xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision 29d97219)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61 
62 #include <asm/unaligned.h>
63 
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74 
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78 
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 		   bool, 0444);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87 
88 
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_LICENSE("Dual BSD/GPL");
94 
95 static int ath5k_init(struct ieee80211_hw *hw);
96 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97 								bool skip_pcu);
98 
99 /* Known SREVs */
100 static const struct ath5k_srev_name srev_names[] = {
101 #ifdef CONFIG_ATH5K_AHB
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
104 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
109 #else
110 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
111 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
112 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
113 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
114 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
115 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
116 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
117 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
118 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
119 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
120 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
121 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
122 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
123 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
124 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
125 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
126 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
127 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
128 #endif
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
143 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
144 #ifdef CONFIG_ATH5K_AHB
145 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
146 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
147 #endif
148 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
149 };
150 
151 static const struct ieee80211_rate ath5k_rates[] = {
152 	{ .bitrate = 10,
153 	  .hw_value = ATH5K_RATE_CODE_1M, },
154 	{ .bitrate = 20,
155 	  .hw_value = ATH5K_RATE_CODE_2M,
156 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 	{ .bitrate = 55,
159 	  .hw_value = ATH5K_RATE_CODE_5_5M,
160 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 	{ .bitrate = 110,
163 	  .hw_value = ATH5K_RATE_CODE_11M,
164 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166 	{ .bitrate = 60,
167 	  .hw_value = ATH5K_RATE_CODE_6M,
168 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
169 		   IEEE80211_RATE_SUPPORTS_10MHZ },
170 	{ .bitrate = 90,
171 	  .hw_value = ATH5K_RATE_CODE_9M,
172 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
173 		   IEEE80211_RATE_SUPPORTS_10MHZ },
174 	{ .bitrate = 120,
175 	  .hw_value = ATH5K_RATE_CODE_12M,
176 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
177 		   IEEE80211_RATE_SUPPORTS_10MHZ },
178 	{ .bitrate = 180,
179 	  .hw_value = ATH5K_RATE_CODE_18M,
180 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
181 		   IEEE80211_RATE_SUPPORTS_10MHZ },
182 	{ .bitrate = 240,
183 	  .hw_value = ATH5K_RATE_CODE_24M,
184 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
185 		   IEEE80211_RATE_SUPPORTS_10MHZ },
186 	{ .bitrate = 360,
187 	  .hw_value = ATH5K_RATE_CODE_36M,
188 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
189 		   IEEE80211_RATE_SUPPORTS_10MHZ },
190 	{ .bitrate = 480,
191 	  .hw_value = ATH5K_RATE_CODE_48M,
192 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
193 		   IEEE80211_RATE_SUPPORTS_10MHZ },
194 	{ .bitrate = 540,
195 	  .hw_value = ATH5K_RATE_CODE_54M,
196 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
197 		   IEEE80211_RATE_SUPPORTS_10MHZ },
198 };
199 
200 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
201 {
202 	u64 tsf = ath5k_hw_get_tsf64(ah);
203 
204 	if ((tsf & 0x7fff) < rstamp)
205 		tsf -= 0x8000;
206 
207 	return (tsf & ~0x7fff) | rstamp;
208 }
209 
210 const char *
211 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
212 {
213 	const char *name = "xxxxx";
214 	unsigned int i;
215 
216 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
217 		if (srev_names[i].sr_type != type)
218 			continue;
219 
220 		if ((val & 0xf0) == srev_names[i].sr_val)
221 			name = srev_names[i].sr_name;
222 
223 		if ((val & 0xff) == srev_names[i].sr_val) {
224 			name = srev_names[i].sr_name;
225 			break;
226 		}
227 	}
228 
229 	return name;
230 }
231 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
232 {
233 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
234 	return ath5k_hw_reg_read(ah, reg_offset);
235 }
236 
237 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
238 {
239 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
240 	ath5k_hw_reg_write(ah, val, reg_offset);
241 }
242 
243 static const struct ath_ops ath5k_common_ops = {
244 	.read = ath5k_ioread32,
245 	.write = ath5k_iowrite32,
246 };
247 
248 /***********************\
249 * Driver Initialization *
250 \***********************/
251 
252 static void ath5k_reg_notifier(struct wiphy *wiphy,
253 			       struct regulatory_request *request)
254 {
255 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
256 	struct ath5k_hw *ah = hw->priv;
257 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
258 
259 	ath_reg_notifier_apply(wiphy, request, regulatory);
260 }
261 
262 /********************\
263 * Channel/mode setup *
264 \********************/
265 
266 /*
267  * Returns true for the channel numbers used.
268  */
269 #ifdef CONFIG_ATH5K_TEST_CHANNELS
270 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
271 {
272 	return true;
273 }
274 
275 #else
276 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
277 {
278 	if (band == NL80211_BAND_2GHZ && chan <= 14)
279 		return true;
280 
281 	return	/* UNII 1,2 */
282 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
283 		/* midband */
284 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
285 		/* UNII-3 */
286 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
287 		/* 802.11j 5.030-5.080 GHz (20MHz) */
288 		(chan == 8 || chan == 12 || chan == 16) ||
289 		/* 802.11j 4.9GHz (20MHz) */
290 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
291 }
292 #endif
293 
294 static unsigned int
295 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
296 		unsigned int mode, unsigned int max)
297 {
298 	unsigned int count, size, freq, ch;
299 	enum nl80211_band band;
300 
301 	switch (mode) {
302 	case AR5K_MODE_11A:
303 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
304 		size = 220;
305 		band = NL80211_BAND_5GHZ;
306 		break;
307 	case AR5K_MODE_11B:
308 	case AR5K_MODE_11G:
309 		size = 26;
310 		band = NL80211_BAND_2GHZ;
311 		break;
312 	default:
313 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
314 		return 0;
315 	}
316 
317 	count = 0;
318 	for (ch = 1; ch <= size && count < max; ch++) {
319 		freq = ieee80211_channel_to_frequency(ch, band);
320 
321 		if (freq == 0) /* mapping failed - not a standard channel */
322 			continue;
323 
324 		/* Write channel info, needed for ath5k_channel_ok() */
325 		channels[count].center_freq = freq;
326 		channels[count].band = band;
327 		channels[count].hw_value = mode;
328 
329 		/* Check if channel is supported by the chipset */
330 		if (!ath5k_channel_ok(ah, &channels[count]))
331 			continue;
332 
333 		if (!ath5k_is_standard_channel(ch, band))
334 			continue;
335 
336 		count++;
337 	}
338 
339 	return count;
340 }
341 
342 static void
343 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
344 {
345 	u8 i;
346 
347 	for (i = 0; i < AR5K_MAX_RATES; i++)
348 		ah->rate_idx[b->band][i] = -1;
349 
350 	for (i = 0; i < b->n_bitrates; i++) {
351 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
352 		if (b->bitrates[i].hw_value_short)
353 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
354 	}
355 }
356 
357 static int
358 ath5k_setup_bands(struct ieee80211_hw *hw)
359 {
360 	struct ath5k_hw *ah = hw->priv;
361 	struct ieee80211_supported_band *sband;
362 	int max_c, count_c = 0;
363 	int i;
364 
365 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
366 	max_c = ARRAY_SIZE(ah->channels);
367 
368 	/* 2GHz band */
369 	sband = &ah->sbands[NL80211_BAND_2GHZ];
370 	sband->band = NL80211_BAND_2GHZ;
371 	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
372 
373 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
374 		/* G mode */
375 		memcpy(sband->bitrates, &ath5k_rates[0],
376 		       sizeof(struct ieee80211_rate) * 12);
377 		sband->n_bitrates = 12;
378 
379 		sband->channels = ah->channels;
380 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
381 					AR5K_MODE_11G, max_c);
382 
383 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
384 		count_c = sband->n_channels;
385 		max_c -= count_c;
386 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
387 		/* B mode */
388 		memcpy(sband->bitrates, &ath5k_rates[0],
389 		       sizeof(struct ieee80211_rate) * 4);
390 		sband->n_bitrates = 4;
391 
392 		/* 5211 only supports B rates and uses 4bit rate codes
393 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
394 		 * fix them up here:
395 		 */
396 		if (ah->ah_version == AR5K_AR5211) {
397 			for (i = 0; i < 4; i++) {
398 				sband->bitrates[i].hw_value =
399 					sband->bitrates[i].hw_value & 0xF;
400 				sband->bitrates[i].hw_value_short =
401 					sband->bitrates[i].hw_value_short & 0xF;
402 			}
403 		}
404 
405 		sband->channels = ah->channels;
406 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
407 					AR5K_MODE_11B, max_c);
408 
409 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
410 		count_c = sband->n_channels;
411 		max_c -= count_c;
412 	}
413 	ath5k_setup_rate_idx(ah, sband);
414 
415 	/* 5GHz band, A mode */
416 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
417 		sband = &ah->sbands[NL80211_BAND_5GHZ];
418 		sband->band = NL80211_BAND_5GHZ;
419 		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
420 
421 		memcpy(sband->bitrates, &ath5k_rates[4],
422 		       sizeof(struct ieee80211_rate) * 8);
423 		sband->n_bitrates = 8;
424 
425 		sband->channels = &ah->channels[count_c];
426 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
427 					AR5K_MODE_11A, max_c);
428 
429 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
430 	}
431 	ath5k_setup_rate_idx(ah, sband);
432 
433 	ath5k_debug_dump_bands(ah);
434 
435 	return 0;
436 }
437 
438 /*
439  * Set/change channels. We always reset the chip.
440  * To accomplish this we must first cleanup any pending DMA,
441  * then restart stuff after a la  ath5k_init.
442  *
443  * Called with ah->lock.
444  */
445 int
446 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
447 {
448 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
449 		  "channel set, resetting (%u -> %u MHz)\n",
450 		  ah->curchan->center_freq, chandef->chan->center_freq);
451 
452 	switch (chandef->width) {
453 	case NL80211_CHAN_WIDTH_20:
454 	case NL80211_CHAN_WIDTH_20_NOHT:
455 		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
456 		break;
457 	case NL80211_CHAN_WIDTH_5:
458 		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
459 		break;
460 	case NL80211_CHAN_WIDTH_10:
461 		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
462 		break;
463 	default:
464 		WARN_ON(1);
465 		return -EINVAL;
466 	}
467 
468 	/*
469 	 * To switch channels clear any pending DMA operations;
470 	 * wait long enough for the RX fifo to drain, reset the
471 	 * hardware at the new frequency, and then re-enable
472 	 * the relevant bits of the h/w.
473 	 */
474 	return ath5k_reset(ah, chandef->chan, true);
475 }
476 
477 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
478 {
479 	struct ath5k_vif_iter_data *iter_data = data;
480 	int i;
481 	struct ath5k_vif *avf = (void *)vif->drv_priv;
482 
483 	if (iter_data->hw_macaddr)
484 		for (i = 0; i < ETH_ALEN; i++)
485 			iter_data->mask[i] &=
486 				~(iter_data->hw_macaddr[i] ^ mac[i]);
487 
488 	if (!iter_data->found_active) {
489 		iter_data->found_active = true;
490 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
491 	}
492 
493 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
494 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
495 			iter_data->need_set_hw_addr = false;
496 
497 	if (!iter_data->any_assoc) {
498 		if (avf->assoc)
499 			iter_data->any_assoc = true;
500 	}
501 
502 	/* Calculate combined mode - when APs are active, operate in AP mode.
503 	 * Otherwise use the mode of the new interface. This can currently
504 	 * only deal with combinations of APs and STAs. Only one ad-hoc
505 	 * interfaces is allowed.
