xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/base.c (revision 05bcf503)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72 
73 bool ath5k_modparam_nohwcrypt;
74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76 
77 static bool modparam_fastchanswitch;
78 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
79 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
80 
81 static bool ath5k_modparam_no_hw_rfkill_switch;
82 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
83 								bool, S_IRUGO);
84 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
85 
86 
87 /* Module info */
88 MODULE_AUTHOR("Jiri Slaby");
89 MODULE_AUTHOR("Nick Kossifidis");
90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
92 MODULE_LICENSE("Dual BSD/GPL");
93 
94 static int ath5k_init(struct ieee80211_hw *hw);
95 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
96 								bool skip_pcu);
97 
98 /* Known SREVs */
99 static const struct ath5k_srev_name srev_names[] = {
100 #ifdef CONFIG_ATHEROS_AR231X
101 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
103 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
104 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
106 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
108 #else
109 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
110 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
111 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
112 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
113 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
114 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
115 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
116 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
117 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
118 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
119 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
120 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
121 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
122 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
123 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
124 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
125 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
126 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
127 #endif
128 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
129 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
130 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
131 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
132 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
133 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
134 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
135 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
136 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
137 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
138 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
139 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
140 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
141 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
142 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
143 #ifdef CONFIG_ATHEROS_AR231X
144 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
145 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
146 #endif
147 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
148 };
149 
150 static const struct ieee80211_rate ath5k_rates[] = {
151 	{ .bitrate = 10,
152 	  .hw_value = ATH5K_RATE_CODE_1M, },
153 	{ .bitrate = 20,
154 	  .hw_value = ATH5K_RATE_CODE_2M,
155 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
156 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 	{ .bitrate = 55,
158 	  .hw_value = ATH5K_RATE_CODE_5_5M,
159 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
160 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 	{ .bitrate = 110,
162 	  .hw_value = ATH5K_RATE_CODE_11M,
163 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
164 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 	{ .bitrate = 60,
166 	  .hw_value = ATH5K_RATE_CODE_6M,
167 	  .flags = 0 },
168 	{ .bitrate = 90,
169 	  .hw_value = ATH5K_RATE_CODE_9M,
170 	  .flags = 0 },
171 	{ .bitrate = 120,
172 	  .hw_value = ATH5K_RATE_CODE_12M,
173 	  .flags = 0 },
174 	{ .bitrate = 180,
175 	  .hw_value = ATH5K_RATE_CODE_18M,
176 	  .flags = 0 },
177 	{ .bitrate = 240,
178 	  .hw_value = ATH5K_RATE_CODE_24M,
179 	  .flags = 0 },
180 	{ .bitrate = 360,
181 	  .hw_value = ATH5K_RATE_CODE_36M,
182 	  .flags = 0 },
183 	{ .bitrate = 480,
184 	  .hw_value = ATH5K_RATE_CODE_48M,
185 	  .flags = 0 },
186 	{ .bitrate = 540,
187 	  .hw_value = ATH5K_RATE_CODE_54M,
188 	  .flags = 0 },
189 };
190 
191 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
192 {
193 	u64 tsf = ath5k_hw_get_tsf64(ah);
194 
195 	if ((tsf & 0x7fff) < rstamp)
196 		tsf -= 0x8000;
197 
198 	return (tsf & ~0x7fff) | rstamp;
199 }
200 
201 const char *
202 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
203 {
204 	const char *name = "xxxxx";
205 	unsigned int i;
206 
207 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
208 		if (srev_names[i].sr_type != type)
209 			continue;
210 
211 		if ((val & 0xf0) == srev_names[i].sr_val)
212 			name = srev_names[i].sr_name;
213 
214 		if ((val & 0xff) == srev_names[i].sr_val) {
215 			name = srev_names[i].sr_name;
216 			break;
217 		}
218 	}
219 
220 	return name;
221 }
222 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
223 {
224 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
225 	return ath5k_hw_reg_read(ah, reg_offset);
226 }
227 
228 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
229 {
230 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
231 	ath5k_hw_reg_write(ah, val, reg_offset);
232 }
233 
234 static const struct ath_ops ath5k_common_ops = {
235 	.read = ath5k_ioread32,
236 	.write = ath5k_iowrite32,
237 };
238 
239 /***********************\
240 * Driver Initialization *
241 \***********************/
242 
243 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
244 {
245 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
246 	struct ath5k_hw *ah = hw->priv;
247 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
248 
249 	return ath_reg_notifier_apply(wiphy, request, regulatory);
250 }
251 
252 /********************\
253 * Channel/mode setup *
254 \********************/
255 
256 /*
257  * Returns true for the channel numbers used.
258  */
259 #ifdef CONFIG_ATH5K_TEST_CHANNELS
260 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
261 {
262 	return true;
263 }
264 
265 #else
266 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
267 {
268 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
269 		return true;
270 
271 	return	/* UNII 1,2 */
272 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
273 		/* midband */
274 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
275 		/* UNII-3 */
276 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
277 		/* 802.11j 5.030-5.080 GHz (20MHz) */
278 		(chan == 8 || chan == 12 || chan == 16) ||
279 		/* 802.11j 4.9GHz (20MHz) */
280 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
281 }
282 #endif
283 
284 static unsigned int
285 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
286 		unsigned int mode, unsigned int max)
287 {
288 	unsigned int count, size, freq, ch;
289 	enum ieee80211_band band;
290 
291 	switch (mode) {
292 	case AR5K_MODE_11A:
293 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
294 		size = 220;
295 		band = IEEE80211_BAND_5GHZ;
296 		break;
297 	case AR5K_MODE_11B:
298 	case AR5K_MODE_11G:
299 		size = 26;
300 		band = IEEE80211_BAND_2GHZ;
301 		break;
302 	default:
303 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
304 		return 0;
305 	}
306 
307 	count = 0;
308 	for (ch = 1; ch <= size && count < max; ch++) {
309 		freq = ieee80211_channel_to_frequency(ch, band);
310 
311 		if (freq == 0) /* mapping failed - not a standard channel */
312 			continue;
313 
314 		/* Write channel info, needed for ath5k_channel_ok() */
315 		channels[count].center_freq = freq;
316 		channels[count].band = band;
317 		channels[count].hw_value = mode;
318 
319 		/* Check if channel is supported by the chipset */
320 		if (!ath5k_channel_ok(ah, &channels[count]))
321 			continue;
322 
323 		if (!ath5k_is_standard_channel(ch, band))
324 			continue;
325 
326 		count++;
327 	}
328 
329 	return count;
330 }
331 
332 static void
333 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
334 {
335 	u8 i;
336 
337 	for (i = 0; i < AR5K_MAX_RATES; i++)
338 		ah->rate_idx[b->band][i] = -1;
339 
340 	for (i = 0; i < b->n_bitrates; i++) {
341 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
342 		if (b->bitrates[i].hw_value_short)
343 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
344 	}
345 }
346 
347 static int
348 ath5k_setup_bands(struct ieee80211_hw *hw)
349 {
350 	struct ath5k_hw *ah = hw->priv;
351 	struct ieee80211_supported_band *sband;
352 	int max_c, count_c = 0;
353 	int i;
354 
355 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
356 	max_c = ARRAY_SIZE(ah->channels);
357 
358 	/* 2GHz band */
359 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
360 	sband->band = IEEE80211_BAND_2GHZ;
361 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
362 
363 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
364 		/* G mode */
365 		memcpy(sband->bitrates, &ath5k_rates[0],
366 		       sizeof(struct ieee80211_rate) * 12);
367 		sband->n_bitrates = 12;
368 
369 		sband->channels = ah->channels;
370 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
371 					AR5K_MODE_11G, max_c);
372 
373 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
374 		count_c = sband->n_channels;
375 		max_c -= count_c;
376 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
377 		/* B mode */
378 		memcpy(sband->bitrates, &ath5k_rates[0],
379 		       sizeof(struct ieee80211_rate) * 4);
380 		sband->n_bitrates = 4;
381 
382 		/* 5211 only supports B rates and uses 4bit rate codes
383 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
384 		 * fix them up here:
385 		 */
386 		if (ah->ah_version == AR5K_AR5211) {
387 			for (i = 0; i < 4; i++) {
388 				sband->bitrates[i].hw_value =
389 					sband->bitrates[i].hw_value & 0xF;
390 				sband->bitrates[i].hw_value_short =
391 					sband->bitrates[i].hw_value_short & 0xF;
392 			}
393 		}
394 
395 		sband->channels = ah->channels;
396 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
397 					AR5K_MODE_11B, max_c);
398 
399 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
400 		count_c = sband->n_channels;
401 		max_c -= count_c;
402 	}
403 	ath5k_setup_rate_idx(ah, sband);
404 
405 	/* 5GHz band, A mode */
406 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
407 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
408 		sband->band = IEEE80211_BAND_5GHZ;
409 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
410 
411 		memcpy(sband->bitrates, &ath5k_rates[4],
412 		       sizeof(struct ieee80211_rate) * 8);
413 		sband->n_bitrates = 8;
414 
415 		sband->channels = &ah->channels[count_c];
416 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
417 					AR5K_MODE_11A, max_c);
418 
419 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
420 	}
421 	ath5k_setup_rate_idx(ah, sband);
422 
423 	ath5k_debug_dump_bands(ah);
424 
425 	return 0;
426 }
427 
428 /*
429  * Set/change channels. We always reset the chip.
430  * To accomplish this we must first cleanup any pending DMA,
431  * then restart stuff after a la  ath5k_init.
432  *
433  * Called with ah->lock.
434  */
435 int
436 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
437 {
438 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
439 		  "channel set, resetting (%u -> %u MHz)\n",
440 		  ah->curchan->center_freq, chan->center_freq);
441 
442 	/*
443 	 * To switch channels clear any pending DMA operations;
444 	 * wait long enough for the RX fifo to drain, reset the
445 	 * hardware at the new frequency, and then re-enable
446 	 * the relevant bits of the h/w.
447 	 */
448 	return ath5k_reset(ah, chan, true);
449 }
450 
451 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
452 {
453 	struct ath5k_vif_iter_data *iter_data = data;
454 	int i;
455 	struct ath5k_vif *avf = (void *)vif->drv_priv;
456 
457 	if (iter_data->hw_macaddr)
458 		for (i = 0; i < ETH_ALEN; i++)
459 			iter_data->mask[i] &=
460 				~(iter_data->hw_macaddr[i] ^ mac[i]);
461 
462 	if (!iter_data->found_active) {
463 		iter_data->found_active = true;
464 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
465 	}
466 
467 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
468 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
469 			iter_data->need_set_hw_addr = false;
470 
471 	if (!iter_data->any_assoc) {
472 		if (avf->assoc)
473 			iter_data->any_assoc = true;
474 	}
475 
476 	/* Calculate combined mode - when APs are active, operate in AP mode.
477 	 * Otherwise use the mode of the new interface. This can currently
478 	 * only deal with combinations of APs and STAs. Only one ad-hoc
479 	 * interfaces is allowed.
480 	 */
481 	if (avf->opmode == NL80211_IFTYPE_AP)
482 		iter_data->opmode = NL80211_IFTYPE_AP;
483 	else {
484 		if (avf->opmode == NL80211_IFTYPE_STATION)
485 			iter_data->n_stas++;
486 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
487 			iter_data->opmode = avf->opmode;
488 	}
489 }
490 
491 void
492 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
493 				   struct ieee80211_vif *vif)
494 {
495 	struct ath_common *common = ath5k_hw_common(ah);
496 	struct ath5k_vif_iter_data iter_data;
497 	u32 rfilt;
498 
499 	/*
500 	 * Use the hardware MAC address as reference, the hardware uses it
501 	 * together with the BSSID mask when matching addresses.
