xref: /openbmc/linux/drivers/net/wireless/ath/ath12k/dp_rx.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: BSD-3-Clause-Clear
2 /*
3  * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
4  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
5  */
6 
7 #include <linux/ieee80211.h>
8 #include <linux/kernel.h>
9 #include <linux/skbuff.h>
10 #include <crypto/hash.h>
11 #include "core.h"
12 #include "debug.h"
13 #include "hal_desc.h"
14 #include "hw.h"
15 #include "dp_rx.h"
16 #include "hal_rx.h"
17 #include "dp_tx.h"
18 #include "peer.h"
19 #include "dp_mon.h"
20 
21 #define ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS (2 * HZ)
22 
23 static enum hal_encrypt_type ath12k_dp_rx_h_enctype(struct ath12k_base *ab,
24 						    struct hal_rx_desc *desc)
25 {
26 	if (!ab->hw_params->hal_ops->rx_desc_encrypt_valid(desc))
27 		return HAL_ENCRYPT_TYPE_OPEN;
28 
29 	return ab->hw_params->hal_ops->rx_desc_get_encrypt_type(desc);
30 }
31 
32 u8 ath12k_dp_rx_h_decap_type(struct ath12k_base *ab,
33 			     struct hal_rx_desc *desc)
34 {
35 	return ab->hw_params->hal_ops->rx_desc_get_decap_type(desc);
36 }
37 
38 static u8 ath12k_dp_rx_h_mesh_ctl_present(struct ath12k_base *ab,
39 					  struct hal_rx_desc *desc)
40 {
41 	return ab->hw_params->hal_ops->rx_desc_get_mesh_ctl(desc);
42 }
43 
44 static bool ath12k_dp_rx_h_seq_ctrl_valid(struct ath12k_base *ab,
45 					  struct hal_rx_desc *desc)
46 {
47 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_seq_ctl_vld(desc);
48 }
49 
50 static bool ath12k_dp_rx_h_fc_valid(struct ath12k_base *ab,
51 				    struct hal_rx_desc *desc)
52 {
53 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_fc_valid(desc);
54 }
55 
56 static bool ath12k_dp_rx_h_more_frags(struct ath12k_base *ab,
57 				      struct sk_buff *skb)
58 {
59 	struct ieee80211_hdr *hdr;
60 
61 	hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz);
62 	return ieee80211_has_morefrags(hdr->frame_control);
63 }
64 
65 static u16 ath12k_dp_rx_h_frag_no(struct ath12k_base *ab,
66 				  struct sk_buff *skb)
67 {
68 	struct ieee80211_hdr *hdr;
69 
70 	hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz);
71 	return le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
72 }
73 
74 static u16 ath12k_dp_rx_h_seq_no(struct ath12k_base *ab,
75 				 struct hal_rx_desc *desc)
76 {
77 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_start_seq_no(desc);
78 }
79 
80 static bool ath12k_dp_rx_h_msdu_done(struct ath12k_base *ab,
81 				     struct hal_rx_desc *desc)
82 {
83 	return ab->hw_params->hal_ops->dp_rx_h_msdu_done(desc);
84 }
85 
86 static bool ath12k_dp_rx_h_l4_cksum_fail(struct ath12k_base *ab,
87 					 struct hal_rx_desc *desc)
88 {
89 	return ab->hw_params->hal_ops->dp_rx_h_l4_cksum_fail(desc);
90 }
91 
92 static bool ath12k_dp_rx_h_ip_cksum_fail(struct ath12k_base *ab,
93 					 struct hal_rx_desc *desc)
94 {
95 	return ab->hw_params->hal_ops->dp_rx_h_ip_cksum_fail(desc);
96 }
97 
98 static bool ath12k_dp_rx_h_is_decrypted(struct ath12k_base *ab,
99 					struct hal_rx_desc *desc)
100 {
101 	return ab->hw_params->hal_ops->dp_rx_h_is_decrypted(desc);
102 }
103 
104 u32 ath12k_dp_rx_h_mpdu_err(struct ath12k_base *ab,
105 			    struct hal_rx_desc *desc)
106 {
107 	return ab->hw_params->hal_ops->dp_rx_h_mpdu_err(desc);
108 }
109 
110 static u16 ath12k_dp_rx_h_msdu_len(struct ath12k_base *ab,
111 				   struct hal_rx_desc *desc)
112 {
113 	return ab->hw_params->hal_ops->rx_desc_get_msdu_len(desc);
114 }
115 
116 static u8 ath12k_dp_rx_h_sgi(struct ath12k_base *ab,
117 			     struct hal_rx_desc *desc)
118 {
119 	return ab->hw_params->hal_ops->rx_desc_get_msdu_sgi(desc);
120 }
121 
122 static u8 ath12k_dp_rx_h_rate_mcs(struct ath12k_base *ab,
123 				  struct hal_rx_desc *desc)
124 {
125 	return ab->hw_params->hal_ops->rx_desc_get_msdu_rate_mcs(desc);
126 }
127 
128 static u8 ath12k_dp_rx_h_rx_bw(struct ath12k_base *ab,
129 			       struct hal_rx_desc *desc)
130 {
131 	return ab->hw_params->hal_ops->rx_desc_get_msdu_rx_bw(desc);
132 }
133 
134 static u32 ath12k_dp_rx_h_freq(struct ath12k_base *ab,
135 			       struct hal_rx_desc *desc)
136 {
137 	return ab->hw_params->hal_ops->rx_desc_get_msdu_freq(desc);
138 }
139 
140 static u8 ath12k_dp_rx_h_pkt_type(struct ath12k_base *ab,
141 				  struct hal_rx_desc *desc)
142 {
143 	return ab->hw_params->hal_ops->rx_desc_get_msdu_pkt_type(desc);
144 }
145 
146 static u8 ath12k_dp_rx_h_nss(struct ath12k_base *ab,
147 			     struct hal_rx_desc *desc)
148 {
149 	return hweight8(ab->hw_params->hal_ops->rx_desc_get_msdu_nss(desc));
150 }
151 
152 static u8 ath12k_dp_rx_h_tid(struct ath12k_base *ab,
153 			     struct hal_rx_desc *desc)
154 {
155 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_tid(desc);
156 }
157 
158 static u16 ath12k_dp_rx_h_peer_id(struct ath12k_base *ab,
159 				  struct hal_rx_desc *desc)
160 {
161 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_peer_id(desc);
162 }
163 
164 u8 ath12k_dp_rx_h_l3pad(struct ath12k_base *ab,
165 			struct hal_rx_desc *desc)
166 {
167 	return ab->hw_params->hal_ops->rx_desc_get_l3_pad_bytes(desc);
168 }
169 
170 static bool ath12k_dp_rx_h_first_msdu(struct ath12k_base *ab,
171 				      struct hal_rx_desc *desc)
172 {
173 	return ab->hw_params->hal_ops->rx_desc_get_first_msdu(desc);
174 }
175 
176 static bool ath12k_dp_rx_h_last_msdu(struct ath12k_base *ab,
177 				     struct hal_rx_desc *desc)
178 {
179 	return ab->hw_params->hal_ops->rx_desc_get_last_msdu(desc);
180 }
181 
182 static void ath12k_dp_rx_desc_end_tlv_copy(struct ath12k_base *ab,
183 					   struct hal_rx_desc *fdesc,
184 					   struct hal_rx_desc *ldesc)
185 {
186 	ab->hw_params->hal_ops->rx_desc_copy_end_tlv(fdesc, ldesc);
187 }
188 
189 static void ath12k_dp_rxdesc_set_msdu_len(struct ath12k_base *ab,
190 					  struct hal_rx_desc *desc,
191 					  u16 len)
192 {
193 	ab->hw_params->hal_ops->rx_desc_set_msdu_len(desc, len);
194 }
195 
196 static bool ath12k_dp_rx_h_is_mcbc(struct ath12k_base *ab,
197 				   struct hal_rx_desc *desc)
198 {
199 	return (ath12k_dp_rx_h_first_msdu(ab, desc) &&
200 		ab->hw_params->hal_ops->rx_desc_is_mcbc(desc));
201 }
202 
203 static bool ath12k_dp_rxdesc_mac_addr2_valid(struct ath12k_base *ab,
204 					     struct hal_rx_desc *desc)
205 {
206 	return ab->hw_params->hal_ops->rx_desc_mac_addr2_valid(desc);
207 }
208 
209 static u8 *ath12k_dp_rxdesc_get_mpdu_start_addr2(struct ath12k_base *ab,
210 						 struct hal_rx_desc *desc)
211 {
212 	return ab->hw_params->hal_ops->rx_desc_mpdu_start_addr2(desc);
213 }
214 
215 static void ath12k_dp_rx_desc_get_dot11_hdr(struct ath12k_base *ab,
216 					    struct hal_rx_desc *desc,
217 					    struct ieee80211_hdr *hdr)
218 {
219 	ab->hw_params->hal_ops->rx_desc_get_dot11_hdr(desc, hdr);
220 }
221 
222 static void ath12k_dp_rx_desc_get_crypto_header(struct ath12k_base *ab,
223 						struct hal_rx_desc *desc,
224 						u8 *crypto_hdr,
225 						enum hal_encrypt_type enctype)
226 {
227 	ab->hw_params->hal_ops->rx_desc_get_crypto_header(desc, crypto_hdr, enctype);
228 }
229 
230 static u16 ath12k_dp_rxdesc_get_mpdu_frame_ctrl(struct ath12k_base *ab,
231 						struct hal_rx_desc *desc)
232 {
233 	return ab->hw_params->hal_ops->rx_desc_get_mpdu_frame_ctl(desc);
234 }
235 
236 static int ath12k_dp_purge_mon_ring(struct ath12k_base *ab)
237 {
238 	int i, reaped = 0;
239 	unsigned long timeout = jiffies + msecs_to_jiffies(DP_MON_PURGE_TIMEOUT_MS);
240 
241 	do {
242 		for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++)
243 			reaped += ath12k_dp_mon_process_ring(ab, i, NULL,
244 							     DP_MON_SERVICE_BUDGET,
245 							     ATH12K_DP_RX_MONITOR_MODE);
246 
247 		/* nothing more to reap */
248 		if (reaped < DP_MON_SERVICE_BUDGET)
249 			return 0;
250 
251 	} while (time_before(jiffies, timeout));
252 
253 	ath12k_warn(ab, "dp mon ring purge timeout");
254 
255 	return -ETIMEDOUT;
256 }
257 
258 /* Returns number of Rx buffers replenished */
259 int ath12k_dp_rx_bufs_replenish(struct ath12k_base *ab, int mac_id,
260 				struct dp_rxdma_ring *rx_ring,
261 				int req_entries,
262 				enum hal_rx_buf_return_buf_manager mgr,
263 				bool hw_cc)
264 {
265 	struct ath12k_buffer_addr *desc;
266 	struct hal_srng *srng;
267 	struct sk_buff *skb;
268 	int num_free;
269 	int num_remain;
270 	int buf_id;
271 	u32 cookie;
272 	dma_addr_t paddr;
273 	struct ath12k_dp *dp = &ab->dp;
274 	struct ath12k_rx_desc_info *rx_desc;
275 
276 	req_entries = min(req_entries, rx_ring->bufs_max);
277 
278 	srng = &ab->hal.srng_list[rx_ring->refill_buf_ring.ring_id];
279 
280 	spin_lock_bh(&srng->lock);
281 
282 	ath12k_hal_srng_access_begin(ab, srng);
283 
284 	num_free = ath12k_hal_srng_src_num_free(ab, srng, true);
285 	if (!req_entries && (num_free > (rx_ring->bufs_max * 3) / 4))
286 		req_entries = num_free;
287 
288 	req_entries = min(num_free, req_entries);
289 	num_remain = req_entries;
290 
291 	while (num_remain > 0) {
292 		skb = dev_alloc_skb(DP_RX_BUFFER_SIZE +
293 				    DP_RX_BUFFER_ALIGN_SIZE);
294 		if (!skb)
295 			break;
296 
297 		if (!IS_ALIGNED((unsigned long)skb->data,
298 				DP_RX_BUFFER_ALIGN_SIZE)) {
299 			skb_pull(skb,
300 				 PTR_ALIGN(skb->data, DP_RX_BUFFER_ALIGN_SIZE) -
301 				 skb->data);
302 		}
303 
304 		paddr = dma_map_single(ab->dev, skb->data,
305 				       skb->len + skb_tailroom(skb),
306 				       DMA_FROM_DEVICE);
307 		if (dma_mapping_error(ab->dev, paddr))
308 			goto fail_free_skb;
309 
310 		if (hw_cc) {
311 			spin_lock_bh(&dp->rx_desc_lock);
312 
313 			/* Get desc from free list and store in used list
314 			 * for cleanup purposes
315 			 *
316 			 * TODO: pass the removed descs rather than
317 			 * add/read to optimize
318 			 */
319 			rx_desc = list_first_entry_or_null(&dp->rx_desc_free_list,
320 							   struct ath12k_rx_desc_info,
321 							   list);
322 			if (!rx_desc) {
323 				spin_unlock_bh(&dp->rx_desc_lock);
324 				goto fail_dma_unmap;
325 			}
326 
327 			rx_desc->skb = skb;
328 			cookie = rx_desc->cookie;
329 			list_del(&rx_desc->list);
330 			list_add_tail(&rx_desc->list, &dp->rx_desc_used_list);
331 
332 			spin_unlock_bh(&dp->rx_desc_lock);
333 		} else {
334 			spin_lock_bh(&rx_ring->idr_lock);
335 			buf_id = idr_alloc(&rx_ring->bufs_idr, skb, 0,
336 					   rx_ring->bufs_max * 3, GFP_ATOMIC);
337 			spin_unlock_bh(&rx_ring->idr_lock);
338 			if (buf_id < 0)
339 				goto fail_dma_unmap;
340 			cookie = u32_encode_bits(mac_id,
341 						 DP_RXDMA_BUF_COOKIE_PDEV_ID) |
342 				 u32_encode_bits(buf_id,
343 						 DP_RXDMA_BUF_COOKIE_BUF_ID);
344 		}
345 
346 		desc = ath12k_hal_srng_src_get_next_entry(ab, srng);
347 		if (!desc)
348 			goto fail_buf_unassign;
349 
350 		ATH12K_SKB_RXCB(skb)->paddr = paddr;
351 
352 		num_remain--;
353 
354 		ath12k_hal_rx_buf_addr_info_set(desc, paddr, cookie, mgr);
355 	}
356 
357 	ath12k_hal_srng_access_end(ab, srng);
358 
359 	spin_unlock_bh(&srng->lock);
360 
361 	return req_entries - num_remain;
362 
363 fail_buf_unassign:
364 	if (hw_cc) {
365 		spin_lock_bh(&dp->rx_desc_lock);
366 		list_del(&rx_desc->list);
367 		list_add_tail(&rx_desc->list, &dp->rx_desc_free_list);
368 		rx_desc->skb = NULL;
369 		spin_unlock_bh(&dp->rx_desc_lock);
370 	} else {
371 		spin_lock_bh(&rx_ring->idr_lock);
372 		idr_remove(&rx_ring->bufs_idr, buf_id);
373 		spin_unlock_bh(&rx_ring->idr_lock);
374 	}
375 fail_dma_unmap:
376 	dma_unmap_single(ab->dev, paddr, skb->len + skb_tailroom(skb),
377 			 DMA_FROM_DEVICE);
378 fail_free_skb:
379 	dev_kfree_skb_any(skb);
380 
381 	ath12k_hal_srng_access_end(ab, srng);
382 
383 	spin_unlock_bh(&srng->lock);
384 
385 	return req_entries - num_remain;
386 }
387 
388 static int ath12k_dp_rxdma_buf_ring_free(struct ath12k_base *ab,
389 					 struct dp_rxdma_ring *rx_ring)
390 {
391 	struct sk_buff *skb;
392 	int buf_id;
393 
394 	spin_lock_bh(&rx_ring->idr_lock);
395 	idr_for_each_entry(&rx_ring->bufs_idr, skb, buf_id) {
396 		idr_remove(&rx_ring->bufs_idr, buf_id);
397 		/* TODO: Understand where internal driver does this dma_unmap
398 		 * of rxdma_buffer.