506 	 */
507 	if (avf->opmode == NL80211_IFTYPE_AP)
508 		iter_data->opmode = NL80211_IFTYPE_AP;
509 	else {
510 		if (avf->opmode == NL80211_IFTYPE_STATION)
511 			iter_data->n_stas++;
512 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
513 			iter_data->opmode = avf->opmode;
514 	}
515 }
516 
517 void
518 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
519 				   struct ieee80211_vif *vif)
520 {
521 	struct ath_common *common = ath5k_hw_common(ah);
522 	struct ath5k_vif_iter_data iter_data;
523 	u32 rfilt;
524 
525 	/*
526 	 * Use the hardware MAC address as reference, the hardware uses it
527 	 * together with the BSSID mask when matching addresses.
528 	 */
529 	iter_data.hw_macaddr = common->macaddr;
530 	eth_broadcast_addr(iter_data.mask);
531 	iter_data.found_active = false;
532 	iter_data.need_set_hw_addr = true;
533 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
534 	iter_data.n_stas = 0;
535 
536 	if (vif)
537 		ath5k_vif_iter(&iter_data, vif->addr, vif);
538 
539 	/* Get list of all active MAC addresses */
540 	ieee80211_iterate_active_interfaces_atomic(
541 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
542 		ath5k_vif_iter, &iter_data);
543 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
544 
545 	ah->opmode = iter_data.opmode;
546 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
547 		/* Nothing active, default to station mode */
548 		ah->opmode = NL80211_IFTYPE_STATION;
549 
550 	ath5k_hw_set_opmode(ah, ah->opmode);
551 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
552 		  ah->opmode, ath_opmode_to_string(ah->opmode));
553 
554 	if (iter_data.need_set_hw_addr && iter_data.found_active)
555 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
556 
557 	if (ath5k_hw_hasbssidmask(ah))
558 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
559 
560 	/* Set up RX Filter */
561 	if (iter_data.n_stas > 1) {
562 		/* If you have multiple STA interfaces connected to
563 		 * different APs, ARPs are not received (most of the time?)
564 		 * Enabling PROMISC appears to fix that problem.
565 		 */
566 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
567 	}
568 
569 	rfilt = ah->filter_flags;
570 	ath5k_hw_set_rx_filter(ah, rfilt);
571 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
572 }
573 
574 static inline int
575 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
576 {
577 	int rix;
578 
579 	/* return base rate on errors */
580 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
581 			"hw_rix out of bounds: %x\n", hw_rix))
582 		return 0;
583 
584 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
585 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
586 		rix = 0;
587 
588 	return rix;
589 }
590 
591 /***************\
592 * Buffers setup *
593 \***************/
594 
595 static
596 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
597 {
598 	struct ath_common *common = ath5k_hw_common(ah);
599 	struct sk_buff *skb;
600 
601 	/*
602 	 * Allocate buffer with headroom_needed space for the
603 	 * fake physical layer header at the start.
604 	 */
605 	skb = ath_rxbuf_alloc(common,
606 			      common->rx_bufsize,
607 			      GFP_ATOMIC);
608 
609 	if (!skb) {
610 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
611 				common->rx_bufsize);
612 		return NULL;
613 	}
614 
615 	*skb_addr = dma_map_single(ah->dev,
616 				   skb->data, common->rx_bufsize,
617 				   DMA_FROM_DEVICE);
618 
619 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
620 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
621 		dev_kfree_skb(skb);
622 		return NULL;
623 	}
624 	return skb;
625 }
626 
627 static int
628 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
629 {
630 	struct sk_buff *skb = bf->skb;
631 	struct ath5k_desc *ds;
632 	int ret;
633 
634 	if (!skb) {
635 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
636 		if (!skb)
637 			return -ENOMEM;
638 		bf->skb = skb;
639 	}
640 
641 	/*
642 	 * Setup descriptors.  For receive we always terminate
643 	 * the descriptor list with a self-linked entry so we'll
644 	 * not get overrun under high load (as can happen with a
645 	 * 5212 when ANI processing enables PHY error frames).
646 	 *
647 	 * To ensure the last descriptor is self-linked we create
648 	 * each descriptor as self-linked and add it to the end.  As
649 	 * each additional descriptor is added the previous self-linked
650 	 * entry is "fixed" naturally.  This should be safe even
651 	 * if DMA is happening.  When processing RX interrupts we
652 	 * never remove/process the last, self-linked, entry on the
653 	 * descriptor list.  This ensures the hardware always has
654 	 * someplace to write a new frame.
655 	 */
656 	ds = bf->desc;
657 	ds->ds_link = bf->daddr;	/* link to self */
658 	ds->ds_data = bf->skbaddr;
659 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
660 	if (ret) {
661 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
662 		return ret;
663 	}
664 
665 	if (ah->rxlink != NULL)
666 		*ah->rxlink = bf->daddr;
667 	ah->rxlink = &ds->ds_link;
668 	return 0;
669 }
670 
671 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
672 {
673 	struct ieee80211_hdr *hdr;
674 	enum ath5k_pkt_type htype;
675 	__le16 fc;
676 
677 	hdr = (struct ieee80211_hdr *)skb->data;
678 	fc = hdr->frame_control;
679 
680 	if (ieee80211_is_beacon(fc))
681 		htype = AR5K_PKT_TYPE_BEACON;
682 	else if (ieee80211_is_probe_resp(fc))
683 		htype = AR5K_PKT_TYPE_PROBE_RESP;
684 	else if (ieee80211_is_atim(fc))
685 		htype = AR5K_PKT_TYPE_ATIM;
686 	else if (ieee80211_is_pspoll(fc))
687 		htype = AR5K_PKT_TYPE_PSPOLL;
688 	else
689 		htype = AR5K_PKT_TYPE_NORMAL;
690 
691 	return htype;
692 }
693 
694 static struct ieee80211_rate *
695 ath5k_get_rate(const struct ieee80211_hw *hw,
696 	       const struct ieee80211_tx_info *info,
697 	       struct ath5k_buf *bf, int idx)
698 {
699 	/*
700 	* convert a ieee80211_tx_rate RC-table entry to
701 	* the respective ieee80211_rate struct
702 	*/
703 	if (bf->rates[idx].idx < 0) {
704 		return NULL;
705 	}
706 
707 	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
708 }
709 
710 static u16
711 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
712 			const struct ieee80211_tx_info *info,
713 			struct ath5k_buf *bf, int idx)
714 {
715 	struct ieee80211_rate *rate;
716 	u16 hw_rate;
717 	u8 rc_flags;
718 
719 	rate = ath5k_get_rate(hw, info, bf, idx);
720 	if (!rate)
721 		return 0;
722 
723 	rc_flags = bf->rates[idx].flags;
724 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
725 		   rate->hw_value_short : rate->hw_value;
726 
727 	return hw_rate;
728 }
729 
730 static int
731 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
732 		  struct ath5k_txq *txq, int padsize,
733 		  struct ieee80211_tx_control *control)
734 {
735 	struct ath5k_desc *ds = bf->desc;
736 	struct sk_buff *skb = bf->skb;
737 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
738 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
739 	struct ieee80211_rate *rate;
740 	unsigned int mrr_rate[3], mrr_tries[3];
741 	int i, ret;
742 	u16 hw_rate;
743 	u16 cts_rate = 0;
744 	u16 duration = 0;
745 	u8 rc_flags;
746 
747 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
748 
749 	/* XXX endianness */
750 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
751 			DMA_TO_DEVICE);
752 
753 	if (dma_mapping_error(ah->dev, bf->skbaddr))
754 		return -ENOSPC;
755 
756 	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
757 			       ARRAY_SIZE(bf->rates));
758 
759 	rate = ath5k_get_rate(ah->hw, info, bf, 0);
760 
761 	if (!rate) {
762 		ret = -EINVAL;
763 		goto err_unmap;
764 	}
765 
766 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
767 		flags |= AR5K_TXDESC_NOACK;
768 
769 	rc_flags = bf->rates[0].flags;
770 
771 	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
772 
773 	pktlen = skb->len;
774 
775 	/* FIXME: If we are in g mode and rate is a CCK rate
776 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
777 	 * from tx power (value is in dB units already) */
778 	if (info->control.hw_key) {
779 		keyidx = info->control.hw_key->hw_key_idx;
780 		pktlen += info->control.hw_key->icv_len;
781 	}
782 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
783 		flags |= AR5K_TXDESC_RTSENA;
784 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
785 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
786 			info->control.vif, pktlen, info));
787 	}
788 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
789 		flags |= AR5K_TXDESC_CTSENA;
790 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
791 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
792 			info->control.vif, pktlen, info));
793 	}
794 
795 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
796 		ieee80211_get_hdrlen_from_skb(skb), padsize,
797 		get_hw_packet_type(skb),
798 		(ah->ah_txpower.txp_requested * 2),
799 		hw_rate,
800 		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
801 		cts_rate, duration);
802 	if (ret)
803 		goto err_unmap;
804 
805 	/* Set up MRR descriptor */
806 	if (ah->ah_capabilities.cap_has_mrr_support) {
807 		memset(mrr_rate, 0, sizeof(mrr_rate));
808 		memset(mrr_tries, 0, sizeof(mrr_tries));
809 
810 		for (i = 0; i < 3; i++) {
811 
812 			rate = ath5k_get_rate(ah->hw, info, bf, i);
813 			if (!rate)
814 				break;
815 
816 			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
817 			mrr_tries[i] = bf->rates[i].count;
818 		}
819 
820 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
821 			mrr_rate[0], mrr_tries[0],
822 			mrr_rate[1], mrr_tries[1],
823 			mrr_rate[2], mrr_tries[2]);
824 	}
825 
826 	ds->ds_link = 0;
827 	ds->ds_data = bf->skbaddr;
828 
829 	spin_lock_bh(&txq->lock);
830 	list_add_tail(&bf->list, &txq->q);
831 	txq->txq_len++;
832 	if (txq->link == NULL) /* is this first packet? */
833 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
834 	else /* no, so only link it */
835 		*txq->link = bf->daddr;
836 
837 	txq->link = &ds->ds_link;
838 	ath5k_hw_start_tx_dma(ah, txq->qnum);
839 	spin_unlock_bh(&txq->lock);
840 
841 	return 0;
842 err_unmap:
843 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
844 	return ret;
845 }
846 
847 /*******************\
848 * Descriptors setup *
849 \*******************/
850 
851 static int
852 ath5k_desc_alloc(struct ath5k_hw *ah)
853 {
854 	struct ath5k_desc *ds;
855 	struct ath5k_buf *bf;
856 	dma_addr_t da;
857 	unsigned int i;
858 	int ret;
859 
860 	/* allocate descriptors */
861 	ah->desc_len = sizeof(struct ath5k_desc) *
862 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
863 
864 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
865 				&ah->desc_daddr, GFP_KERNEL);
866 	if (ah->desc == NULL) {
867 		ATH5K_ERR(ah, "can't allocate descriptors\n");
868 		ret = -ENOMEM;
869 		goto err;
870 	}
871 	ds = ah->desc;
872 	da = ah->desc_daddr;
873 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
874 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
875 
876 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
877 			sizeof(struct ath5k_buf), GFP_KERNEL);
878 	if (bf == NULL) {
879 		ATH5K_ERR(ah, "can't allocate bufptr\n");
880 		ret = -ENOMEM;
881 		goto err_free;
882 	}
883 	ah->bufptr = bf;
884 
885 	INIT_LIST_HEAD(&ah->rxbuf);
886 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
887 		bf->desc = ds;
888 		bf->daddr = da;
889 		list_add_tail(&bf->list, &ah->rxbuf);
890 	}
891 
892 	INIT_LIST_HEAD(&ah->txbuf);
893 	ah->txbuf_len = ATH_TXBUF;
894 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
895 		bf->desc = ds;
896 		bf->daddr = da;
897 		list_add_tail(&bf->list, &ah->txbuf);
898 	}
899 
900 	/* beacon buffers */
901 	INIT_LIST_HEAD(&ah->bcbuf);
902 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
903 		bf->desc = ds;
904 		bf->daddr = da;
905 		list_add_tail(&bf->list, &ah->bcbuf);
906 	}
907 
908 	return 0;
909 err_free:
910 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
911 err:
912 	ah->desc = NULL;
913 	return ret;
914 }
915 
916 void
917 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
918 {
919 	BUG_ON(!bf);
920 	if (!bf->skb)
921 		return;
922 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
923 			DMA_TO_DEVICE);
924 	ieee80211_free_txskb(ah->hw, bf->skb);
925 	bf->skb = NULL;
926 	bf->skbaddr = 0;
927 	bf->desc->ds_data = 0;
928 }
929 
930 void
931 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
932 {
933 	struct ath_common *common = ath5k_hw_common(ah);
934 
935 	BUG_ON(!bf);
936 	if (!bf->skb)
937 		return;
938 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
939 			DMA_FROM_DEVICE);
940 	dev_kfree_skb_any(bf->skb);
941 	bf->skb = NULL;
942 	bf->skbaddr = 0;
943 	bf->desc->ds_data = 0;
944 }
945 
946 static void
947 ath5k_desc_free(struct ath5k_hw *ah)
948 {
949 	struct ath5k_buf *bf;
950 
951 	list_for_each_entry(bf, &ah->txbuf, list)
952 		ath5k_txbuf_free_skb(ah, bf);
953 	list_for_each_entry(bf, &ah->rxbuf, list)
954 		ath5k_rxbuf_free_skb(ah, bf);
955 	list_for_each_entry(bf, &ah->bcbuf, list)
956 		ath5k_txbuf_free_skb(ah, bf);
957 
958 	/* Free memory associated with all descriptors */
959 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
960 	ah->desc = NULL;
961 	ah->desc_daddr = 0;
962 
963 	kfree(ah->bufptr);
964 	ah->bufptr = NULL;
965 }
966 
967 
968 /**************\
969 * Queues setup *
970 \**************/
971 
972 static struct ath5k_txq *
973 ath5k_txq_setup(struct ath5k_hw *ah,
974 		int qtype, int subtype)
975 {
976 	struct ath5k_txq *txq;
977 	struct ath5k_txq_info qi = {
978 		.tqi_subtype = subtype,
979 		/* XXX: default values not correct for B and XR channels,
980 		 * but who cares? */
981 		.tqi_aifs = AR5K_TUNE_AIFS,
982 		.tqi_cw_min = AR5K_TUNE_CWMIN,
983 		.tqi_cw_max = AR5K_TUNE_CWMAX
984 	};
985 	int qnum;
986 
987 	/*
988 	 * Enable interrupts only for EOL and DESC conditions.
