the beacon, but make
2074 		 * sure it is ahead of our local TSF timer.
2075 		 */
2076 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2077 	}
2078 #undef FUDGE
2079 
2080 	ah->nexttbtt = nexttbtt;
2081 
2082 	intval |= AR5K_BEACON_ENA;
2083 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2084 
2085 	/*
2086 	 * debugging output last in order to preserve the time critical aspect
2087 	 * of this function
2088 	 */
2089 	if (bc_tsf == -1)
2090 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2091 			"reconfigured timers based on HW TSF\n");
2092 	else if (bc_tsf == 0)
2093 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2094 			"reset HW TSF and timers\n");
2095 	else
2096 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097 			"updated timers based on beacon TSF\n");
2098 
2099 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2100 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2101 			  (unsigned long long) bc_tsf,
2102 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2103 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2104 		intval & AR5K_BEACON_PERIOD,
2105 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2106 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2107 }
2108 
2109 /**
2110  * ath5k_beacon_config - Configure the beacon queues and interrupts
2111  *
2112  * @ah: struct ath5k_hw pointer we are operating on
2113  *
2114  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2115  * interrupts to detect TSF updates only.
2116  */
2117 void
2118 ath5k_beacon_config(struct ath5k_hw *ah)
2119 {
2120 	spin_lock_bh(&ah->block);
2121 	ah->bmisscount = 0;
2122 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2123 
2124 	if (ah->enable_beacon) {
2125 		/*
2126 		 * In IBSS mode we use a self-linked tx descriptor and let the
2127 		 * hardware send the beacons automatically. We have to load it
2128 		 * only once here.
2129 		 * We use the SWBA interrupt only to keep track of the beacon
2130 		 * timers in order to detect automatic TSF updates.
2131 		 */
2132 		ath5k_beaconq_config(ah);
2133 
2134 		ah->imask |= AR5K_INT_SWBA;
2135 
2136 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2137 			if (ath5k_hw_hasveol(ah))
2138 				ath5k_beacon_send(ah);
2139 		} else
2140 			ath5k_beacon_update_timers(ah, -1);
2141 	} else {
2142 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2143 	}
2144 
2145 	ath5k_hw_set_imr(ah, ah->imask);
2146 	mmiowb();
2147 	spin_unlock_bh(&ah->block);
2148 }
2149 
2150 static void ath5k_tasklet_beacon(unsigned long data)
2151 {
2152 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2153 
2154 	/*
2155 	 * Software beacon alert--time to send a beacon.
2156 	 *
2157 	 * In IBSS mode we use this interrupt just to
2158 	 * keep track of the next TBTT (target beacon
2159 	 * transmission time) in order to detect whether
2160 	 * automatic TSF updates happened.
2161 	 */
2162 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2163 		/* XXX: only if VEOL supported */
2164 		u64 tsf = ath5k_hw_get_tsf64(ah);
2165 		ah->nexttbtt += ah->bintval;
2166 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2167 				"SWBA nexttbtt: %x hw_tu: %x "
2168 				"TSF: %llx\n",
2169 				ah->nexttbtt,
2170 				TSF_TO_TU(tsf),
2171 				(unsigned long long) tsf);
2172 	} else {
2173 		spin_lock(&ah->block);
2174 		ath5k_beacon_send(ah);
2175 		spin_unlock(&ah->block);
2176 	}
2177 }
2178 
2179 
2180 /********************\
2181 * Interrupt handling *
2182 \********************/
2183 
2184 static void
2185 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2186 {
2187 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2188 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2189 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2190 
2191 		/* Run ANI only when calibration is not active */
2192 
2193 		ah->ah_cal_next_ani = jiffies +
2194 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2195 		tasklet_schedule(&ah->ani_tasklet);
2196 
2197 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2198 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2199 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2200 
2201 		/* Run calibration only when another calibration
2202 		 * is not running.