399 		 */
400 		dma_unmap_single(ab->dev, ATH12K_SKB_RXCB(skb)->paddr,
401 				 skb->len + skb_tailroom(skb), DMA_FROM_DEVICE);
402 		dev_kfree_skb_any(skb);
403 	}
404 
405 	idr_destroy(&rx_ring->bufs_idr);
406 	spin_unlock_bh(&rx_ring->idr_lock);
407 
408 	return 0;
409 }
410 
411 static int ath12k_dp_rxdma_buf_free(struct ath12k_base *ab)
412 {
413 	struct ath12k_dp *dp = &ab->dp;
414 	struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring;
415 
416 	ath12k_dp_rxdma_buf_ring_free(ab, rx_ring);
417 
418 	rx_ring = &dp->rxdma_mon_buf_ring;
419 	ath12k_dp_rxdma_buf_ring_free(ab, rx_ring);
420 
421 	rx_ring = &dp->tx_mon_buf_ring;
422 	ath12k_dp_rxdma_buf_ring_free(ab, rx_ring);
423 
424 	return 0;
425 }
426 
427 static int ath12k_dp_rxdma_ring_buf_setup(struct ath12k_base *ab,
428 					  struct dp_rxdma_ring *rx_ring,
429 					  u32 ringtype)
430 {
431 	int num_entries;
432 
433 	num_entries = rx_ring->refill_buf_ring.size /
434 		ath12k_hal_srng_get_entrysize(ab, ringtype);
435 
436 	rx_ring->bufs_max = num_entries;
437 	if ((ringtype == HAL_RXDMA_MONITOR_BUF) || (ringtype == HAL_TX_MONITOR_BUF))
438 		ath12k_dp_mon_buf_replenish(ab, rx_ring, num_entries);
439 	else
440 		ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_entries,
441 					    ab->hw_params->hal_params->rx_buf_rbm,
442 					    ringtype == HAL_RXDMA_BUF);
443 	return 0;
444 }
445 
446 static int ath12k_dp_rxdma_buf_setup(struct ath12k_base *ab)
447 {
448 	struct ath12k_dp *dp = &ab->dp;
449 	struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring;
450 	int ret;
451 
452 	ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring,
453 					     HAL_RXDMA_BUF);
454 	if (ret) {
455 		ath12k_warn(ab,
456 			    "failed to setup HAL_RXDMA_BUF\n");
457 		return ret;
458 	}
459 
460 	if (ab->hw_params->rxdma1_enable) {
461 		rx_ring = &dp->rxdma_mon_buf_ring;
462 		ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring,
463 						     HAL_RXDMA_MONITOR_BUF);
464 		if (ret) {
465 			ath12k_warn(ab,
466 				    "failed to setup HAL_RXDMA_MONITOR_BUF\n");
467 			return ret;
468 		}
469 
470 		rx_ring = &dp->tx_mon_buf_ring;
471 		ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring,
472 						     HAL_TX_MONITOR_BUF);
473 		if (ret) {
474 			ath12k_warn(ab,
475 				    "failed to setup HAL_TX_MONITOR_BUF\n");
476 			return ret;
477 		}
478 	}
479 
480 	return 0;
481 }
482 
483 static void ath12k_dp_rx_pdev_srng_free(struct ath12k *ar)
484 {
485 	struct ath12k_pdev_dp *dp = &ar->dp;
486 	struct ath12k_base *ab = ar->ab;
487 	int i;
488 
489 	for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
490 		ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_dst_ring[i]);
491 		ath12k_dp_srng_cleanup(ab, &dp->tx_mon_dst_ring[i]);
492 	}
493 }
494 
495 void ath12k_dp_rx_pdev_reo_cleanup(struct ath12k_base *ab)
496 {
497 	struct ath12k_dp *dp = &ab->dp;
498 	int i;
499 
500 	for (i = 0; i < DP_REO_DST_RING_MAX; i++)
501 		ath12k_dp_srng_cleanup(ab, &dp->reo_dst_ring[i]);
502 }
503 
504 int ath12k_dp_rx_pdev_reo_setup(struct ath12k_base *ab)
505 {
506 	struct ath12k_dp *dp = &ab->dp;
507 	int ret;
508 	int i;
509 
510 	for (i = 0; i < DP_REO_DST_RING_MAX; i++) {
511 		ret = ath12k_dp_srng_setup(ab, &dp->reo_dst_ring[i],
512 					   HAL_REO_DST, i, 0,
513 					   DP_REO_DST_RING_SIZE);
514 		if (ret) {
515 			ath12k_warn(ab, "failed to setup reo_dst_ring\n");
516 			goto err_reo_cleanup;
517 		}
518 	}
519 
520 	return 0;
521 
522 err_reo_cleanup:
523 	ath12k_dp_rx_pdev_reo_cleanup(ab);
524 
525 	return ret;
526 }
527 
528 static int ath12k_dp_rx_pdev_srng_alloc(struct ath12k *ar)
529 {
530 	struct ath12k_pdev_dp *dp = &ar->dp;
531 	struct ath12k_base *ab = ar->ab;
532 	int i;
533 	int ret;
534 	u32 mac_id = dp->mac_id;
535 
536 	for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
537 		ret = ath12k_dp_srng_setup(ar->ab,
538 					   &dp->rxdma_mon_dst_ring[i],
539 					   HAL_RXDMA_MONITOR_DST,
540 					   0, mac_id + i,
541 					   DP_RXDMA_MONITOR_DST_RING_SIZE);
542 		if (ret) {
543 			ath12k_warn(ar->ab,
544 				    "failed to setup HAL_RXDMA_MONITOR_DST\n");
545 			return ret;
546 		}
547 
548 		ret = ath12k_dp_srng_setup(ar->ab,
549 					   &dp->tx_mon_dst_ring[i],
550 					   HAL_TX_MONITOR_DST,
551 					   0, mac_id + i,
552 					   DP_TX_MONITOR_DEST_RING_SIZE);
553 		if (ret) {
554 			ath12k_warn(ar->ab,
555 				    "failed to setup HAL_TX_MONITOR_DST\n");
556 			return ret;
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 void ath12k_dp_rx_reo_cmd_list_cleanup(struct ath12k_base *ab)
564 {
565 	struct ath12k_dp *dp = &ab->dp;
566 	struct ath12k_dp_rx_reo_cmd *cmd, *tmp;
567 	struct ath12k_dp_rx_reo_cache_flush_elem *cmd_cache, *tmp_cache;
568 
569 	spin_lock_bh(&dp->reo_cmd_lock);
570 	list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) {
571 		list_del(&cmd->list);
572 		dma_unmap_single(ab->dev, cmd->data.paddr,
573 				 cmd->data.size, DMA_BIDIRECTIONAL);
574 		kfree(cmd->data.vaddr);
575 		kfree(cmd);
576 	}
577 
578 	list_for_each_entry_safe(cmd_cache, tmp_cache,
579 				 &dp->reo_cmd_cache_flush_list, list) {
580 		list_del(&cmd_cache->list);
581 		dp->reo_cmd_cache_flush_count--;
582 		dma_unmap_single(ab->dev, cmd_cache->data.paddr,
583 				 cmd_cache->data.size, DMA_BIDIRECTIONAL);
584 		kfree(cmd_cache->data.vaddr);
585 		kfree(cmd_cache);
586 	}
587 	spin_unlock_bh(&dp->reo_cmd_lock);
588 }
589 
590 static void ath12k_dp_reo_cmd_free(struct ath12k_dp *dp, void *ctx,
591 				   enum hal_reo_cmd_status status)
592 {
593 	struct ath12k_dp_rx_tid *rx_tid = ctx;
594 
595 	if (status != HAL_REO_CMD_SUCCESS)
596 		ath12k_warn(dp->ab, "failed to flush rx tid hw desc, tid %d status %d\n",
597 			    rx_tid->tid, status);
598 
599 	dma_unmap_single(dp->ab->dev, rx_tid->paddr, rx_tid->size,
600 			 DMA_BIDIRECTIONAL);
601 	kfree(rx_tid->vaddr);
602 	rx_tid->vaddr = NULL;
603 }
604 
605 static int ath12k_dp_reo_cmd_send(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid,
606 				  enum hal_reo_cmd_type type,
607 				  struct ath12k_hal_reo_cmd *cmd,
608 				  void (*cb)(struct ath12k_dp *dp, void *ctx,
609 					     enum hal_reo_cmd_status status))
610 {
611 	struct ath12k_dp *dp = &ab->dp;
612 	struct ath12k_dp_rx_reo_cmd *dp_cmd;
613 	struct hal_srng *cmd_ring;
614 	int cmd_num;
615 
616 	cmd_ring = &ab->hal.srng_list[dp->reo_cmd_ring.ring_id];
617 	cmd_num = ath12k_hal_reo_cmd_send(ab, cmd_ring, type, cmd);
618 
619 	/* cmd_num should start from 1, during failure return the error code */
620 	if (cmd_num < 0)
621 		return cmd_num;
622 
623 	/* reo cmd ring descriptors has cmd_num starting from 1 */
624 	if (cmd_num == 0)
625 		return -EINVAL;
626 
627 	if (!cb)
628 		return 0;
629 
630 	/* Can this be optimized so that we keep the pending command list only
631 	 * for tid delete command to free up the resource on the command status
632 	 * indication?
633 	 */
634 	dp_cmd = kzalloc(sizeof(*dp_cmd), GFP_ATOMIC);
635 
636 	if (!dp_cmd)
637 		return -ENOMEM;
638 
639 	memcpy(&dp_cmd->data, rx_tid, sizeof(*rx_tid));
640 	dp_cmd->cmd_num = cmd_num;
641 	dp_cmd->handler = cb;
642 
643 	spin_lock_bh(&dp->reo_cmd_lock);
644 	list_add_tail(&dp_cmd->list, &dp->reo_cmd_list);
645 	spin_unlock_bh(&dp->reo_cmd_lock);
646 
647 	return 0;
648 }
649 
650 static void ath12k_dp_reo_cache_flush(struct ath12k_base *ab,
651 				      struct ath12k_dp_rx_tid *rx_tid)
652 {
653 	struct ath12k_hal_reo_cmd cmd = {0};
654 	unsigned long tot_desc_sz, desc_sz;
655 	int ret;
656 
657 	tot_desc_sz = rx_tid->size;
658 	desc_sz = ath12k_hal_reo_qdesc_size(0, HAL_DESC_REO_NON_QOS_TID);
659 
660 	while (tot_desc_sz > desc_sz) {
661 		tot_desc_sz -= desc_sz;
662 		cmd.addr_lo = lower_32_bits(rx_tid->paddr + tot_desc_sz);
663 		cmd.addr_hi = upper_32_bits(rx_tid->paddr);
664 		ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
665 					     HAL_REO_CMD_FLUSH_CACHE, &cmd,
666 					     NULL);
667 		if (ret)
668 			ath12k_warn(ab,
669 				    "failed to send HAL_REO_CMD_FLUSH_CACHE, tid %d (%d)\n",
670 				    rx_tid->tid, ret);
671 	}
672 
673 	memset(&cmd, 0, sizeof(cmd));
674 	cmd.addr_lo = lower_32_bits(rx_tid->paddr);
675 	cmd.addr_hi = upper_32_bits(rx_tid->paddr);
676 	cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
677 	ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
678 				     HAL_REO_CMD_FLUSH_CACHE,
679 				     &cmd, ath12k_dp_reo_cmd_free);
680 	if (ret) {
681 		ath12k_err(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE cmd, tid %d (%d)\n",
682 			   rx_tid->tid, ret);
683 		dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size,
684 				 DMA_BIDIRECTIONAL);
685 		kfree(rx_tid->vaddr);
686 		rx_tid->vaddr = NULL;
687 	}
688 }
689 
690 static void ath12k_dp_rx_tid_del_func(struct ath12k_dp *dp, void *ctx,
691 				      enum hal_reo_cmd_status status)
692 {
693 	struct ath12k_base *ab = dp->ab;
694 	struct ath12k_dp_rx_tid *rx_tid = ctx;
695 	struct ath12k_dp_rx_reo_cache_flush_elem *elem, *tmp;
696 
697 	if (status == HAL_REO_CMD_DRAIN) {
698 		goto free_desc;
699 	} else if (status != HAL_REO_CMD_SUCCESS) {
700 		/* Shouldn't happen! Cleanup in case of other failure? */
701 		ath12k_warn(ab, "failed to delete rx tid %d hw descriptor %d\n",
702 			    rx_tid->tid, status);
703 		return;
704 	}
705 
706 	elem = kzalloc(sizeof(*elem), GFP_ATOMIC);
707 	if (!elem)
708 		goto free_desc;
709 
710 	elem->ts = jiffies;
711 	memcpy(&elem->data, rx_tid, sizeof(*rx_tid));
712 
713 	spin_lock_bh(&dp->reo_cmd_lock);
714 	list_add_tail(&elem->list, &dp->reo_cmd_cache_flush_list);
715 	dp->reo_cmd_cache_flush_count++;
716 
717 	/* Flush and invalidate aged REO desc from HW cache */
718 	list_for_each_entry_safe(elem, tmp, &dp->reo_cmd_cache_flush_list,
719 				 list) {
720 		if (dp->reo_cmd_cache_flush_count > ATH12K_DP_RX_REO_DESC_FREE_THRES ||
721 		    time_after(jiffies, elem->ts +
722 			       msecs_to_jiffies(ATH12K_DP_RX_REO_DESC_FREE_TIMEOUT_MS))) {
723 			list_del(&elem->list);
724 			dp->reo_cmd_cache_flush_count--;
725 
726 			/* Unlock the reo_cmd_lock before using ath12k_dp_reo_cmd_send()
727 			 * within ath12k_dp_reo_cache_flush. The reo_cmd_cache_flush_list
728 			 * is used in only two contexts, one is in this function called
729 			 * from napi and the other in ath12k_dp_free during core destroy.
730 			 * Before dp_free, the irqs would be disabled and would wait to
731 			 * synchronize. Hence there wouldn’t be any race against add or
732 			 * delete to this list. Hence unlock-lock is safe here.
733 			 */
734 			spin_unlock_bh(&dp->reo_cmd_lock);
735 
736 			ath12k_dp_reo_cache_flush(ab, &elem->data);
737 			kfree(elem);
738 			spin_lock_bh(&dp->reo_cmd_lock);
739 		}
740 	}
741 	spin_unlock_bh(&dp->reo_cmd_lock);
742 
743 	return;
744 free_desc:
745 	dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size,
746 			 DMA_BIDIRECTIONAL);
747 	kfree(rx_tid->vaddr);
748 	rx_tid->vaddr = NULL;
749 }
750 
751 static void ath12k_peer_rx_tid_qref_setup(struct ath12k_base *ab, u16 peer_id, u16 tid,
752 					  dma_addr_t paddr)
753 {
754 	struct ath12k_reo_queue_ref *qref;
755 	struct ath12k_dp *dp = &ab->dp;
756 
757 	if (!ab->hw_params->reoq_lut_support)
758 		return;
759 
760 	/* TODO: based on ML peer or not, select the LUT. below assumes non
761 	 * ML peer
762 	 */
763 	qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr +
764 			(peer_id * (IEEE80211_NUM_TIDS + 1) + tid);
765 
766 	qref->info0 = u32_encode_bits(lower_32_bits(paddr),
767 				      BUFFER_ADDR_INFO0_ADDR);
768 	qref->info1 = u32_encode_bits(upper_32_bits(paddr),
769 				      BUFFER_ADDR_INFO1_ADDR) |
770 		      u32_encode_bits(tid, DP_REO_QREF_NUM);
771 }
772 
773 static void ath12k_peer_rx_tid_qref_reset(struct ath12k_base *ab, u16 peer_id, u16 tid)
774 {
775 	struct ath12k_reo_queue_ref *qref;
776 	struct ath12k_dp *dp = &ab->dp;
777 
778 	if (!ab->hw_params->reoq_lut_support)
779 		return;
780 
781 	/* TODO: based on ML peer or not, select the LUT. below assumes non
782 	 * ML peer
783 	 */
784 	qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr +
785 			(peer_id * (IEEE80211_NUM_TIDS + 1) + tid);
786 
787 	qref->info0 = u32_encode_bits(0, BUFFER_ADDR_INFO0_ADDR);
788 	qref->info1 = u32_encode_bits(0, BUFFER_ADDR_INFO1_ADDR) |
789 		      u32_encode_bits(tid, DP_REO_QREF_NUM);
790 }
791 
792 void ath12k_dp_rx_peer_tid_delete(struct ath12k *ar,
793 				  struct ath12k_peer *peer, u8 tid)
794 {
795 	struct ath12k_hal_reo_cmd cmd = {0};
796 	struct ath12k_dp_rx_tid *rx_tid = &peer->rx_tid[tid];
797 	int ret;
798 
799 	if (!rx_tid->active)
800 		return;
801 
802 	cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
803 	cmd.addr_lo = lower_32_bits(rx_tid->paddr);
804 	cmd.addr_hi = upper_32_bits(rx_tid->paddr);
805 	cmd.upd0 = HAL_REO_CMD_UPD0_VLD;
806 	ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid,
807 				     HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd,
808 				     ath12k_dp_rx_tid_del_func);
809 	if (ret) {
810 		ath12k_err(ar->ab, "failed to send HAL_REO_CMD_UPDATE_RX_QUEUE cmd, tid %d (%d)\n",
811 			   tid, ret);
812 		dma_unmap_single(ar->ab->dev, rx_tid->paddr, rx_tid->size,
813 				 DMA_BIDIRECTIONAL);
814 		kfree(rx_tid->vaddr);
815 		rx_tid->vaddr = NULL;
816 	}
817 
818 	ath12k_peer_rx_tid_qref_reset(ar->ab, peer->peer_id, tid);
819 
820 	rx_tid->active = false;
821 }
822 
823 /* TODO: it's strange (and ugly) that struct hal_reo_dest_ring is converted
824  * to struct hal_wbm_release_ring, I couldn't figure out the logic behind
825  * that.