502 	 */
503 	iter_data.hw_macaddr = common->macaddr;
504 	memset(&iter_data.mask, 0xff, ETH_ALEN);
505 	iter_data.found_active = false;
506 	iter_data.need_set_hw_addr = true;
507 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
508 	iter_data.n_stas = 0;
509 
510 	if (vif)
511 		ath5k_vif_iter(&iter_data, vif->addr, vif);
512 
513 	/* Get list of all active MAC addresses */
514 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
515 						   &iter_data);
516 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
517 
518 	ah->opmode = iter_data.opmode;
519 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
520 		/* Nothing active, default to station mode */
521 		ah->opmode = NL80211_IFTYPE_STATION;
522 
523 	ath5k_hw_set_opmode(ah, ah->opmode);
524 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
525 		  ah->opmode, ath_opmode_to_string(ah->opmode));
526 
527 	if (iter_data.need_set_hw_addr && iter_data.found_active)
528 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
529 
530 	if (ath5k_hw_hasbssidmask(ah))
531 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
532 
533 	/* Set up RX Filter */
534 	if (iter_data.n_stas > 1) {
535 		/* If you have multiple STA interfaces connected to
536 		 * different APs, ARPs are not received (most of the time?)
537 		 * Enabling PROMISC appears to fix that problem.
538 		 */
539 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
540 	}
541 
542 	rfilt = ah->filter_flags;
543 	ath5k_hw_set_rx_filter(ah, rfilt);
544 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
545 }
546 
547 static inline int
548 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
549 {
550 	int rix;
551 
552 	/* return base rate on errors */
553 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
554 			"hw_rix out of bounds: %x\n", hw_rix))
555 		return 0;
556 
557 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
558 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
559 		rix = 0;
560 
561 	return rix;
562 }
563 
564 /***************\
565 * Buffers setup *
566 \***************/
567 
568 static
569 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
570 {
571 	struct ath_common *common = ath5k_hw_common(ah);
572 	struct sk_buff *skb;
573 
574 	/*
575 	 * Allocate buffer with headroom_needed space for the
576 	 * fake physical layer header at the start.
577 	 */
578 	skb = ath_rxbuf_alloc(common,
579 			      common->rx_bufsize,
580 			      GFP_ATOMIC);
581 
582 	if (!skb) {
583 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
584 				common->rx_bufsize);
585 		return NULL;
586 	}
587 
588 	*skb_addr = dma_map_single(ah->dev,
589 				   skb->data, common->rx_bufsize,
590 				   DMA_FROM_DEVICE);
591 
592 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
593 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
594 		dev_kfree_skb(skb);
595 		return NULL;
596 	}
597 	return skb;
598 }
599 
600 static int
601 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
602 {
603 	struct sk_buff *skb = bf->skb;
604 	struct ath5k_desc *ds;
605 	int ret;
606 
607 	if (!skb) {
608 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
609 		if (!skb)
610 			return -ENOMEM;
611 		bf->skb = skb;
612 	}
613 
614 	/*
615 	 * Setup descriptors.  For receive we always terminate
616 	 * the descriptor list with a self-linked entry so we'll
617 	 * not get overrun under high load (as can happen with a
618 	 * 5212 when ANI processing enables PHY error frames).
619 	 *
620 	 * To ensure the last descriptor is self-linked we create
621 	 * each descriptor as self-linked and add it to the end.  As
622 	 * each additional descriptor is added the previous self-linked
623 	 * entry is "fixed" naturally.  This should be safe even
624 	 * if DMA is happening.  When processing RX interrupts we
625 	 * never remove/process the last, self-linked, entry on the
626 	 * descriptor list.  This ensures the hardware always has
627 	 * someplace to write a new frame.
628 	 */
629 	ds = bf->desc;
630 	ds->ds_link = bf->daddr;	/* link to self */
631 	ds->ds_data = bf->skbaddr;
632 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
633 	if (ret) {
634 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
635 		return ret;
636 	}
637 
638 	if (ah->rxlink != NULL)
639 		*ah->rxlink = bf->daddr;
640 	ah->rxlink = &ds->ds_link;
641 	return 0;
642 }
643 
644 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
645 {
646 	struct ieee80211_hdr *hdr;
647 	enum ath5k_pkt_type htype;
648 	__le16 fc;
649 
650 	hdr = (struct ieee80211_hdr *)skb->data;
651 	fc = hdr->frame_control;
652 
653 	if (ieee80211_is_beacon(fc))
654 		htype = AR5K_PKT_TYPE_BEACON;
655 	else if (ieee80211_is_probe_resp(fc))
656 		htype = AR5K_PKT_TYPE_PROBE_RESP;
657 	else if (ieee80211_is_atim(fc))
658 		htype = AR5K_PKT_TYPE_ATIM;
659 	else if (ieee80211_is_pspoll(fc))
660 		htype = AR5K_PKT_TYPE_PSPOLL;
661 	else
662 		htype = AR5K_PKT_TYPE_NORMAL;
663 
664 	return htype;
665 }
666 
667 static int
668 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
669 		  struct ath5k_txq *txq, int padsize)
670 {
671 	struct ath5k_desc *ds = bf->desc;
672 	struct sk_buff *skb = bf->skb;
673 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
674 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
675 	struct ieee80211_rate *rate;
676 	unsigned int mrr_rate[3], mrr_tries[3];
677 	int i, ret;
678 	u16 hw_rate;
679 	u16 cts_rate = 0;
680 	u16 duration = 0;
681 	u8 rc_flags;
682 
683 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
684 
685 	/* XXX endianness */
686 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
687 			DMA_TO_DEVICE);
688 
689 	rate = ieee80211_get_tx_rate(ah->hw, info);
690 	if (!rate) {
691 		ret = -EINVAL;
692 		goto err_unmap;
693 	}
694 
695 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
696 		flags |= AR5K_TXDESC_NOACK;
697 
698 	rc_flags = info->control.rates[0].flags;
699 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
700 		rate->hw_value_short : rate->hw_value;
701 
702 	pktlen = skb->len;
703 
704 	/* FIXME: If we are in g mode and rate is a CCK rate
705 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
706 	 * from tx power (value is in dB units already) */
707 	if (info->control.hw_key) {
708 		keyidx = info->control.hw_key->hw_key_idx;
709 		pktlen += info->control.hw_key->icv_len;
710 	}
711 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
712 		flags |= AR5K_TXDESC_RTSENA;
713 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
714 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
715 			info->control.vif, pktlen, info));
716 	}
717 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
718 		flags |= AR5K_TXDESC_CTSENA;
719 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
720 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
721 			info->control.vif, pktlen, info));
722 	}
723 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
724 		ieee80211_get_hdrlen_from_skb(skb), padsize,
725 		get_hw_packet_type(skb),
726 		(ah->ah_txpower.txp_requested * 2),
727 		hw_rate,
728 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
729 		cts_rate, duration);
730 	if (ret)
731 		goto err_unmap;
732 
733 	/* Set up MRR descriptor */
734 	if (ah->ah_capabilities.cap_has_mrr_support) {
735 		memset(mrr_rate, 0, sizeof(mrr_rate));
736 		memset(mrr_tries, 0, sizeof(mrr_tries));
737 		for (i = 0; i < 3; i++) {
738 			rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
739 			if (!rate)
740 				break;
741 
742 			mrr_rate[i] = rate->hw_value;
743 			mrr_tries[i] = info->control.rates[i + 1].count;
744 		}
745 
746 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
747 			mrr_rate[0], mrr_tries[0],
748 			mrr_rate[1], mrr_tries[1],
749 			mrr_rate[2], mrr_tries[2]);
750 	}
751 
752 	ds->ds_link = 0;
753 	ds->ds_data = bf->skbaddr;
754 
755 	spin_lock_bh(&txq->lock);
756 	list_add_tail(&bf->list, &txq->q);
757 	txq->txq_len++;
758 	if (txq->link == NULL) /* is this first packet? */
759 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
760 	else /* no, so only link it */
761 		*txq->link = bf->daddr;
762 
763 	txq->link = &ds->ds_link;
764 	ath5k_hw_start_tx_dma(ah, txq->qnum);
765 	mmiowb();
766 	spin_unlock_bh(&txq->lock);
767 
768 	return 0;
769 err_unmap:
770 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
771 	return ret;
772 }
773 
774 /*******************\
775 * Descriptors setup *
776 \*******************/
777 
778 static int
779 ath5k_desc_alloc(struct ath5k_hw *ah)
780 {
781 	struct ath5k_desc *ds;
782 	struct ath5k_buf *bf;
783 	dma_addr_t da;
784 	unsigned int i;
785 	int ret;
786 
787 	/* allocate descriptors */
788 	ah->desc_len = sizeof(struct ath5k_desc) *
789 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
790 
791 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
792 				&ah->desc_daddr, GFP_KERNEL);
793 	if (ah->desc == NULL) {
794 		ATH5K_ERR(ah, "can't allocate descriptors\n");
795 		ret = -ENOMEM;
796 		goto err;
797 	}
798 	ds = ah->desc;
799 	da = ah->desc_daddr;
800 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
801 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
802 
803 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
804 			sizeof(struct ath5k_buf), GFP_KERNEL);
805 	if (bf == NULL) {
806 		ATH5K_ERR(ah, "can't allocate bufptr\n");
807 		ret = -ENOMEM;
808 		goto err_free;
809 	}
810 	ah->bufptr = bf;
811 
812 	INIT_LIST_HEAD(&ah->rxbuf);
813 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
814 		bf->desc = ds;
815 		bf->daddr = da;
816 		list_add_tail(&bf->list, &ah->rxbuf);
817 	}
818 
819 	INIT_LIST_HEAD(&ah->txbuf);
820 	ah->txbuf_len = ATH_TXBUF;
821 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
822 		bf->desc = ds;
823 		bf->daddr = da;
824 		list_add_tail(&bf->list, &ah->txbuf);
825 	}
826 
827 	/* beacon buffers */
828 	INIT_LIST_HEAD(&ah->bcbuf);
829 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
830 		bf->desc = ds;
831 		bf->daddr = da;
832 		list_add_tail(&bf->list, &ah->bcbuf);
833 	}
834 
835 	return 0;
836 err_free:
837 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
838 err:
839 	ah->desc = NULL;
840 	return ret;
841 }
842 
843 void
844 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
845 {
846 	BUG_ON(!bf);
847 	if (!bf->skb)
848 		return;
849 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
850 			DMA_TO_DEVICE);
851 	dev_kfree_skb_any(bf->skb);
852 	bf->skb = NULL;
853 	bf->skbaddr = 0;
854 	bf->desc->ds_data = 0;
855 }
856 
857 void
858 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
859 {
860 	struct ath_common *common = ath5k_hw_common(ah);
861 
862 	BUG_ON(!bf);
863 	if (!bf->skb)
864 		return;
865 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
866 			DMA_FROM_DEVICE);
867 	dev_kfree_skb_any(bf->skb);
868 	bf->skb = NULL;
869 	bf->skbaddr = 0;
870 	bf->desc->ds_data = 0;
871 }
872 
873 static void
874 ath5k_desc_free(struct ath5k_hw *ah)
875 {
876 	struct ath5k_buf *bf;
877 
878 	list_for_each_entry(bf, &ah->txbuf, list)
879 		ath5k_txbuf_free_skb(ah, bf);
880 	list_for_each_entry(bf, &ah->rxbuf, list)
881 		ath5k_rxbuf_free_skb(ah, bf);
882 	list_for_each_entry(bf, &ah->bcbuf, list)
883 		ath5k_txbuf_free_skb(ah, bf);
884 
885 	/* Free memory associated with all descriptors */
886 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
887 	ah->desc = NULL;
888 	ah->desc_daddr = 0;
889 
890 	kfree(ah->bufptr);
891 	ah->bufptr = NULL;
892 }
893 
894 
895 /**************\
896 * Queues setup *
897 \**************/
898 
899 static struct ath5k_txq *
900 ath5k_txq_setup(struct ath5k_hw *ah,
901 		int qtype, int subtype)
902 {
903 	struct ath5k_txq *txq;
904 	struct ath5k_txq_info qi = {
905 		.tqi_subtype = subtype,
906 		/* XXX: default values not correct for B and XR channels,
907 		 * but who cares? */
908 		.tqi_aifs = AR5K_TUNE_AIFS,
909 		.tqi_cw_min = AR5K_TUNE_CWMIN,
910 		.tqi_cw_max = AR5K_TUNE_CWMAX
911 	};
912 	int qnum;
913 
914 	/*
915 	 * Enable interrupts only for EOL and DESC conditions.