2203 		 *
2204 		 * Note: This is for both full/short calibration,
2205 		 * if it's time for a full one, ath5k_calibrate_work will deal
2206 		 * with it. */
2207 
2208 		ah->ah_cal_next_short = jiffies +
2209 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2210 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2211 	}
2212 	/* we could use SWI to generate enough interrupts to meet our
2213 	 * calibration interval requirements, if necessary:
2214 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2215 }
2216 
2217 static void
2218 ath5k_schedule_rx(struct ath5k_hw *ah)
2219 {
2220 	ah->rx_pending = true;
2221 	tasklet_schedule(&ah->rxtq);
2222 }
2223 
2224 static void
2225 ath5k_schedule_tx(struct ath5k_hw *ah)
2226 {
2227 	ah->tx_pending = true;
2228 	tasklet_schedule(&ah->txtq);
2229 }
2230 
2231 static irqreturn_t
2232 ath5k_intr(int irq, void *dev_id)
2233 {
2234 	struct ath5k_hw *ah = dev_id;
2235 	enum ath5k_int status;
2236 	unsigned int counter = 1000;
2237 
2238 
2239 	/*
2240 	 * If hw is not ready (or detached) and we get an
2241 	 * interrupt, or if we have no interrupts pending
2242 	 * (that means it's not for us) skip it.
2243 	 *
2244 	 * NOTE: Group 0/1 PCI interface registers are not
2245 	 * supported on WiSOCs, so we can't check for pending
2246 	 * interrupts (ISR belongs to another register group
2247 	 * so we are ok).
2248 	 */
2249 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2250 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2251 			!ath5k_hw_is_intr_pending(ah))))
2252 		return IRQ_NONE;
2253 
2254 	/** Main loop **/
2255 	do {
2256 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2257 
2258 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2259 				status, ah->imask);
2260 
2261 		/*
2262 		 * Fatal hw error -> Log and reset
2263 		 *
2264 		 * Fatal errors are unrecoverable so we have to
2265 		 * reset the card. These errors include bus and
2266 		 * dma errors.
2267 		 */
2268 		if (unlikely(status & AR5K_INT_FATAL)) {
2269 
2270 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2271 				  "fatal int, resetting\n");
2272 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2273 
2274 		/*
2275 		 * RX Overrun -> Count and reset if needed
2276 		 *
2277 		 * Receive buffers are full. Either the bus is busy or
2278 		 * the CPU is not fast enough to process all received
2279 		 * frames.
2280 		 */
2281 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2282 
2283 			/*
2284 			 * Older chipsets need a reset to come out of this
2285 			 * condition, but we treat it as RX for newer chips.
2286 			 * We don't know exactly which versions need a reset
2287 			 * this guess is copied from the HAL.
2288 			 */
2289 			ah->stats.rxorn_intr++;
2290 
2291 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2292 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2293 					  "rx overrun, resetting\n");
2294 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2295 			} else
2296 				ath5k_schedule_rx(ah);
2297 
2298 		} else {
2299 
2300 			/* Software Beacon Alert -> Schedule beacon tasklet */
2301 			if (status & AR5K_INT_SWBA)
2302 				tasklet_hi_schedule(&ah->beacontq);
2303 
2304 			/*
2305 			 * No more RX descriptors -> Just count
2306 			 *
2307 			 * NB: the hardware should re-read the link when
2308 			 *     RXE bit is written, but it doesn't work at
2309 			 *     least on older hardware revs.
2310 			 */
2311 			if (status & AR5K_INT_RXEOL)
2312 				ah->stats.rxeol_intr++;
2313 
2314 
2315 			/* TX Underrun -> Bump tx trigger level */
2316 			if (status & AR5K_INT_TXURN)
2317 				ath5k_hw_update_tx_triglevel(ah, true);
2318 
2319 			/* RX -> Schedule rx tasklet */
2320 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2321 				ath5k_schedule_rx(ah);
2322 
2323 			/* TX -> Schedule tx tasklet */
2324 			if (status & (AR5K_INT_TXOK
2325 					| AR5K_INT_TXDESC
2326 					| AR5K_INT_TXERR
2327 					| AR5K_INT_TXEOL))
2328 				ath5k_schedule_tx(ah);
2329 
2330 			/* Missed beacon -> TODO
2331 			if (status & AR5K_INT_BMISS)
2332 			*/
2333 
2334 			/* MIB event -> Update counters and notify ANI */
2335 			if (status & AR5K_INT_MIB) {
2336 				ah->stats.mib_intr++;
2337 				ath5k_hw_update_mib_counters(ah);
2338 				ath5k_ani_mib_intr(ah);
2339 			}
2340 
2341 			/* GPIO -> Notify RFKill layer */
2342 			if (status & AR5K_INT_GPIO)
2343 				tasklet_schedule(&ah->rf_kill.toggleq);
2344 
2345 		}
2346 
2347 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2348 			break;
2349 
2350 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2351 
2352 	/*
2353 	 * Until we handle rx/tx interrupts mask them on IMR
2354 	 *
2355 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2356 	 * and unset after we 've handled the interrupts.