826  */
827 static int ath12k_dp_rx_link_desc_return(struct ath12k_base *ab,
828 					 struct hal_reo_dest_ring *ring,
829 					 enum hal_wbm_rel_bm_act action)
830 {
831 	struct hal_wbm_release_ring *link_desc = (struct hal_wbm_release_ring *)ring;
832 	struct hal_wbm_release_ring *desc;
833 	struct ath12k_dp *dp = &ab->dp;
834 	struct hal_srng *srng;
835 	int ret = 0;
836 
837 	srng = &ab->hal.srng_list[dp->wbm_desc_rel_ring.ring_id];
838 
839 	spin_lock_bh(&srng->lock);
840 
841 	ath12k_hal_srng_access_begin(ab, srng);
842 
843 	desc = ath12k_hal_srng_src_get_next_entry(ab, srng);
844 	if (!desc) {
845 		ret = -ENOBUFS;
846 		goto exit;
847 	}
848 
849 	ath12k_hal_rx_msdu_link_desc_set(ab, desc, link_desc, action);
850 
851 exit:
852 	ath12k_hal_srng_access_end(ab, srng);
853 
854 	spin_unlock_bh(&srng->lock);
855 
856 	return ret;
857 }
858 
859 static void ath12k_dp_rx_frags_cleanup(struct ath12k_dp_rx_tid *rx_tid,
860 				       bool rel_link_desc)
861 {
862 	struct ath12k_base *ab = rx_tid->ab;
863 
864 	lockdep_assert_held(&ab->base_lock);
865 
866 	if (rx_tid->dst_ring_desc) {
867 		if (rel_link_desc)
868 			ath12k_dp_rx_link_desc_return(ab, rx_tid->dst_ring_desc,
869 						      HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
870 		kfree(rx_tid->dst_ring_desc);
871 		rx_tid->dst_ring_desc = NULL;
872 	}
873 
874 	rx_tid->cur_sn = 0;
875 	rx_tid->last_frag_no = 0;
876 	rx_tid->rx_frag_bitmap = 0;
877 	__skb_queue_purge(&rx_tid->rx_frags);
878 }
879 
880 void ath12k_dp_rx_peer_tid_cleanup(struct ath12k *ar, struct ath12k_peer *peer)
881 {
882 	struct ath12k_dp_rx_tid *rx_tid;
883 	int i;
884 
885 	lockdep_assert_held(&ar->ab->base_lock);
886 
887 	for (i = 0; i <= IEEE80211_NUM_TIDS; i++) {
888 		rx_tid = &peer->rx_tid[i];
889 
890 		ath12k_dp_rx_peer_tid_delete(ar, peer, i);
891 		ath12k_dp_rx_frags_cleanup(rx_tid, true);
892 
893 		spin_unlock_bh(&ar->ab->base_lock);
894 		del_timer_sync(&rx_tid->frag_timer);
895 		spin_lock_bh(&ar->ab->base_lock);
896 	}
897 }
898 
899 static int ath12k_peer_rx_tid_reo_update(struct ath12k *ar,
900 					 struct ath12k_peer *peer,
901 					 struct ath12k_dp_rx_tid *rx_tid,
902 					 u32 ba_win_sz, u16 ssn,
903 					 bool update_ssn)
904 {
905 	struct ath12k_hal_reo_cmd cmd = {0};
906 	int ret;
907 
908 	cmd.addr_lo = lower_32_bits(rx_tid->paddr);
909 	cmd.addr_hi = upper_32_bits(rx_tid->paddr);
910 	cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
911 	cmd.upd0 = HAL_REO_CMD_UPD0_BA_WINDOW_SIZE;
912 	cmd.ba_window_size = ba_win_sz;
913 
914 	if (update_ssn) {
915 		cmd.upd0 |= HAL_REO_CMD_UPD0_SSN;
916 		cmd.upd2 = u32_encode_bits(ssn, HAL_REO_CMD_UPD2_SSN);
917 	}
918 
919 	ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid,
920 				     HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd,
921 				     NULL);
922 	if (ret) {
923 		ath12k_warn(ar->ab, "failed to update rx tid queue, tid %d (%d)\n",
924 			    rx_tid->tid, ret);
925 		return ret;
926 	}
927 
928 	rx_tid->ba_win_sz = ba_win_sz;
929 
930 	return 0;
931 }
932 
933 int ath12k_dp_rx_peer_tid_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id,
934 				u8 tid, u32 ba_win_sz, u16 ssn,
935 				enum hal_pn_type pn_type)
936 {
937 	struct ath12k_base *ab = ar->ab;
938 	struct ath12k_dp *dp = &ab->dp;
939 	struct hal_rx_reo_queue *addr_aligned;
940 	struct ath12k_peer *peer;
941 	struct ath12k_dp_rx_tid *rx_tid;
942 	u32 hw_desc_sz;
943 	void *vaddr;
944 	dma_addr_t paddr;
945 	int ret;
946 
947 	spin_lock_bh(&ab->base_lock);
948 
949 	peer = ath12k_peer_find(ab, vdev_id, peer_mac);
950 	if (!peer) {
951 		spin_unlock_bh(&ab->base_lock);
952 		ath12k_warn(ab, "failed to find the peer to set up rx tid\n");
953 		return -ENOENT;
954 	}
955 
956 	if (ab->hw_params->reoq_lut_support && !dp->reoq_lut.vaddr) {
957 		spin_unlock_bh(&ab->base_lock);
958 		ath12k_warn(ab, "reo qref table is not setup\n");
959 		return -EINVAL;
960 	}
961 
962 	if (peer->peer_id > DP_MAX_PEER_ID || tid > IEEE80211_NUM_TIDS) {
963 		ath12k_warn(ab, "peer id of peer %d or tid %d doesn't allow reoq setup\n",
964 			    peer->peer_id, tid);
965 		spin_unlock_bh(&ab->base_lock);
966 		return -EINVAL;
967 	}
968 
969 	rx_tid = &peer->rx_tid[tid];
970 	/* Update the tid queue if it is already setup */
971 	if (rx_tid->active) {
972 		paddr = rx_tid->paddr;
973 		ret = ath12k_peer_rx_tid_reo_update(ar, peer, rx_tid,
974 						    ba_win_sz, ssn, true);
975 		spin_unlock_bh(&ab->base_lock);
976 		if (ret) {
977 			ath12k_warn(ab, "failed to update reo for rx tid %d\n", tid);
978 			return ret;
979 		}
980 
981 		return ret;
982 	}
983 
984 	rx_tid->tid = tid;
985 
986 	rx_tid->ba_win_sz = ba_win_sz;
987 
988 	/* TODO: Optimize the memory allocation for qos tid based on
989 	 * the actual BA window size in REO tid update path.
990 	 */
991 	if (tid == HAL_DESC_REO_NON_QOS_TID)
992 		hw_desc_sz = ath12k_hal_reo_qdesc_size(ba_win_sz, tid);
993 	else
994 		hw_desc_sz = ath12k_hal_reo_qdesc_size(DP_BA_WIN_SZ_MAX, tid);
995 
996 	vaddr = kzalloc(hw_desc_sz + HAL_LINK_DESC_ALIGN - 1, GFP_ATOMIC);
997 	if (!vaddr) {
998 		spin_unlock_bh(&ab->base_lock);
999 		return -ENOMEM;
1000 	}
1001 
1002 	addr_aligned = PTR_ALIGN(vaddr, HAL_LINK_DESC_ALIGN);
1003 
1004 	ath12k_hal_reo_qdesc_setup(addr_aligned, tid, ba_win_sz,
1005 				   ssn, pn_type);
1006 
1007 	paddr = dma_map_single(ab->dev, addr_aligned, hw_desc_sz,
1008 			       DMA_BIDIRECTIONAL);
1009 
1010 	ret = dma_mapping_error(ab->dev, paddr);
1011 	if (ret) {
1012 		spin_unlock_bh(&ab->base_lock);
1013 		goto err_mem_free;
1014 	}
1015 
1016 	rx_tid->vaddr = vaddr;
1017 	rx_tid->paddr = paddr;
1018 	rx_tid->size = hw_desc_sz;
1019 	rx_tid->active = true;
1020 
1021 	if (ab->hw_params->reoq_lut_support) {
1022 		/* Update the REO queue LUT at the corresponding peer id
1023 		 * and tid with qaddr.
1024 		 */
1025 		ath12k_peer_rx_tid_qref_setup(ab, peer->peer_id, tid, paddr);
1026 		spin_unlock_bh(&ab->base_lock);
1027 	} else {
1028 		spin_unlock_bh(&ab->base_lock);
1029 		ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac,
1030 							     paddr, tid, 1, ba_win_sz);
1031 	}
1032 
1033 	return ret;
1034 
1035 err_mem_free:
1036 	kfree(vaddr);
1037 
1038 	return ret;
1039 }
1040 
1041 int ath12k_dp_rx_ampdu_start(struct ath12k *ar,
1042 			     struct ieee80211_ampdu_params *params)
1043 {
1044 	struct ath12k_base *ab = ar->ab;
1045 	struct ath12k_sta *arsta = (void *)params->sta->drv_priv;
1046 	int vdev_id = arsta->arvif->vdev_id;
1047 	int ret;
1048 
1049 	ret = ath12k_dp_rx_peer_tid_setup(ar, params->sta->addr, vdev_id,
1050 					  params->tid, params->buf_size,
1051 					  params->ssn, arsta->pn_type);
1052 	if (ret)
1053 		ath12k_warn(ab, "failed to setup rx tid %d\n", ret);
1054 
1055 	return ret;
1056 }
1057 
1058 int ath12k_dp_rx_ampdu_stop(struct ath12k *ar,
1059 			    struct ieee80211_ampdu_params *params)
1060 {
1061 	struct ath12k_base *ab = ar->ab;
1062 	struct ath12k_peer *peer;
1063 	struct ath12k_sta *arsta = (void *)params->sta->drv_priv;
1064 	int vdev_id = arsta->arvif->vdev_id;
1065 	bool active;
1066 	int ret;
1067 
1068 	spin_lock_bh(&ab->base_lock);
1069 
1070 	peer = ath12k_peer_find(ab, vdev_id, params->sta->addr);
1071 	if (!peer) {
1072 		spin_unlock_bh(&ab->base_lock);
1073 		ath12k_warn(ab, "failed to find the peer to stop rx aggregation\n");
1074 		return -ENOENT;
1075 	}
1076 
1077 	active = peer->rx_tid[params->tid].active;
1078 
1079 	if (!active) {
1080 		spin_unlock_bh(&ab->base_lock);
1081 		return 0;
1082 	}
1083 
1084 	ret = ath12k_peer_rx_tid_reo_update(ar, peer, peer->rx_tid, 1, 0, false);
1085 	spin_unlock_bh(&ab->base_lock);
1086 	if (ret) {
1087 		ath12k_warn(ab, "failed to update reo for rx tid %d: %d\n",
1088 			    params->tid, ret);
1089 		return ret;
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 int ath12k_dp_rx_peer_pn_replay_config(struct ath12k_vif *arvif,
1096 				       const u8 *peer_addr,
1097 				       enum set_key_cmd key_cmd,
1098 				       struct ieee80211_key_conf *key)
1099 {
1100 	struct ath12k *ar = arvif->ar;
1101 	struct ath12k_base *ab = ar->ab;
1102 	struct ath12k_hal_reo_cmd cmd = {0};
1103 	struct ath12k_peer *peer;
1104 	struct ath12k_dp_rx_tid *rx_tid;
1105 	u8 tid;
1106 	int ret = 0;
1107 
1108 	/* NOTE: Enable PN/TSC replay check offload only for unicast frames.
1109 	 * We use mac80211 PN/TSC replay check functionality for bcast/mcast
1110 	 * for now.