989 	 * We mark tx descriptors to receive a DESC interrupt
990 	 * when a tx queue gets deep; otherwise we wait for the
991 	 * EOL to reap descriptors.  Note that this is done to
992 	 * reduce interrupt load and this only defers reaping
993 	 * descriptors, never transmitting frames.  Aside from
994 	 * reducing interrupts this also permits more concurrency.
995 	 * The only potential downside is if the tx queue backs
996 	 * up in which case the top half of the kernel may backup
997 	 * due to a lack of tx descriptors.
998 	 */
999 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1000 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1001 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1002 	if (qnum < 0) {
1003 		/*
1004 		 * NB: don't print a message, this happens
1005 		 * normally on parts with too few tx queues
1006 		 */
1007 		return ERR_PTR(qnum);
1008 	}
1009 	txq = &ah->txqs[qnum];
1010 	if (!txq->setup) {
1011 		txq->qnum = qnum;
1012 		txq->link = NULL;
1013 		INIT_LIST_HEAD(&txq->q);
1014 		spin_lock_init(&txq->lock);
1015 		txq->setup = true;
1016 		txq->txq_len = 0;
1017 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1018 		txq->txq_poll_mark = false;
1019 		txq->txq_stuck = 0;
1020 	}
1021 	return &ah->txqs[qnum];
1022 }
1023 
1024 static int
1025 ath5k_beaconq_setup(struct ath5k_hw *ah)
1026 {
1027 	struct ath5k_txq_info qi = {
1028 		/* XXX: default values not correct for B and XR channels,
1029 		 * but who cares? */
1030 		.tqi_aifs = AR5K_TUNE_AIFS,
1031 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1032 		.tqi_cw_max = AR5K_TUNE_CWMAX,
1033 		/* NB: for dynamic turbo, don't enable any other interrupts */
1034 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1035 	};
1036 
1037 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1038 }
1039 
1040 static int
1041 ath5k_beaconq_config(struct ath5k_hw *ah)
1042 {
1043 	struct ath5k_txq_info qi;
1044 	int ret;
1045 
1046 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1047 	if (ret)
1048 		goto err;
1049 
1050 	if (ah->opmode == NL80211_IFTYPE_AP ||
1051 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1052 		/*
1053 		 * Always burst out beacon and CAB traffic
1054 		 * (aifs = cwmin = cwmax = 0)
1055 		 */
1056 		qi.tqi_aifs = 0;
1057 		qi.tqi_cw_min = 0;
1058 		qi.tqi_cw_max = 0;
1059 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1060 		/*
1061 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1062 		 */
1063 		qi.tqi_aifs = 0;
1064 		qi.tqi_cw_min = 0;
1065 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1066 	}
1067 
1068 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1069 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1070 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1071 
1072 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1073 	if (ret) {
1074 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1075 			"hardware queue!\n", __func__);
1076 		goto err;
1077 	}
1078 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1079 	if (ret)
1080 		goto err;
1081 
1082 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1083 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1084 	if (ret)
1085 		goto err;
1086 
1087 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1088 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1089 	if (ret)
1090 		goto err;
1091 
1092 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1093 err:
1094 	return ret;
1095 }
1096 
1097 /**
1098  * ath5k_drain_tx_buffs - Empty tx buffers
1099  *
1100  * @ah: The &struct ath5k_hw
1101  *
1102  * Empty tx buffers from all queues in preparation
1103  * of a reset or during shutdown.
1104  *
1105  * NB:	this assumes output has been stopped and
1106  *	we do not need to block ath5k_tx_tasklet
1107  */
1108 static void
1109 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1110 {
1111 	struct ath5k_txq *txq;
1112 	struct ath5k_buf *bf, *bf0;
1113 	int i;
1114 
1115 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1116 		if (ah->txqs[i].setup) {
1117 			txq = &ah->txqs[i];
1118 			spin_lock_bh(&txq->lock);
1119 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1120 				ath5k_debug_printtxbuf(ah, bf);
1121 
1122 				ath5k_txbuf_free_skb(ah, bf);
1123 
1124 				spin_lock(&ah->txbuflock);
1125 				list_move_tail(&bf->list, &ah->txbuf);
1126 				ah->txbuf_len++;
1127 				txq->txq_len--;
1128 				spin_unlock(&ah->txbuflock);
1129 			}
1130 			txq->link = NULL;
1131 			txq->txq_poll_mark = false;
1132 			spin_unlock_bh(&txq->lock);
1133 		}
1134 	}
1135 }
1136 
1137 static void
1138 ath5k_txq_release(struct ath5k_hw *ah)
1139 {
1140 	struct ath5k_txq *txq = ah->txqs;
1141 	unsigned int i;
1142 
1143 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1144 		if (txq->setup) {
1145 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1146 			txq->setup = false;
1147 		}
1148 }
1149 
1150 
1151 /*************\
1152 * RX Handling *
1153 \*************/
1154 
1155 /*
1156  * Enable the receive h/w following a reset.
1157  */
1158 static int
1159 ath5k_rx_start(struct ath5k_hw *ah)
1160 {
1161 	struct ath_common *common = ath5k_hw_common(ah);
1162 	struct ath5k_buf *bf;
1163 	int ret;
1164 
1165 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1166 
1167 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1168 		  common->cachelsz, common->rx_bufsize);
1169 
1170 	spin_lock_bh(&ah->rxbuflock);
1171 	ah->rxlink = NULL;
1172 	list_for_each_entry(bf, &ah->rxbuf, list) {
1173 		ret = ath5k_rxbuf_setup(ah, bf);
1174 		if (ret != 0) {
1175 			spin_unlock_bh(&ah->rxbuflock);
1176 			goto err;
1177 		}
1178 	}
1179 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1180 	ath5k_hw_set_rxdp(ah, bf->daddr);
1181 	spin_unlock_bh(&ah->rxbuflock);
1182 
1183 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1184 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1185 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1186 
1187 	return 0;
1188 err:
1189 	return ret;
1190 }
1191 
1192 /*
1193  * Disable the receive logic on PCU (DRU)
1194  * In preparation for a shutdown.
1195  *
1196  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1197  * does.
1198  */
1199 static void
1200 ath5k_rx_stop(struct ath5k_hw *ah)
1201 {
1202 
1203 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1204 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1205 
1206 	ath5k_debug_printrxbuffs(ah);
1207 }
1208 
1209 static unsigned int
1210 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1211 		   struct ath5k_rx_status *rs)
1212 {
1213 	struct ath_common *common = ath5k_hw_common(ah);
1214 	struct ieee80211_hdr *hdr = (void *)skb->data;
1215 	unsigned int keyix, hlen;
1216 
1217 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1218 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1219 		return RX_FLAG_DECRYPTED;
1220 
1221 	/* Apparently when a default key is used to decrypt the packet
1222 	   the hw does not set the index used to decrypt.  In such cases
1223 	   get the index from the packet. */
1224 	hlen = ieee80211_hdrlen(hdr->frame_control);
1225 	if (ieee80211_has_protected(hdr->frame_control) &&
1226 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1227 	    skb->len >= hlen + 4) {
1228 		keyix = skb->data[hlen + 3] >> 6;
1229 
1230 		if (test_bit(keyix, common->keymap))
1231 			return RX_FLAG_DECRYPTED;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 
1238 static void
1239 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1240 		     struct ieee80211_rx_status *rxs)
1241 {
1242 	u64 tsf, bc_tstamp;
1243 	u32 hw_tu;
1244 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1245 
1246 	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1247 		/*
1248 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1249 		 * have updated the local TSF. We have to work around various
1250 		 * hardware bugs, though...
1251 		 */
1252 		tsf = ath5k_hw_get_tsf64(ah);
1253 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1254 		hw_tu = TSF_TO_TU(tsf);
1255 
1256 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1257 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1258 			(unsigned long long)bc_tstamp,
1259 			(unsigned long long)rxs->mactime,
1260 			(unsigned long long)(rxs->mactime - bc_tstamp),
1261 			(unsigned long long)tsf);
1262 
1263 		/*
1264 		 * Sometimes the HW will give us a wrong tstamp in the rx
1265 		 * status, causing the timestamp extension to go wrong.
1266 		 * (This seems to happen especially with beacon frames bigger
1267 		 * than 78 byte (incl. FCS))
1268 		 * But we know that the receive timestamp must be later than the
1269 		 * timestamp of the beacon since HW must have synced to that.
1270 		 *
1271 		 * NOTE: here we assume mactime to be after the frame was
1272 		 * received, not like mac80211 which defines it at the start.
1273 		 */
1274 		if (bc_tstamp > rxs->mactime) {
1275 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1276 				"fixing mactime from %llx to %llx\n",
1277 				(unsigned long long)rxs->mactime,
1278 				(unsigned long long)tsf);
1279 			rxs->mactime = tsf;
1280 		}
1281 
1282 		/*
1283 		 * Local TSF might have moved higher than our beacon timers,
1284 		 * in that case we have to update them to continue sending
1285 		 * beacons. This also takes care of synchronizing beacon sending
1286 		 * times with other stations.