916 	 * We mark tx descriptors to receive a DESC interrupt
917 	 * when a tx queue gets deep; otherwise we wait for the
918 	 * EOL to reap descriptors.  Note that this is done to
919 	 * reduce interrupt load and this only defers reaping
920 	 * descriptors, never transmitting frames.  Aside from
921 	 * reducing interrupts this also permits more concurrency.
922 	 * The only potential downside is if the tx queue backs
923 	 * up in which case the top half of the kernel may backup
924 	 * due to a lack of tx descriptors.
925 	 */
926 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
927 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
928 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
929 	if (qnum < 0) {
930 		/*
931 		 * NB: don't print a message, this happens
932 		 * normally on parts with too few tx queues
933 		 */
934 		return ERR_PTR(qnum);
935 	}
936 	txq = &ah->txqs[qnum];
937 	if (!txq->setup) {
938 		txq->qnum = qnum;
939 		txq->link = NULL;
940 		INIT_LIST_HEAD(&txq->q);
941 		spin_lock_init(&txq->lock);
942 		txq->setup = true;
943 		txq->txq_len = 0;
944 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
945 		txq->txq_poll_mark = false;
946 		txq->txq_stuck = 0;
947 	}
948 	return &ah->txqs[qnum];
949 }
950 
951 static int
952 ath5k_beaconq_setup(struct ath5k_hw *ah)
953 {
954 	struct ath5k_txq_info qi = {
955 		/* XXX: default values not correct for B and XR channels,
956 		 * but who cares? */
957 		.tqi_aifs = AR5K_TUNE_AIFS,
958 		.tqi_cw_min = AR5K_TUNE_CWMIN,
959 		.tqi_cw_max = AR5K_TUNE_CWMAX,
960 		/* NB: for dynamic turbo, don't enable any other interrupts */
961 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
962 	};
963 
964 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
965 }
966 
967 static int
968 ath5k_beaconq_config(struct ath5k_hw *ah)
969 {
970 	struct ath5k_txq_info qi;
971 	int ret;
972 
973 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
974 	if (ret)
975 		goto err;
976 
977 	if (ah->opmode == NL80211_IFTYPE_AP ||
978 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
979 		/*
980 		 * Always burst out beacon and CAB traffic
981 		 * (aifs = cwmin = cwmax = 0)
982 		 */
983 		qi.tqi_aifs = 0;
984 		qi.tqi_cw_min = 0;
985 		qi.tqi_cw_max = 0;
986 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
987 		/*
988 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
989 		 */
990 		qi.tqi_aifs = 0;
991 		qi.tqi_cw_min = 0;
992 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
993 	}
994 
995 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
996 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
997 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
998 
999 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1000 	if (ret) {
1001 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1002 			"hardware queue!\n", __func__);
1003 		goto err;
1004 	}
1005 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1006 	if (ret)
1007 		goto err;
1008 
1009 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1010 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011 	if (ret)
1012 		goto err;
1013 
1014 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1015 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1016 	if (ret)
1017 		goto err;
1018 
1019 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1020 err:
1021 	return ret;
1022 }
1023 
1024 /**
1025  * ath5k_drain_tx_buffs - Empty tx buffers
1026  *
1027  * @ah The &struct ath5k_hw
1028  *
1029  * Empty tx buffers from all queues in preparation
1030  * of a reset or during shutdown.
1031  *
1032  * NB:	this assumes output has been stopped and
1033  *	we do not need to block ath5k_tx_tasklet
1034  */
1035 static void
1036 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1037 {
1038 	struct ath5k_txq *txq;
1039 	struct ath5k_buf *bf, *bf0;
1040 	int i;
1041 
1042 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1043 		if (ah->txqs[i].setup) {
1044 			txq = &ah->txqs[i];
1045 			spin_lock_bh(&txq->lock);
1046 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1047 				ath5k_debug_printtxbuf(ah, bf);
1048 
1049 				ath5k_txbuf_free_skb(ah, bf);
1050 
1051 				spin_lock(&ah->txbuflock);
1052 				list_move_tail(&bf->list, &ah->txbuf);
1053 				ah->txbuf_len++;
1054 				txq->txq_len--;
1055 				spin_unlock(&ah->txbuflock);
1056 			}
1057 			txq->link = NULL;
1058 			txq->txq_poll_mark = false;
1059 			spin_unlock_bh(&txq->lock);
1060 		}
1061 	}
1062 }
1063 
1064 static void
1065 ath5k_txq_release(struct ath5k_hw *ah)
1066 {
1067 	struct ath5k_txq *txq = ah->txqs;
1068 	unsigned int i;
1069 
1070 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1071 		if (txq->setup) {
1072 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1073 			txq->setup = false;
1074 		}
1075 }
1076 
1077 
1078 /*************\
1079 * RX Handling *
1080 \*************/
1081 
1082 /*
1083  * Enable the receive h/w following a reset.
1084  */
1085 static int
1086 ath5k_rx_start(struct ath5k_hw *ah)
1087 {
1088 	struct ath_common *common = ath5k_hw_common(ah);
1089 	struct ath5k_buf *bf;
1090 	int ret;
1091 
1092 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1093 
1094 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1095 		  common->cachelsz, common->rx_bufsize);
1096 
1097 	spin_lock_bh(&ah->rxbuflock);
1098 	ah->rxlink = NULL;
1099 	list_for_each_entry(bf, &ah->rxbuf, list) {
1100 		ret = ath5k_rxbuf_setup(ah, bf);
1101 		if (ret != 0) {
1102 			spin_unlock_bh(&ah->rxbuflock);
1103 			goto err;
1104 		}
1105 	}
1106 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1107 	ath5k_hw_set_rxdp(ah, bf->daddr);
1108 	spin_unlock_bh(&ah->rxbuflock);
1109 
1110 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1111 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1112 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1113 
1114 	return 0;
1115 err:
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Disable the receive logic on PCU (DRU)
1121  * In preparation for a shutdown.
1122  *
1123  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1124  * does.
1125  */
1126 static void
1127 ath5k_rx_stop(struct ath5k_hw *ah)
1128 {
1129 
1130 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1131 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1132 
1133 	ath5k_debug_printrxbuffs(ah);
1134 }
1135 
1136 static unsigned int
1137 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1138 		   struct ath5k_rx_status *rs)
1139 {
1140 	struct ath_common *common = ath5k_hw_common(ah);
1141 	struct ieee80211_hdr *hdr = (void *)skb->data;
1142 	unsigned int keyix, hlen;
1143 
1144 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1145 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1146 		return RX_FLAG_DECRYPTED;
1147 
1148 	/* Apparently when a default key is used to decrypt the packet
1149 	   the hw does not set the index used to decrypt.  In such cases
1150 	   get the index from the packet. */
1151 	hlen = ieee80211_hdrlen(hdr->frame_control);
1152 	if (ieee80211_has_protected(hdr->frame_control) &&
1153 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154 	    skb->len >= hlen + 4) {
1155 		keyix = skb->data[hlen + 3] >> 6;
1156 
1157 		if (test_bit(keyix, common->keymap))
1158 			return RX_FLAG_DECRYPTED;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 
1165 static void
1166 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1167 		     struct ieee80211_rx_status *rxs)
1168 {
1169 	struct ath_common *common = ath5k_hw_common(ah);
1170 	u64 tsf, bc_tstamp;
1171 	u32 hw_tu;
1172 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1173 
1174 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1175 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1176 	    ether_addr_equal(mgmt->bssid, common->curbssid)) {
1177 		/*
1178 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1179 		 * have updated the local TSF. We have to work around various
1180 		 * hardware bugs, though...
1181 		 */
1182 		tsf = ath5k_hw_get_tsf64(ah);
1183 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1184 		hw_tu = TSF_TO_TU(tsf);
1185 
1186 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1187 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188 			(unsigned long long)bc_tstamp,
1189 			(unsigned long long)rxs->mactime,
1190 			(unsigned long long)(rxs->mactime - bc_tstamp),
1191 			(unsigned long long)tsf);
1192 
1193 		/*
1194 		 * Sometimes the HW will give us a wrong tstamp in the rx
1195 		 * status, causing the timestamp extension to go wrong.
1196 		 * (This seems to happen especially with beacon frames bigger
1197 		 * than 78 byte (incl. FCS))
1198 		 * But we know that the receive timestamp must be later than the
1199 		 * timestamp of the beacon since HW must have synced to that.
1200 		 *
1201 		 * NOTE: here we assume mactime to be after the frame was
1202 		 * received, not like mac80211 which defines it at the start.
1203 		 */
1204 		if (bc_tstamp > rxs->mactime) {
1205 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1206 				"fixing mactime from %llx to %llx\n",
1207 				(unsigned long long)rxs->mactime,
1208 				(unsigned long long)tsf);
1209 			rxs->mactime = tsf;
1210 		}
1211 
1212 		/*
1213 		 * Local TSF might have moved higher than our beacon timers,
1214 		 * in that case we have to update them to continue sending
1215 		 * beacons. This also takes care of synchronizing beacon sending
1216 		 * times with other stations.
1217 		 */
1218 		if (hw_tu >= ah->nexttbtt)
1219 			ath5k_beacon_update_timers(ah, bc_tstamp);
1220 
1221 		/* Check if the beacon timers are still correct, because a TSF
1222 		 * update might have created a window between them - for a
1223 		 * longer description see the comment of this function: */
1224 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1225 			ath5k_beacon_update_timers(ah, bc_tstamp);
1226 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1227 				"fixed beacon timers after beacon receive\n");
1228 		}
1229 	}
1230 }
1231 
1232 static void
1233 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1234 {
1235 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1236 	struct ath_common *common = ath5k_hw_common(ah);
1237 
1238 	/* only beacons from our BSSID */
1239 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1240 	    !ether_addr_equal(mgmt->bssid, common->curbssid))
1241 		return;
1242 
1243 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1244 
1245 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1246 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1247 }
1248 
1249 /*
1250  * Compute padding position. skb must contain an IEEE 802.11 frame
1251  */
1252 static int ath5k_common_padpos(struct sk_buff *skb)
1253 {
1254 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1255 	__le16 frame_control = hdr->frame_control;
1256 	int padpos = 24;
1257 
1258 	if (ieee80211_has_a4(frame_control))
1259 		padpos += ETH_ALEN;
1260 
1261 	if (ieee80211_is_data_qos(frame_control))
1262 		padpos += IEEE80211_QOS_CTL_LEN;
1263 
1264 	return padpos;
1265 }
1266 
1267 /*
1268  * This function expects an 802.11 frame and returns the number of
1269  * bytes added, or -1 if we don't have enough header room.