1111 	 */
1112 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1113 		return 0;
1114 
1115 	cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS;
1116 	cmd.upd0 = HAL_REO_CMD_UPD0_PN |
1117 		    HAL_REO_CMD_UPD0_PN_SIZE |
1118 		    HAL_REO_CMD_UPD0_PN_VALID |
1119 		    HAL_REO_CMD_UPD0_PN_CHECK |
1120 		    HAL_REO_CMD_UPD0_SVLD;
1121 
1122 	switch (key->cipher) {
1123 	case WLAN_CIPHER_SUITE_TKIP:
1124 	case WLAN_CIPHER_SUITE_CCMP:
1125 	case WLAN_CIPHER_SUITE_CCMP_256:
1126 	case WLAN_CIPHER_SUITE_GCMP:
1127 	case WLAN_CIPHER_SUITE_GCMP_256:
1128 		if (key_cmd == SET_KEY) {
1129 			cmd.upd1 |= HAL_REO_CMD_UPD1_PN_CHECK;
1130 			cmd.pn_size = 48;
1131 		}
1132 		break;
1133 	default:
1134 		break;
1135 	}
1136 
1137 	spin_lock_bh(&ab->base_lock);
1138 
1139 	peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr);
1140 	if (!peer) {
1141 		spin_unlock_bh(&ab->base_lock);
1142 		ath12k_warn(ab, "failed to find the peer %pM to configure pn replay detection\n",
1143 			    peer_addr);
1144 		return -ENOENT;
1145 	}
1146 
1147 	for (tid = 0; tid <= IEEE80211_NUM_TIDS; tid++) {
1148 		rx_tid = &peer->rx_tid[tid];
1149 		if (!rx_tid->active)
1150 			continue;
1151 		cmd.addr_lo = lower_32_bits(rx_tid->paddr);
1152 		cmd.addr_hi = upper_32_bits(rx_tid->paddr);
1153 		ret = ath12k_dp_reo_cmd_send(ab, rx_tid,
1154 					     HAL_REO_CMD_UPDATE_RX_QUEUE,
1155 					     &cmd, NULL);
1156 		if (ret) {
1157 			ath12k_warn(ab, "failed to configure rx tid %d queue of peer %pM for pn replay detection %d\n",
1158 				    tid, peer_addr, ret);
1159 			break;
1160 		}
1161 	}
1162 
1163 	spin_unlock_bh(&ab->base_lock);
1164 
1165 	return ret;
1166 }
1167 
1168 static int ath12k_get_ppdu_user_index(struct htt_ppdu_stats *ppdu_stats,
1169 				      u16 peer_id)
1170 {
1171 	int i;
1172 
1173 	for (i = 0; i < HTT_PPDU_STATS_MAX_USERS - 1; i++) {
1174 		if (ppdu_stats->user_stats[i].is_valid_peer_id) {
1175 			if (peer_id == ppdu_stats->user_stats[i].peer_id)
1176 				return i;
1177 		} else {
1178 			return i;
1179 		}
1180 	}
1181 
1182 	return -EINVAL;
1183 }
1184 
1185 static int ath12k_htt_tlv_ppdu_stats_parse(struct ath12k_base *ab,
1186 					   u16 tag, u16 len, const void *ptr,
1187 					   void *data)
1188 {
1189 	const struct htt_ppdu_stats_usr_cmpltn_ack_ba_status *ba_status;
1190 	const struct htt_ppdu_stats_usr_cmpltn_cmn *cmplt_cmn;
1191 	const struct htt_ppdu_stats_user_rate *user_rate;
1192 	struct htt_ppdu_stats_info *ppdu_info;
1193 	struct htt_ppdu_user_stats *user_stats;
1194 	int cur_user;
1195 	u16 peer_id;
1196 
1197 	ppdu_info = data;
1198 
1199 	switch (tag) {
1200 	case HTT_PPDU_STATS_TAG_COMMON:
1201 		if (len < sizeof(struct htt_ppdu_stats_common)) {
1202 			ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
1203 				    len, tag);
1204 			return -EINVAL;
1205 		}
1206 		memcpy(&ppdu_info->ppdu_stats.common, ptr,
1207 		       sizeof(struct htt_ppdu_stats_common));
1208 		break;
1209 	case HTT_PPDU_STATS_TAG_USR_RATE:
1210 		if (len < sizeof(struct htt_ppdu_stats_user_rate)) {
1211 			ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
1212 				    len, tag);
1213 			return -EINVAL;
1214 		}
1215 		user_rate = ptr;
1216 		peer_id = le16_to_cpu(user_rate->sw_peer_id);
1217 		cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
1218 						      peer_id);
1219 		if (cur_user < 0)
1220 			return -EINVAL;
1221 		user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
1222 		user_stats->peer_id = peer_id;
1223 		user_stats->is_valid_peer_id = true;
1224 		memcpy(&user_stats->rate, ptr,
1225 		       sizeof(struct htt_ppdu_stats_user_rate));
1226 		user_stats->tlv_flags |= BIT(tag);
1227 		break;
1228 	case HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON:
1229 		if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)) {
1230 			ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
1231 				    len, tag);
1232 			return -EINVAL;
1233 		}
1234 
1235 		cmplt_cmn = ptr;
1236 		peer_id = le16_to_cpu(cmplt_cmn->sw_peer_id);
1237 		cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
1238 						      peer_id);
1239 		if (cur_user < 0)
1240 			return -EINVAL;
1241 		user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
1242 		user_stats->peer_id = peer_id;
1243 		user_stats->is_valid_peer_id = true;
1244 		memcpy(&user_stats->cmpltn_cmn, ptr,
1245 		       sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn));
1246 		user_stats->tlv_flags |= BIT(tag);
1247 		break;
1248 	case HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS:
1249 		if (len <
1250 		    sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)) {
1251 			ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n",
1252 				    len, tag);
1253 			return -EINVAL;
1254 		}
1255 
1256 		ba_status = ptr;
1257 		peer_id = le16_to_cpu(ba_status->sw_peer_id);
1258 		cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats,
1259 						      peer_id);
1260 		if (cur_user < 0)
1261 			return -EINVAL;
1262 		user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user];
1263 		user_stats->peer_id = peer_id;
1264 		user_stats->is_valid_peer_id = true;
1265 		memcpy(&user_stats->ack_ba, ptr,
1266 		       sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status));
1267 		user_stats->tlv_flags |= BIT(tag);
1268 		break;
1269 	}
1270 	return 0;
1271 }
1272 
1273 static int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len,
1274 				  int (*iter)(struct ath12k_base *ar, u16 tag, u16 len,
1275 					      const void *ptr, void *data),
1276 				  void *data)
1277 {
1278 	const struct htt_tlv *tlv;
1279 	const void *begin = ptr;
1280 	u16 tlv_tag, tlv_len;
1281 	int ret = -EINVAL;
1282 
1283 	while (len > 0) {
1284 		if (len < sizeof(*tlv)) {
1285 			ath12k_err(ab, "htt tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n",
1286 				   ptr - begin, len, sizeof(*tlv));
1287 			return -EINVAL;
1288 		}
1289 		tlv = (struct htt_tlv *)ptr;
1290 		tlv_tag = le32_get_bits(tlv->header, HTT_TLV_TAG);
1291 		tlv_len = le32_get_bits(tlv->header, HTT_TLV_LEN);
1292 		ptr += sizeof(*tlv);
1293 		len -= sizeof(*tlv);
1294 
1295 		if (tlv_len > len) {
1296 			ath12k_err(ab, "htt tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n",
1297 				   tlv_tag, ptr - begin, len, tlv_len);
1298 			return -EINVAL;
1299 		}
1300 		ret = iter(ab, tlv_tag, tlv_len, ptr, data);
1301 		if (ret == -ENOMEM)
1302 			return ret;
1303 
1304 		ptr += tlv_len;
1305 		len -= tlv_len;
1306 	}
1307 	return 0;
1308 }
1309 
1310 static void
1311 ath12k_update_per_peer_tx_stats(struct ath12k *ar,
1312 				struct htt_ppdu_stats *ppdu_stats, u8 user)
1313 {
1314 	struct ath12k_base *ab = ar->ab;
1315 	struct ath12k_peer *peer;
1316 	struct ieee80211_sta *sta;
1317 	struct ath12k_sta *arsta;
1318 	struct htt_ppdu_stats_user_rate *user_rate;
1319 	struct ath12k_per_peer_tx_stats *peer_stats = &ar->peer_tx_stats;
1320 	struct htt_ppdu_user_stats *usr_stats = &ppdu_stats->user_stats[user];
1321 	struct htt_ppdu_stats_common *common = &ppdu_stats->common;
1322 	int ret;
1323 	u8 flags, mcs, nss, bw, sgi, dcm, rate_idx = 0;
1324 	u32 v, succ_bytes = 0;
1325 	u16 tones, rate = 0, succ_pkts = 0;
1326 	u32 tx_duration = 0;
1327 	u8 tid = HTT_PPDU_STATS_NON_QOS_TID;
1328 	bool is_ampdu = false;
1329 
1330 	if (!usr_stats)
1331 		return;
1332 
1333 	if (!(usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_RATE)))
1334 		return;
1335 
1336 	if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON))
1337 		is_ampdu =
1338 			HTT_USR_CMPLTN_IS_AMPDU(usr_stats->cmpltn_cmn.flags);
1339 
1340 	if (usr_stats->tlv_flags &
1341 	    BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS)) {
1342 		succ_bytes = le32_to_cpu(usr_stats->ack_ba.success_bytes);
1343 		succ_pkts = le32_get_bits(usr_stats->ack_ba.info,
1344 					  HTT_PPDU_STATS_ACK_BA_INFO_NUM_MSDU_M);
1345 		tid = le32_get_bits(usr_stats->ack_ba.info,
1346 				    HTT_PPDU_STATS_ACK_BA_INFO_TID_NUM);
1347 	}
1348 
1349 	if (common->fes_duration_us)
1350 		tx_duration = le32_to_cpu(common->fes_duration_us);
1351 
1352 	user_rate = &usr_stats->rate;
1353 	flags = HTT_USR_RATE_PREAMBLE(user_rate->rate_flags);
1354 	bw = HTT_USR_RATE_BW(user_rate->rate_flags) - 2;
1355 	nss = HTT_USR_RATE_NSS(user_rate->rate_flags) + 1;
1356 	mcs = HTT_USR_RATE_MCS(user_rate->rate_flags);
1357 	sgi = HTT_USR_RATE_GI(user_rate->rate_flags);
1358 	dcm = HTT_USR_RATE_DCM(user_rate->rate_flags);
1359 
1360 	/* Note: If host configured fixed rates and in some other special
1361 	 * cases, the broadcast/management frames are sent in different rates.
1362 	 * Firmware rate's control to be skipped for this?
1363 	 */
1364 
1365 	if (flags == WMI_RATE_PREAMBLE_HE && mcs > 11) {
1366 		ath12k_warn(ab, "Invalid HE mcs %d peer stats",  mcs);
1367 		return;
1368 	}
1369 
1370 	if (flags == WMI_RATE_PREAMBLE_HE && mcs > ATH12K_HE_MCS_MAX) {
1371 		ath12k_warn(ab, "Invalid HE mcs %d peer stats",  mcs);
1372 		return;
1373 	}
1374 
1375 	if (flags == WMI_RATE_PREAMBLE_VHT && mcs > ATH12K_VHT_MCS_MAX) {
1376 		ath12k_warn(ab, "Invalid VHT mcs %d peer stats",  mcs);
1377 		return;
1378 	}
1379 
1380 	if (flags == WMI_RATE_PREAMBLE_HT && (mcs > ATH12K_HT_MCS_MAX || nss < 1)) {
1381 		ath12k_warn(ab, "Invalid HT mcs %d nss %d peer stats",
1382 			    mcs, nss);
1383 		return;
1384 	}
1385 
1386 	if (flags == WMI_RATE_PREAMBLE_CCK || flags == WMI_RATE_PREAMBLE_OFDM) {
1387 		ret = ath12k_mac_hw_ratecode_to_legacy_rate(mcs,
1388 							    flags,
1389 							    &rate_idx,
1390 							    &rate);
1391 		if (ret < 0)
1392 			return;
1393 	}
1394 
1395 	rcu_read_lock();
1396 	spin_lock_bh(&ab->base_lock);
1397 	peer = ath12k_peer_find_by_id(ab, usr_stats->peer_id);
1398 
1399 	if (!peer || !peer->sta) {
1400 		spin_unlock_bh(&ab->base_lock);
1401 		rcu_read_unlock();
1402 		return;
1403 	}
1404 
1405 	sta = peer->sta;
1406 	arsta = (struct ath12k_sta *)sta->drv_priv;
1407 
1408 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
1409 
1410 	switch (flags) {
1411 	case WMI_RATE_PREAMBLE_OFDM:
1412 		arsta->txrate.legacy = rate;
1413 		break;
1414 	case WMI_RATE_PREAMBLE_CCK:
1415 		arsta->txrate.legacy = rate;
1416 		break;
1417 	case WMI_RATE_PREAMBLE_HT:
1418 		arsta->txrate.mcs = mcs + 8 * (nss - 1);
1419 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
1420 		if (sgi)
1421 			arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
1422 		break;
1423 	case WMI_RATE_PREAMBLE_VHT:
1424 		arsta->txrate.mcs = mcs;
1425 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
1426 		if (sgi)
1427 			arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
1428 		break;
1429 	case WMI_RATE_PREAMBLE_HE:
1430 		arsta->txrate.mcs = mcs;
1431 		arsta->txrate.flags = RATE_INFO_FLAGS_HE_MCS;
1432 		arsta->txrate.he_dcm = dcm;
1433 		arsta->txrate.he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi);
1434 		tones = le16_to_cpu(user_rate->ru_end) -
1435 			le16_to_cpu(user_rate->ru_start) + 1;
1436 		v = ath12k_he_ru_tones_to_nl80211_he_ru_alloc(tones);
1437 		arsta->txrate.he_ru_alloc = v;
1438 		break;
1439 	}
1440 
1441 	arsta->txrate.nss = nss;
1442 	arsta->txrate.bw = ath12k_mac_bw_to_mac80211_bw(bw);
1443 	arsta->tx_duration += tx_duration;
1444 	memcpy(&arsta->last_txrate, &arsta->txrate, sizeof(struct rate_info));
1445 
1446 	/* PPDU stats reported for mgmt packet doesn't have valid tx bytes.
1447 	 * So skip peer stats update for mgmt packets.
1448 	 */
1449 	if (tid < HTT_PPDU_STATS_NON_QOS_TID) {
1450 		memset(peer_stats, 0, sizeof(*peer_stats));
1451 		peer_stats->succ_pkts = succ_pkts;
1452 		peer_stats->succ_bytes = succ_bytes;
1453 		peer_stats->is_ampdu = is_ampdu;
1454 		peer_stats->duration = tx_duration;
1455 		peer_stats->ba_fails =
1456 			HTT_USR_CMPLTN_LONG_RETRY(usr_stats->cmpltn_cmn.flags) +
1457 			HTT_USR_CMPLTN_SHORT_RETRY(usr_stats->cmpltn_cmn.flags);
1458 	}
1459 
1460 	spin_unlock_bh(&ab->base_lock);
1461 	rcu_read_unlock();
1462 }
1463 
1464 static void ath12k_htt_update_ppdu_stats(struct ath12k *ar,
1465 					 struct htt_ppdu_stats *ppdu_stats)
1466 {
1467 	u8 user;
1468 
1469 	for (user = 0; user < HTT_PPDU_STATS_MAX_USERS - 1; user++)
1470 		ath12k_update_per_peer_tx_stats(ar, ppdu_stats, user);
1471 }
1472 
1473 static
1474 struct htt_ppdu_stats_info *ath12k_dp_htt_get_ppdu_desc(struct ath12k *ar,
1475 							u32 ppdu_id)
1476 {
1477 	struct htt_ppdu_stats_info *ppdu_info;
1478 
1479 	lockdep_assert_held(&ar->data_lock);
1480 	if (!list_empty(&ar->ppdu_stats_info)) {
1481 		list_for_each_entry(ppdu_info, &ar->ppdu_stats_info, list) {
1482 			if (ppdu_info->ppdu_id == ppdu_id)
1483 				return ppdu_info;
1484 		}
1485 
1486 		if (ar->ppdu_stat_list_depth > HTT_PPDU_DESC_MAX_DEPTH) {
1487 			ppdu_info = list_first_entry(&ar->ppdu_stats_info,
1488 						     typeof(*ppdu_info), list);
1489 			list_del(&ppdu_info->list);
1490 			ar->ppdu_stat_list_depth--;
1491 			ath12k_htt_update_ppdu_stats(ar, &ppdu_info->ppdu_stats);
1492 			kfree(ppdu_info);
1493 		}
1494 	}
1495 
1496 	ppdu_info = kzalloc(sizeof(*ppdu_info), GFP_ATOMIC);
1497 	if (!ppdu_info)
1498 		return NULL;
1499 
1500 	list_add_tail(&ppdu_info->list, &ar->ppdu_stats_info);
1501 	ar->ppdu_stat_list_depth++;
1502 
1503 	return ppdu_info;
1504 }
1505 
1506 static void ath12k_copy_to_delay_stats(struct ath12k_peer *peer,