1287 		 */
1288 		if (hw_tu >= ah->nexttbtt)
1289 			ath5k_beacon_update_timers(ah, bc_tstamp);
1290 
1291 		/* Check if the beacon timers are still correct, because a TSF
1292 		 * update might have created a window between them - for a
1293 		 * longer description see the comment of this function: */
1294 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1295 			ath5k_beacon_update_timers(ah, bc_tstamp);
1296 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1297 				"fixed beacon timers after beacon receive\n");
1298 		}
1299 	}
1300 }
1301 
1302 /*
1303  * Compute padding position. skb must contain an IEEE 802.11 frame
1304  */
1305 static int ath5k_common_padpos(struct sk_buff *skb)
1306 {
1307 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1308 	__le16 frame_control = hdr->frame_control;
1309 	int padpos = 24;
1310 
1311 	if (ieee80211_has_a4(frame_control))
1312 		padpos += ETH_ALEN;
1313 
1314 	if (ieee80211_is_data_qos(frame_control))
1315 		padpos += IEEE80211_QOS_CTL_LEN;
1316 
1317 	return padpos;
1318 }
1319 
1320 /*
1321  * This function expects an 802.11 frame and returns the number of
1322  * bytes added, or -1 if we don't have enough header room.
1323  */
1324 static int ath5k_add_padding(struct sk_buff *skb)
1325 {
1326 	int padpos = ath5k_common_padpos(skb);
1327 	int padsize = padpos & 3;
1328 
1329 	if (padsize && skb->len > padpos) {
1330 
1331 		if (skb_headroom(skb) < padsize)
1332 			return -1;
1333 
1334 		skb_push(skb, padsize);
1335 		memmove(skb->data, skb->data + padsize, padpos);
1336 		return padsize;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  * The MAC header is padded to have 32-bit boundary if the
1344  * packet payload is non-zero. The general calculation for
1345  * padsize would take into account odd header lengths:
1346  * padsize = 4 - (hdrlen & 3); however, since only
1347  * even-length headers are used, padding can only be 0 or 2
1348  * bytes and we can optimize this a bit.  We must not try to
1349  * remove padding from short control frames that do not have a
1350  * payload.
1351  *
1352  * This function expects an 802.11 frame and returns the number of
1353  * bytes removed.
1354  */
1355 static int ath5k_remove_padding(struct sk_buff *skb)
1356 {
1357 	int padpos = ath5k_common_padpos(skb);
1358 	int padsize = padpos & 3;
1359 
1360 	if (padsize && skb->len >= padpos + padsize) {
1361 		memmove(skb->data + padsize, skb->data, padpos);
1362 		skb_pull(skb, padsize);
1363 		return padsize;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static void
1370 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1371 		    struct ath5k_rx_status *rs)
1372 {
1373 	struct ieee80211_rx_status *rxs;
1374 	struct ath_common *common = ath5k_hw_common(ah);
1375 
1376 	ath5k_remove_padding(skb);
1377 
1378 	rxs = IEEE80211_SKB_RXCB(skb);
1379 
1380 	rxs->flag = 0;
1381 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1382 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1383 	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1384 		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1385 
1386 
1387 	/*
1388 	 * always extend the mac timestamp, since this information is
1389 	 * also needed for proper IBSS merging.
1390 	 *
1391 	 * XXX: it might be too late to do it here, since rs_tstamp is
1392 	 * 15bit only. that means TSF extension has to be done within
1393 	 * 32768usec (about 32ms). it might be necessary to move this to
1394 	 * the interrupt handler, like it is done in madwifi.
1395 	 */
1396 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1397 	rxs->flag |= RX_FLAG_MACTIME_END;
1398 
1399 	rxs->freq = ah->curchan->center_freq;
1400 	rxs->band = ah->curchan->band;
1401 
1402 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1403 
1404 	rxs->antenna = rs->rs_antenna;
1405 
1406 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1407 		ah->stats.antenna_rx[rs->rs_antenna]++;
1408 	else
1409 		ah->stats.antenna_rx[0]++; /* invalid */
1410 
1411 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1412 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1413 	switch (ah->ah_bwmode) {
1414 	case AR5K_BWMODE_5MHZ:
1415 		rxs->bw = RATE_INFO_BW_5;
1416 		break;
1417 	case AR5K_BWMODE_10MHZ:
1418 		rxs->bw = RATE_INFO_BW_10;
1419 		break;
1420 	default:
1421 		break;
1422 	}
1423 
1424 	if (rs->rs_rate ==
1425 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1426 		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1427 
1428 	trace_ath5k_rx(ah, skb);
1429 
1430 	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1431 		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1432 
1433 		/* check beacons in IBSS mode */
1434 		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1435 			ath5k_check_ibss_tsf(ah, skb, rxs);
1436 	}
1437 
1438 	ieee80211_rx(ah->hw, skb);
1439 }
1440 
1441 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1442  *
1443  * Check if we want to further process this frame or not. Also update
1444  * statistics. Return true if we want this frame, false if not.
1445  */
1446 static bool
1447 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1448 {
1449 	ah->stats.rx_all_count++;
1450 	ah->stats.rx_bytes_count += rs->rs_datalen;
1451 
1452 	if (unlikely(rs->rs_status)) {
1453 		unsigned int filters;
1454 
1455 		if (rs->rs_status & AR5K_RXERR_CRC)
1456 			ah->stats.rxerr_crc++;
1457 		if (rs->rs_status & AR5K_RXERR_FIFO)
1458 			ah->stats.rxerr_fifo++;
1459 		if (rs->rs_status & AR5K_RXERR_PHY) {
1460 			ah->stats.rxerr_phy++;
1461 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1462 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1463 
1464 			/*
1465 			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1466 			 * These restarts happen when the radio resynchronizes to a stronger frame
1467 			 * while receiving a weaker frame. Here we receive the prefix of the weak
1468 			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1469 			 */
1470 			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1471 			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1472 				rs->rs_status |= AR5K_RXERR_CRC;
1473 				rs->rs_status &= ~AR5K_RXERR_PHY;
1474 			} else {
1475 				return false;
1476 			}
1477 		}
1478 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1479 			/*
1480 			 * Decrypt error.  If the error occurred
1481 			 * because there was no hardware key, then
1482 			 * let the frame through so the upper layers
1483 			 * can process it.  This is necessary for 5210
1484 			 * parts which have no way to setup a ``clear''
1485 			 * key cache entry.
1486 			 *
1487 			 * XXX do key cache faulting
1488 			 */
1489 			ah->stats.rxerr_decrypt++;
1490 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1491 			    !(rs->rs_status & AR5K_RXERR_CRC))
1492 				return true;
1493 		}
1494 		if (rs->rs_status & AR5K_RXERR_MIC) {
1495 			ah->stats.rxerr_mic++;
1496 			return true;
1497 		}
1498 
1499 		/*
1500 		 * Reject any frames with non-crypto errors, and take into account the
1501 		 * current FIF_* filters.
1502 		 */
1503 		filters = AR5K_RXERR_DECRYPT;
1504 		if (ah->fif_filter_flags & FIF_FCSFAIL)
1505 			filters |= AR5K_RXERR_CRC;
1506 
1507 		if (rs->rs_status & ~filters)
1508 			return false;
1509 	}
1510 
1511 	if (unlikely(rs->rs_more)) {
1512 		ah->stats.rxerr_jumbo++;
1513 		return false;
1514 	}
1515 	return true;
1516 }
1517 
1518 static void
1519 ath5k_set_current_imask(struct ath5k_hw *ah)
1520 {
1521 	enum ath5k_int imask;
1522 	unsigned long flags;
1523 
1524 	if (test_bit(ATH_STAT_RESET, ah->status))
1525 		return;
1526 
1527 	spin_lock_irqsave(&ah->irqlock, flags);
1528 	imask = ah->imask;
1529 	if (ah->rx_pending)
1530 		imask &= ~AR5K_INT_RX_ALL;
1531 	if (ah->tx_pending)
1532 		imask &= ~AR5K_INT_TX_ALL;
1533 	ath5k_hw_set_imr(ah, imask);
1534 	spin_unlock_irqrestore(&ah->irqlock, flags);
1535 }
1536 
1537 static void
1538 ath5k_tasklet_rx(struct tasklet_struct *t)
1539 {
1540 	struct ath5k_rx_status rs = {};
1541 	struct sk_buff *skb, *next_skb;
1542 	dma_addr_t next_skb_addr;
1543 	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1544 	struct ath_common *common = ath5k_hw_common(ah);
1545 	struct ath5k_buf *bf;
1546 	struct ath5k_desc *ds;
1547 	int ret;
1548 
1549 	spin_lock(&ah->rxbuflock);
1550 	if (list_empty(&ah->rxbuf)) {
1551 		ATH5K_WARN(ah, "empty rx buf pool\n");
1552 		goto unlock;
1553 	}
1554 	do {
1555 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1556 		BUG_ON(bf->skb == NULL);
1557 		skb = bf->skb;
1558 		ds = bf->desc;
1559 
1560 		/* bail if HW is still using self-linked descriptor */
1561 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1562 			break;
1563 
1564 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1565 		if (unlikely(ret == -EINPROGRESS))
1566 			break;
1567 		else if (unlikely(ret)) {
1568 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1569 			ah->stats.rxerr_proc++;
1570 			break;
1571 		}
1572 
1573 		if (ath5k_receive_frame_ok(ah, &rs)) {
1574 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1575 
1576 			/*
1577 			 * If we can't replace bf->skb with a new skb under
1578 			 * memory pressure, just skip this packet
1579 			 */
1580 			if (!next_skb)
1581 				goto next;
1582 
1583 			dma_unmap_single(ah->dev, bf->skbaddr,
1584 					 common->rx_bufsize,
1585 					 DMA_FROM_DEVICE);
1586 
1587 			skb_put(skb, rs.rs_datalen);
1588 
1589 			ath5k_receive_frame(ah, skb, &rs);
1590 
1591 			bf->skb = next_skb;
1592 			bf->skbaddr = next_skb_addr;
1593 		}
1594 next:
1595 		list_move_tail(&bf->list, &ah->rxbuf);
1596 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1597 unlock:
1598 	spin_unlock(&ah->rxbuflock);
1599 	ah->rx_pending = false;
1600 	ath5k_set_current_imask(ah);
1601 }
1602 
1603 
1604 /*************\
1605 * TX Handling *
1606 \*************/
1607 
1608 void
1609 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1610 	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1611 {
1612 	struct ath5k_hw *ah = hw->priv;
1613 	struct ath5k_buf *bf;
1614 	unsigned long flags;
1615 	int padsize;
1616 
1617 	trace_ath5k_tx(ah, skb, txq);
1618 
1619 	/*
1620 	 * The hardware expects the header padded to 4 byte boundaries.
1621 	 * If this is not the case, we add the padding after the header.
1622 	 */
1623 	padsize = ath5k_add_padding(skb);
1624 	if (padsize < 0) {
1625 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1626 			  " headroom to pad");
1627 		goto drop_packet;
1628 	}
1629 
1630 	if (txq->txq_len >= txq->txq_max &&
1631 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1632 		ieee80211_stop_queue(hw, txq->qnum);
1633 
1634 	spin_lock_irqsave(&ah->txbuflock, flags);
1635 	if (list_empty(&ah->txbuf)) {
1636 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1637 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1638 		ieee80211_stop_queues(hw);
1639 		goto drop_packet;
1640 	}
1641 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1642 	list_del(&bf->list);
1643 	ah->txbuf_len--;
1644 	if (list_empty(&ah->txbuf))
1645 		ieee80211_stop_queues(hw);
1646 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1647 
1648 	bf->skb = skb;
1649 
1650 	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1651 		bf->skb = NULL;
1652 		spin_lock_irqsave(&ah->txbuflock, flags);
1653 		list_add_tail(&bf->list, &ah->txbuf);
1654 		ah->txbuf_len++;
1655 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1656 		goto drop_packet;
1657 	}
1658 	return;
1659 
1660 drop_packet:
1661 	ieee80211_free_txskb(hw, skb);
1662 }
1663 
1664 static void
1665 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1666 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1667 			 struct ath5k_buf *bf)
1668 {
1669 	struct ieee80211_tx_info *info;
1670 	u8 tries[3];
1671 	int i;
1672 	int size = 0;
1673 
1674 	ah->stats.tx_all_count++;
1675 	ah->stats.tx_bytes_count += skb->len;
1676 	info = IEEE80211_SKB_CB(skb);
1677 
1678 	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1679 	memcpy(info->status.rates, bf->rates, size);
1680 
1681 	tries[0] = info->status.rates[0].count;
1682 	tries[1] = info->status.rates[1].count;
1683 	tries[2] = info->status.rates[2].count;
1684 
1685 	ieee80211_tx_info_clear_status(info);
1686 
1687 	for (i = 0; i < ts->ts_final_idx; i++) {
1688 		struct ieee80211_tx_rate *r =
1689 			&info->status.rates[i];
1690 
1691 		r->count = tries[i];
1692 	}
1693 
1694 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1695 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1696 
1697 	if (unlikely(ts->ts_status)) {
1698 		ah->stats.ack_fail++;
1699 		if (ts->ts_status & AR5K_TXERR_FILT) {
1700 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1701 			ah->stats.txerr_filt++;
1702 		}
1703 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1704 			ah->stats.txerr_retry++;
1705 		if (ts->ts_status & AR5K_TXERR_FIFO)
1706 			ah->stats.txerr_fifo++;
1707 	} else {
1708 		info->flags |= IEEE80211_TX_STAT_ACK;
1709 		info->status.ack_signal = ts->ts_rssi;
1710 
1711 		/* count the successful attempt as well */
1712 		info->status.rates[ts->ts_final_idx].count++;
1713 	}
1714 
1715 	/*
1716 	* Remove MAC header padding before giving the frame
1717 	* back to mac80211.