1270  */
1271 static int ath5k_add_padding(struct sk_buff *skb)
1272 {
1273 	int padpos = ath5k_common_padpos(skb);
1274 	int padsize = padpos & 3;
1275 
1276 	if (padsize && skb->len > padpos) {
1277 
1278 		if (skb_headroom(skb) < padsize)
1279 			return -1;
1280 
1281 		skb_push(skb, padsize);
1282 		memmove(skb->data, skb->data + padsize, padpos);
1283 		return padsize;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * The MAC header is padded to have 32-bit boundary if the
1291  * packet payload is non-zero. The general calculation for
1292  * padsize would take into account odd header lengths:
1293  * padsize = 4 - (hdrlen & 3); however, since only
1294  * even-length headers are used, padding can only be 0 or 2
1295  * bytes and we can optimize this a bit.  We must not try to
1296  * remove padding from short control frames that do not have a
1297  * payload.
1298  *
1299  * This function expects an 802.11 frame and returns the number of
1300  * bytes removed.
1301  */
1302 static int ath5k_remove_padding(struct sk_buff *skb)
1303 {
1304 	int padpos = ath5k_common_padpos(skb);
1305 	int padsize = padpos & 3;
1306 
1307 	if (padsize && skb->len >= padpos + padsize) {
1308 		memmove(skb->data + padsize, skb->data, padpos);
1309 		skb_pull(skb, padsize);
1310 		return padsize;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static void
1317 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1318 		    struct ath5k_rx_status *rs)
1319 {
1320 	struct ieee80211_rx_status *rxs;
1321 
1322 	ath5k_remove_padding(skb);
1323 
1324 	rxs = IEEE80211_SKB_RXCB(skb);
1325 
1326 	rxs->flag = 0;
1327 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1328 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1329 
1330 	/*
1331 	 * always extend the mac timestamp, since this information is
1332 	 * also needed for proper IBSS merging.
1333 	 *
1334 	 * XXX: it might be too late to do it here, since rs_tstamp is
1335 	 * 15bit only. that means TSF extension has to be done within
1336 	 * 32768usec (about 32ms). it might be necessary to move this to
1337 	 * the interrupt handler, like it is done in madwifi.
1338 	 *
1339 	 * Unfortunately we don't know when the hardware takes the rx
1340 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1341 	 * The only thing we know is that it is hardware specific...
1342 	 * On AR5213 it seems the rx timestamp is at the end of the
1343 	 * frame, but I'm not sure.
1344 	 *
1345 	 * NOTE: mac80211 defines mactime at the beginning of the first
1346 	 * data symbol. Since we don't have any time references it's
1347 	 * impossible to comply to that. This affects IBSS merge only
1348 	 * right now, so it's not too bad...
1349 	 */
1350 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1351 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1352 
1353 	rxs->freq = ah->curchan->center_freq;
1354 	rxs->band = ah->curchan->band;
1355 
1356 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1357 
1358 	rxs->antenna = rs->rs_antenna;
1359 
1360 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1361 		ah->stats.antenna_rx[rs->rs_antenna]++;
1362 	else
1363 		ah->stats.antenna_rx[0]++; /* invalid */
1364 
1365 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1366 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1367 
1368 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1369 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1370 		rxs->flag |= RX_FLAG_SHORTPRE;
1371 
1372 	trace_ath5k_rx(ah, skb);
1373 
1374 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1375 
1376 	/* check beacons in IBSS mode */
1377 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1378 		ath5k_check_ibss_tsf(ah, skb, rxs);
1379 
1380 	ieee80211_rx(ah->hw, skb);
1381 }
1382 
1383 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1384  *
1385  * Check if we want to further process this frame or not. Also update
1386  * statistics. Return true if we want this frame, false if not.
1387  */
1388 static bool
1389 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1390 {
1391 	ah->stats.rx_all_count++;
1392 	ah->stats.rx_bytes_count += rs->rs_datalen;
1393 
1394 	if (unlikely(rs->rs_status)) {
1395 		if (rs->rs_status & AR5K_RXERR_CRC)
1396 			ah->stats.rxerr_crc++;
1397 		if (rs->rs_status & AR5K_RXERR_FIFO)
1398 			ah->stats.rxerr_fifo++;
1399 		if (rs->rs_status & AR5K_RXERR_PHY) {
1400 			ah->stats.rxerr_phy++;
1401 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1402 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1403 			return false;
1404 		}
1405 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1406 			/*
1407 			 * Decrypt error.  If the error occurred
1408 			 * because there was no hardware key, then
1409 			 * let the frame through so the upper layers
1410 			 * can process it.  This is necessary for 5210
1411 			 * parts which have no way to setup a ``clear''
1412 			 * key cache entry.
1413 			 *
1414 			 * XXX do key cache faulting
1415 			 */
1416 			ah->stats.rxerr_decrypt++;
1417 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1418 			    !(rs->rs_status & AR5K_RXERR_CRC))
1419 				return true;
1420 		}
1421 		if (rs->rs_status & AR5K_RXERR_MIC) {
1422 			ah->stats.rxerr_mic++;
1423 			return true;
1424 		}
1425 
1426 		/* reject any frames with non-crypto errors */
1427 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1428 			return false;
1429 	}
1430 
1431 	if (unlikely(rs->rs_more)) {
1432 		ah->stats.rxerr_jumbo++;
1433 		return false;
1434 	}
1435 	return true;
1436 }
1437 
1438 static void
1439 ath5k_set_current_imask(struct ath5k_hw *ah)
1440 {
1441 	enum ath5k_int imask;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&ah->irqlock, flags);
1445 	imask = ah->imask;
1446 	if (ah->rx_pending)
1447 		imask &= ~AR5K_INT_RX_ALL;
1448 	if (ah->tx_pending)
1449 		imask &= ~AR5K_INT_TX_ALL;
1450 	ath5k_hw_set_imr(ah, imask);
1451 	spin_unlock_irqrestore(&ah->irqlock, flags);
1452 }
1453 
1454 static void
1455 ath5k_tasklet_rx(unsigned long data)
1456 {
1457 	struct ath5k_rx_status rs = {};
1458 	struct sk_buff *skb, *next_skb;
1459 	dma_addr_t next_skb_addr;
1460 	struct ath5k_hw *ah = (void *)data;
1461 	struct ath_common *common = ath5k_hw_common(ah);
1462 	struct ath5k_buf *bf;
1463 	struct ath5k_desc *ds;
1464 	int ret;
1465 
1466 	spin_lock(&ah->rxbuflock);
1467 	if (list_empty(&ah->rxbuf)) {
1468 		ATH5K_WARN(ah, "empty rx buf pool\n");
1469 		goto unlock;
1470 	}
1471 	do {
1472 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1473 		BUG_ON(bf->skb == NULL);
1474 		skb = bf->skb;
1475 		ds = bf->desc;
1476 
1477 		/* bail if HW is still using self-linked descriptor */
1478 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1479 			break;
1480 
1481 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1482 		if (unlikely(ret == -EINPROGRESS))
1483 			break;
1484 		else if (unlikely(ret)) {
1485 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1486 			ah->stats.rxerr_proc++;
1487 			break;
1488 		}
1489 
1490 		if (ath5k_receive_frame_ok(ah, &rs)) {
1491 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1492 
1493 			/*
1494 			 * If we can't replace bf->skb with a new skb under
1495 			 * memory pressure, just skip this packet
1496 			 */
1497 			if (!next_skb)
1498 				goto next;
1499 
1500 			dma_unmap_single(ah->dev, bf->skbaddr,
1501 					 common->rx_bufsize,
1502 					 DMA_FROM_DEVICE);
1503 
1504 			skb_put(skb, rs.rs_datalen);
1505 
1506 			ath5k_receive_frame(ah, skb, &rs);
1507 
1508 			bf->skb = next_skb;
1509 			bf->skbaddr = next_skb_addr;
1510 		}
1511 next:
1512 		list_move_tail(&bf->list, &ah->rxbuf);
1513 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1514 unlock:
1515 	spin_unlock(&ah->rxbuflock);
1516 	ah->rx_pending = false;
1517 	ath5k_set_current_imask(ah);
1518 }
1519 
1520 
1521 /*************\
1522 * TX Handling *
1523 \*************/
1524 
1525 void
1526 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1527 	       struct ath5k_txq *txq)
1528 {
1529 	struct ath5k_hw *ah = hw->priv;
1530 	struct ath5k_buf *bf;
1531 	unsigned long flags;
1532 	int padsize;
1533 
1534 	trace_ath5k_tx(ah, skb, txq);
1535 
1536 	/*
1537 	 * The hardware expects the header padded to 4 byte boundaries.
1538 	 * If this is not the case, we add the padding after the header.
1539 	 */
1540 	padsize = ath5k_add_padding(skb);
1541 	if (padsize < 0) {
1542 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1543 			  " headroom to pad");
1544 		goto drop_packet;
1545 	}
1546 
1547 	if (txq->txq_len >= txq->txq_max &&
1548 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1549 		ieee80211_stop_queue(hw, txq->qnum);
1550 
1551 	spin_lock_irqsave(&ah->txbuflock, flags);
1552 	if (list_empty(&ah->txbuf)) {
1553 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1554 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1555 		ieee80211_stop_queues(hw);
1556 		goto drop_packet;
1557 	}
1558 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1559 	list_del(&bf->list);
1560 	ah->txbuf_len--;
1561 	if (list_empty(&ah->txbuf))
1562 		ieee80211_stop_queues(hw);
1563 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1564 
1565 	bf->skb = skb;
1566 
1567 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1568 		bf->skb = NULL;
1569 		spin_lock_irqsave(&ah->txbuflock, flags);
1570 		list_add_tail(&bf->list, &ah->txbuf);
1571 		ah->txbuf_len++;
1572 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1573 		goto drop_packet;
1574 	}
1575 	return;
1576 
1577 drop_packet:
1578 	dev_kfree_skb_any(skb);
1579 }
1580 
1581 static void
1582 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1583 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1584 {
1585 	struct ieee80211_tx_info *info;
1586 	u8 tries[3];
1587 	int i;
1588 
1589 	ah->stats.tx_all_count++;
1590 	ah->stats.tx_bytes_count += skb->len;
1591 	info = IEEE80211_SKB_CB(skb);
1592 
1593 	tries[0] = info->status.rates[0].count;
1594 	tries[1] = info->status.rates[1].count;
1595 	tries[2] = info->status.rates[2].count;
1596 
1597 	ieee80211_tx_info_clear_status(info);
1598 
1599 	for (i = 0; i < ts->ts_final_idx; i++) {
1600 		struct ieee80211_tx_rate *r =
1601 			&info->status.rates[i];
1602 
1603 		r->count = tries[i];
1604 	}
1605 
1606 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1607 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1608 
1609 	if (unlikely(ts->ts_status)) {
1610 		ah->stats.ack_fail++;
1611 		if (ts->ts_status & AR5K_TXERR_FILT) {
1612 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1613 			ah->stats.txerr_filt++;
1614 		}
1615 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1616 			ah->stats.txerr_retry++;
1617 		if (ts->ts_status & AR5K_TXERR_FIFO)
1618 			ah->stats.txerr_fifo++;
1619 	} else {
1620 		info->flags |= IEEE80211_TX_STAT_ACK;
1621 		info->status.ack_signal = ts->ts_rssi;
1622 
1623 		/* count the successful attempt as well */
1624 		info->status.rates[ts->ts_final_idx].count++;
1625 	}
1626 
1627 	/*
1628 	* Remove MAC header padding before giving the frame
1629 	* back to mac80211.