2357 	 */
2358 	if (ah->rx_pending || ah->tx_pending)
2359 		ath5k_set_current_imask(ah);
2360 
2361 	if (unlikely(!counter))
2362 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2363 
2364 	/* Fire up calibration poll */
2365 	ath5k_intr_calibration_poll(ah);
2366 
2367 	return IRQ_HANDLED;
2368 }
2369 
2370 /*
2371  * Periodically recalibrate the PHY to account
2372  * for temperature/environment changes.
2373  */
2374 static void
2375 ath5k_calibrate_work(struct work_struct *work)
2376 {
2377 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2378 		calib_work);
2379 
2380 	/* Should we run a full calibration ? */
2381 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2382 
2383 		ah->ah_cal_next_full = jiffies +
2384 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2385 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2386 
2387 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2388 				"running full calibration\n");
2389 
2390 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2391 			/*
2392 			 * Rfgain is out of bounds, reset the chip
2393 			 * to load new gain values.
2394 			 */
2395 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2396 					"got new rfgain, resetting\n");
2397 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2398 		}
2399 	} else
2400 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2401 
2402 
2403 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2404 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2405 		ah->curchan->hw_value);
2406 
2407 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2408 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2409 			ieee80211_frequency_to_channel(
2410 				ah->curchan->center_freq));
2411 
2412 	/* Clear calibration flags */
2413 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2414 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2415 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2416 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2417 }
2418 
2419 
2420 static void
2421 ath5k_tasklet_ani(unsigned long data)
2422 {
2423 	struct ath5k_hw *ah = (void *)data;
2424 
2425 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2426 	ath5k_ani_calibration(ah);
2427 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2428 }
2429 
2430 
2431 static void
2432 ath5k_tx_complete_poll_work(struct work_struct *work)
2433 {
2434 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2435 			tx_complete_work.work);
2436 	struct ath5k_txq *txq;
2437 	int i;
2438 	bool needreset = false;
2439 
2440 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2441 		return;
2442 
2443 	mutex_lock(&ah->lock);
2444 
2445 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2446 		if (ah->txqs[i].setup) {
2447 			txq = &ah->txqs[i];
2448 			spin_lock_bh(&txq->lock);
2449 			if (txq->txq_len > 1) {
2450 				if (txq->txq_poll_mark) {
2451 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2452 						  "TX queue stuck %d\n",
2453 						  txq->qnum);
2454 					needreset = true;
2455 					txq->txq_stuck++;
2456 					spin_unlock_bh(&txq->lock);
2457 					break;
2458 				} else {
2459 					txq->txq_poll_mark = true;
2460 				}
2461 			}
2462 			spin_unlock_bh(&txq->lock);
2463 		}
2464 	}
2465 
2466 	if (needreset) {
2467 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2468 			  "TX queues stuck, resetting\n");
2469 		ath5k_reset(ah, NULL, true);
2470 	}
2471 
2472 	mutex_unlock(&ah->lock);
2473 
2474 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2475 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2476 }
2477 
2478 
2479 /*************************\
2480 * Initialization routines *
2481 \*************************/
2482 
2483 static const struct ieee80211_iface_limit if_limits[] = {
2484 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2485 	{ .max = 4,	.types =
2486 #ifdef CONFIG_MAC80211_MESH
2487 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2488 #endif
2489 				 BIT(NL80211_IFTYPE_AP) },
2490 };
2491 
2492 static const struct ieee80211_iface_combination if_comb = {
2493 	.limits = if_limits,
2494 	.n_limits = ARRAY_SIZE(if_limits),
2495 	.max_interfaces = 2048,
2496 	.num_different_channels = 1,
2497 };
2498 
2499 int
2500 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2501 {
2502 	struct ieee80211_hw *hw = ah->hw;
2503 	struct ath_common *common;
2504 	int ret;
2505 	int csz;
2506 
2507 	/* Initialize driver private data */
2508 	SET_IEEE80211_DEV(hw, ah->dev);
2509 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2510 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2511 			IEEE80211_HW_SIGNAL_DBM |
2512 			IEEE80211_HW_MFP_CAPABLE |
2513 			IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2514 			IEEE80211_HW_SUPPORTS_RC_TABLE;
2515 
2516 	hw->wiphy->interface_modes =
2517 		BIT(NL80211_IFTYPE_AP) |
2518 		BIT(NL80211_IFTYPE_STATION) |
2519 		BIT(NL80211_IFTYPE_ADHOC) |
2520 		BIT(NL80211_IFTYPE_MESH_POINT);
2521 
2522 	hw->wiphy->iface_combinations = &if_comb;
2523 	hw->wiphy->n_iface_combinations = 1;
2524 
2525 	/* SW support for IBSS_RSN is provided by mac80211 */
2526 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2527 
2528 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2529 
2530 	/* both antennas can be configured as RX or TX */
2531 	hw->wiphy->available_antennas_tx = 0x3;
2532 	hw->wiphy->available_antennas_rx = 0x3;
2533 
2534 	hw->extra_tx_headroom = 2;
2535 
2536 	/*
2537 	 * Mark the device as detached to avoid processing
2538 	 * interrupts until setup is complete.