1718 	*/
1719 	ath5k_remove_padding(skb);
1720 
1721 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1722 		ah->stats.antenna_tx[ts->ts_antenna]++;
1723 	else
1724 		ah->stats.antenna_tx[0]++; /* invalid */
1725 
1726 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1727 	ieee80211_tx_status(ah->hw, skb);
1728 }
1729 
1730 static void
1731 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1732 {
1733 	struct ath5k_tx_status ts = {};
1734 	struct ath5k_buf *bf, *bf0;
1735 	struct ath5k_desc *ds;
1736 	struct sk_buff *skb;
1737 	int ret;
1738 
1739 	spin_lock(&txq->lock);
1740 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1741 
1742 		txq->txq_poll_mark = false;
1743 
1744 		/* skb might already have been processed last time. */
1745 		if (bf->skb != NULL) {
1746 			ds = bf->desc;
1747 
1748 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1749 			if (unlikely(ret == -EINPROGRESS))
1750 				break;
1751 			else if (unlikely(ret)) {
1752 				ATH5K_ERR(ah,
1753 					"error %d while processing "
1754 					"queue %u\n", ret, txq->qnum);
1755 				break;
1756 			}
1757 
1758 			skb = bf->skb;
1759 			bf->skb = NULL;
1760 
1761 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1762 					DMA_TO_DEVICE);
1763 			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1764 		}
1765 
1766 		/*
1767 		 * It's possible that the hardware can say the buffer is
1768 		 * completed when it hasn't yet loaded the ds_link from
1769 		 * host memory and moved on.
1770 		 * Always keep the last descriptor to avoid HW races...
1771 		 */
1772 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1773 			spin_lock(&ah->txbuflock);
1774 			list_move_tail(&bf->list, &ah->txbuf);
1775 			ah->txbuf_len++;
1776 			txq->txq_len--;
1777 			spin_unlock(&ah->txbuflock);
1778 		}
1779 	}
1780 	spin_unlock(&txq->lock);
1781 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1782 		ieee80211_wake_queue(ah->hw, txq->qnum);
1783 }
1784 
1785 static void
1786 ath5k_tasklet_tx(struct tasklet_struct *t)
1787 {
1788 	int i;
1789 	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1790 
1791 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1792 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1793 			ath5k_tx_processq(ah, &ah->txqs[i]);
1794 
1795 	ah->tx_pending = false;
1796 	ath5k_set_current_imask(ah);
1797 }
1798 
1799 
1800 /*****************\
1801 * Beacon handling *
1802 \*****************/
1803 
1804 /*
1805  * Setup the beacon frame for transmit.
1806  */
1807 static int
1808 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1809 {
1810 	struct sk_buff *skb = bf->skb;
1811 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1812 	struct ath5k_desc *ds;
1813 	int ret = 0;
1814 	u8 antenna;
1815 	u32 flags;
1816 	const int padsize = 0;
1817 
1818 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1819 			DMA_TO_DEVICE);
1820 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1821 			"skbaddr %llx\n", skb, skb->data, skb->len,
1822 			(unsigned long long)bf->skbaddr);
1823 
1824 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1825 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1826 		dev_kfree_skb_any(skb);
1827 		bf->skb = NULL;
1828 		return -EIO;
1829 	}
1830 
1831 	ds = bf->desc;
1832 	antenna = ah->ah_tx_ant;
1833 
1834 	flags = AR5K_TXDESC_NOACK;
1835 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1836 		ds->ds_link = bf->daddr;	/* self-linked */
1837 		flags |= AR5K_TXDESC_VEOL;
1838 	} else
1839 		ds->ds_link = 0;
1840 
1841 	/*
1842 	 * If we use multiple antennas on AP and use
1843 	 * the Sectored AP scenario, switch antenna every
1844 	 * 4 beacons to make sure everybody hears our AP.
1845 	 * When a client tries to associate, hw will keep
1846 	 * track of the tx antenna to be used for this client
1847 	 * automatically, based on ACKed packets.
1848 	 *
1849 	 * Note: AP still listens and transmits RTS on the
1850 	 * default antenna which is supposed to be an omni.
1851 	 *
1852 	 * Note2: On sectored scenarios it's possible to have
1853 	 * multiple antennas (1 omni -- the default -- and 14
1854 	 * sectors), so if we choose to actually support this
1855 	 * mode, we need to allow the user to set how many antennas
1856 	 * we have and tweak the code below to send beacons
1857 	 * on all of them.
1858 	 */
1859 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1860 		antenna = ah->bsent & 4 ? 2 : 1;
1861 
1862 
1863 	/* FIXME: If we are in g mode and rate is a CCK rate
1864 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1865 	 * from tx power (value is in dB units already) */
1866 	ds->ds_data = bf->skbaddr;
1867 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1868 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1869 			AR5K_PKT_TYPE_BEACON,
1870 			(ah->ah_txpower.txp_requested * 2),
1871 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1872 			1, AR5K_TXKEYIX_INVALID,
1873 			antenna, flags, 0, 0);
1874 	if (ret)
1875 		goto err_unmap;
1876 
1877 	return 0;
1878 err_unmap:
1879 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1880 	return ret;
1881 }
1882 
1883 /*
1884  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1885  * this is called only once at config_bss time, for AP we do it every
1886  * SWBA interrupt so that the TIM will reflect buffered frames.
1887  *
1888  * Called with the beacon lock.
1889  */
1890 int
1891 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1892 {
1893 	int ret;
1894 	struct ath5k_hw *ah = hw->priv;
1895 	struct ath5k_vif *avf;
1896 	struct sk_buff *skb;
1897 
1898 	if (WARN_ON(!vif)) {
1899 		ret = -EINVAL;
1900 		goto out;
1901 	}
1902 
1903 	skb = ieee80211_beacon_get(hw, vif);
1904 
1905 	if (!skb) {
1906 		ret = -ENOMEM;
1907 		goto out;
1908 	}
1909 
1910 	avf = (void *)vif->drv_priv;
1911 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1912 	avf->bbuf->skb = skb;
1913 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1914 out:
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1920  * frame contents are done as needed and the slot time is
1921  * also adjusted based on current state.
1922  *
1923  * This is called from software irq context (beacontq tasklets)
1924  * or user context from ath5k_beacon_config.
1925  */
1926 static void
1927 ath5k_beacon_send(struct ath5k_hw *ah)
1928 {
1929 	struct ieee80211_vif *vif;
1930 	struct ath5k_vif *avf;
1931 	struct ath5k_buf *bf;
1932 	struct sk_buff *skb;
1933 	int err;
1934 
1935 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1936 
1937 	/*
1938 	 * Check if the previous beacon has gone out.  If
1939 	 * not, don't don't try to post another: skip this
1940 	 * period and wait for the next.  Missed beacons
1941 	 * indicate a problem and should not occur.  If we
1942 	 * miss too many consecutive beacons reset the device.
1943 	 */
1944 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1945 		ah->bmisscount++;
1946 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1947 			"missed %u consecutive beacons\n", ah->bmisscount);
1948 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1949 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1950 				"stuck beacon time (%u missed)\n",
1951 				ah->bmisscount);
1952 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1953 				  "stuck beacon, resetting\n");
1954 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1955 		}
1956 		return;
1957 	}
1958 	if (unlikely(ah->bmisscount != 0)) {
1959 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1960 			"resume beacon xmit after %u misses\n",
1961 			ah->bmisscount);
1962 		ah->bmisscount = 0;
1963 	}
1964 
1965 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1966 			ah->num_mesh_vifs > 1) ||
1967 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1968 		u64 tsf = ath5k_hw_get_tsf64(ah);
1969 		u32 tsftu = TSF_TO_TU(tsf);
1970 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1971 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1972 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1973 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1974 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1975 	} else /* only one interface */
1976 		vif = ah->bslot[0];
1977 
1978 	if (!vif)
1979 		return;
1980 
1981 	avf = (void *)vif->drv_priv;
1982 	bf = avf->bbuf;
1983 
1984 	/*
1985 	 * Stop any current dma and put the new frame on the queue.
1986 	 * This should never fail since we check above that no frames
1987 	 * are still pending on the queue.
1988 	 */
1989 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1990 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1991 		/* NB: hw still stops DMA, so proceed */
1992 	}
1993 
1994 	/* refresh the beacon for AP or MESH mode */
1995 	if (ah->opmode == NL80211_IFTYPE_AP ||
1996 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1997 		err = ath5k_beacon_update(ah->hw, vif);
1998 		if (err)
1999 			return;
2000 	}
2001 
2002 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2003 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2004 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2005 		return;
2006 	}
2007 
2008 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2009 
2010 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2011 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2012 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2013 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2014 
2015 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2016 	while (skb) {
2017 		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2018 
2019 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2020 			break;
2021 
2022 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2023 	}
2024 
2025 	ah->bsent++;
2026 }
2027 
2028 /**
2029  * ath5k_beacon_update_timers - update beacon timers
2030  *
2031  * @ah: struct ath5k_hw pointer we are operating on
2032  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2033  *          beacon timer update based on the current HW TSF.
2034  *
2035  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2036  * of a received beacon or the current local hardware TSF and write it to the
2037  * beacon timer registers.
2038  *
2039  * This is called in a variety of situations, e.g. when a beacon is received,
2040  * when a TSF update has been detected, but also when an new IBSS is created or
2041  * when we otherwise know we have to update the timers, but we keep it in this
2042  * function to have it all together in one place.
2043  */
2044 void
2045 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2046 {
2047 	u32 nexttbtt, intval, hw_tu, bc_tu;
2048 	u64 hw_tsf;
2049 
2050 	intval = ah->bintval & AR5K_BEACON_PERIOD;
2051 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2052 		+ ah->num_mesh_vifs > 1) {
2053 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2054 		if (intval < 15)
2055 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2056 				   intval);
2057 	}
2058 	if (WARN_ON(!intval))
2059 		return;
2060 
2061 	/* beacon TSF converted to TU */
2062 	bc_tu = TSF_TO_TU(bc_tsf);
2063 
2064 	/* current TSF converted to TU */
2065 	hw_tsf = ath5k_hw_get_tsf64(ah);
2066 	hw_tu = TSF_TO_TU(hw_tsf);
2067 
2068 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2069 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2070 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2071 	 * configuration we need to make sure it is bigger than that. */
2072 
2073 	if (bc_tsf == -1) {
2074 		/*
2075 		 * no beacons received, called internally.
2076 		 * just need to refresh timers based on HW TSF.
2077 		 */
2078 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2079 	} else if (bc_tsf == 0) {
2080 		/*
2081 		 * no beacon received, probably called by ath5k_reset_tsf().