1507 				       struct htt_ppdu_user_stats *usr_stats)
1508 {
1509 	peer->ppdu_stats_delayba.sw_peer_id = le16_to_cpu(usr_stats->rate.sw_peer_id);
1510 	peer->ppdu_stats_delayba.info0 = le32_to_cpu(usr_stats->rate.info0);
1511 	peer->ppdu_stats_delayba.ru_end = le16_to_cpu(usr_stats->rate.ru_end);
1512 	peer->ppdu_stats_delayba.ru_start = le16_to_cpu(usr_stats->rate.ru_start);
1513 	peer->ppdu_stats_delayba.info1 = le32_to_cpu(usr_stats->rate.info1);
1514 	peer->ppdu_stats_delayba.rate_flags = le32_to_cpu(usr_stats->rate.rate_flags);
1515 	peer->ppdu_stats_delayba.resp_rate_flags =
1516 		le32_to_cpu(usr_stats->rate.resp_rate_flags);
1517 
1518 	peer->delayba_flag = true;
1519 }
1520 
1521 static void ath12k_copy_to_bar(struct ath12k_peer *peer,
1522 			       struct htt_ppdu_user_stats *usr_stats)
1523 {
1524 	usr_stats->rate.sw_peer_id = cpu_to_le16(peer->ppdu_stats_delayba.sw_peer_id);
1525 	usr_stats->rate.info0 = cpu_to_le32(peer->ppdu_stats_delayba.info0);
1526 	usr_stats->rate.ru_end = cpu_to_le16(peer->ppdu_stats_delayba.ru_end);
1527 	usr_stats->rate.ru_start = cpu_to_le16(peer->ppdu_stats_delayba.ru_start);
1528 	usr_stats->rate.info1 = cpu_to_le32(peer->ppdu_stats_delayba.info1);
1529 	usr_stats->rate.rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.rate_flags);
1530 	usr_stats->rate.resp_rate_flags =
1531 		cpu_to_le32(peer->ppdu_stats_delayba.resp_rate_flags);
1532 
1533 	peer->delayba_flag = false;
1534 }
1535 
1536 static int ath12k_htt_pull_ppdu_stats(struct ath12k_base *ab,
1537 				      struct sk_buff *skb)
1538 {
1539 	struct ath12k_htt_ppdu_stats_msg *msg;
1540 	struct htt_ppdu_stats_info *ppdu_info;
1541 	struct ath12k_peer *peer = NULL;
1542 	struct htt_ppdu_user_stats *usr_stats = NULL;
1543 	u32 peer_id = 0;
1544 	struct ath12k *ar;
1545 	int ret, i;
1546 	u8 pdev_id;
1547 	u32 ppdu_id, len;
1548 
1549 	msg = (struct ath12k_htt_ppdu_stats_msg *)skb->data;
1550 	len = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PAYLOAD_SIZE);
1551 	pdev_id = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PDEV_ID);
1552 	ppdu_id = le32_to_cpu(msg->ppdu_id);
1553 
1554 	rcu_read_lock();
1555 	ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id);
1556 	if (!ar) {
1557 		ret = -EINVAL;
1558 		goto exit;
1559 	}
1560 
1561 	spin_lock_bh(&ar->data_lock);
1562 	ppdu_info = ath12k_dp_htt_get_ppdu_desc(ar, ppdu_id);
1563 	if (!ppdu_info) {
1564 		spin_unlock_bh(&ar->data_lock);
1565 		ret = -EINVAL;
1566 		goto exit;
1567 	}
1568 
1569 	ppdu_info->ppdu_id = ppdu_id;
1570 	ret = ath12k_dp_htt_tlv_iter(ab, msg->data, len,
1571 				     ath12k_htt_tlv_ppdu_stats_parse,
1572 				     (void *)ppdu_info);
1573 	if (ret) {
1574 		spin_unlock_bh(&ar->data_lock);
1575 		ath12k_warn(ab, "Failed to parse tlv %d\n", ret);
1576 		goto exit;
1577 	}
1578 
1579 	/* back up data rate tlv for all peers */
1580 	if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_DATA &&
1581 	    (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON)) &&
1582 	    ppdu_info->delay_ba) {
1583 		for (i = 0; i < ppdu_info->ppdu_stats.common.num_users; i++) {
1584 			peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id;
1585 			spin_lock_bh(&ab->base_lock);
1586 			peer = ath12k_peer_find_by_id(ab, peer_id);
1587 			if (!peer) {
1588 				spin_unlock_bh(&ab->base_lock);
1589 				continue;
1590 			}
1591 
1592 			usr_stats = &ppdu_info->ppdu_stats.user_stats[i];
1593 			if (usr_stats->delay_ba)
1594 				ath12k_copy_to_delay_stats(peer, usr_stats);
1595 			spin_unlock_bh(&ab->base_lock);
1596 		}
1597 	}
1598 
1599 	/* restore all peers' data rate tlv to mu-bar tlv */
1600 	if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_BAR &&
1601 	    (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON))) {
1602 		for (i = 0; i < ppdu_info->bar_num_users; i++) {
1603 			peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id;
1604 			spin_lock_bh(&ab->base_lock);
1605 			peer = ath12k_peer_find_by_id(ab, peer_id);
1606 			if (!peer) {
1607 				spin_unlock_bh(&ab->base_lock);
1608 				continue;
1609 			}
1610 
1611 			usr_stats = &ppdu_info->ppdu_stats.user_stats[i];
1612 			if (peer->delayba_flag)
1613 				ath12k_copy_to_bar(peer, usr_stats);
1614 			spin_unlock_bh(&ab->base_lock);
1615 		}
1616 	}
1617 
1618 	spin_unlock_bh(&ar->data_lock);
1619 
1620 exit:
1621 	rcu_read_unlock();
1622 
1623 	return ret;
1624 }
1625 
1626 static void ath12k_htt_mlo_offset_event_handler(struct ath12k_base *ab,
1627 						struct sk_buff *skb)
1628 {
1629 	struct ath12k_htt_mlo_offset_msg *msg;
1630 	struct ath12k_pdev *pdev;
1631 	struct ath12k *ar;
1632 	u8 pdev_id;
1633 
1634 	msg = (struct ath12k_htt_mlo_offset_msg *)skb->data;
1635 	pdev_id = u32_get_bits(__le32_to_cpu(msg->info),
1636 			       HTT_T2H_MLO_OFFSET_INFO_PDEV_ID);
1637 	ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id);
1638 
1639 	if (!ar) {
1640 		ath12k_warn(ab, "invalid pdev id %d on htt mlo offset\n", pdev_id);
1641 		return;
1642 	}
1643 
1644 	spin_lock_bh(&ar->data_lock);
1645 	pdev = ar->pdev;
1646 
1647 	pdev->timestamp.info = __le32_to_cpu(msg->info);
1648 	pdev->timestamp.sync_timestamp_lo_us = __le32_to_cpu(msg->sync_timestamp_lo_us);
1649 	pdev->timestamp.sync_timestamp_hi_us = __le32_to_cpu(msg->sync_timestamp_hi_us);
1650 	pdev->timestamp.mlo_offset_lo = __le32_to_cpu(msg->mlo_offset_lo);
1651 	pdev->timestamp.mlo_offset_hi = __le32_to_cpu(msg->mlo_offset_hi);
1652 	pdev->timestamp.mlo_offset_clks = __le32_to_cpu(msg->mlo_offset_clks);
1653 	pdev->timestamp.mlo_comp_clks = __le32_to_cpu(msg->mlo_comp_clks);
1654 	pdev->timestamp.mlo_comp_timer = __le32_to_cpu(msg->mlo_comp_timer);
1655 
1656 	spin_unlock_bh(&ar->data_lock);
1657 }
1658 
1659 void ath12k_dp_htt_htc_t2h_msg_handler(struct ath12k_base *ab,
1660 				       struct sk_buff *skb)
1661 {
1662 	struct ath12k_dp *dp = &ab->dp;
1663 	struct htt_resp_msg *resp = (struct htt_resp_msg *)skb->data;
1664 	enum htt_t2h_msg_type type;
1665 	u16 peer_id;
1666 	u8 vdev_id;
1667 	u8 mac_addr[ETH_ALEN];
1668 	u16 peer_mac_h16;
1669 	u16 ast_hash = 0;
1670 	u16 hw_peer_id;
1671 
1672 	type = le32_get_bits(resp->version_msg.version, HTT_T2H_MSG_TYPE);
1673 
1674 	ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt rx msg type :0x%0x\n", type);
1675 
1676 	switch (type) {
1677 	case HTT_T2H_MSG_TYPE_VERSION_CONF:
1678 		dp->htt_tgt_ver_major = le32_get_bits(resp->version_msg.version,
1679 						      HTT_T2H_VERSION_CONF_MAJOR);
1680 		dp->htt_tgt_ver_minor = le32_get_bits(resp->version_msg.version,
1681 						      HTT_T2H_VERSION_CONF_MINOR);
1682 		complete(&dp->htt_tgt_version_received);
1683 		break;
1684 	/* TODO: remove unused peer map versions after testing */
1685 	case HTT_T2H_MSG_TYPE_PEER_MAP:
1686 		vdev_id = le32_get_bits(resp->peer_map_ev.info,
1687 					HTT_T2H_PEER_MAP_INFO_VDEV_ID);
1688 		peer_id = le32_get_bits(resp->peer_map_ev.info,
1689 					HTT_T2H_PEER_MAP_INFO_PEER_ID);
1690 		peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
1691 					     HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
1692 		ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
1693 				       peer_mac_h16, mac_addr);
1694 		ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, 0, 0);
1695 		break;
1696 	case HTT_T2H_MSG_TYPE_PEER_MAP2:
1697 		vdev_id = le32_get_bits(resp->peer_map_ev.info,
1698 					HTT_T2H_PEER_MAP_INFO_VDEV_ID);
1699 		peer_id = le32_get_bits(resp->peer_map_ev.info,
1700 					HTT_T2H_PEER_MAP_INFO_PEER_ID);
1701 		peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
1702 					     HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
1703 		ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
1704 				       peer_mac_h16, mac_addr);
1705 		ast_hash = le32_get_bits(resp->peer_map_ev.info2,
1706 					 HTT_T2H_PEER_MAP_INFO2_AST_HASH_VAL);
1707 		hw_peer_id = le32_get_bits(resp->peer_map_ev.info1,
1708 					   HTT_T2H_PEER_MAP_INFO1_HW_PEER_ID);
1709 		ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash,
1710 				      hw_peer_id);
1711 		break;
1712 	case HTT_T2H_MSG_TYPE_PEER_MAP3:
1713 		vdev_id = le32_get_bits(resp->peer_map_ev.info,
1714 					HTT_T2H_PEER_MAP_INFO_VDEV_ID);
1715 		peer_id = le32_get_bits(resp->peer_map_ev.info,
1716 					HTT_T2H_PEER_MAP_INFO_PEER_ID);
1717 		peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1,
1718 					     HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16);
1719 		ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32),
1720 				       peer_mac_h16, mac_addr);
1721 		ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash,
1722 				      peer_id);
1723 		break;
1724 	case HTT_T2H_MSG_TYPE_PEER_UNMAP:
1725 	case HTT_T2H_MSG_TYPE_PEER_UNMAP2:
1726 		peer_id = le32_get_bits(resp->peer_unmap_ev.info,
1727 					HTT_T2H_PEER_UNMAP_INFO_PEER_ID);
1728 		ath12k_peer_unmap_event(ab, peer_id);
1729 		break;
1730 	case HTT_T2H_MSG_TYPE_PPDU_STATS_IND:
1731 		ath12k_htt_pull_ppdu_stats(ab, skb);
1732 		break;
1733 	case HTT_T2H_MSG_TYPE_EXT_STATS_CONF:
1734 		break;
1735 	case HTT_T2H_MSG_TYPE_MLO_TIMESTAMP_OFFSET_IND:
1736 		ath12k_htt_mlo_offset_event_handler(ab, skb);
1737 		break;
1738 	default:
1739 		ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt event %d not handled\n",
1740 			   type);
1741 		break;
1742 	}
1743 
1744 	dev_kfree_skb_any(skb);
1745 }
1746 
1747 static int ath12k_dp_rx_msdu_coalesce(struct ath12k *ar,
1748 				      struct sk_buff_head *msdu_list,
1749 				      struct sk_buff *first, struct sk_buff *last,
1750 				      u8 l3pad_bytes, int msdu_len)
1751 {
1752 	struct ath12k_base *ab = ar->ab;
1753 	struct sk_buff *skb;
1754 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first);
1755 	int buf_first_hdr_len, buf_first_len;
1756 	struct hal_rx_desc *ldesc;
1757 	int space_extra, rem_len, buf_len;
1758 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
1759 
1760 	/* As the msdu is spread across multiple rx buffers,
1761 	 * find the offset to the start of msdu for computing
1762 	 * the length of the msdu in the first buffer.
1763 	 */
1764 	buf_first_hdr_len = hal_rx_desc_sz + l3pad_bytes;
1765 	buf_first_len = DP_RX_BUFFER_SIZE - buf_first_hdr_len;
1766 
1767 	if (WARN_ON_ONCE(msdu_len <= buf_first_len)) {
1768 		skb_put(first, buf_first_hdr_len + msdu_len);
1769 		skb_pull(first, buf_first_hdr_len);
1770 		return 0;
1771 	}
1772 
1773 	ldesc = (struct hal_rx_desc *)last->data;
1774 	rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, ldesc);
1775 	rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, ldesc);
1776 
1777 	/* MSDU spans over multiple buffers because the length of the MSDU
1778 	 * exceeds DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. So assume the data
1779 	 * in the first buf is of length DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE.
1780 	 */
1781 	skb_put(first, DP_RX_BUFFER_SIZE);
1782 	skb_pull(first, buf_first_hdr_len);
1783 
1784 	/* When an MSDU spread over multiple buffers MSDU_END
1785 	 * tlvs are valid only in the last buffer. Copy those tlvs.
1786 	 */
1787 	ath12k_dp_rx_desc_end_tlv_copy(ab, rxcb->rx_desc, ldesc);
1788 
1789 	space_extra = msdu_len - (buf_first_len + skb_tailroom(first));
1790 	if (space_extra > 0 &&
1791 	    (pskb_expand_head(first, 0, space_extra, GFP_ATOMIC) < 0)) {
1792 		/* Free up all buffers of the MSDU */
1793 		while ((skb = __skb_dequeue(msdu_list)) != NULL) {
1794 			rxcb = ATH12K_SKB_RXCB(skb);
1795 			if (!rxcb->is_continuation) {
1796 				dev_kfree_skb_any(skb);
1797 				break;
1798 			}
1799 			dev_kfree_skb_any(skb);
1800 		}
1801 		return -ENOMEM;
1802 	}
1803 
1804 	rem_len = msdu_len - buf_first_len;
1805 	while ((skb = __skb_dequeue(msdu_list)) != NULL && rem_len > 0) {
1806 		rxcb = ATH12K_SKB_RXCB(skb);
1807 		if (rxcb->is_continuation)
1808 			buf_len = DP_RX_BUFFER_SIZE - hal_rx_desc_sz;
1809 		else
1810 			buf_len = rem_len;
1811 
1812 		if (buf_len > (DP_RX_BUFFER_SIZE - hal_rx_desc_sz)) {
1813 			WARN_ON_ONCE(1);
1814 			dev_kfree_skb_any(skb);
1815 			return -EINVAL;
1816 		}
1817 
1818 		skb_put(skb, buf_len + hal_rx_desc_sz);
1819 		skb_pull(skb, hal_rx_desc_sz);
1820 		skb_copy_from_linear_data(skb, skb_put(first, buf_len),
1821 					  buf_len);
1822 		dev_kfree_skb_any(skb);
1823 
1824 		rem_len -= buf_len;
1825 		if (!rxcb->is_continuation)
1826 			break;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static struct sk_buff *ath12k_dp_rx_get_msdu_last_buf(struct sk_buff_head *msdu_list,
1833 						      struct sk_buff *first)
1834 {
1835 	struct sk_buff *skb;
1836 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first);
1837 
1838 	if (!rxcb->is_continuation)
1839 		return first;
1840 
1841 	skb_queue_walk(msdu_list, skb) {
1842 		rxcb = ATH12K_SKB_RXCB(skb);
1843 		if (!rxcb->is_continuation)
1844 			return skb;
1845 	}
1846 
1847 	return NULL;
1848 }
1849 
1850 static void ath12k_dp_rx_h_csum_offload(struct ath12k *ar, struct sk_buff *msdu)
1851 {
1852 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
1853 	struct ath12k_base *ab = ar->ab;
1854 	bool ip_csum_fail, l4_csum_fail;
1855 
1856 	ip_csum_fail = ath12k_dp_rx_h_ip_cksum_fail(ab, rxcb->rx_desc);
1857 	l4_csum_fail = ath12k_dp_rx_h_l4_cksum_fail(ab, rxcb->rx_desc);
1858 
1859 	msdu->ip_summed = (ip_csum_fail || l4_csum_fail) ?