2539 	 */
2540 	__set_bit(ATH_STAT_INVALID, ah->status);
2541 
2542 	ah->opmode = NL80211_IFTYPE_STATION;
2543 	ah->bintval = 1000;
2544 	mutex_init(&ah->lock);
2545 	spin_lock_init(&ah->rxbuflock);
2546 	spin_lock_init(&ah->txbuflock);
2547 	spin_lock_init(&ah->block);
2548 	spin_lock_init(&ah->irqlock);
2549 
2550 	/* Setup interrupt handler */
2551 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2552 	if (ret) {
2553 		ATH5K_ERR(ah, "request_irq failed\n");
2554 		goto err;
2555 	}
2556 
2557 	common = ath5k_hw_common(ah);
2558 	common->ops = &ath5k_common_ops;
2559 	common->bus_ops = bus_ops;
2560 	common->ah = ah;
2561 	common->hw = hw;
2562 	common->priv = ah;
2563 	common->clockrate = 40;
2564 
2565 	/*
2566 	 * Cache line size is used to size and align various
2567 	 * structures used to communicate with the hardware.
2568 	 */
2569 	ath5k_read_cachesize(common, &csz);
2570 	common->cachelsz = csz << 2; /* convert to bytes */
2571 
2572 	spin_lock_init(&common->cc_lock);
2573 
2574 	/* Initialize device */
2575 	ret = ath5k_hw_init(ah);
2576 	if (ret)
2577 		goto err_irq;
2578 
2579 	/* Set up multi-rate retry capabilities */
2580 	if (ah->ah_capabilities.cap_has_mrr_support) {
2581 		hw->max_rates = 4;
2582 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2583 					 AR5K_INIT_RETRY_LONG);
2584 	}
2585 
2586 	hw->vif_data_size = sizeof(struct ath5k_vif);
2587 
2588 	/* Finish private driver data initialization */
2589 	ret = ath5k_init(hw);
2590 	if (ret)
2591 		goto err_ah;
2592 
2593 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2594 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2595 					ah->ah_mac_srev,
2596 					ah->ah_phy_revision);
2597 
2598 	if (!ah->ah_single_chip) {
2599 		/* Single chip radio (!RF5111) */
2600 		if (ah->ah_radio_5ghz_revision &&
2601 			!ah->ah_radio_2ghz_revision) {
2602 			/* No 5GHz support -> report 2GHz radio */
2603 			if (!test_bit(AR5K_MODE_11A,
2604 				ah->ah_capabilities.cap_mode)) {
2605 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2606 					ath5k_chip_name(AR5K_VERSION_RAD,
2607 						ah->ah_radio_5ghz_revision),
2608 						ah->ah_radio_5ghz_revision);
2609 			/* No 2GHz support (5110 and some
2610 			 * 5GHz only cards) -> report 5GHz radio */
2611 			} else if (!test_bit(AR5K_MODE_11B,
2612 				ah->ah_capabilities.cap_mode)) {
2613 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2614 					ath5k_chip_name(AR5K_VERSION_RAD,
2615 						ah->ah_radio_5ghz_revision),
2616 						ah->ah_radio_5ghz_revision);
2617 			/* Multiband radio */
2618 			} else {
2619 				ATH5K_INFO(ah, "RF%s multiband radio found"
2620 					" (0x%x)\n",
2621 					ath5k_chip_name(AR5K_VERSION_RAD,
2622 						ah->ah_radio_5ghz_revision),
2623 						ah->ah_radio_5ghz_revision);
2624 			}
2625 		}
2626 		/* Multi chip radio (RF5111 - RF2111) ->
2627 		 * report both 2GHz/5GHz radios */
2628 		else if (ah->ah_radio_5ghz_revision &&
2629 				ah->ah_radio_2ghz_revision) {