2082 		 * reset TSF to start with 0.
2083 		 */
2084 		nexttbtt = intval;
2085 		intval |= AR5K_BEACON_RESET_TSF;
2086 	} else if (bc_tsf > hw_tsf) {
2087 		/*
2088 		 * beacon received, SW merge happened but HW TSF not yet updated.
2089 		 * not possible to reconfigure timers yet, but next time we
2090 		 * receive a beacon with the same BSSID, the hardware will
2091 		 * automatically update the TSF and then we need to reconfigure
2092 		 * the timers.
2093 		 */
2094 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2095 			"need to wait for HW TSF sync\n");
2096 		return;
2097 	} else {
2098 		/*
2099 		 * most important case for beacon synchronization between STA.
2100 		 *
2101 		 * beacon received and HW TSF has been already updated by HW.
2102 		 * update next TBTT based on the TSF of the beacon, but make
2103 		 * sure it is ahead of our local TSF timer.
2104 		 */
2105 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2106 	}
2107 #undef FUDGE
2108 
2109 	ah->nexttbtt = nexttbtt;
2110 
2111 	intval |= AR5K_BEACON_ENA;
2112 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2113 
2114 	/*
2115 	 * debugging output last in order to preserve the time critical aspect
2116 	 * of this function
2117 	 */
2118 	if (bc_tsf == -1)
2119 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2120 			"reconfigured timers based on HW TSF\n");
2121 	else if (bc_tsf == 0)
2122 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2123 			"reset HW TSF and timers\n");
2124 	else
2125 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2126 			"updated timers based on beacon TSF\n");
2127 
2128 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2129 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2130 			  (unsigned long long) bc_tsf,
2131 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2132 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2133 		intval & AR5K_BEACON_PERIOD,
2134 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2135 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2136 }
2137 
2138 /**
2139  * ath5k_beacon_config - Configure the beacon queues and interrupts
2140  *
2141  * @ah: struct ath5k_hw pointer we are operating on
2142  *
2143  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2144  * interrupts to detect TSF updates only.
2145  */
2146 void
2147 ath5k_beacon_config(struct ath5k_hw *ah)
2148 {
2149 	spin_lock_bh(&ah->block);
2150 	ah->bmisscount = 0;
2151 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2152 
2153 	if (ah->enable_beacon) {
2154 		/*
2155 		 * In IBSS mode we use a self-linked tx descriptor and let the
2156 		 * hardware send the beacons automatically. We have to load it
2157 		 * only once here.
2158 		 * We use the SWBA interrupt only to keep track of the beacon
2159 		 * timers in order to detect automatic TSF updates.
2160 		 */
2161 		ath5k_beaconq_config(ah);
2162 
2163 		ah->imask |= AR5K_INT_SWBA;
2164 
2165 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2166 			if (ath5k_hw_hasveol(ah))
2167 				ath5k_beacon_send(ah);
2168 		} else
2169 			ath5k_beacon_update_timers(ah, -1);
2170 	} else {
2171 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2172 	}
2173 
2174 	ath5k_hw_set_imr(ah, ah->imask);
2175 	spin_unlock_bh(&ah->block);
2176 }
2177 
2178 static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2179 {
2180 	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2181 
2182 	/*
2183 	 * Software beacon alert--time to send a beacon.
2184 	 *
2185 	 * In IBSS mode we use this interrupt just to
2186 	 * keep track of the next TBTT (target beacon
2187 	 * transmission time) in order to detect whether
2188 	 * automatic TSF updates happened.
2189 	 */
2190 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2191 		/* XXX: only if VEOL supported */
2192 		u64 tsf = ath5k_hw_get_tsf64(ah);
2193 		ah->nexttbtt += ah->bintval;
2194 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2195 				"SWBA nexttbtt: %x hw_tu: %x "
2196 				"TSF: %llx\n",
2197 				ah->nexttbtt,
2198 				TSF_TO_TU(tsf),
2199 				(unsigned long long) tsf);
2200 	} else {
2201 		spin_lock(&ah->block);
2202 		ath5k_beacon_send(ah);
2203 		spin_unlock(&ah->block);
2204 	}
2205 }
2206 
2207 
2208 /********************\
2209 * Interrupt handling *
2210 \********************/
2211 
2212 static void
2213 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2214 {
2215 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2216 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2217 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2218 
2219 		/* Run ANI only when calibration is not active */
2220 
2221 		ah->ah_cal_next_ani = jiffies +
2222 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2223 		tasklet_schedule(&ah->ani_tasklet);
2224 
2225 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2226 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2227 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2228 
2229 		/* Run calibration only when another calibration
2230 		 * is not running.
2231 		 *
2232 		 * Note: This is for both full/short calibration,
2233 		 * if it's time for a full one, ath5k_calibrate_work will deal
2234 		 * with it. */
2235 
2236 		ah->ah_cal_next_short = jiffies +
2237 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2238 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2239 	}
2240 	/* we could use SWI to generate enough interrupts to meet our
2241 	 * calibration interval requirements, if necessary:
2242 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2243 }
2244 
2245 static void
2246 ath5k_schedule_rx(struct ath5k_hw *ah)
2247 {
2248 	ah->rx_pending = true;
2249 	tasklet_schedule(&ah->rxtq);
2250 }
2251 
2252 static void
2253 ath5k_schedule_tx(struct ath5k_hw *ah)
2254 {
2255 	ah->tx_pending = true;
2256 	tasklet_schedule(&ah->txtq);
2257 }
2258 
2259 static irqreturn_t
2260 ath5k_intr(int irq, void *dev_id)
2261 {
2262 	struct ath5k_hw *ah = dev_id;
2263 	enum ath5k_int status;
2264 	unsigned int counter = 1000;
2265 
2266 
2267 	/*
2268 	 * If hw is not ready (or detached) and we get an
2269 	 * interrupt, or if we have no interrupts pending
2270 	 * (that means it's not for us) skip it.
2271 	 *
2272 	 * NOTE: Group 0/1 PCI interface registers are not
2273 	 * supported on WiSOCs, so we can't check for pending
2274 	 * interrupts (ISR belongs to another register group
2275 	 * so we are ok).
2276 	 */
2277 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2278 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2279 			!ath5k_hw_is_intr_pending(ah))))
2280 		return IRQ_NONE;
2281 
2282 	/** Main loop **/
2283 	do {
2284 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2285 
2286 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2287 				status, ah->imask);
2288 
2289 		/*
2290 		 * Fatal hw error -> Log and reset
2291 		 *
2292 		 * Fatal errors are unrecoverable so we have to
2293 		 * reset the card. These errors include bus and
2294 		 * dma errors.
2295 		 */
2296 		if (unlikely(status & AR5K_INT_FATAL)) {
2297 
2298 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2299 				  "fatal int, resetting\n");
2300 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2301 
2302 		/*
2303 		 * RX Overrun -> Count and reset if needed
2304 		 *
2305 		 * Receive buffers are full. Either the bus is busy or
2306 		 * the CPU is not fast enough to process all received
2307 		 * frames.
2308 		 */
2309 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2310 
2311 			/*
2312 			 * Older chipsets need a reset to come out of this
2313 			 * condition, but we treat it as RX for newer chips.
2314 			 * We don't know exactly which versions need a reset
2315 			 * this guess is copied from the HAL.
2316 			 */
2317 			ah->stats.rxorn_intr++;
2318 
2319 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2320 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2321 					  "rx overrun, resetting\n");
2322 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2323 			} else
2324 				ath5k_schedule_rx(ah);
2325 
2326 		} else {
2327 
2328 			/* Software Beacon Alert -> Schedule beacon tasklet */
2329 			if (status & AR5K_INT_SWBA)
2330 				tasklet_hi_schedule(&ah->beacontq);
2331 
2332 			/*
2333 			 * No more RX descriptors -> Just count
2334 			 *
2335 			 * NB: the hardware should re-read the link when
2336 			 *     RXE bit is written, but it doesn't work at
2337 			 *     least on older hardware revs.
2338 			 */
2339 			if (status & AR5K_INT_RXEOL)
2340 				ah->stats.rxeol_intr++;
2341 
2342 
2343 			/* TX Underrun -> Bump tx trigger level */
2344 			if (status & AR5K_INT_TXURN)
2345 				ath5k_hw_update_tx_triglevel(ah, true);
2346 
2347 			/* RX -> Schedule rx tasklet */
2348 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2349 				ath5k_schedule_rx(ah);
2350 
2351 			/* TX -> Schedule tx tasklet */
2352 			if (status & (AR5K_INT_TXOK
2353 					| AR5K_INT_TXDESC
2354 					| AR5K_INT_TXERR
2355 					| AR5K_INT_TXEOL))
2356 				ath5k_schedule_tx(ah);
2357 
2358 			/* Missed beacon -> TODO
2359 			if (status & AR5K_INT_BMISS)
2360 			*/
2361 
2362 			/* MIB event -> Update counters and notify ANI */
2363 			if (status & AR5K_INT_MIB) {
2364 				ah->stats.mib_intr++;
2365 				ath5k_hw_update_mib_counters(ah);
2366 				ath5k_ani_mib_intr(ah);
2367 			}
2368 
2369 			/* GPIO -> Notify RFKill layer */
2370 			if (status & AR5K_INT_GPIO)
2371 				tasklet_schedule(&ah->rf_kill.toggleq);
2372 
2373 		}
2374 
2375 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2376 			break;
2377 
2378 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2379 
2380 	/*
2381 	 * Until we handle rx/tx interrupts mask them on IMR
2382 	 *
2383 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2384 	 * and unset after we 've handled the interrupts.
2385 	 */
2386 	if (ah->rx_pending || ah->tx_pending)
2387 		ath5k_set_current_imask(ah);
2388 
2389 	if (unlikely(!counter))
2390 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2391 
2392 	/* Fire up calibration poll */
2393 	ath5k_intr_calibration_poll(ah);
2394 
2395 	return IRQ_HANDLED;
2396 }
2397 
2398 /*
2399  * Periodically recalibrate the PHY to account
2400  * for temperature/environment changes.
2401  */
2402 static void
2403 ath5k_calibrate_work(struct work_struct *work)
2404 {
2405 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2406 		calib_work);
2407 
2408 	/* Should we run a full calibration ? */
2409 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2410 
2411 		ah->ah_cal_next_full = jiffies +
2412 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2413 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2414 
2415 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2416 				"running full calibration\n");
2417 
2418 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2419 			/*
2420 			 * Rfgain is out of bounds, reset the chip
2421 			 * to load new gain values.