1860 			  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1861 }
1862 
1863 static int ath12k_dp_rx_crypto_mic_len(struct ath12k *ar,
1864 				       enum hal_encrypt_type enctype)
1865 {
1866 	switch (enctype) {
1867 	case HAL_ENCRYPT_TYPE_OPEN:
1868 	case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
1869 	case HAL_ENCRYPT_TYPE_TKIP_MIC:
1870 		return 0;
1871 	case HAL_ENCRYPT_TYPE_CCMP_128:
1872 		return IEEE80211_CCMP_MIC_LEN;
1873 	case HAL_ENCRYPT_TYPE_CCMP_256:
1874 		return IEEE80211_CCMP_256_MIC_LEN;
1875 	case HAL_ENCRYPT_TYPE_GCMP_128:
1876 	case HAL_ENCRYPT_TYPE_AES_GCMP_256:
1877 		return IEEE80211_GCMP_MIC_LEN;
1878 	case HAL_ENCRYPT_TYPE_WEP_40:
1879 	case HAL_ENCRYPT_TYPE_WEP_104:
1880 	case HAL_ENCRYPT_TYPE_WEP_128:
1881 	case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
1882 	case HAL_ENCRYPT_TYPE_WAPI:
1883 		break;
1884 	}
1885 
1886 	ath12k_warn(ar->ab, "unsupported encryption type %d for mic len\n", enctype);
1887 	return 0;
1888 }
1889 
1890 static int ath12k_dp_rx_crypto_param_len(struct ath12k *ar,
1891 					 enum hal_encrypt_type enctype)
1892 {
1893 	switch (enctype) {
1894 	case HAL_ENCRYPT_TYPE_OPEN:
1895 		return 0;
1896 	case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
1897 	case HAL_ENCRYPT_TYPE_TKIP_MIC:
1898 		return IEEE80211_TKIP_IV_LEN;
1899 	case HAL_ENCRYPT_TYPE_CCMP_128:
1900 		return IEEE80211_CCMP_HDR_LEN;
1901 	case HAL_ENCRYPT_TYPE_CCMP_256:
1902 		return IEEE80211_CCMP_256_HDR_LEN;
1903 	case HAL_ENCRYPT_TYPE_GCMP_128:
1904 	case HAL_ENCRYPT_TYPE_AES_GCMP_256:
1905 		return IEEE80211_GCMP_HDR_LEN;
1906 	case HAL_ENCRYPT_TYPE_WEP_40:
1907 	case HAL_ENCRYPT_TYPE_WEP_104:
1908 	case HAL_ENCRYPT_TYPE_WEP_128:
1909 	case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
1910 	case HAL_ENCRYPT_TYPE_WAPI:
1911 		break;
1912 	}
1913 
1914 	ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype);
1915 	return 0;
1916 }
1917 
1918 static int ath12k_dp_rx_crypto_icv_len(struct ath12k *ar,
1919 				       enum hal_encrypt_type enctype)
1920 {
1921 	switch (enctype) {
1922 	case HAL_ENCRYPT_TYPE_OPEN:
1923 	case HAL_ENCRYPT_TYPE_CCMP_128:
1924 	case HAL_ENCRYPT_TYPE_CCMP_256:
1925 	case HAL_ENCRYPT_TYPE_GCMP_128:
1926 	case HAL_ENCRYPT_TYPE_AES_GCMP_256:
1927 		return 0;
1928 	case HAL_ENCRYPT_TYPE_TKIP_NO_MIC:
1929 	case HAL_ENCRYPT_TYPE_TKIP_MIC:
1930 		return IEEE80211_TKIP_ICV_LEN;
1931 	case HAL_ENCRYPT_TYPE_WEP_40:
1932 	case HAL_ENCRYPT_TYPE_WEP_104:
1933 	case HAL_ENCRYPT_TYPE_WEP_128:
1934 	case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4:
1935 	case HAL_ENCRYPT_TYPE_WAPI:
1936 		break;
1937 	}
1938 
1939 	ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype);
1940 	return 0;
1941 }
1942 
1943 static void ath12k_dp_rx_h_undecap_nwifi(struct ath12k *ar,
1944 					 struct sk_buff *msdu,
1945 					 enum hal_encrypt_type enctype,
1946 					 struct ieee80211_rx_status *status)
1947 {
1948 	struct ath12k_base *ab = ar->ab;
1949 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
1950 	u8 decap_hdr[DP_MAX_NWIFI_HDR_LEN];
1951 	struct ieee80211_hdr *hdr;
1952 	size_t hdr_len;
1953 	u8 *crypto_hdr;
1954 	u16 qos_ctl;
1955 
1956 	/* pull decapped header */
1957 	hdr = (struct ieee80211_hdr *)msdu->data;
1958 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1959 	skb_pull(msdu, hdr_len);
1960 
1961 	/*  Rebuild qos header */
1962 	hdr->frame_control |= __cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1963 
1964 	/* Reset the order bit as the HT_Control header is stripped */
1965 	hdr->frame_control &= ~(__cpu_to_le16(IEEE80211_FCTL_ORDER));
1966 
1967 	qos_ctl = rxcb->tid;
1968 
1969 	if (ath12k_dp_rx_h_mesh_ctl_present(ab, rxcb->rx_desc))
1970 		qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT;
1971 
1972 	/* TODO: Add other QoS ctl fields when required */
1973 
1974 	/* copy decap header before overwriting for reuse below */
1975 	memcpy(decap_hdr, hdr, hdr_len);
1976 
1977 	/* Rebuild crypto header for mac80211 use */
1978 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1979 		crypto_hdr = skb_push(msdu, ath12k_dp_rx_crypto_param_len(ar, enctype));
1980 		ath12k_dp_rx_desc_get_crypto_header(ar->ab,
1981 						    rxcb->rx_desc, crypto_hdr,
1982 						    enctype);
1983 	}
1984 
1985 	memcpy(skb_push(msdu,
1986 			IEEE80211_QOS_CTL_LEN), &qos_ctl,
1987 			IEEE80211_QOS_CTL_LEN);
1988 	memcpy(skb_push(msdu, hdr_len), decap_hdr, hdr_len);
1989 }
1990 
1991 static void ath12k_dp_rx_h_undecap_raw(struct ath12k *ar, struct sk_buff *msdu,
1992 				       enum hal_encrypt_type enctype,
1993 				       struct ieee80211_rx_status *status,
1994 				       bool decrypted)
1995 {
1996 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
1997 	struct ieee80211_hdr *hdr;
1998 	size_t hdr_len;
1999 	size_t crypto_len;
2000 
2001 	if (!rxcb->is_first_msdu ||
2002 	    !(rxcb->is_first_msdu && rxcb->is_last_msdu)) {
2003 		WARN_ON_ONCE(1);
2004 		return;
2005 	}
2006 
2007 	skb_trim(msdu, msdu->len - FCS_LEN);
2008 
2009 	if (!decrypted)
2010 		return;
2011 
2012 	hdr = (void *)msdu->data;
2013 
2014 	/* Tail */
2015 	if (status->flag & RX_FLAG_IV_STRIPPED) {
2016 		skb_trim(msdu, msdu->len -
2017 			 ath12k_dp_rx_crypto_mic_len(ar, enctype));
2018 
2019 		skb_trim(msdu, msdu->len -
2020 			 ath12k_dp_rx_crypto_icv_len(ar, enctype));
2021 	} else {
2022 		/* MIC */
2023 		if (status->flag & RX_FLAG_MIC_STRIPPED)
2024 			skb_trim(msdu, msdu->len -
2025 				 ath12k_dp_rx_crypto_mic_len(ar, enctype));
2026 
2027 		/* ICV */
2028 		if (status->flag & RX_FLAG_ICV_STRIPPED)
2029 			skb_trim(msdu, msdu->len -
2030 				 ath12k_dp_rx_crypto_icv_len(ar, enctype));
2031 	}
2032 
2033 	/* MMIC */
2034 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
2035 	    !ieee80211_has_morefrags(hdr->frame_control) &&
2036 	    enctype == HAL_ENCRYPT_TYPE_TKIP_MIC)
2037 		skb_trim(msdu, msdu->len - IEEE80211_CCMP_MIC_LEN);
2038 
2039 	/* Head */
2040 	if (status->flag & RX_FLAG_IV_STRIPPED) {
2041 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
2042 		crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
2043 
2044 		memmove(msdu->data + crypto_len, msdu->data, hdr_len);
2045 		skb_pull(msdu, crypto_len);
2046 	}
2047 }
2048 
2049 static void ath12k_get_dot11_hdr_from_rx_desc(struct ath12k *ar,
2050 					      struct sk_buff *msdu,
2051 					      struct ath12k_skb_rxcb *rxcb,
2052 					      struct ieee80211_rx_status *status,
2053 					      enum hal_encrypt_type enctype)
2054 {
2055 	struct hal_rx_desc *rx_desc = rxcb->rx_desc;
2056 	struct ath12k_base *ab = ar->ab;
2057 	size_t hdr_len, crypto_len;
2058 	struct ieee80211_hdr *hdr;
2059 	u16 qos_ctl;
2060 	__le16 fc;
2061 	u8 *crypto_hdr;
2062 
2063 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
2064 		crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
2065 		crypto_hdr = skb_push(msdu, crypto_len);
2066 		ath12k_dp_rx_desc_get_crypto_header(ab, rx_desc, crypto_hdr, enctype);
2067 	}
2068 
2069 	fc = cpu_to_le16(ath12k_dp_rxdesc_get_mpdu_frame_ctrl(ab, rx_desc));
2070 	hdr_len = ieee80211_hdrlen(fc);
2071 	skb_push(msdu, hdr_len);
2072 	hdr = (struct ieee80211_hdr *)msdu->data;
2073 	hdr->frame_control = fc;
2074 
2075 	/* Get wifi header from rx_desc */
2076 	ath12k_dp_rx_desc_get_dot11_hdr(ab, rx_desc, hdr);
2077 
2078 	if (rxcb->is_mcbc)
2079 		status->flag &= ~RX_FLAG_PN_VALIDATED;
2080 
2081 	/* Add QOS header */
2082 	if (ieee80211_is_data_qos(hdr->frame_control)) {
2083 		qos_ctl = rxcb->tid;
2084 		if (ath12k_dp_rx_h_mesh_ctl_present(ab, rx_desc))
2085 			qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT;
2086 
2087 		/* TODO: Add other QoS ctl fields when required */
2088 		memcpy(msdu->data + (hdr_len - IEEE80211_QOS_CTL_LEN),
2089 		       &qos_ctl, IEEE80211_QOS_CTL_LEN);
2090 	}
2091 }
2092 
2093 static void ath12k_dp_rx_h_undecap_eth(struct ath12k *ar,
2094 				       struct sk_buff *msdu,
2095 				       enum hal_encrypt_type enctype,
2096 				       struct ieee80211_rx_status *status)
2097 {
2098 	struct ieee80211_hdr *hdr;
2099 	struct ethhdr *eth;
2100 	u8 da[ETH_ALEN];
2101 	u8 sa[ETH_ALEN];
2102 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
2103 	struct ath12k_dp_rx_rfc1042_hdr rfc = {0xaa, 0xaa, 0x03, {0x00, 0x00, 0x00}};
2104 
2105 	eth = (struct ethhdr *)msdu->data;
2106 	ether_addr_copy(da, eth->h_dest);
2107 	ether_addr_copy(sa, eth->h_source);
2108 	rfc.snap_type = eth->h_proto;
2109 	skb_pull(msdu, sizeof(*eth));
2110 	memcpy(skb_push(msdu, sizeof(rfc)), &rfc,
2111 	       sizeof(rfc));
2112 	ath12k_get_dot11_hdr_from_rx_desc(ar, msdu, rxcb, status, enctype);
2113 
2114 	/* original 802.11 header has a different DA and in
2115 	 * case of 4addr it may also have different SA
2116 	 */
2117 	hdr = (struct ieee80211_hdr *)msdu->data;
2118 	ether_addr_copy(ieee80211_get_DA(hdr), da);
2119 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
2120 }
2121 
2122 static void ath12k_dp_rx_h_undecap(struct ath12k *ar, struct sk_buff *msdu,
2123 				   struct hal_rx_desc *rx_desc,
2124 				   enum hal_encrypt_type enctype,
2125 				   struct ieee80211_rx_status *status,
2126 				   bool decrypted)
2127 {
2128 	struct ath12k_base *ab = ar->ab;
2129 	u8 decap;
2130 	struct ethhdr *ehdr;
2131 
2132 	decap = ath12k_dp_rx_h_decap_type(ab, rx_desc);
2133 
2134 	switch (decap) {
2135 	case DP_RX_DECAP_TYPE_NATIVE_WIFI:
2136 		ath12k_dp_rx_h_undecap_nwifi(ar, msdu, enctype, status);
2137 		break;
2138 	case DP_RX_DECAP_TYPE_RAW:
2139 		ath12k_dp_rx_h_undecap_raw(ar, msdu, enctype, status,
2140 					   decrypted);
2141 		break;
2142 	case DP_RX_DECAP_TYPE_ETHERNET2_DIX:
2143 		ehdr = (struct ethhdr *)msdu->data;
2144 
2145 		/* mac80211 allows fast path only for authorized STA */
2146 		if (ehdr->h_proto == cpu_to_be16(ETH_P_PAE)) {
2147 			ATH12K_SKB_RXCB(msdu)->is_eapol = true;
2148 			ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status);
2149 			break;
2150 		}
2151 
2152 		/* PN for mcast packets will be validated in mac80211;
2153 		 * remove eth header and add 802.11 header.
2154 		 */
2155 		if (ATH12K_SKB_RXCB(msdu)->is_mcbc && decrypted)
2156 			ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status);
2157 		break;
2158 	case DP_RX_DECAP_TYPE_8023:
2159 		/* TODO: Handle undecap for these formats */
2160 		break;
2161 	}
2162 }
2163 
2164 struct ath12k_peer *
2165 ath12k_dp_rx_h_find_peer(struct ath12k_base *ab, struct sk_buff *msdu)
2166 {
2167 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
2168 	struct hal_rx_desc *rx_desc = rxcb->rx_desc;
2169 	struct ath12k_peer *peer = NULL;
2170 
2171 	lockdep_assert_held(&ab->base_lock);
2172 
2173 	if (rxcb->peer_id)
2174 		peer = ath12k_peer_find_by_id(ab, rxcb->peer_id);
2175 
2176 	if (peer)
2177 		return peer;
2178 
2179 	if (!rx_desc || !(ath12k_dp_rxdesc_mac_addr2_valid(ab, rx_desc)))
2180 		return NULL;
2181 
2182 	peer = ath12k_peer_find_by_addr(ab,
2183 					ath12k_dp_rxdesc_get_mpdu_start_addr2(ab,
2184 									      rx_desc));
2185 	return peer;
2186 }
2187 
2188 static void ath12k_dp_rx_h_mpdu(struct ath12k *ar,
2189 				struct sk_buff *msdu,
2190 				struct hal_rx_desc *rx_desc,
2191 				struct ieee80211_rx_status *rx_status)
2192 {
2193 	bool  fill_crypto_hdr;
2194 	struct ath12k_base *ab = ar->ab;
2195 	struct ath12k_skb_rxcb *rxcb;
2196 	enum hal_encrypt_type enctype;
2197 	bool is_decrypted = false;
2198 	struct ieee80211_hdr *hdr;
2199 	struct ath12k_peer *peer;
2200 	u32 err_bitmap;
2201 
2202 	/* PN for multicast packets will be checked in mac80211 */
2203 	rxcb = ATH12K_SKB_RXCB(msdu);
2204 	fill_crypto_hdr = ath12k_dp_rx_h_is_mcbc(ar->ab, rx_desc);
2205 	rxcb->is_mcbc = fill_crypto_hdr;
2206 
2207 	if (rxcb->is_mcbc)
2208 		rxcb->peer_id = ath12k_dp_rx_h_peer_id(ar->ab, rx_desc);
2209 
2210 	spin_lock_bh(&ar->ab->base_lock);
2211 	peer = ath12k_dp_rx_h_find_peer(ar->ab, msdu);
2212 	if (peer) {
2213 		if (rxcb->is_mcbc)
2214 			enctype = peer->sec_type_grp;
2215 		else
2216 			enctype = peer->sec_type;
2217 	} else {
2218 		enctype = HAL_ENCRYPT_TYPE_OPEN;
2219 	}
2220 	spin_unlock_bh(&ar->ab->base_lock);
2221 
2222 	err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc);
2223 	if (enctype != HAL_ENCRYPT_TYPE_OPEN && !err_bitmap)
2224 		is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc);
2225 
2226 	/* Clear per-MPDU flags while leaving per-PPDU flags intact */
2227 	rx_status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
2228 			     RX_FLAG_MMIC_ERROR |
2229 			     RX_FLAG_DECRYPTED |
2230 			     RX_FLAG_IV_STRIPPED |
2231 			     RX_FLAG_MMIC_STRIPPED);
2232 
2233 	if (err_bitmap & HAL_RX_MPDU_ERR_FCS)
2234 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2235 	if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC)
2236 		rx_status->flag |= RX_FLAG_MMIC_ERROR;
2237 
2238 	if (is_decrypted) {
2239 		rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED;
2240 
2241 		if (fill_crypto_hdr)
2242 			rx_status->flag |= RX_FLAG_MIC_STRIPPED |
2243 					RX_FLAG_ICV_STRIPPED;
2244 		else
2245 			rx_status->flag |= RX_FLAG_IV_STRIPPED |
2246 					   RX_FLAG_PN_VALIDATED;
2247 	}
2248 
2249 	ath12k_dp_rx_h_csum_offload(ar, msdu);
2250 	ath12k_dp_rx_h_undecap(ar, msdu, rx_desc,
2251 			       enctype, rx_status, is_decrypted);
2252 
2253 	if (!is_decrypted || fill_crypto_hdr)
2254 		return;
2255 
2256 	if (ath12k_dp_rx_h_decap_type(ar->ab, rx_desc) !=
2257 	    DP_RX_DECAP_TYPE_ETHERNET2_DIX) {
2258 		hdr = (void *)msdu->data;
2259 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2260 	}
2261 }
2262 
2263 static void ath12k_dp_rx_h_rate(struct ath12k *ar, struct hal_rx_desc *rx_desc,
2264 				struct ieee80211_rx_status *rx_status)
2265 {
2266 	struct ath12k_base *ab = ar->ab;
2267 	struct ieee80211_supported_band *sband;
2268 	enum rx_msdu_start_pkt_type pkt_type;
2269 	u8 bw;
2270 	u8 rate_mcs, nss;
2271 	u8 sgi;
2272 	bool is_cck;
2273 