1630 	*/
1631 	ath5k_remove_padding(skb);
1632 
1633 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1634 		ah->stats.antenna_tx[ts->ts_antenna]++;
1635 	else
1636 		ah->stats.antenna_tx[0]++; /* invalid */
1637 
1638 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1639 	ieee80211_tx_status(ah->hw, skb);
1640 }
1641 
1642 static void
1643 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1644 {
1645 	struct ath5k_tx_status ts = {};
1646 	struct ath5k_buf *bf, *bf0;
1647 	struct ath5k_desc *ds;
1648 	struct sk_buff *skb;
1649 	int ret;
1650 
1651 	spin_lock(&txq->lock);
1652 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1653 
1654 		txq->txq_poll_mark = false;
1655 
1656 		/* skb might already have been processed last time. */
1657 		if (bf->skb != NULL) {
1658 			ds = bf->desc;
1659 
1660 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1661 			if (unlikely(ret == -EINPROGRESS))
1662 				break;
1663 			else if (unlikely(ret)) {
1664 				ATH5K_ERR(ah,
1665 					"error %d while processing "
1666 					"queue %u\n", ret, txq->qnum);
1667 				break;
1668 			}
1669 
1670 			skb = bf->skb;
1671 			bf->skb = NULL;
1672 
1673 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1674 					DMA_TO_DEVICE);
1675 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1676 		}
1677 
1678 		/*
1679 		 * It's possible that the hardware can say the buffer is
1680 		 * completed when it hasn't yet loaded the ds_link from
1681 		 * host memory and moved on.
1682 		 * Always keep the last descriptor to avoid HW races...
1683 		 */
1684 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1685 			spin_lock(&ah->txbuflock);
1686 			list_move_tail(&bf->list, &ah->txbuf);
1687 			ah->txbuf_len++;
1688 			txq->txq_len--;
1689 			spin_unlock(&ah->txbuflock);
1690 		}
1691 	}
1692 	spin_unlock(&txq->lock);
1693 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1694 		ieee80211_wake_queue(ah->hw, txq->qnum);
1695 }
1696 
1697 static void
1698 ath5k_tasklet_tx(unsigned long data)
1699 {
1700 	int i;
1701 	struct ath5k_hw *ah = (void *)data;
1702 
1703 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1704 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1705 			ath5k_tx_processq(ah, &ah->txqs[i]);
1706 
1707 	ah->tx_pending = false;
1708 	ath5k_set_current_imask(ah);
1709 }
1710 
1711 
1712 /*****************\
1713 * Beacon handling *
1714 \*****************/
1715 
1716 /*
1717  * Setup the beacon frame for transmit.
1718  */
1719 static int
1720 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1721 {
1722 	struct sk_buff *skb = bf->skb;
1723 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1724 	struct ath5k_desc *ds;
1725 	int ret = 0;
1726 	u8 antenna;
1727 	u32 flags;
1728 	const int padsize = 0;
1729 
1730 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1731 			DMA_TO_DEVICE);
1732 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1733 			"skbaddr %llx\n", skb, skb->data, skb->len,
1734 			(unsigned long long)bf->skbaddr);
1735 
1736 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1737 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1738 		dev_kfree_skb_any(skb);
1739 		bf->skb = NULL;
1740 		return -EIO;
1741 	}
1742 
1743 	ds = bf->desc;
1744 	antenna = ah->ah_tx_ant;
1745 
1746 	flags = AR5K_TXDESC_NOACK;
1747 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1748 		ds->ds_link = bf->daddr;	/* self-linked */
1749 		flags |= AR5K_TXDESC_VEOL;
1750 	} else
1751 		ds->ds_link = 0;
1752 
1753 	/*
1754 	 * If we use multiple antennas on AP and use
1755 	 * the Sectored AP scenario, switch antenna every
1756 	 * 4 beacons to make sure everybody hears our AP.
1757 	 * When a client tries to associate, hw will keep
1758 	 * track of the tx antenna to be used for this client
1759 	 * automatically, based on ACKed packets.
1760 	 *
1761 	 * Note: AP still listens and transmits RTS on the
1762 	 * default antenna which is supposed to be an omni.
1763 	 *
1764 	 * Note2: On sectored scenarios it's possible to have
1765 	 * multiple antennas (1 omni -- the default -- and 14
1766 	 * sectors), so if we choose to actually support this
1767 	 * mode, we need to allow the user to set how many antennas
1768 	 * we have and tweak the code below to send beacons
1769 	 * on all of them.
1770 	 */
1771 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1772 		antenna = ah->bsent & 4 ? 2 : 1;
1773 
1774 
1775 	/* FIXME: If we are in g mode and rate is a CCK rate
1776 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777 	 * from tx power (value is in dB units already) */
1778 	ds->ds_data = bf->skbaddr;
1779 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1780 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1781 			AR5K_PKT_TYPE_BEACON,
1782 			(ah->ah_txpower.txp_requested * 2),
1783 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1784 			1, AR5K_TXKEYIX_INVALID,
1785 			antenna, flags, 0, 0);
1786 	if (ret)
1787 		goto err_unmap;
1788 
1789 	return 0;
1790 err_unmap:
1791 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1797  * this is called only once at config_bss time, for AP we do it every
1798  * SWBA interrupt so that the TIM will reflect buffered frames.
1799  *
1800  * Called with the beacon lock.
1801  */
1802 int
1803 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1804 {
1805 	int ret;
1806 	struct ath5k_hw *ah = hw->priv;
1807 	struct ath5k_vif *avf;
1808 	struct sk_buff *skb;
1809 
1810 	if (WARN_ON(!vif)) {
1811 		ret = -EINVAL;
1812 		goto out;
1813 	}
1814 
1815 	skb = ieee80211_beacon_get(hw, vif);
1816 
1817 	if (!skb) {
1818 		ret = -ENOMEM;
1819 		goto out;
1820 	}
1821 
1822 	avf = (void *)vif->drv_priv;
1823 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1824 	avf->bbuf->skb = skb;
1825 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1826 out:
1827 	return ret;
1828 }
1829 
1830 /*
1831  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1832  * frame contents are done as needed and the slot time is
1833  * also adjusted based on current state.
1834  *
1835  * This is called from software irq context (beacontq tasklets)
1836  * or user context from ath5k_beacon_config.
1837  */
1838 static void
1839 ath5k_beacon_send(struct ath5k_hw *ah)
1840 {
1841 	struct ieee80211_vif *vif;
1842 	struct ath5k_vif *avf;
1843 	struct ath5k_buf *bf;
1844 	struct sk_buff *skb;
1845 	int err;
1846 
1847 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1848 
1849 	/*
1850 	 * Check if the previous beacon has gone out.  If
1851 	 * not, don't don't try to post another: skip this
1852 	 * period and wait for the next.  Missed beacons
1853 	 * indicate a problem and should not occur.  If we
1854 	 * miss too many consecutive beacons reset the device.
1855 	 */
1856 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1857 		ah->bmisscount++;
1858 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1859 			"missed %u consecutive beacons\n", ah->bmisscount);
1860 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1861 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1862 				"stuck beacon time (%u missed)\n",
1863 				ah->bmisscount);
1864 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1865 				  "stuck beacon, resetting\n");
1866 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1867 		}
1868 		return;
1869 	}
1870 	if (unlikely(ah->bmisscount != 0)) {
1871 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1872 			"resume beacon xmit after %u misses\n",
1873 			ah->bmisscount);
1874 		ah->bmisscount = 0;
1875 	}
1876 
1877 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1878 			ah->num_mesh_vifs > 1) ||
1879 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1880 		u64 tsf = ath5k_hw_get_tsf64(ah);
1881 		u32 tsftu = TSF_TO_TU(tsf);
1882 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1883 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1884 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1885 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1886 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1887 	} else /* only one interface */
1888 		vif = ah->bslot[0];
1889 
1890 	if (!vif)
1891 		return;
1892 
1893 	avf = (void *)vif->drv_priv;
1894 	bf = avf->bbuf;
1895 
1896 	/*
1897 	 * Stop any current dma and put the new frame on the queue.
1898 	 * This should never fail since we check above that no frames
1899 	 * are still pending on the queue.
1900 	 */
1901 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1902 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1903 		/* NB: hw still stops DMA, so proceed */
1904 	}
1905 
1906 	/* refresh the beacon for AP or MESH mode */
1907 	if (ah->opmode == NL80211_IFTYPE_AP ||
1908 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1909 		err = ath5k_beacon_update(ah->hw, vif);
1910 		if (err)
1911 			return;
1912 	}
1913 
1914 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1915 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1916 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1917 		return;
1918 	}
1919 
1920 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1921 
1922 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1923 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1924 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1925 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1926 
1927 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1928 	while (skb) {
1929 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1930 
1931 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1932 			break;
1933 
1934 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1935 	}
1936 
1937 	ah->bsent++;
1938 }
1939 
1940 /**
1941  * ath5k_beacon_update_timers - update beacon timers
1942  *
1943  * @ah: struct ath5k_hw pointer we are operating on
1944  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1945  *          beacon timer update based on the current HW TSF.
1946  *
1947  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1948  * of a received beacon or the current local hardware TSF and write it to the
1949  * beacon timer registers.
1950  *
1951  * This is called in a variety of situations, e.g. when a beacon is received,
1952  * when a TSF update has been detected, but also when an new IBSS is created or
1953  * when we otherwise know we have to update the timers, but we keep it in this
1954  * function to have it all together in one place.
1955  */
1956 void
1957 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1958 {
1959 	u32 nexttbtt, intval, hw_tu, bc_tu;
1960 	u64 hw_tsf;
1961 
1962 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1963 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1964 		+ ah->num_mesh_vifs > 1) {
1965 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1966 		if (intval < 15)
1967 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1968 				   intval);
1969 	}
1970 	if (WARN_ON(!intval))
1971 		return;
1972 
1973 	/* beacon TSF converted to TU */
1974 	bc_tu = TSF_TO_TU(bc_tsf);
1975 
1976 	/* current TSF converted to TU */
1977 	hw_tsf = ath5k_hw_get_tsf64(ah);
1978 	hw_tu = TSF_TO_TU(hw_tsf);
1979 
1980 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1981 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1982 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1983 	 * configuration we need to make sure it is bigger than that. */
1984 
1985 	if (bc_tsf == -1) {
1986 		/*
1987 		 * no beacons received, called internally.
1988 		 * just need to refresh timers based on HW TSF.
1989 		 */
1990 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1991 	} else if (bc_tsf == 0) {
1992 		/*
1993 		 * no beacon received, probably called by ath5k_reset_tsf().
1994 		 * reset TSF to start with 0.
1995 		 */
1996 		nexttbtt = intval;
1997 		intval |= AR5K_BEACON_RESET_TSF;
1998 	} else if (bc_tsf > hw_tsf) {
1999 		/*
2000 		 * beacon received, SW merge happened but HW TSF not yet updated.