2630 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2631 				ath5k_chip_name(AR5K_VERSION_RAD,
2632 					ah->ah_radio_5ghz_revision),
2633 					ah->ah_radio_5ghz_revision);
2634 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2635 				ath5k_chip_name(AR5K_VERSION_RAD,
2636 					ah->ah_radio_2ghz_revision),
2637 					ah->ah_radio_2ghz_revision);
2638 		}
2639 	}
2640 
2641 	ath5k_debug_init_device(ah);
2642 
2643 	/* ready to process interrupts */
2644 	__clear_bit(ATH_STAT_INVALID, ah->status);
2645 
2646 	return 0;
2647 err_ah:
2648 	ath5k_hw_deinit(ah);
2649 err_irq:
2650 	free_irq(ah->irq, ah);
2651 err:
2652 	return ret;
2653 }
2654 
2655 static int
2656 ath5k_stop_locked(struct ath5k_hw *ah)
2657 {
2658 
2659 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2660 			test_bit(ATH_STAT_INVALID, ah->status));
2661 
2662 	/*
2663 	 * Shutdown the hardware and driver:
2664 	 *    stop output from above
2665 	 *    disable interrupts
2666 	 *    turn off timers
2667 	 *    turn off the radio
2668 	 *    clear transmit machinery
2669 	 *    clear receive machinery
2670 	 *    drain and release tx queues
2671 	 *    reclaim beacon resources
2672 	 *    power down hardware
2673 	 *
2674 	 * Note that some of this work is not possible if the
2675 	 * hardware is gone (invalid).
2676 	 */
2677 	ieee80211_stop_queues(ah->hw);
2678 
2679 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2680 		ath5k_led_off(ah);
2681 		ath5k_hw_set_imr(ah, 0);
2682 		synchronize_irq(ah->irq);
2683 		ath5k_rx_stop(ah);
2684 		ath5k_hw_dma_stop(ah);
2685 		ath5k_drain_tx_buffs(ah);
2686 		ath5k_hw_phy_disable(ah);
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 int ath5k_start(struct ieee80211_hw *hw)
2693 {
2694 	struct ath5k_hw *ah = hw->priv;
2695 	struct ath_common *common = ath5k_hw_common(ah);
2696 	int ret, i;
2697 
2698 	mutex_lock(&ah->lock);
2699 
2700 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2701 
2702 	/*
2703 	 * Stop anything previously setup.  This is safe
2704 	 * no matter this is the first time through or not.
2705 	 */
2706 	ath5k_stop_locked(ah);
2707 
2708 	/*
2709 	 * The basic interface to setting the hardware in a good
2710 	 * state is ``reset''.  On return the hardware is known to
2711 	 * be powered up and with interrupts disabled.  This must
2712 	 * be followed by initialization of the appropriate bits
2713 	 * and then setup of the interrupt mask.
2714 	 */
2715 	ah->curchan = ah->hw->conf.chandef.chan;
2716 	ah->imask = AR5K_INT_RXOK
2717 		| AR5K_INT_RXERR
2718 		| AR5K_INT_RXEOL
2719 		| AR5K_INT_RXORN
2720 		| AR5K_INT_TXDESC
2721 		| AR5K_INT_TXEOL
2722 		| AR5K_INT_FATAL
2723 		| AR5K_INT_GLOBAL
2724 		| AR5K_INT_MIB;
2725 
2726 	ret = ath5k_reset(ah, NULL, false);
2727 	if (ret)
2728 		goto done;
2729 
2730 	if (!ath5k_modparam_no_hw_rfkill_switch)
2731 		ath5k_rfkill_hw_start(ah);
2732 
2733 	/*
2734 	 * Reset the key cache since some parts do not reset the
2735 	 * contents on initial power up or resume from suspend.