2274 	pkt_type = ath12k_dp_rx_h_pkt_type(ab, rx_desc);
2275 	bw = ath12k_dp_rx_h_rx_bw(ab, rx_desc);
2276 	rate_mcs = ath12k_dp_rx_h_rate_mcs(ab, rx_desc);
2277 	nss = ath12k_dp_rx_h_nss(ab, rx_desc);
2278 	sgi = ath12k_dp_rx_h_sgi(ab, rx_desc);
2279 
2280 	switch (pkt_type) {
2281 	case RX_MSDU_START_PKT_TYPE_11A:
2282 	case RX_MSDU_START_PKT_TYPE_11B:
2283 		is_cck = (pkt_type == RX_MSDU_START_PKT_TYPE_11B);
2284 		sband = &ar->mac.sbands[rx_status->band];
2285 		rx_status->rate_idx = ath12k_mac_hw_rate_to_idx(sband, rate_mcs,
2286 								is_cck);
2287 		break;
2288 	case RX_MSDU_START_PKT_TYPE_11N:
2289 		rx_status->encoding = RX_ENC_HT;
2290 		if (rate_mcs > ATH12K_HT_MCS_MAX) {
2291 			ath12k_warn(ar->ab,
2292 				    "Received with invalid mcs in HT mode %d\n",
2293 				     rate_mcs);
2294 			break;
2295 		}
2296 		rx_status->rate_idx = rate_mcs + (8 * (nss - 1));
2297 		if (sgi)
2298 			rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2299 		rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
2300 		break;
2301 	case RX_MSDU_START_PKT_TYPE_11AC:
2302 		rx_status->encoding = RX_ENC_VHT;
2303 		rx_status->rate_idx = rate_mcs;
2304 		if (rate_mcs > ATH12K_VHT_MCS_MAX) {
2305 			ath12k_warn(ar->ab,
2306 				    "Received with invalid mcs in VHT mode %d\n",
2307 				     rate_mcs);
2308 			break;
2309 		}
2310 		rx_status->nss = nss;
2311 		if (sgi)
2312 			rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2313 		rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
2314 		break;
2315 	case RX_MSDU_START_PKT_TYPE_11AX:
2316 		rx_status->rate_idx = rate_mcs;
2317 		if (rate_mcs > ATH12K_HE_MCS_MAX) {
2318 			ath12k_warn(ar->ab,
2319 				    "Received with invalid mcs in HE mode %d\n",
2320 				    rate_mcs);
2321 			break;
2322 		}
2323 		rx_status->encoding = RX_ENC_HE;
2324 		rx_status->nss = nss;
2325 		rx_status->he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi);
2326 		rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw);
2327 		break;
2328 	}
2329 }
2330 
2331 void ath12k_dp_rx_h_ppdu(struct ath12k *ar, struct hal_rx_desc *rx_desc,
2332 			 struct ieee80211_rx_status *rx_status)
2333 {
2334 	struct ath12k_base *ab = ar->ab;
2335 	u8 channel_num;
2336 	u32 center_freq, meta_data;
2337 	struct ieee80211_channel *channel;
2338 
2339 	rx_status->freq = 0;
2340 	rx_status->rate_idx = 0;
2341 	rx_status->nss = 0;
2342 	rx_status->encoding = RX_ENC_LEGACY;
2343 	rx_status->bw = RATE_INFO_BW_20;
2344 	rx_status->enc_flags = 0;
2345 
2346 	rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2347 
2348 	meta_data = ath12k_dp_rx_h_freq(ab, rx_desc);
2349 	channel_num = meta_data;
2350 	center_freq = meta_data >> 16;
2351 
2352 	if (center_freq >= 5935 && center_freq <= 7105) {
2353 		rx_status->band = NL80211_BAND_6GHZ;
2354 	} else if (channel_num >= 1 && channel_num <= 14) {
2355 		rx_status->band = NL80211_BAND_2GHZ;
2356 	} else if (channel_num >= 36 && channel_num <= 173) {
2357 		rx_status->band = NL80211_BAND_5GHZ;
2358 	} else {
2359 		spin_lock_bh(&ar->data_lock);
2360 		channel = ar->rx_channel;
2361 		if (channel) {
2362 			rx_status->band = channel->band;
2363 			channel_num =
2364 				ieee80211_frequency_to_channel(channel->center_freq);
2365 		}
2366 		spin_unlock_bh(&ar->data_lock);
2367 		ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "rx_desc: ",
2368 				rx_desc, sizeof(*rx_desc));
2369 	}
2370 
2371 	rx_status->freq = ieee80211_channel_to_frequency(channel_num,
2372 							 rx_status->band);
2373 
2374 	ath12k_dp_rx_h_rate(ar, rx_desc, rx_status);
2375 }
2376 
2377 static void ath12k_dp_rx_deliver_msdu(struct ath12k *ar, struct napi_struct *napi,
2378 				      struct sk_buff *msdu,
2379 				      struct ieee80211_rx_status *status)
2380 {
2381 	struct ath12k_base *ab = ar->ab;
2382 	static const struct ieee80211_radiotap_he known = {
2383 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2384 				     IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN),
2385 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN),
2386 	};
2387 	struct ieee80211_radiotap_he *he;
2388 	struct ieee80211_rx_status *rx_status;
2389 	struct ieee80211_sta *pubsta;
2390 	struct ath12k_peer *peer;
2391 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
2392 	u8 decap = DP_RX_DECAP_TYPE_RAW;
2393 	bool is_mcbc = rxcb->is_mcbc;
2394 	bool is_eapol = rxcb->is_eapol;
2395 
2396 	if (status->encoding == RX_ENC_HE && !(status->flag & RX_FLAG_RADIOTAP_HE) &&
2397 	    !(status->flag & RX_FLAG_SKIP_MONITOR)) {
2398 		he = skb_push(msdu, sizeof(known));
2399 		memcpy(he, &known, sizeof(known));
2400 		status->flag |= RX_FLAG_RADIOTAP_HE;
2401 	}
2402 
2403 	if (!(status->flag & RX_FLAG_ONLY_MONITOR))
2404 		decap = ath12k_dp_rx_h_decap_type(ab, rxcb->rx_desc);
2405 
2406 	spin_lock_bh(&ab->base_lock);
2407 	peer = ath12k_dp_rx_h_find_peer(ab, msdu);
2408 
2409 	pubsta = peer ? peer->sta : NULL;
2410 
2411 	spin_unlock_bh(&ab->base_lock);
2412 
2413 	ath12k_dbg(ab, ATH12K_DBG_DATA,
2414 		   "rx skb %pK len %u peer %pM %d %s sn %u %s%s%s%s%s%s%s%s rate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
2415 		   msdu,
2416 		   msdu->len,
2417 		   peer ? peer->addr : NULL,
2418 		   rxcb->tid,
2419 		   is_mcbc ? "mcast" : "ucast",
2420 		   ath12k_dp_rx_h_seq_no(ab, rxcb->rx_desc),
2421 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
2422 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
2423 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
2424 		   (status->encoding == RX_ENC_HE) ? "he" : "",
2425 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
2426 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
2427 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
2428 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
2429 		   status->rate_idx,
2430 		   status->nss,
2431 		   status->freq,
2432 		   status->band, status->flag,
2433 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
2434 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
2435 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
2436 
2437 	ath12k_dbg_dump(ab, ATH12K_DBG_DP_RX, NULL, "dp rx msdu: ",
2438 			msdu->data, msdu->len);
2439 
2440 	rx_status = IEEE80211_SKB_RXCB(msdu);
2441 	*rx_status = *status;
2442 
2443 	/* TODO: trace rx packet */
2444 
2445 	/* PN for multicast packets are not validate in HW,
2446 	 * so skip 802.3 rx path
2447 	 * Also, fast_rx expects the STA to be authorized, hence
2448 	 * eapol packets are sent in slow path.
2449 	 */
2450 	if (decap == DP_RX_DECAP_TYPE_ETHERNET2_DIX && !is_eapol &&
2451 	    !(is_mcbc && rx_status->flag & RX_FLAG_DECRYPTED))
2452 		rx_status->flag |= RX_FLAG_8023;
2453 
2454 	ieee80211_rx_napi(ar->hw, pubsta, msdu, napi);
2455 }
2456 
2457 static int ath12k_dp_rx_process_msdu(struct ath12k *ar,
2458 				     struct sk_buff *msdu,
2459 				     struct sk_buff_head *msdu_list,
2460 				     struct ieee80211_rx_status *rx_status)
2461 {
2462 	struct ath12k_base *ab = ar->ab;
2463 	struct hal_rx_desc *rx_desc, *lrx_desc;
2464 	struct ath12k_skb_rxcb *rxcb;
2465 	struct sk_buff *last_buf;
2466 	u8 l3_pad_bytes;
2467 	u16 msdu_len;
2468 	int ret;
2469 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
2470 
2471 	last_buf = ath12k_dp_rx_get_msdu_last_buf(msdu_list, msdu);
2472 	if (!last_buf) {
2473 		ath12k_warn(ab,
2474 			    "No valid Rx buffer to access MSDU_END tlv\n");
2475 		ret = -EIO;
2476 		goto free_out;
2477 	}
2478 
2479 	rx_desc = (struct hal_rx_desc *)msdu->data;
2480 	lrx_desc = (struct hal_rx_desc *)last_buf->data;
2481 	if (!ath12k_dp_rx_h_msdu_done(ab, lrx_desc)) {
2482 		ath12k_warn(ab, "msdu_done bit in msdu_end is not set\n");
2483 		ret = -EIO;
2484 		goto free_out;
2485 	}
2486 
2487 	rxcb = ATH12K_SKB_RXCB(msdu);
2488 	rxcb->rx_desc = rx_desc;
2489 	msdu_len = ath12k_dp_rx_h_msdu_len(ab, lrx_desc);
2490 	l3_pad_bytes = ath12k_dp_rx_h_l3pad(ab, lrx_desc);
2491 
2492 	if (rxcb->is_frag) {
2493 		skb_pull(msdu, hal_rx_desc_sz);
2494 	} else if (!rxcb->is_continuation) {
2495 		if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) {
2496 			ret = -EINVAL;
2497 			ath12k_warn(ab, "invalid msdu len %u\n", msdu_len);
2498 			ath12k_dbg_dump(ab, ATH12K_DBG_DATA, NULL, "", rx_desc,
2499 					sizeof(*rx_desc));
2500 			goto free_out;
2501 		}
2502 		skb_put(msdu, hal_rx_desc_sz + l3_pad_bytes + msdu_len);
2503 		skb_pull(msdu, hal_rx_desc_sz + l3_pad_bytes);
2504 	} else {
2505 		ret = ath12k_dp_rx_msdu_coalesce(ar, msdu_list,
2506 						 msdu, last_buf,
2507 						 l3_pad_bytes, msdu_len);
2508 		if (ret) {
2509 			ath12k_warn(ab,
2510 				    "failed to coalesce msdu rx buffer%d\n", ret);
2511 			goto free_out;
2512 		}
2513 	}
2514 
2515 	ath12k_dp_rx_h_ppdu(ar, rx_desc, rx_status);
2516 	ath12k_dp_rx_h_mpdu(ar, msdu, rx_desc, rx_status);
2517 
2518 	rx_status->flag |= RX_FLAG_SKIP_MONITOR | RX_FLAG_DUP_VALIDATED;
2519 
2520 	return 0;
2521 
2522 free_out:
2523 	return ret;
2524 }
2525 
2526 static void ath12k_dp_rx_process_received_packets(struct ath12k_base *ab,
2527 						  struct napi_struct *napi,
2528 						  struct sk_buff_head *msdu_list,
2529 						  int ring_id)
2530 {
2531 	struct ieee80211_rx_status rx_status = {0};
2532 	struct ath12k_skb_rxcb *rxcb;
2533 	struct sk_buff *msdu;
2534 	struct ath12k *ar;
2535 	u8 mac_id;
2536 	int ret;
2537 
2538 	if (skb_queue_empty(msdu_list))
2539 		return;
2540 
2541 	rcu_read_lock();
2542 
2543 	while ((msdu = __skb_dequeue(msdu_list))) {
2544 		rxcb = ATH12K_SKB_RXCB(msdu);
2545 		mac_id = rxcb->mac_id;
2546 		ar = ab->pdevs[mac_id].ar;
2547 		if (!rcu_dereference(ab->pdevs_active[mac_id])) {
2548 			dev_kfree_skb_any(msdu);
2549 			continue;
2550 		}
2551 
2552 		if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
2553 			dev_kfree_skb_any(msdu);
2554 			continue;
2555 		}
2556 
2557 		ret = ath12k_dp_rx_process_msdu(ar, msdu, msdu_list, &rx_status);
2558 		if (ret) {
2559 			ath12k_dbg(ab, ATH12K_DBG_DATA,
2560 				   "Unable to process msdu %d", ret);
2561 			dev_kfree_skb_any(msdu);
2562 			continue;
2563 		}
2564 
2565 		ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rx_status);
2566 	}
2567 
2568 	rcu_read_unlock();
2569 }
2570 
2571 int ath12k_dp_rx_process(struct ath12k_base *ab, int ring_id,
2572 			 struct napi_struct *napi, int budget)
2573 {
2574 	struct ath12k_rx_desc_info *desc_info;
2575 	struct ath12k_dp *dp = &ab->dp;
2576 	struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring;
2577 	struct hal_reo_dest_ring *desc;
2578 	int num_buffs_reaped = 0;
2579 	struct sk_buff_head msdu_list;
2580 	struct ath12k_skb_rxcb *rxcb;
2581 	int total_msdu_reaped = 0;
2582 	struct hal_srng *srng;
2583 	struct sk_buff *msdu;
2584 	bool done = false;
2585 	int mac_id;
2586 	u64 desc_va;
2587 
2588 	__skb_queue_head_init(&msdu_list);
2589 
2590 	srng = &ab->hal.srng_list[dp->reo_dst_ring[ring_id].ring_id];
2591 
2592 	spin_lock_bh(&srng->lock);
2593 
2594 try_again:
2595 	ath12k_hal_srng_access_begin(ab, srng);
2596 
2597 	while ((desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
2598 		enum hal_reo_dest_ring_push_reason push_reason;
2599 		u32 cookie;
2600 
2601 		cookie = le32_get_bits(desc->buf_addr_info.info1,
2602 				       BUFFER_ADDR_INFO1_SW_COOKIE);
2603 
2604 		mac_id = le32_get_bits(desc->info0,
2605 				       HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
2606 
2607 		desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 |
2608 			   le32_to_cpu(desc->buf_va_lo));
2609 		desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va);
2610 
2611 		/* retry manual desc retrieval */
2612 		if (!desc_info) {
2613 			desc_info = ath12k_dp_get_rx_desc(ab, cookie);
2614 			if (!desc_info) {
2615 				ath12k_warn(ab, "Invalid cookie in manual desc retrieval");
2616 				continue;
2617 			}
2618 		}
2619 
2620 		if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
2621 			ath12k_warn(ab, "Check HW CC implementation");
2622 
2623 		msdu = desc_info->skb;
2624 		desc_info->skb = NULL;
2625 
2626 		spin_lock_bh(&dp->rx_desc_lock);
2627 		list_move_tail(&desc_info->list, &dp->rx_desc_free_list);
2628 		spin_unlock_bh(&dp->rx_desc_lock);
2629 
2630 		rxcb = ATH12K_SKB_RXCB(msdu);
2631 		dma_unmap_single(ab->dev, rxcb->paddr,
2632 				 msdu->len + skb_tailroom(msdu),
2633 				 DMA_FROM_DEVICE);
2634 
2635 		num_buffs_reaped++;
2636 
2637 		push_reason = le32_get_bits(desc->info0,
2638 					    HAL_REO_DEST_RING_INFO0_PUSH_REASON);
2639 		if (push_reason !=
2640 		    HAL_REO_DEST_RING_PUSH_REASON_ROUTING_INSTRUCTION) {
2641 			dev_kfree_skb_any(msdu);
2642 			ab->soc_stats.hal_reo_error[dp->reo_dst_ring[ring_id].ring_id]++;
2643 			continue;
2644 		}
2645 
2646 		rxcb->is_first_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) &
2647 					 RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU);
2648 		rxcb->is_last_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) &
2649 					RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU);
2650 		rxcb->is_continuation = !!(le32_to_cpu(desc->rx_msdu_info.info0) &
2651 					   RX_MSDU_DESC_INFO0_MSDU_CONTINUATION);
2652 		rxcb->mac_id = mac_id;
2653 		rxcb->peer_id = le32_get_bits(desc->rx_mpdu_info.peer_meta_data,
2654 					      RX_MPDU_DESC_META_DATA_PEER_ID);
2655 		rxcb->tid = le32_get_bits(desc->rx_mpdu_info.info0,
2656 					  RX_MPDU_DESC_INFO0_TID);
2657 
2658 		__skb_queue_tail(&msdu_list, msdu);
2659 
2660 		if (!rxcb->is_continuation) {
2661 			total_msdu_reaped++;
2662 			done = true;
2663 		} else {
2664 			done = false;
2665 		}
2666 
2667 		if (total_msdu_reaped >= budget)
2668 			break;
2669 	}
2670 
2671 	/* Hw might have updated the head pointer after we cached it.
2672 	 * In this case, even though there are entries in the ring we'll
2673 	 * get rx_desc NULL. Give the read another try with updated cached
2674 	 * head pointer so that we can reap complete MPDU in the current
2675 	 * rx processing.