2001 		 * not possible to reconfigure timers yet, but next time we
2002 		 * receive a beacon with the same BSSID, the hardware will
2003 		 * automatically update the TSF and then we need to reconfigure
2004 		 * the timers.
2005 		 */
2006 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2007 			"need to wait for HW TSF sync\n");
2008 		return;
2009 	} else {
2010 		/*
2011 		 * most important case for beacon synchronization between STA.
2012 		 *
2013 		 * beacon received and HW TSF has been already updated by HW.
2014 		 * update next TBTT based on the TSF of the beacon, but make
2015 		 * sure it is ahead of our local TSF timer.
2016 		 */
2017 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2018 	}
2019 #undef FUDGE
2020 
2021 	ah->nexttbtt = nexttbtt;
2022 
2023 	intval |= AR5K_BEACON_ENA;
2024 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2025 
2026 	/*
2027 	 * debugging output last in order to preserve the time critical aspect
2028 	 * of this function
2029 	 */
2030 	if (bc_tsf == -1)
2031 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2032 			"reconfigured timers based on HW TSF\n");
2033 	else if (bc_tsf == 0)
2034 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2035 			"reset HW TSF and timers\n");
2036 	else
2037 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2038 			"updated timers based on beacon TSF\n");
2039 
2040 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2041 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2042 			  (unsigned long long) bc_tsf,
2043 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2044 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2045 		intval & AR5K_BEACON_PERIOD,
2046 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2047 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2048 }
2049 
2050 /**
2051  * ath5k_beacon_config - Configure the beacon queues and interrupts
2052  *
2053  * @ah: struct ath5k_hw pointer we are operating on
2054  *
2055  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2056  * interrupts to detect TSF updates only.
2057  */
2058 void
2059 ath5k_beacon_config(struct ath5k_hw *ah)
2060 {
2061 	spin_lock_bh(&ah->block);
2062 	ah->bmisscount = 0;
2063 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2064 
2065 	if (ah->enable_beacon) {
2066 		/*
2067 		 * In IBSS mode we use a self-linked tx descriptor and let the
2068 		 * hardware send the beacons automatically. We have to load it
2069 		 * only once here.
2070 		 * We use the SWBA interrupt only to keep track of the beacon
2071 		 * timers in order to detect automatic TSF updates.
2072 		 */
2073 		ath5k_beaconq_config(ah);
2074 
2075 		ah->imask |= AR5K_INT_SWBA;
2076 
2077 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2078 			if (ath5k_hw_hasveol(ah))
2079 				ath5k_beacon_send(ah);
2080 		} else
2081 			ath5k_beacon_update_timers(ah, -1);
2082 	} else {
2083 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2084 	}
2085 
2086 	ath5k_hw_set_imr(ah, ah->imask);
2087 	mmiowb();
2088 	spin_unlock_bh(&ah->block);
2089 }
2090 
2091 static void ath5k_tasklet_beacon(unsigned long data)
2092 {
2093 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2094 
2095 	/*
2096 	 * Software beacon alert--time to send a beacon.
2097 	 *
2098 	 * In IBSS mode we use this interrupt just to
2099 	 * keep track of the next TBTT (target beacon
2100 	 * transmission time) in order to detect whether
2101 	 * automatic TSF updates happened.
2102 	 */
2103 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2104 		/* XXX: only if VEOL supported */
2105 		u64 tsf = ath5k_hw_get_tsf64(ah);
2106 		ah->nexttbtt += ah->bintval;
2107 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2108 				"SWBA nexttbtt: %x hw_tu: %x "
2109 				"TSF: %llx\n",
2110 				ah->nexttbtt,
2111 				TSF_TO_TU(tsf),
2112 				(unsigned long long) tsf);
2113 	} else {
2114 		spin_lock(&ah->block);
2115 		ath5k_beacon_send(ah);
2116 		spin_unlock(&ah->block);
2117 	}
2118 }
2119 
2120 
2121 /********************\
2122 * Interrupt handling *
2123 \********************/
2124 
2125 static void
2126 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2127 {
2128 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2129 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2130 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2131 
2132 		/* Run ANI only when calibration is not active */
2133 
2134 		ah->ah_cal_next_ani = jiffies +
2135 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2136 		tasklet_schedule(&ah->ani_tasklet);
2137 
2138 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2139 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2140 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2141 
2142 		/* Run calibration only when another calibration
2143 		 * is not running.
2144 		 *
2145 		 * Note: This is for both full/short calibration,
2146 		 * if it's time for a full one, ath5k_calibrate_work will deal
2147 		 * with it. */
2148 
2149 		ah->ah_cal_next_short = jiffies +
2150 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2151 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2152 	}
2153 	/* we could use SWI to generate enough interrupts to meet our
2154 	 * calibration interval requirements, if necessary:
2155 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2156 }
2157 
2158 static void
2159 ath5k_schedule_rx(struct ath5k_hw *ah)
2160 {
2161 	ah->rx_pending = true;
2162 	tasklet_schedule(&ah->rxtq);
2163 }
2164 
2165 static void
2166 ath5k_schedule_tx(struct ath5k_hw *ah)
2167 {
2168 	ah->tx_pending = true;
2169 	tasklet_schedule(&ah->txtq);
2170 }
2171 
2172 static irqreturn_t
2173 ath5k_intr(int irq, void *dev_id)
2174 {
2175 	struct ath5k_hw *ah = dev_id;
2176 	enum ath5k_int status;
2177 	unsigned int counter = 1000;
2178 
2179 
2180 	/*
2181 	 * If hw is not ready (or detached) and we get an
2182 	 * interrupt, or if we have no interrupts pending
2183 	 * (that means it's not for us) skip it.
2184 	 *
2185 	 * NOTE: Group 0/1 PCI interface registers are not
2186 	 * supported on WiSOCs, so we can't check for pending
2187 	 * interrupts (ISR belongs to another register group
2188 	 * so we are ok).
2189 	 */
2190 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2191 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2192 			!ath5k_hw_is_intr_pending(ah))))
2193 		return IRQ_NONE;
2194 
2195 	/** Main loop **/
2196 	do {
2197 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2198 
2199 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2200 				status, ah->imask);
2201 
2202 		/*
2203 		 * Fatal hw error -> Log and reset
2204 		 *
2205 		 * Fatal errors are unrecoverable so we have to
2206 		 * reset the card. These errors include bus and
2207 		 * dma errors.
2208 		 */
2209 		if (unlikely(status & AR5K_INT_FATAL)) {
2210 
2211 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2212 				  "fatal int, resetting\n");
2213 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2214 
2215 		/*
2216 		 * RX Overrun -> Count and reset if needed
2217 		 *
2218 		 * Receive buffers are full. Either the bus is busy or
2219 		 * the CPU is not fast enough to process all received
2220 		 * frames.
2221 		 */
2222 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2223 
2224 			/*
2225 			 * Older chipsets need a reset to come out of this
2226 			 * condition, but we treat it as RX for newer chips.
2227 			 * We don't know exactly which versions need a reset
2228 			 * this guess is copied from the HAL.
2229 			 */
2230 			ah->stats.rxorn_intr++;
2231 
2232 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2233 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2234 					  "rx overrun, resetting\n");
2235 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2236 			} else
2237 				ath5k_schedule_rx(ah);
2238 
2239 		} else {
2240 
2241 			/* Software Beacon Alert -> Schedule beacon tasklet */
2242 			if (status & AR5K_INT_SWBA)
2243 				tasklet_hi_schedule(&ah->beacontq);
2244 
2245 			/*
2246 			 * No more RX descriptors -> Just count
2247 			 *
2248 			 * NB: the hardware should re-read the link when
2249 			 *     RXE bit is written, but it doesn't work at
2250 			 *     least on older hardware revs.
2251 			 */
2252 			if (status & AR5K_INT_RXEOL)
2253 				ah->stats.rxeol_intr++;
2254 
2255 
2256 			/* TX Underrun -> Bump tx trigger level */
2257 			if (status & AR5K_INT_TXURN)
2258 				ath5k_hw_update_tx_triglevel(ah, true);
2259 
2260 			/* RX -> Schedule rx tasklet */
2261 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2262 				ath5k_schedule_rx(ah);
2263 
2264 			/* TX -> Schedule tx tasklet */
2265 			if (status & (AR5K_INT_TXOK
2266 					| AR5K_INT_TXDESC
2267 					| AR5K_INT_TXERR
2268 					| AR5K_INT_TXEOL))
2269 				ath5k_schedule_tx(ah);
2270 
2271 			/* Missed beacon -> TODO
2272 			if (status & AR5K_INT_BMISS)
2273 			*/
2274 
2275 			/* MIB event -> Update counters and notify ANI */
2276 			if (status & AR5K_INT_MIB) {
2277 				ah->stats.mib_intr++;
2278 				ath5k_hw_update_mib_counters(ah);
2279 				ath5k_ani_mib_intr(ah);
2280 			}
2281 
2282 			/* GPIO -> Notify RFKill layer */
2283 			if (status & AR5K_INT_GPIO)
2284 				tasklet_schedule(&ah->rf_kill.toggleq);
2285 
2286 		}
2287 
2288 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2289 			break;
2290 
2291 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2292 
2293 	/*
2294 	 * Until we handle rx/tx interrupts mask them on IMR
2295 	 *
2296 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2297 	 * and unset after we 've handled the interrupts.
2298 	 */
2299 	if (ah->rx_pending || ah->tx_pending)
2300 		ath5k_set_current_imask(ah);
2301 
2302 	if (unlikely(!counter))
2303 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2304 
2305 	/* Fire up calibration poll */
2306 	ath5k_intr_calibration_poll(ah);
2307 
2308 	return IRQ_HANDLED;
2309 }
2310 
2311 /*
2312  * Periodically recalibrate the PHY to account
2313  * for temperature/environment changes.
2314  */
2315 static void
2316 ath5k_calibrate_work(struct work_struct *work)
2317 {
2318 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2319 		calib_work);
2320 
2321 	/* Should we run a full calibration ? */
2322 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2323 
2324 		ah->ah_cal_next_full = jiffies +
2325 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2326 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2327 
2328 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2329 				"running full calibration\n");
2330 
2331 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2332 			/*
2333 			 * Rfgain is out of bounds, reset the chip
2334 			 * to load new gain values.