2736 	 */
2737 	for (i = 0; i < common->keymax; i++)
2738 		ath_hw_keyreset(common, (u16) i);
2739 
2740 	/* Use higher rates for acks instead of base
2741 	 * rate */
2742 	ah->ah_ack_bitrate_high = true;
2743 
2744 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2745 		ah->bslot[i] = NULL;
2746 
2747 	ret = 0;
2748 done:
2749 	mmiowb();
2750 	mutex_unlock(&ah->lock);
2751 
2752 	set_bit(ATH_STAT_STARTED, ah->status);
2753 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2754 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2755 
2756 	return ret;
2757 }
2758 
2759 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2760 {
2761 	ah->rx_pending = false;
2762 	ah->tx_pending = false;
2763 	tasklet_kill(&ah->rxtq);
2764 	tasklet_kill(&ah->txtq);
2765 	tasklet_kill(&ah->beacontq);
2766 	tasklet_kill(&ah->ani_tasklet);
2767 }
2768 
2769 /*
2770  * Stop the device, grabbing the top-level lock to protect
2771  * against concurrent entry through ath5k_init (which can happen
2772  * if another thread does a system call and the thread doing the
2773  * stop is preempted).
2774  */
2775 void ath5k_stop(struct ieee80211_hw *hw)
2776 {
2777 	struct ath5k_hw *ah = hw->priv;
2778 	int ret;
2779 
2780 	mutex_lock(&ah->lock);
2781 	ret = ath5k_stop_locked(ah);
2782 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2783 		/*
2784 		 * Don't set the card in full sleep mode!
2785 		 *
2786 		 * a) When the device is in this state it must be carefully
2787 		 * woken up or references to registers in the PCI clock
2788 		 * domain may freeze the bus (and system).  This varies
2789 		 * by chip and is mostly an issue with newer parts
2790 		 * (madwifi sources mentioned srev >= 0x78) that go to
2791 		 * sleep more quickly.
2792 		 *
2793 		 * b) On older chips full sleep results a weird behaviour
2794 		 * during wakeup. I tested various cards with srev < 0x78
2795 		 * and they don't wake up after module reload, a second
2796 		 * module reload is needed to bring the card up again.
2797 		 *
2798 		 * Until we figure out what's going on don't enable
2799 		 * full chip reset on any chip (this is what Legacy HAL
2800 		 * and Sam's HAL do anyway). Instead Perform a full reset
2801 		 * on the device (same as initial state after attach) and
2802 		 * leave it idle (keep MAC/BB on warm reset) */
2803 		ret = ath5k_hw_on_hold(ah);
2804 
2805 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2806 				"putting device to sleep\n");
2807 	}
2808 
2809 	mmiowb();
2810 	mutex_unlock(&ah->lock);
2811 
2812 	ath5k_stop_tasklets(ah);
2813 
2814 	clear_bit(ATH_STAT_STARTED, ah->status);
2815 	cancel_delayed_work_sync(&ah->tx_complete_work);
2816 
2817 	if (!ath5k_modparam_no_hw_rfkill_switch)
2818 		ath5k_rfkill_hw_stop(ah);
2819 }
2820 
2821 /*
2822  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2823  * and change to the given channel.
2824  *
2825  * This should be called with ah->lock.
2826  */
2827 static int
2828 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2829 							bool skip_pcu)
2830 {
2831 	struct ath_common *common = ath5k_hw_common(ah);
2832 	int ret, ani_mode;
2833 	bool fast;
2834 
2835 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2836 
2837 	ath5k_hw_set_imr(ah, 0);
2838 	synchronize_irq(ah->irq);
2839 	ath5k_stop_tasklets(ah);
2840 
2841 	/* Save ani mode and disable ANI during
2842 	 * reset. If we don't we might get false
2843 	 * PHY error interrupts. */
2844 	ani_mode = ah->ani_state.ani_mode;
2845 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2846 
2847 	/* We are going to empty hw queues
2848 	 * so we should also free any remaining
2849 	 * tx buffers */
2850 	ath5k_drain_tx_buffs(ah);
2851 	if (chan)
2852 		ah->curchan = chan;
2853 
2854 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2855 
2856 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2857 	if (ret) {
2858 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2859 		goto err;
2860 	}
2861 
2862 	ret = ath5k_rx_start(ah);
2863 	if (ret) {
2864 		ATH5K_ERR(ah, "can't start recv logic\n");
2865 		goto err;
2866 	}
2867 
2868 	ath5k_ani_init(ah, ani_mode);
2869 
2870 	/*
2871 	 * Set calibration intervals
2872 	 *
2873 	 * Note: We don't need to run calibration imediately
2874 	 * since some initial calibration is done on reset
2875 	 * even for fast channel switching. Also on scanning
2876 	 * this will get set again and again and it won't get
2877 	 * executed unless we connect somewhere and spend some
2878 	 * time on the channel (that's what calibration needs
2879 	 * anyway to be accurate).