2422 			 */
2423 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2424 					"got new rfgain, resetting\n");
2425 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2426 		}
2427 	} else
2428 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2429 
2430 
2431 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2432 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2433 		ah->curchan->hw_value);
2434 
2435 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2436 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2437 			ieee80211_frequency_to_channel(
2438 				ah->curchan->center_freq));
2439 
2440 	/* Clear calibration flags */
2441 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2442 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2443 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2444 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2445 }
2446 
2447 
2448 static void
2449 ath5k_tasklet_ani(struct tasklet_struct *t)
2450 {
2451 	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2452 
2453 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2454 	ath5k_ani_calibration(ah);
2455 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2456 }
2457 
2458 
2459 static void
2460 ath5k_tx_complete_poll_work(struct work_struct *work)
2461 {
2462 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2463 			tx_complete_work.work);
2464 	struct ath5k_txq *txq;
2465 	int i;
2466 	bool needreset = false;
2467 
2468 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2469 		return;
2470 
2471 	mutex_lock(&ah->lock);
2472 
2473 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2474 		if (ah->txqs[i].setup) {
2475 			txq = &ah->txqs[i];
2476 			spin_lock_bh(&txq->lock);
2477 			if (txq->txq_len > 1) {
2478 				if (txq->txq_poll_mark) {
2479 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2480 						  "TX queue stuck %d\n",
2481 						  txq->qnum);
2482 					needreset = true;
2483 					txq->txq_stuck++;
2484 					spin_unlock_bh(&txq->lock);
2485 					break;
2486 				} else {
2487 					txq->txq_poll_mark = true;
2488 				}
2489 			}
2490 			spin_unlock_bh(&txq->lock);
2491 		}
2492 	}
2493 
2494 	if (needreset) {
2495 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2496 			  "TX queues stuck, resetting\n");
2497 		ath5k_reset(ah, NULL, true);
2498 	}
2499 
2500 	mutex_unlock(&ah->lock);
2501 
2502 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2503 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2504 }
2505 
2506 
2507 /*************************\
2508 * Initialization routines *
2509 \*************************/
2510 
2511 static const struct ieee80211_iface_limit if_limits[] = {
2512 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2513 	{ .max = 4,	.types =
2514 #ifdef CONFIG_MAC80211_MESH
2515 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2516 #endif
2517 				 BIT(NL80211_IFTYPE_AP) },
2518 };
2519 
2520 static const struct ieee80211_iface_combination if_comb = {
2521 	.limits = if_limits,
2522 	.n_limits = ARRAY_SIZE(if_limits),
2523 	.max_interfaces = 2048,
2524 	.num_different_channels = 1,
2525 };
2526 
2527 int
2528 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2529 {
2530 	struct ieee80211_hw *hw = ah->hw;
2531 	struct ath_common *common;
2532 	int ret;
2533 	int csz;
2534 
2535 	/* Initialize driver private data */
2536 	SET_IEEE80211_DEV(hw, ah->dev);
2537 	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2538 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2539 	ieee80211_hw_set(hw, MFP_CAPABLE);
2540 	ieee80211_hw_set(hw, SIGNAL_DBM);
2541 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2542 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2543 
2544 	hw->wiphy->interface_modes =
2545 		BIT(NL80211_IFTYPE_AP) |
2546 		BIT(NL80211_IFTYPE_STATION) |
2547 		BIT(NL80211_IFTYPE_ADHOC) |
2548 		BIT(NL80211_IFTYPE_MESH_POINT);
2549 
2550 	hw->wiphy->iface_combinations = &if_comb;
2551 	hw->wiphy->n_iface_combinations = 1;
2552 
2553 	/* SW support for IBSS_RSN is provided by mac80211 */
2554 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2555 
2556 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2557 
2558 	/* both antennas can be configured as RX or TX */
2559 	hw->wiphy->available_antennas_tx = 0x3;
2560 	hw->wiphy->available_antennas_rx = 0x3;
2561 
2562 	hw->extra_tx_headroom = 2;
2563 
2564 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2565 
2566 	/*
2567 	 * Mark the device as detached to avoid processing
2568 	 * interrupts until setup is complete.
2569 	 */
2570 	__set_bit(ATH_STAT_INVALID, ah->status);
2571 
2572 	ah->opmode = NL80211_IFTYPE_STATION;
2573 	ah->bintval = 1000;
2574 	mutex_init(&ah->lock);
2575 	spin_lock_init(&ah->rxbuflock);
2576 	spin_lock_init(&ah->txbuflock);
2577 	spin_lock_init(&ah->block);
2578 	spin_lock_init(&ah->irqlock);
2579 
2580 	/* Setup interrupt handler */
2581 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2582 	if (ret) {
2583 		ATH5K_ERR(ah, "request_irq failed\n");
2584 		goto err;
2585 	}
2586 
2587 	common = ath5k_hw_common(ah);
2588 	common->ops = &ath5k_common_ops;
2589 	common->bus_ops = bus_ops;
2590 	common->ah = ah;
2591 	common->hw = hw;
2592 	common->priv = ah;
2593 	common->clockrate = 40;
2594 
2595 	/*
2596 	 * Cache line size is used to size and align various
2597 	 * structures used to communicate with the hardware.
2598 	 */
2599 	ath5k_read_cachesize(common, &csz);
2600 	common->cachelsz = csz << 2; /* convert to bytes */
2601 
2602 	spin_lock_init(&common->cc_lock);
2603 
2604 	/* Initialize device */
2605 	ret = ath5k_hw_init(ah);
2606 	if (ret)
2607 		goto err_irq;
2608 
2609 	/* Set up multi-rate retry capabilities */
2610 	if (ah->ah_capabilities.cap_has_mrr_support) {
2611 		hw->max_rates = 4;
2612 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2613 					 AR5K_INIT_RETRY_LONG);
2614 	}
2615 
2616 	hw->vif_data_size = sizeof(struct ath5k_vif);
2617 
2618 	/* Finish private driver data initialization */
2619 	ret = ath5k_init(hw);
2620 	if (ret)
2621 		goto err_ah;
2622 
2623 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2624 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2625 					ah->ah_mac_srev,
2626 					ah->ah_phy_revision);
2627 
2628 	if (!ah->ah_single_chip) {
2629 		/* Single chip radio (!RF5111) */
2630 		if (ah->ah_radio_5ghz_revision &&
2631 			!ah->ah_radio_2ghz_revision) {
2632 			/* No 5GHz support -> report 2GHz radio */
2633 			if (!test_bit(AR5K_MODE_11A,
2634 				ah->ah_capabilities.cap_mode)) {
2635 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2636 					ath5k_chip_name(AR5K_VERSION_RAD,
2637 						ah->ah_radio_5ghz_revision),
2638 						ah->ah_radio_5ghz_revision);
2639 			/* No 2GHz support (5110 and some
2640 			 * 5GHz only cards) -> report 5GHz radio */
2641 			} else if (!test_bit(AR5K_MODE_11B,
2642 				ah->ah_capabilities.cap_mode)) {
2643 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2644 					ath5k_chip_name(AR5K_VERSION_RAD,
2645 						ah->ah_radio_5ghz_revision),
2646 						ah->ah_radio_5ghz_revision);
2647 			/* Multiband radio */
2648 			} else {
2649 				ATH5K_INFO(ah, "RF%s multiband radio found"
2650 					" (0x%x)\n",
2651 					ath5k_chip_name(AR5K_VERSION_RAD,
2652 						ah->ah_radio_5ghz_revision),
2653 						ah->ah_radio_5ghz_revision);
2654 			}
2655 		}
2656 		/* Multi chip radio (RF5111 - RF2111) ->
2657 		 * report both 2GHz/5GHz radios */
2658 		else if (ah->ah_radio_5ghz_revision &&
2659 				ah->ah_radio_2ghz_revision) {
2660 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2661 				ath5k_chip_name(AR5K_VERSION_RAD,
2662 					ah->ah_radio_5ghz_revision),
2663 					ah->ah_radio_5ghz_revision);
2664 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2665 				ath5k_chip_name(AR5K_VERSION_RAD,
2666 					ah->ah_radio_2ghz_revision),
2667 					ah->ah_radio_2ghz_revision);
2668 		}
2669 	}
2670 
2671 	ath5k_debug_init_device(ah);
2672 
2673 	/* ready to process interrupts */
2674 	__clear_bit(ATH_STAT_INVALID, ah->status);
2675 
2676 	return 0;
2677 err_ah:
2678 	ath5k_hw_deinit(ah);
2679 err_irq:
2680 	free_irq(ah->irq, ah);
2681 err:
2682 	return ret;
2683 }
2684 
2685 static int
2686 ath5k_stop_locked(struct ath5k_hw *ah)
2687 {
2688 
2689 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2690 			test_bit(ATH_STAT_INVALID, ah->status));
2691 
2692 	/*
2693 	 * Shutdown the hardware and driver:
2694 	 *    stop output from above
2695 	 *    disable interrupts
2696 	 *    turn off timers
2697 	 *    turn off the radio
2698 	 *    clear transmit machinery
2699 	 *    clear receive machinery
2700 	 *    drain and release tx queues
2701 	 *    reclaim beacon resources
2702 	 *    power down hardware
2703 	 *
2704 	 * Note that some of this work is not possible if the
2705 	 * hardware is gone (invalid).
2706 	 */
2707 	ieee80211_stop_queues(ah->hw);
2708 
2709 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2710 		ath5k_led_off(ah);
2711 		ath5k_hw_set_imr(ah, 0);
2712 		synchronize_irq(ah->irq);
2713 		ath5k_rx_stop(ah);
2714 		ath5k_hw_dma_stop(ah);
2715 		ath5k_drain_tx_buffs(ah);
2716 		ath5k_hw_phy_disable(ah);
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 int ath5k_start(struct ieee80211_hw *hw)
2723 {
2724 	struct ath5k_hw *ah = hw->priv;
2725 	struct ath_common *common = ath5k_hw_common(ah);
2726 	int ret, i;
2727 
2728 	mutex_lock(&ah->lock);
2729 
2730 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2731 
2732 	/*
2733 	 * Stop anything previously setup.  This is safe
2734 	 * no matter this is the first time through or not.
2735 	 */
2736 	ath5k_stop_locked(ah);
2737 
2738 	/*
2739 	 * The basic interface to setting the hardware in a good
2740 	 * state is ``reset''.  On return the hardware is known to
2741 	 * be powered up and with interrupts disabled.  This must
2742 	 * be followed by initialization of the appropriate bits
2743 	 * and then setup of the interrupt mask.
2744 	 */
2745 	ah->curchan = ah->hw->conf.chandef.chan;
2746 	ah->imask = AR5K_INT_RXOK
2747 		| AR5K_INT_RXERR
2748 		| AR5K_INT_RXEOL
2749 		| AR5K_INT_RXORN
2750 		| AR5K_INT_TXDESC
2751 		| AR5K_INT_TXEOL
2752 		| AR5K_INT_FATAL
2753 		| AR5K_INT_GLOBAL
2754 		| AR5K_INT_MIB;
2755 
2756 	ret = ath5k_reset(ah, NULL, false);
2757 	if (ret)
2758 		goto done;
2759 
2760 	if (!ath5k_modparam_no_hw_rfkill_switch)
2761 		ath5k_rfkill_hw_start(ah);
2762 
2763 	/*
2764 	 * Reset the key cache since some parts do not reset the
2765 	 * contents on initial power up or resume from suspend.
2766 	 */
2767 	for (i = 0; i < common->keymax; i++)
2768 		ath_hw_keyreset(common, (u16) i);
2769 
2770 	/* Use higher rates for acks instead of base
2771 	 * rate */
2772 	ah->ah_ack_bitrate_high = true;
2773 
2774 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2775 		ah->bslot[i] = NULL;
2776 
2777 	ret = 0;
2778 done:
2779 	mutex_unlock(&ah->lock);
2780 
2781 	set_bit(ATH_STAT_STARTED, ah->status);
2782 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2783 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2784 
2785 	return ret;
2786 }
2787 
2788 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2789 {
2790 	ah->rx_pending = false;
2791 	ah->tx_pending = false;
2792 	tasklet_kill(&ah->rxtq);
2793 	tasklet_kill(&ah->txtq);
2794 	tasklet_kill(&ah->beacontq);
2795 	tasklet_kill(&ah->ani_tasklet);
2796 }
2797 
2798 /*
2799  * Stop the device, grabbing the top-level lock to protect
2800  * against concurrent entry through ath5k_init (which can happen
2801  * if another thread does a system call and the thread doing the
2802  * stop is preempted).
2803  */
2804 void ath5k_stop(struct ieee80211_hw *hw)
2805 {
2806 	struct ath5k_hw *ah = hw->priv;
2807 	int ret;
2808 
2809 	mutex_lock(&ah->lock);
2810 	ret = ath5k_stop_locked(ah);
2811 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2812 		/*
2813 		 * Don't set the card in full sleep mode!
2814 		 *
2815 		 * a) When the device is in this state it must be carefully
2816 		 * woken up or references to registers in the PCI clock
2817 		 * domain may freeze the bus (and system).  This varies
2818 		 * by chip and is mostly an issue with newer parts
2819 		 * (madwifi sources mentioned srev >= 0x78) that go to
2820 		 * sleep more quickly.