2335 			 */
2336 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2337 					"got new rfgain, resetting\n");
2338 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2339 		}
2340 	} else
2341 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2342 
2343 
2344 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2345 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2346 		ah->curchan->hw_value);
2347 
2348 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2349 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2350 			ieee80211_frequency_to_channel(
2351 				ah->curchan->center_freq));
2352 
2353 	/* Clear calibration flags */
2354 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2355 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2356 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2357 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2358 }
2359 
2360 
2361 static void
2362 ath5k_tasklet_ani(unsigned long data)
2363 {
2364 	struct ath5k_hw *ah = (void *)data;
2365 
2366 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2367 	ath5k_ani_calibration(ah);
2368 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2369 }
2370 
2371 
2372 static void
2373 ath5k_tx_complete_poll_work(struct work_struct *work)
2374 {
2375 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2376 			tx_complete_work.work);
2377 	struct ath5k_txq *txq;
2378 	int i;
2379 	bool needreset = false;
2380 
2381 	mutex_lock(&ah->lock);
2382 
2383 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2384 		if (ah->txqs[i].setup) {
2385 			txq = &ah->txqs[i];
2386 			spin_lock_bh(&txq->lock);
2387 			if (txq->txq_len > 1) {
2388 				if (txq->txq_poll_mark) {
2389 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2390 						  "TX queue stuck %d\n",
2391 						  txq->qnum);
2392 					needreset = true;
2393 					txq->txq_stuck++;
2394 					spin_unlock_bh(&txq->lock);
2395 					break;
2396 				} else {
2397 					txq->txq_poll_mark = true;
2398 				}
2399 			}
2400 			spin_unlock_bh(&txq->lock);
2401 		}
2402 	}
2403 
2404 	if (needreset) {
2405 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2406 			  "TX queues stuck, resetting\n");
2407 		ath5k_reset(ah, NULL, true);
2408 	}
2409 
2410 	mutex_unlock(&ah->lock);
2411 
2412 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2413 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2414 }
2415 
2416 
2417 /*************************\
2418 * Initialization routines *
2419 \*************************/
2420 
2421 static const struct ieee80211_iface_limit if_limits[] = {
2422 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2423 	{ .max = 4,	.types =
2424 #ifdef CONFIG_MAC80211_MESH
2425 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2426 #endif
2427 				 BIT(NL80211_IFTYPE_AP) },
2428 };
2429 
2430 static const struct ieee80211_iface_combination if_comb = {
2431 	.limits = if_limits,
2432 	.n_limits = ARRAY_SIZE(if_limits),
2433 	.max_interfaces = 2048,
2434 	.num_different_channels = 1,
2435 };
2436 
2437 int __devinit
2438 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2439 {
2440 	struct ieee80211_hw *hw = ah->hw;
2441 	struct ath_common *common;
2442 	int ret;
2443 	int csz;
2444 
2445 	/* Initialize driver private data */
2446 	SET_IEEE80211_DEV(hw, ah->dev);
2447 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2448 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2449 			IEEE80211_HW_SIGNAL_DBM |
2450 			IEEE80211_HW_MFP_CAPABLE |
2451 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2452 
2453 	hw->wiphy->interface_modes =
2454 		BIT(NL80211_IFTYPE_AP) |
2455 		BIT(NL80211_IFTYPE_STATION) |
2456 		BIT(NL80211_IFTYPE_ADHOC) |
2457 		BIT(NL80211_IFTYPE_MESH_POINT);
2458 
2459 	hw->wiphy->iface_combinations = &if_comb;
2460 	hw->wiphy->n_iface_combinations = 1;
2461 
2462 	/* SW support for IBSS_RSN is provided by mac80211 */
2463 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2464 
2465 	/* both antennas can be configured as RX or TX */
2466 	hw->wiphy->available_antennas_tx = 0x3;
2467 	hw->wiphy->available_antennas_rx = 0x3;
2468 
2469 	hw->extra_tx_headroom = 2;
2470 	hw->channel_change_time = 5000;
2471 
2472 	/*
2473 	 * Mark the device as detached to avoid processing
2474 	 * interrupts until setup is complete.
2475 	 */
2476 	__set_bit(ATH_STAT_INVALID, ah->status);
2477 
2478 	ah->opmode = NL80211_IFTYPE_STATION;
2479 	ah->bintval = 1000;
2480 	mutex_init(&ah->lock);
2481 	spin_lock_init(&ah->rxbuflock);
2482 	spin_lock_init(&ah->txbuflock);
2483 	spin_lock_init(&ah->block);
2484 	spin_lock_init(&ah->irqlock);
2485 
2486 	/* Setup interrupt handler */
2487 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2488 	if (ret) {
2489 		ATH5K_ERR(ah, "request_irq failed\n");
2490 		goto err;
2491 	}
2492 
2493 	common = ath5k_hw_common(ah);
2494 	common->ops = &ath5k_common_ops;
2495 	common->bus_ops = bus_ops;
2496 	common->ah = ah;
2497 	common->hw = hw;
2498 	common->priv = ah;
2499 	common->clockrate = 40;
2500 
2501 	/*
2502 	 * Cache line size is used to size and align various
2503 	 * structures used to communicate with the hardware.
2504 	 */
2505 	ath5k_read_cachesize(common, &csz);
2506 	common->cachelsz = csz << 2; /* convert to bytes */
2507 
2508 	spin_lock_init(&common->cc_lock);
2509 
2510 	/* Initialize device */
2511 	ret = ath5k_hw_init(ah);
2512 	if (ret)
2513 		goto err_irq;
2514 
2515 	/* Set up multi-rate retry capabilities */
2516 	if (ah->ah_capabilities.cap_has_mrr_support) {
2517 		hw->max_rates = 4;
2518 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2519 					 AR5K_INIT_RETRY_LONG);
2520 	}
2521 
2522 	hw->vif_data_size = sizeof(struct ath5k_vif);
2523 
2524 	/* Finish private driver data initialization */
2525 	ret = ath5k_init(hw);
2526 	if (ret)
2527 		goto err_ah;
2528 
2529 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2530 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2531 					ah->ah_mac_srev,
2532 					ah->ah_phy_revision);
2533 
2534 	if (!ah->ah_single_chip) {
2535 		/* Single chip radio (!RF5111) */
2536 		if (ah->ah_radio_5ghz_revision &&
2537 			!ah->ah_radio_2ghz_revision) {
2538 			/* No 5GHz support -> report 2GHz radio */
2539 			if (!test_bit(AR5K_MODE_11A,
2540 				ah->ah_capabilities.cap_mode)) {
2541 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2542 					ath5k_chip_name(AR5K_VERSION_RAD,
2543 						ah->ah_radio_5ghz_revision),
2544 						ah->ah_radio_5ghz_revision);
2545 			/* No 2GHz support (5110 and some
2546 			 * 5GHz only cards) -> report 5GHz radio */
2547 			} else if (!test_bit(AR5K_MODE_11B,
2548 				ah->ah_capabilities.cap_mode)) {
2549 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2550 					ath5k_chip_name(AR5K_VERSION_RAD,
2551 						ah->ah_radio_5ghz_revision),
2552 						ah->ah_radio_5ghz_revision);
2553 			/* Multiband radio */
2554 			} else {
2555 				ATH5K_INFO(ah, "RF%s multiband radio found"
2556 					" (0x%x)\n",
2557 					ath5k_chip_name(AR5K_VERSION_RAD,
2558 						ah->ah_radio_5ghz_revision),
2559 						ah->ah_radio_5ghz_revision);
2560 			}
2561 		}
2562 		/* Multi chip radio (RF5111 - RF2111) ->
2563 		 * report both 2GHz/5GHz radios */
2564 		else if (ah->ah_radio_5ghz_revision &&
2565 				ah->ah_radio_2ghz_revision) {
2566 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2567 				ath5k_chip_name(AR5K_VERSION_RAD,
2568 					ah->ah_radio_5ghz_revision),
2569 					ah->ah_radio_5ghz_revision);
2570 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2571 				ath5k_chip_name(AR5K_VERSION_RAD,
2572 					ah->ah_radio_2ghz_revision),
2573 					ah->ah_radio_2ghz_revision);
2574 		}
2575 	}
2576 
2577 	ath5k_debug_init_device(ah);
2578 
2579 	/* ready to process interrupts */
2580 	__clear_bit(ATH_STAT_INVALID, ah->status);
2581 
2582 	return 0;
2583 err_ah:
2584 	ath5k_hw_deinit(ah);
2585 err_irq:
2586 	free_irq(ah->irq, ah);
2587 err:
2588 	return ret;
2589 }
2590 
2591 static int
2592 ath5k_stop_locked(struct ath5k_hw *ah)
2593 {
2594 
2595 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2596 			test_bit(ATH_STAT_INVALID, ah->status));
2597 
2598 	/*
2599 	 * Shutdown the hardware and driver:
2600 	 *    stop output from above
2601 	 *    disable interrupts
2602 	 *    turn off timers
2603 	 *    turn off the radio
2604 	 *    clear transmit machinery
2605 	 *    clear receive machinery
2606 	 *    drain and release tx queues
2607 	 *    reclaim beacon resources
2608 	 *    power down hardware
2609 	 *
2610 	 * Note that some of this work is not possible if the
2611 	 * hardware is gone (invalid).
2612 	 */
2613 	ieee80211_stop_queues(ah->hw);
2614 
2615 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2616 		ath5k_led_off(ah);
2617 		ath5k_hw_set_imr(ah, 0);
2618 		synchronize_irq(ah->irq);
2619 		ath5k_rx_stop(ah);
2620 		ath5k_hw_dma_stop(ah);
2621 		ath5k_drain_tx_buffs(ah);
2622 		ath5k_hw_phy_disable(ah);
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 int ath5k_start(struct ieee80211_hw *hw)
2629 {
2630 	struct ath5k_hw *ah = hw->priv;
2631 	struct ath_common *common = ath5k_hw_common(ah);
2632 	int ret, i;
2633 
2634 	mutex_lock(&ah->lock);
2635 
2636 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2637 
2638 	/*
2639 	 * Stop anything previously setup.  This is safe
2640 	 * no matter this is the first time through or not.
2641 	 */
2642 	ath5k_stop_locked(ah);
2643 
2644 	/*
2645 	 * The basic interface to setting the hardware in a good
2646 	 * state is ``reset''.  On return the hardware is known to
2647 	 * be powered up and with interrupts disabled.  This must
2648 	 * be followed by initialization of the appropriate bits
2649 	 * and then setup of the interrupt mask.
2650 	 */
2651 	ah->curchan = ah->hw->conf.channel;
2652 	ah->imask = AR5K_INT_RXOK
2653 		| AR5K_INT_RXERR
2654 		| AR5K_INT_RXEOL
2655 		| AR5K_INT_RXORN
2656 		| AR5K_INT_TXDESC
2657 		| AR5K_INT_TXEOL
2658 		| AR5K_INT_FATAL
2659 		| AR5K_INT_GLOBAL
2660 		| AR5K_INT_MIB;
2661 
2662 	ret = ath5k_reset(ah, NULL, false);
2663 	if (ret)
2664 		goto done;
2665 
2666 	if (!ath5k_modparam_no_hw_rfkill_switch)
2667 		ath5k_rfkill_hw_start(ah);
2668 
2669 	/*
2670 	 * Reset the key cache since some parts do not reset the
2671 	 * contents on initial power up or resume from suspend.
2672 	 */
2673 	for (i = 0; i < common->keymax; i++)
2674 		ath_hw_keyreset(common, (u16) i);
2675 
2676 	/* Use higher rates for acks instead of base
2677 	 * rate */
2678 	ah->ah_ack_bitrate_high = true;
2679 
2680 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2681 		ah->bslot[i] = NULL;
2682 
2683 	ret = 0;
2684 done:
2685 	mmiowb();
2686 	mutex_unlock(&ah->lock);
2687 
2688 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2689 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2690 
2691 	return ret;
2692 }
2693 
2694 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2695 {
2696 	ah->rx_pending = false;
2697 	ah->tx_pending = false;
2698 	tasklet_kill(&ah->rxtq);
2699 	tasklet_kill(&ah->txtq);
2700 	tasklet_kill(&ah->beacontq);
2701 	tasklet_kill(&ah->ani_tasklet);
2702 }
2703 
2704 /*
2705  * Stop the device, grabbing the top-level lock to protect
2706  * against concurrent entry through ath5k_init (which can happen
2707  * if another thread does a system call and the thread doing the
2708  * stop is preempted).
2709  */
2710 void ath5k_stop(struct ieee80211_hw *hw)
2711 {
2712 	struct ath5k_hw *ah = hw->priv;
2713 	int ret;
2714 
2715 	mutex_lock(&ah->lock);
2716 	ret = ath5k_stop_locked(ah);
2717 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2718 		/*
2719 		 * Don't set the card in full sleep mode!