2880 	 */
2881 	ah->ah_cal_next_full = jiffies +
2882 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2883 	ah->ah_cal_next_ani = jiffies +
2884 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2885 	ah->ah_cal_next_short = jiffies +
2886 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2887 
2888 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2889 
2890 	/* clear survey data and cycle counters */
2891 	memset(&ah->survey, 0, sizeof(ah->survey));
2892 	spin_lock_bh(&common->cc_lock);
2893 	ath_hw_cycle_counters_update(common);
2894 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2895 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2896 	spin_unlock_bh(&common->cc_lock);
2897 
2898 	/*
2899 	 * Change channels and update the h/w rate map if we're switching;
2900 	 * e.g. 11a to 11b/g.
2901 	 *
2902 	 * We may be doing a reset in response to an ioctl that changes the
2903 	 * channel so update any state that might change as a result.
2904 	 *
2905 	 * XXX needed?
2906 	 */
2907 /*	ath5k_chan_change(ah, c); */
2908 
2909 	ath5k_beacon_config(ah);
2910 	/* intrs are enabled by ath5k_beacon_config */
2911 
2912 	ieee80211_wake_queues(ah->hw);
2913 
2914 	return 0;
2915 err:
2916 	return ret;
2917 }
2918 
2919 static void ath5k_reset_work(struct work_struct *work)
2920 {
2921 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2922 		reset_work);
2923 
2924 	mutex_lock(&ah->lock);
2925 	ath5k_reset(ah, NULL, true);
2926 	mutex_unlock(&ah->lock);
2927 }
2928 
2929 static int
2930 ath5k_init(struct ieee80211_hw *hw)
2931 {
2932 
2933 	struct ath5k_hw *ah = hw->priv;
2934 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2935 	struct ath5k_txq *txq;
2936 	u8 mac[ETH_ALEN] = {};
2937 	int ret;
2938 
2939 
2940 	/*
2941 	 * Collect the channel list.  The 802.11 layer
2942 	 * is responsible for filtering this list based
2943 	 * on settings like the phy mode and regulatory
2944 	 * domain restrictions.
2945 	 */
2946 	ret = ath5k_setup_bands(hw);
2947 	if (ret) {
2948 		ATH5K_ERR(ah, "can't get channels\n");
2949 		goto err;
2950 	}
2951 
2952 	/*
2953 	 * Allocate tx+rx descriptors and populate the lists.
2954 	 */
2955 	ret = ath5k_desc_alloc(ah);
2956 	if (ret) {
2957 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2958 		goto err;
2959 	}
2960 
2961 	/*
2962 	 * Allocate hardware transmit queues: one queue for
2963 	 * beacon frames and one data queue for each QoS
2964 	 * priority.  Note that hw functions handle resetting
2965 	 * these queues at the needed time.