2821 		 *
2822 		 * b) On older chips full sleep results a weird behaviour
2823 		 * during wakeup. I tested various cards with srev < 0x78
2824 		 * and they don't wake up after module reload, a second
2825 		 * module reload is needed to bring the card up again.
2826 		 *
2827 		 * Until we figure out what's going on don't enable
2828 		 * full chip reset on any chip (this is what Legacy HAL
2829 		 * and Sam's HAL do anyway). Instead Perform a full reset
2830 		 * on the device (same as initial state after attach) and
2831 		 * leave it idle (keep MAC/BB on warm reset) */
2832 		ret = ath5k_hw_on_hold(ah);
2833 
2834 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2835 				"putting device to sleep\n");
2836 	}
2837 
2838 	mutex_unlock(&ah->lock);
2839 
2840 	ath5k_stop_tasklets(ah);
2841 
2842 	clear_bit(ATH_STAT_STARTED, ah->status);
2843 	cancel_delayed_work_sync(&ah->tx_complete_work);
2844 
2845 	if (!ath5k_modparam_no_hw_rfkill_switch)
2846 		ath5k_rfkill_hw_stop(ah);
2847 }
2848 
2849 /*
2850  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2851  * and change to the given channel.
2852  *
2853  * This should be called with ah->lock.
2854  */
2855 static int
2856 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2857 							bool skip_pcu)
2858 {
2859 	struct ath_common *common = ath5k_hw_common(ah);
2860 	int ret, ani_mode;
2861 	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2862 
2863 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2864 
2865 	__set_bit(ATH_STAT_RESET, ah->status);
2866 
2867 	ath5k_hw_set_imr(ah, 0);
2868 	synchronize_irq(ah->irq);
2869 	ath5k_stop_tasklets(ah);
2870 
2871 	/* Save ani mode and disable ANI during
2872 	 * reset. If we don't we might get false
2873 	 * PHY error interrupts. */
2874 	ani_mode = ah->ani_state.ani_mode;
2875 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2876 
2877 	/* We are going to empty hw queues
2878 	 * so we should also free any remaining
2879 	 * tx buffers */
2880 	ath5k_drain_tx_buffs(ah);
2881 
2882 	/* Stop PCU */
2883 	ath5k_hw_stop_rx_pcu(ah);
2884 
2885 	/* Stop DMA
2886 	 *
2887 	 * Note: If DMA didn't stop continue
2888 	 * since only a reset will fix it.
2889 	 */
2890 	ret = ath5k_hw_dma_stop(ah);
2891 
2892 	/* RF Bus grant won't work if we have pending
2893 	 * frames
2894 	 */
2895 	if (ret && fast) {
2896 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2897 			  "DMA didn't stop, falling back to normal reset\n");
2898 		fast = false;
2899 	}
2900 
2901 	if (chan)
2902 		ah->curchan = chan;
2903 
2904 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2905 	if (ret) {
2906 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2907 		goto err;
2908 	}
2909 
2910 	ret = ath5k_rx_start(ah);
2911 	if (ret) {
2912 		ATH5K_ERR(ah, "can't start recv logic\n");
2913 		goto err;
2914 	}
2915 
2916 	ath5k_ani_init(ah, ani_mode);
2917 
2918 	/*
2919 	 * Set calibration intervals
2920 	 *
2921 	 * Note: We don't need to run calibration imediately
2922 	 * since some initial calibration is done on reset
2923 	 * even for fast channel switching. Also on scanning
2924 	 * this will get set again and again and it won't get
2925 	 * executed unless we connect somewhere and spend some
2926 	 * time on the channel (that's what calibration needs
2927 	 * anyway to be accurate).
2928 	 */
2929 	ah->ah_cal_next_full = jiffies +
2930 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2931 	ah->ah_cal_next_ani = jiffies +
2932 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2933 	ah->ah_cal_next_short = jiffies +
2934 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2935 
2936 	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2937 
2938 	/* clear survey data and cycle counters */
2939 	memset(&ah->survey, 0, sizeof(ah->survey));
2940 	spin_lock_bh(&common->cc_lock);
2941 	ath_hw_cycle_counters_update(common);
2942 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2943 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2944 	spin_unlock_bh(&common->cc_lock);
2945 
2946 	/*
2947 	 * Change channels and update the h/w rate map if we're switching;
2948 	 * e.g. 11a to 11b/g.
2949 	 *
2950 	 * We may be doing a reset in response to an ioctl that changes the
2951 	 * channel so update any state that might change as a result.
2952 	 *
2953 	 * XXX needed?
2954 	 */
2955 /*	ath5k_chan_change(ah, c); */
2956 
2957 	__clear_bit(ATH_STAT_RESET, ah->status);
2958 
2959 	ath5k_beacon_config(ah);
2960 	/* intrs are enabled by ath5k_beacon_config */
2961 
2962 	ieee80211_wake_queues(ah->hw);
2963 
2964 	return 0;
2965 err:
2966 	return ret;
2967 }
2968 
2969 static void ath5k_reset_work(struct work_struct *work)
2970 {
2971 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2972 		reset_work);
2973 
2974 	mutex_lock(&ah->lock);
2975 	ath5k_reset(ah, NULL, true);
2976 	mutex_unlock(&ah->lock);
2977 }
2978 
2979 static int
2980 ath5k_init(struct ieee80211_hw *hw)
2981 {
2982 
2983 	struct ath5k_hw *ah = hw->priv;
2984 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2985 	struct ath5k_txq *txq;
2986 	u8 mac[ETH_ALEN] = {};
2987 	int ret;
2988 
2989 
2990 	/*
2991 	 * Collect the channel list.  The 802.11 layer
2992 	 * is responsible for filtering this list based
2993 	 * on settings like the phy mode and regulatory
2994 	 * domain restrictions.
2995 	 */
2996 	ret = ath5k_setup_bands(hw);
2997 	if (ret) {
2998 		ATH5K_ERR(ah, "can't get channels\n");
2999 		goto err;
3000 	}
3001 
3002 	/*
3003 	 * Allocate tx+rx descriptors and populate the lists.
3004 	 */
3005 	ret = ath5k_desc_alloc(ah);
3006 	if (ret) {
3007 		ATH5K_ERR(ah, "can't allocate descriptors\n");
3008 		goto err;
3009 	}
3010 
3011 	/*
3012 	 * Allocate hardware transmit queues: one queue for
3013 	 * beacon frames and one data queue for each QoS
3014 	 * priority.  Note that hw functions handle resetting
3015 	 * these queues at the needed time.
3016 	 */
3017 	ret = ath5k_beaconq_setup(ah);
3018 	if (ret < 0) {
3019 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3020 		goto err_desc;
3021 	}
3022 	ah->bhalq = ret;
3023 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3024 	if (IS_ERR(ah->cabq)) {
3025 		ATH5K_ERR(ah, "can't setup cab queue\n");
3026 		ret = PTR_ERR(ah->cabq);
3027 		goto err_bhal;
3028 	}
3029 
3030 	/* 5211 and 5212 usually support 10 queues but we better rely on the
3031 	 * capability information */
3032 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3033 		/* This order matches mac80211's queue priority, so we can
3034 		* directly use the mac80211 queue number without any mapping */
3035 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3036 		if (IS_ERR(txq)) {
3037 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3038 			ret = PTR_ERR(txq);
3039 			goto err_queues;
3040 		}
3041 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3042 		if (IS_ERR(txq)) {
3043 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3044 			ret = PTR_ERR(txq);
3045 			goto err_queues;
3046 		}
3047 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3048 		if (IS_ERR(txq)) {
3049 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3050 			ret = PTR_ERR(txq);
3051 			goto err_queues;
3052 		}
3053 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3054 		if (IS_ERR(txq)) {
3055 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3056 			ret = PTR_ERR(txq);
3057 			goto err_queues;
3058 		}
3059 		hw->queues = 4;
3060 	} else {
3061 		/* older hardware (5210) can only support one data queue */
3062 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3063 		if (IS_ERR(txq)) {
3064 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3065 			ret = PTR_ERR(txq);
3066 			goto err_queues;
3067 		}
3068 		hw->queues = 1;
3069 	}
3070 
3071 	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3072 	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3073 	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3074 	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3075 
3076 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3077 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3078 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3079 
3080 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3081 	if (ret) {
3082 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3083 		goto err_queues;
3084 	}
3085 
3086 	SET_IEEE80211_PERM_ADDR(hw, mac);
3087 	/* All MAC address bits matter for ACKs */
3088 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3089 
3090 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3091 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3092 	if (ret) {
3093 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3094 		goto err_queues;
3095 	}
3096 
3097 	ret = ieee80211_register_hw(hw);
3098 	if (ret) {
3099 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3100 		goto err_queues;
3101 	}
3102 
3103 	if (!ath_is_world_regd(regulatory))
3104 		regulatory_hint(hw->wiphy, regulatory->alpha2);
3105 
3106 	ath5k_init_leds(ah);
3107 
3108 	ath5k_sysfs_register(ah);
3109 
3110 	return 0;
3111 err_queues:
3112 	ath5k_txq_release(ah);
3113 err_bhal:
3114 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3115 err_desc:
3116 	ath5k_desc_free(ah);
3117 err:
3118 	return ret;
3119 }
3120 
3121 void
3122 ath5k_deinit_ah(struct ath5k_hw *ah)
3123 {
3124 	struct ieee80211_hw *hw = ah->hw;
3125 
3126 	/*
3127 	 * NB: the order of these is important:
3128 	 * o call the 802.11 layer before detaching ath5k_hw to
3129 	 *   ensure callbacks into the driver to delete global
3130 	 *   key cache entries can be handled
3131 	 * o reclaim the tx queue data structures after calling
3132 	 *   the 802.11 layer as we'll get called back to reclaim
3133 	 *   node state and potentially want to use them
3134 	 * o to cleanup the tx queues the hal is called, so detach
3135 	 *   it last
3136 	 * XXX: ??? detach ath5k_hw ???
3137 	 * Other than that, it's straightforward...
3138 	 */
3139 	ieee80211_unregister_hw(hw);
3140 	ath5k_desc_free(ah);
3141 	ath5k_txq_release(ah);
3142 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3143 	ath5k_unregister_leds(ah);
3144 
3145 	ath5k_sysfs_unregister(ah);
3146 	/*
3147 	 * NB: can't reclaim these until after ieee80211_ifdetach
3148 	 * returns because we'll get called back to reclaim node
3149 	 * state and potentially want to use them.
3150 	 */
3151 	ath5k_hw_deinit(ah);
3152 	free_irq(ah->irq, ah);
3153 }
3154 
3155 bool
3156 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3157 {
3158 	struct ath5k_vif_iter_data iter_data;
3159 	iter_data.hw_macaddr = NULL;
3160 	iter_data.any_assoc = false;
3161 	iter_data.need_set_hw_addr = false;
3162 	iter_data.found_active = true;
3163 
3164 	ieee80211_iterate_active_interfaces_atomic(
3165 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3166 		ath5k_vif_iter, &iter_data);
3167 	return iter_data.any_assoc;
3168 }
3169 
3170 void
3171 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3172 {
3173 	struct ath5k_hw *ah = hw->priv;
3174 	u32 rfilt;
3175 	rfilt = ath5k_hw_get_rx_filter(ah);
3176 	if (enable)
3177 		rfilt |= AR5K_RX_FILTER_BEACON;
3178 	else
3179 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3180 	ath5k_hw_set_rx_filter(ah, rfilt);
3181 	ah->filter_flags = rfilt;
3182 }
3183 
3184 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3185 		   const char *fmt, ...)
3186 {
3187 	struct va_format vaf;
3188 	va_list args;
3189 
3190 	va_start(args, fmt);
3191 
3192 	vaf.fmt = fmt;
3193 	vaf.va = &args;
3194 
3195 	if (ah && ah->hw)
3196 		printk("%s" pr_fmt("%s: %pV"),
3197 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3198 	else
3199 		printk("%s" pr_fmt("%pV"), level, &vaf);
3200 
3201 	va_end(args);
3202 }
3203