2720 		 *
2721 		 * a) When the device is in this state it must be carefully
2722 		 * woken up or references to registers in the PCI clock
2723 		 * domain may freeze the bus (and system).  This varies
2724 		 * by chip and is mostly an issue with newer parts
2725 		 * (madwifi sources mentioned srev >= 0x78) that go to
2726 		 * sleep more quickly.
2727 		 *
2728 		 * b) On older chips full sleep results a weird behaviour
2729 		 * during wakeup. I tested various cards with srev < 0x78
2730 		 * and they don't wake up after module reload, a second
2731 		 * module reload is needed to bring the card up again.
2732 		 *
2733 		 * Until we figure out what's going on don't enable
2734 		 * full chip reset on any chip (this is what Legacy HAL
2735 		 * and Sam's HAL do anyway). Instead Perform a full reset
2736 		 * on the device (same as initial state after attach) and
2737 		 * leave it idle (keep MAC/BB on warm reset) */
2738 		ret = ath5k_hw_on_hold(ah);
2739 
2740 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2741 				"putting device to sleep\n");
2742 	}
2743 
2744 	mmiowb();
2745 	mutex_unlock(&ah->lock);
2746 
2747 	ath5k_stop_tasklets(ah);
2748 
2749 	cancel_delayed_work_sync(&ah->tx_complete_work);
2750 
2751 	if (!ath5k_modparam_no_hw_rfkill_switch)
2752 		ath5k_rfkill_hw_stop(ah);
2753 }
2754 
2755 /*
2756  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2757  * and change to the given channel.
2758  *
2759  * This should be called with ah->lock.
2760  */
2761 static int
2762 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2763 							bool skip_pcu)
2764 {
2765 	struct ath_common *common = ath5k_hw_common(ah);
2766 	int ret, ani_mode;
2767 	bool fast;
2768 
2769 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2770 
2771 	ath5k_hw_set_imr(ah, 0);
2772 	synchronize_irq(ah->irq);
2773 	ath5k_stop_tasklets(ah);
2774 
2775 	/* Save ani mode and disable ANI during
2776 	 * reset. If we don't we might get false
2777 	 * PHY error interrupts. */
2778 	ani_mode = ah->ani_state.ani_mode;
2779 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2780 
2781 	/* We are going to empty hw queues
2782 	 * so we should also free any remaining
2783 	 * tx buffers */
2784 	ath5k_drain_tx_buffs(ah);
2785 	if (chan)
2786 		ah->curchan = chan;
2787 
2788 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2789 
2790 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2791 	if (ret) {
2792 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2793 		goto err;
2794 	}
2795 
2796 	ret = ath5k_rx_start(ah);
2797 	if (ret) {
2798 		ATH5K_ERR(ah, "can't start recv logic\n");
2799 		goto err;
2800 	}
2801 
2802 	ath5k_ani_init(ah, ani_mode);
2803 
2804 	/*
2805 	 * Set calibration intervals
2806 	 *
2807 	 * Note: We don't need to run calibration imediately
2808 	 * since some initial calibration is done on reset
2809 	 * even for fast channel switching. Also on scanning
2810 	 * this will get set again and again and it won't get
2811 	 * executed unless we connect somewhere and spend some
2812 	 * time on the channel (that's what calibration needs
2813 	 * anyway to be accurate).
2814 	 */
2815 	ah->ah_cal_next_full = jiffies +
2816 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2817 	ah->ah_cal_next_ani = jiffies +
2818 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2819 	ah->ah_cal_next_short = jiffies +
2820 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2821 
2822 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2823 
2824 	/* clear survey data and cycle counters */
2825 	memset(&ah->survey, 0, sizeof(ah->survey));
2826 	spin_lock_bh(&common->cc_lock);
2827 	ath_hw_cycle_counters_update(common);
2828 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2829 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2830 	spin_unlock_bh(&common->cc_lock);
2831 
2832 	/*
2833 	 * Change channels and update the h/w rate map if we're switching;
2834 	 * e.g. 11a to 11b/g.
2835 	 *
2836 	 * We may be doing a reset in response to an ioctl that changes the
2837 	 * channel so update any state that might change as a result.
2838 	 *
2839 	 * XXX needed?
2840 	 */
2841 /*	ath5k_chan_change(ah, c); */
2842 
2843 	ath5k_beacon_config(ah);
2844 	/* intrs are enabled by ath5k_beacon_config */
2845 
2846 	ieee80211_wake_queues(ah->hw);
2847 
2848 	return 0;
2849 err:
2850 	return ret;
2851 }
2852 
2853 static void ath5k_reset_work(struct work_struct *work)
2854 {
2855 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2856 		reset_work);
2857 
2858 	mutex_lock(&ah->lock);
2859 	ath5k_reset(ah, NULL, true);
2860 	mutex_unlock(&ah->lock);
2861 }
2862 
2863 static int __devinit
2864 ath5k_init(struct ieee80211_hw *hw)
2865 {
2866 
2867 	struct ath5k_hw *ah = hw->priv;
2868 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2869 	struct ath5k_txq *txq;
2870 	u8 mac[ETH_ALEN] = {};
2871 	int ret;
2872 
2873 
2874 	/*
2875 	 * Collect the channel list.  The 802.11 layer
2876 	 * is responsible for filtering this list based
2877 	 * on settings like the phy mode and regulatory
2878 	 * domain restrictions.
2879 	 */
2880 	ret = ath5k_setup_bands(hw);
2881 	if (ret) {
2882 		ATH5K_ERR(ah, "can't get channels\n");
2883 		goto err;
2884 	}
2885 
2886 	/*
2887 	 * Allocate tx+rx descriptors and populate the lists.
2888 	 */
2889 	ret = ath5k_desc_alloc(ah);
2890 	if (ret) {
2891 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2892 		goto err;
2893 	}
2894 
2895 	/*
2896 	 * Allocate hardware transmit queues: one queue for
2897 	 * beacon frames and one data queue for each QoS
2898 	 * priority.  Note that hw functions handle resetting
2899 	 * these queues at the needed time.
2900 	 */
2901 	ret = ath5k_beaconq_setup(ah);
2902 	if (ret < 0) {
2903 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2904 		goto err_desc;
2905 	}
2906 	ah->bhalq = ret;
2907 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2908 	if (IS_ERR(ah->cabq)) {
2909 		ATH5K_ERR(ah, "can't setup cab queue\n");
2910 		ret = PTR_ERR(ah->cabq);
2911 		goto err_bhal;
2912 	}
2913 
2914 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2915 	 * capability information */
2916 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2917 		/* This order matches mac80211's queue priority, so we can
2918 		* directly use the mac80211 queue number without any mapping */
2919 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2920 		if (IS_ERR(txq)) {
2921 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2922 			ret = PTR_ERR(txq);
2923 			goto err_queues;
2924 		}
2925 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2926 		if (IS_ERR(txq)) {
2927 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2928 			ret = PTR_ERR(txq);
2929 			goto err_queues;
2930 		}
2931 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2932 		if (IS_ERR(txq)) {
2933 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2934 			ret = PTR_ERR(txq);
2935 			goto err_queues;
2936 		}
2937 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2938 		if (IS_ERR(txq)) {
2939 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2940 			ret = PTR_ERR(txq);
2941 			goto err_queues;
2942 		}
2943 		hw->queues = 4;
2944 	} else {
2945 		/* older hardware (5210) can only support one data queue */
2946 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2947 		if (IS_ERR(txq)) {
2948 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2949 			ret = PTR_ERR(txq);
2950 			goto err_queues;
2951 		}
2952 		hw->queues = 1;
2953 	}
2954 
2955 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2956 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2957 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2958 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2959 
2960 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2961 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2962 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2963 
2964 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2965 	if (ret) {
2966 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2967 		goto err_queues;
2968 	}
2969 
2970 	SET_IEEE80211_PERM_ADDR(hw, mac);
2971 	/* All MAC address bits matter for ACKs */
2972 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2973 
2974 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2975 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2976 	if (ret) {
2977 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2978 		goto err_queues;
2979 	}
2980 
2981 	ret = ieee80211_register_hw(hw);
2982 	if (ret) {
2983 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2984 		goto err_queues;
2985 	}
2986 
2987 	if (!ath_is_world_regd(regulatory))
2988 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2989 
2990 	ath5k_init_leds(ah);
2991 
2992 	ath5k_sysfs_register(ah);
2993 
2994 	return 0;
2995 err_queues:
2996 	ath5k_txq_release(ah);
2997 err_bhal:
2998 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2999 err_desc:
3000 	ath5k_desc_free(ah);
3001 err:
3002 	return ret;
3003 }
3004 
3005 void
3006 ath5k_deinit_ah(struct ath5k_hw *ah)
3007 {
3008 	struct ieee80211_hw *hw = ah->hw;
3009 
3010 	/*
3011 	 * NB: the order of these is important:
3012 	 * o call the 802.11 layer before detaching ath5k_hw to
3013 	 *   ensure callbacks into the driver to delete global
3014 	 *   key cache entries can be handled
3015 	 * o reclaim the tx queue data structures after calling
3016 	 *   the 802.11 layer as we'll get called back to reclaim
3017 	 *   node state and potentially want to use them
3018 	 * o to cleanup the tx queues the hal is called, so detach
3019 	 *   it last
3020 	 * XXX: ??? detach ath5k_hw ???
3021 	 * Other than that, it's straightforward...
3022 	 */
3023 	ieee80211_unregister_hw(hw);
3024 	ath5k_desc_free(ah);
3025 	ath5k_txq_release(ah);
3026 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3027 	ath5k_unregister_leds(ah);
3028 
3029 	ath5k_sysfs_unregister(ah);
3030 	/*
3031 	 * NB: can't reclaim these until after ieee80211_ifdetach
3032 	 * returns because we'll get called back to reclaim node
3033 	 * state and potentially want to use them.
3034 	 */
3035 	ath5k_hw_deinit(ah);
3036 	free_irq(ah->irq, ah);
3037 }
3038 
3039 bool
3040 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3041 {
3042 	struct ath5k_vif_iter_data iter_data;
3043 	iter_data.hw_macaddr = NULL;
3044 	iter_data.any_assoc = false;
3045 	iter_data.need_set_hw_addr = false;
3046 	iter_data.found_active = true;
3047 
3048 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
3049 						   &iter_data);
3050 	return iter_data.any_assoc;
3051 }
3052 
3053 void
3054 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3055 {
3056 	struct ath5k_hw *ah = hw->priv;
3057 	u32 rfilt;
3058 	rfilt = ath5k_hw_get_rx_filter(ah);
3059 	if (enable)
3060 		rfilt |= AR5K_RX_FILTER_BEACON;
3061 	else
3062 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3063 	ath5k_hw_set_rx_filter(ah, rfilt);
3064 	ah->filter_flags = rfilt;
3065 }
3066 
3067 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3068 		   const char *fmt, ...)
3069 {
3070 	struct va_format vaf;
3071 	va_list args;
3072 
3073 	va_start(args, fmt);
3074 
3075 	vaf.fmt = fmt;
3076 	vaf.va = &args;
3077 
3078 	if (ah && ah->hw)
3079 		printk("%s" pr_fmt("%s: %pV"),
3080 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3081 	else
3082 		printk("%s" pr_fmt("%pV"), level, &vaf);
3083 
3084 	va_end(args);
3085 }
3086