2966 	 */
2967 	ret = ath5k_beaconq_setup(ah);
2968 	if (ret < 0) {
2969 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2970 		goto err_desc;
2971 	}
2972 	ah->bhalq = ret;
2973 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2974 	if (IS_ERR(ah->cabq)) {
2975 		ATH5K_ERR(ah, "can't setup cab queue\n");
2976 		ret = PTR_ERR(ah->cabq);
2977 		goto err_bhal;
2978 	}
2979 
2980 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2981 	 * capability information */
2982 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2983 		/* This order matches mac80211's queue priority, so we can
2984 		* directly use the mac80211 queue number without any mapping */
2985 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2986 		if (IS_ERR(txq)) {
2987 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2988 			ret = PTR_ERR(txq);
2989 			goto err_queues;
2990 		}
2991 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2992 		if (IS_ERR(txq)) {
2993 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2994 			ret = PTR_ERR(txq);
2995 			goto err_queues;
2996 		}
2997 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2998 		if (IS_ERR(txq)) {
2999 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3000 			ret = PTR_ERR(txq);
3001 			goto err_queues;
3002 		}
3003 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3004 		if (IS_ERR(txq)) {
3005 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3006 			ret = PTR_ERR(txq);
3007 			goto err_queues;
3008 		}
3009 		hw->queues = 4;
3010 	} else {
3011 		/* older hardware (5210) can only support one data queue */
3012 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3013 		if (IS_ERR(txq)) {
3014 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3015 			ret = PTR_ERR(txq);
3016 			goto err_queues;
3017 		}
3018 		hw->queues = 1;
3019 	}
3020 
3021 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3022 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3023 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3024 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3025 
3026 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3027 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3028 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3029 
3030 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3031 	if (ret) {
3032 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3033 		goto err_queues;
3034 	}
3035 
3036 	SET_IEEE80211_PERM_ADDR(hw, mac);
3037 	/* All MAC address bits matter for ACKs */
3038 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3039 
3040 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3041 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3042 	if (ret) {
3043 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3044 		goto err_queues;
3045 	}
3046 
3047 	ret = ieee80211_register_hw(hw);
3048 	if (ret) {
3049 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3050 		goto err_queues;
3051 	}
3052 
3053 	if (!ath_is_world_regd(regulatory))
3054 		regulatory_hint(hw->wiphy, regulatory->alpha2);
3055 
3056 	ath5k_init_leds(ah);
3057 
3058 	ath5k_sysfs_register(ah);
3059 
3060 	return 0;
3061 err_queues:
3062 	ath5k_txq_release(ah);
3063 err_bhal:
3064 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3065 err_desc:
3066 	ath5k_desc_free(ah);
3067 err:
3068 	return ret;
3069 }
3070 
3071 void
3072 ath5k_deinit_ah(struct ath5k_hw *ah)
3073 {
3074 	struct ieee80211_hw *hw = ah->hw;
3075 
3076 	/*
3077 	 * NB: the order of these is important:
3078 	 * o call the 802.11 layer before detaching ath5k_hw to
3079 	 *   ensure callbacks into the driver to delete global
3080 	 *   key cache entries can be handled
3081 	 * o reclaim the tx queue data structures after calling
3082 	 *   the 802.11 layer as we'll get called back to reclaim
3083 	 *   node state and potentially want to use them
3084 	 * o to cleanup the tx queues the hal is called, so detach
3085 	 *   it last
3086 	 * XXX: ??? detach ath5k_hw ???
3087 	 * Other than that, it's straightforward...
3088 	 */
3089 	ieee80211_unregister_hw(hw);
3090 	ath5k_desc_free(ah);
3091 	ath5k_txq_release(ah);
3092 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3093 	ath5k_unregister_leds(ah);
3094 
3095 	ath5k_sysfs_unregister(ah);
3096 	/*
3097 	 * NB: can't reclaim these until after ieee80211_ifdetach
3098 	 * returns because we'll get called back to reclaim node
3099 	 * state and potentially want to use them.
3100 	 */
3101 	ath5k_hw_deinit(ah);
3102 	free_irq(ah->irq, ah);
3103 }
3104 
3105 bool
3106 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3107 {
3108 	struct ath5k_vif_iter_data iter_data;
3109 	iter_data.hw_macaddr = NULL;
3110 	iter_data.any_assoc = false;
3111 	iter_data.need_set_hw_addr = false;
3112 	iter_data.found_active = true;
3113 
3114 	ieee80211_iterate_active_interfaces_atomic(
3115 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3116 		ath5k_vif_iter, &iter_data);
3117 	return iter_data.any_assoc;
3118 }
3119 
3120 void
3121 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3122 {
3123 	struct ath5k_hw *ah = hw->priv;
3124 	u32 rfilt;
3125 	rfilt = ath5k_hw_get_rx_filter(ah);
3126 	if (enable)
3127 		rfilt |= AR5K_RX_FILTER_BEACON;
3128 	else
3129 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3130 	ath5k_hw_set_rx_filter(ah, rfilt);
3131 	ah->filter_flags = rfilt;
3132 }
3133 
3134 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3135 		   const char *fmt, ...)
3136 {
3137 	struct va_format vaf;
3138 	va_list args;
3139 
3140 	va_start(args, fmt);
3141 
3142 	vaf.fmt = fmt;
3143 	vaf.va = &args;
3144 
3145 	if (ah && ah->hw)
3146 		printk("%s" pr_fmt("%s: %pV"),
3147 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3148 	else
3149 		printk("%s" pr_fmt("%pV"), level, &vaf);
3150 
3151 	va_end(args);
3152 }
3153