2676 	 */
2677 	if (!done && ath12k_hal_srng_dst_num_free(ab, srng, true)) {
2678 		ath12k_hal_srng_access_end(ab, srng);
2679 		goto try_again;
2680 	}
2681 
2682 	ath12k_hal_srng_access_end(ab, srng);
2683 
2684 	spin_unlock_bh(&srng->lock);
2685 
2686 	if (!total_msdu_reaped)
2687 		goto exit;
2688 
2689 	/* TODO: Move to implicit BM? */
2690 	ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped,
2691 				    ab->hw_params->hal_params->rx_buf_rbm, true);
2692 
2693 	ath12k_dp_rx_process_received_packets(ab, napi, &msdu_list,
2694 					      ring_id);
2695 
2696 exit:
2697 	return total_msdu_reaped;
2698 }
2699 
2700 static void ath12k_dp_rx_frag_timer(struct timer_list *timer)
2701 {
2702 	struct ath12k_dp_rx_tid *rx_tid = from_timer(rx_tid, timer, frag_timer);
2703 
2704 	spin_lock_bh(&rx_tid->ab->base_lock);
2705 	if (rx_tid->last_frag_no &&
2706 	    rx_tid->rx_frag_bitmap == GENMASK(rx_tid->last_frag_no, 0)) {
2707 		spin_unlock_bh(&rx_tid->ab->base_lock);
2708 		return;
2709 	}
2710 	ath12k_dp_rx_frags_cleanup(rx_tid, true);
2711 	spin_unlock_bh(&rx_tid->ab->base_lock);
2712 }
2713 
2714 int ath12k_dp_rx_peer_frag_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id)
2715 {
2716 	struct ath12k_base *ab = ar->ab;
2717 	struct crypto_shash *tfm;
2718 	struct ath12k_peer *peer;
2719 	struct ath12k_dp_rx_tid *rx_tid;
2720 	int i;
2721 
2722 	tfm = crypto_alloc_shash("michael_mic", 0, 0);
2723 	if (IS_ERR(tfm))
2724 		return PTR_ERR(tfm);
2725 
2726 	spin_lock_bh(&ab->base_lock);
2727 
2728 	peer = ath12k_peer_find(ab, vdev_id, peer_mac);
2729 	if (!peer) {
2730 		spin_unlock_bh(&ab->base_lock);
2731 		ath12k_warn(ab, "failed to find the peer to set up fragment info\n");
2732 		return -ENOENT;
2733 	}
2734 
2735 	for (i = 0; i <= IEEE80211_NUM_TIDS; i++) {
2736 		rx_tid = &peer->rx_tid[i];
2737 		rx_tid->ab = ab;
2738 		timer_setup(&rx_tid->frag_timer, ath12k_dp_rx_frag_timer, 0);
2739 		skb_queue_head_init(&rx_tid->rx_frags);
2740 	}
2741 
2742 	peer->tfm_mmic = tfm;
2743 	spin_unlock_bh(&ab->base_lock);
2744 
2745 	return 0;
2746 }
2747 
2748 static int ath12k_dp_rx_h_michael_mic(struct crypto_shash *tfm, u8 *key,
2749 				      struct ieee80211_hdr *hdr, u8 *data,
2750 				      size_t data_len, u8 *mic)
2751 {
2752 	SHASH_DESC_ON_STACK(desc, tfm);
2753 	u8 mic_hdr[16] = {0};
2754 	u8 tid = 0;
2755 	int ret;
2756 
2757 	if (!tfm)
2758 		return -EINVAL;
2759 
2760 	desc->tfm = tfm;
2761 
2762 	ret = crypto_shash_setkey(tfm, key, 8);
2763 	if (ret)
2764 		goto out;
2765 
2766 	ret = crypto_shash_init(desc);
2767 	if (ret)
2768 		goto out;
2769 
2770 	/* TKIP MIC header */
2771 	memcpy(mic_hdr, ieee80211_get_DA(hdr), ETH_ALEN);
2772 	memcpy(mic_hdr + ETH_ALEN, ieee80211_get_SA(hdr), ETH_ALEN);
2773 	if (ieee80211_is_data_qos(hdr->frame_control))
2774 		tid = ieee80211_get_tid(hdr);
2775 	mic_hdr[12] = tid;
2776 
2777 	ret = crypto_shash_update(desc, mic_hdr, 16);
2778 	if (ret)
2779 		goto out;
2780 	ret = crypto_shash_update(desc, data, data_len);
2781 	if (ret)
2782 		goto out;
2783 	ret = crypto_shash_final(desc, mic);
2784 out:
2785 	shash_desc_zero(desc);
2786 	return ret;
2787 }
2788 
2789 static int ath12k_dp_rx_h_verify_tkip_mic(struct ath12k *ar, struct ath12k_peer *peer,
2790 					  struct sk_buff *msdu)
2791 {
2792 	struct ath12k_base *ab = ar->ab;
2793 	struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data;
2794 	struct ieee80211_rx_status *rxs = IEEE80211_SKB_RXCB(msdu);
2795 	struct ieee80211_key_conf *key_conf;
2796 	struct ieee80211_hdr *hdr;
2797 	u8 mic[IEEE80211_CCMP_MIC_LEN];
2798 	int head_len, tail_len, ret;
2799 	size_t data_len;
2800 	u32 hdr_len, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
2801 	u8 *key, *data;
2802 	u8 key_idx;
2803 
2804 	if (ath12k_dp_rx_h_enctype(ab, rx_desc) != HAL_ENCRYPT_TYPE_TKIP_MIC)
2805 		return 0;
2806 
2807 	hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz);
2808 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
2809 	head_len = hdr_len + hal_rx_desc_sz + IEEE80211_TKIP_IV_LEN;
2810 	tail_len = IEEE80211_CCMP_MIC_LEN + IEEE80211_TKIP_ICV_LEN + FCS_LEN;
2811 
2812 	if (!is_multicast_ether_addr(hdr->addr1))
2813 		key_idx = peer->ucast_keyidx;
2814 	else
2815 		key_idx = peer->mcast_keyidx;
2816 
2817 	key_conf = peer->keys[key_idx];
2818 
2819 	data = msdu->data + head_len;
2820 	data_len = msdu->len - head_len - tail_len;
2821 	key = &key_conf->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY];
2822 
2823 	ret = ath12k_dp_rx_h_michael_mic(peer->tfm_mmic, key, hdr, data, data_len, mic);
2824 	if (ret || memcmp(mic, data + data_len, IEEE80211_CCMP_MIC_LEN))
2825 		goto mic_fail;
2826 
2827 	return 0;
2828 
2829 mic_fail:
2830 	(ATH12K_SKB_RXCB(msdu))->is_first_msdu = true;
2831 	(ATH12K_SKB_RXCB(msdu))->is_last_msdu = true;
2832 
2833 	rxs->flag |= RX_FLAG_MMIC_ERROR | RX_FLAG_MMIC_STRIPPED |
2834 		    RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED;
2835 	skb_pull(msdu, hal_rx_desc_sz);
2836 
2837 	ath12k_dp_rx_h_ppdu(ar, rx_desc, rxs);
2838 	ath12k_dp_rx_h_undecap(ar, msdu, rx_desc,
2839 			       HAL_ENCRYPT_TYPE_TKIP_MIC, rxs, true);
2840 	ieee80211_rx(ar->hw, msdu);
2841 	return -EINVAL;
2842 }
2843 
2844 static void ath12k_dp_rx_h_undecap_frag(struct ath12k *ar, struct sk_buff *msdu,
2845 					enum hal_encrypt_type enctype, u32 flags)
2846 {
2847 	struct ieee80211_hdr *hdr;
2848 	size_t hdr_len;
2849 	size_t crypto_len;
2850 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
2851 
2852 	if (!flags)
2853 		return;
2854 
2855 	hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz);
2856 
2857 	if (flags & RX_FLAG_MIC_STRIPPED)
2858 		skb_trim(msdu, msdu->len -
2859 			 ath12k_dp_rx_crypto_mic_len(ar, enctype));
2860 
2861 	if (flags & RX_FLAG_ICV_STRIPPED)
2862 		skb_trim(msdu, msdu->len -
2863 			 ath12k_dp_rx_crypto_icv_len(ar, enctype));
2864 
2865 	if (flags & RX_FLAG_IV_STRIPPED) {
2866 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
2867 		crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype);
2868 
2869 		memmove(msdu->data + hal_rx_desc_sz + crypto_len,
2870 			msdu->data + hal_rx_desc_sz, hdr_len);
2871 		skb_pull(msdu, crypto_len);
2872 	}
2873 }
2874 
2875 static int ath12k_dp_rx_h_defrag(struct ath12k *ar,
2876 				 struct ath12k_peer *peer,
2877 				 struct ath12k_dp_rx_tid *rx_tid,
2878 				 struct sk_buff **defrag_skb)
2879 {
2880 	struct ath12k_base *ab = ar->ab;
2881 	struct hal_rx_desc *rx_desc;
2882 	struct sk_buff *skb, *first_frag, *last_frag;
2883 	struct ieee80211_hdr *hdr;
2884 	enum hal_encrypt_type enctype;
2885 	bool is_decrypted = false;
2886 	int msdu_len = 0;
2887 	int extra_space;
2888 	u32 flags, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
2889 
2890 	first_frag = skb_peek(&rx_tid->rx_frags);
2891 	last_frag = skb_peek_tail(&rx_tid->rx_frags);
2892 
2893 	skb_queue_walk(&rx_tid->rx_frags, skb) {
2894 		flags = 0;
2895 		rx_desc = (struct hal_rx_desc *)skb->data;
2896 		hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz);
2897 
2898 		enctype = ath12k_dp_rx_h_enctype(ab, rx_desc);
2899 		if (enctype != HAL_ENCRYPT_TYPE_OPEN)
2900 			is_decrypted = ath12k_dp_rx_h_is_decrypted(ab,
2901 								   rx_desc);
2902 
2903 		if (is_decrypted) {
2904 			if (skb != first_frag)
2905 				flags |= RX_FLAG_IV_STRIPPED;
2906 			if (skb != last_frag)
2907 				flags |= RX_FLAG_ICV_STRIPPED |
2908 					 RX_FLAG_MIC_STRIPPED;
2909 		}
2910 
2911 		/* RX fragments are always raw packets */
2912 		if (skb != last_frag)
2913 			skb_trim(skb, skb->len - FCS_LEN);
2914 		ath12k_dp_rx_h_undecap_frag(ar, skb, enctype, flags);
2915 
2916 		if (skb != first_frag)
2917 			skb_pull(skb, hal_rx_desc_sz +
2918 				      ieee80211_hdrlen(hdr->frame_control));
2919 		msdu_len += skb->len;
2920 	}
2921 
2922 	extra_space = msdu_len - (DP_RX_BUFFER_SIZE + skb_tailroom(first_frag));
2923 	if (extra_space > 0 &&
2924 	    (pskb_expand_head(first_frag, 0, extra_space, GFP_ATOMIC) < 0))
2925 		return -ENOMEM;
2926 
2927 	__skb_unlink(first_frag, &rx_tid->rx_frags);
2928 	while ((skb = __skb_dequeue(&rx_tid->rx_frags))) {
2929 		skb_put_data(first_frag, skb->data, skb->len);
2930 		dev_kfree_skb_any(skb);
2931 	}
2932 
2933 	hdr = (struct ieee80211_hdr *)(first_frag->data + hal_rx_desc_sz);
2934 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
2935 	ATH12K_SKB_RXCB(first_frag)->is_frag = 1;
2936 
2937 	if (ath12k_dp_rx_h_verify_tkip_mic(ar, peer, first_frag))
2938 		first_frag = NULL;
2939 
2940 	*defrag_skb = first_frag;
2941 	return 0;
2942 }
2943 
2944 static int ath12k_dp_rx_h_defrag_reo_reinject(struct ath12k *ar,
2945 					      struct ath12k_dp_rx_tid *rx_tid,
2946 					      struct sk_buff *defrag_skb)
2947 {
2948 	struct ath12k_base *ab = ar->ab;
2949 	struct ath12k_dp *dp = &ab->dp;
2950 	struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)defrag_skb->data;
2951 	struct hal_reo_entrance_ring *reo_ent_ring;
2952 	struct hal_reo_dest_ring *reo_dest_ring;
2953 	struct dp_link_desc_bank *link_desc_banks;
2954 	struct hal_rx_msdu_link *msdu_link;
2955 	struct hal_rx_msdu_details *msdu0;
2956 	struct hal_srng *srng;
2957 	dma_addr_t link_paddr, buf_paddr;
2958 	u32 desc_bank, msdu_info, msdu_ext_info, mpdu_info;
2959 	u32 cookie, hal_rx_desc_sz, dest_ring_info0;
2960 	int ret;
2961 	struct ath12k_rx_desc_info *desc_info;
2962 	u8 dst_ind;
2963 
2964 	hal_rx_desc_sz = ab->hw_params->hal_desc_sz;
2965 	link_desc_banks = dp->link_desc_banks;
2966 	reo_dest_ring = rx_tid->dst_ring_desc;
2967 
2968 	ath12k_hal_rx_reo_ent_paddr_get(ab, &reo_dest_ring->buf_addr_info,
2969 					&link_paddr, &cookie);
2970 	desc_bank = u32_get_bits(cookie, DP_LINK_DESC_BANK_MASK);
2971 
2972 	msdu_link = (struct hal_rx_msdu_link *)(link_desc_banks[desc_bank].vaddr +
2973 			(link_paddr - link_desc_banks[desc_bank].paddr));
2974 	msdu0 = &msdu_link->msdu_link[0];
2975 	msdu_ext_info = le32_to_cpu(msdu0->rx_msdu_ext_info.info0);
2976 	dst_ind = u32_get_bits(msdu_ext_info, RX_MSDU_EXT_DESC_INFO0_REO_DEST_IND);
2977 
2978 	memset(msdu0, 0, sizeof(*msdu0));
2979 
2980 	msdu_info = u32_encode_bits(1, RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU) |
2981 		    u32_encode_bits(1, RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU) |
2982 		    u32_encode_bits(0, RX_MSDU_DESC_INFO0_MSDU_CONTINUATION) |
2983 		    u32_encode_bits(defrag_skb->len - hal_rx_desc_sz,
2984 				    RX_MSDU_DESC_INFO0_MSDU_LENGTH) |
2985 		    u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_SA) |
2986 		    u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_DA);
2987 	msdu0->rx_msdu_info.info0 = cpu_to_le32(msdu_info);
2988 	msdu0->rx_msdu_ext_info.info0 = cpu_to_le32(msdu_ext_info);
2989 
2990 	/* change msdu len in hal rx desc */
2991 	ath12k_dp_rxdesc_set_msdu_len(ab, rx_desc, defrag_skb->len - hal_rx_desc_sz);
2992 
2993 	buf_paddr = dma_map_single(ab->dev, defrag_skb->data,
2994 				   defrag_skb->len + skb_tailroom(defrag_skb),
2995 				   DMA_FROM_DEVICE);
2996 	if (dma_mapping_error(ab->dev, buf_paddr))
2997 		return -ENOMEM;
2998 
2999 	spin_lock_bh(&dp->rx_desc_lock);
3000 	desc_info = list_first_entry_or_null(&dp->rx_desc_free_list,
3001 					     struct ath12k_rx_desc_info,
3002 					     list);
3003 	if (!desc_info) {
3004 		spin_unlock_bh(&dp->rx_desc_lock);
3005 		ath12k_warn(ab, "failed to find rx desc for reinject\n");
3006 		ret = -ENOMEM;
3007 		goto err_unmap_dma;
3008 	}
3009 
3010 	desc_info->skb = defrag_skb;
3011 
3012 	list_del(&desc_info->list);
3013 	list_add_tail(&desc_info->list, &dp->rx_desc_used_list);
3014 	spin_unlock_bh(&dp->rx_desc_lock);
3015 
3016 	ATH12K_SKB_RXCB(defrag_skb)->paddr = buf_paddr;
3017 
3018 	ath12k_hal_rx_buf_addr_info_set(&msdu0->buf_addr_info, buf_paddr,
3019 					desc_info->cookie,
3020 					HAL_RX_BUF_RBM_SW3_BM);
3021 
3022 	/* Fill mpdu details into reo entrace ring */
3023 	srng = &ab->hal.srng_list[dp->reo_reinject_ring.ring_id];
3024 
3025 	spin_lock_bh(&srng->lock);
3026 	ath12k_hal_srng_access_begin(ab, srng);
3027 
3028 	reo_ent_ring = ath12k_hal_srng_src_get_next_entry(ab, srng);
3029 	if (!reo_ent_ring) {
3030 		ath12k_hal_srng_access_end(ab, srng);
3031 		spin_unlock_bh(&srng->lock);
3032 		ret = -ENOSPC;
3033 		goto err_free_desc;
3034 	}
3035 	memset(reo_ent_ring, 0, sizeof(*reo_ent_ring));
3036 
3037 	ath12k_hal_rx_buf_addr_info_set(&reo_ent_ring->buf_addr_info, link_paddr,
3038 					cookie,
3039 					HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST);
3040 
3041 	mpdu_info = u32_encode_bits(1, RX_MPDU_DESC_INFO0_MSDU_COUNT) |
3042 		    u32_encode_bits(0, RX_MPDU_DESC_INFO0_FRAG_FLAG) |
3043 		    u32_encode_bits(1, RX_MPDU_DESC_INFO0_RAW_MPDU) |
3044 		    u32_encode_bits(1, RX_MPDU_DESC_INFO0_VALID_PN) |
3045 		    u32_encode_bits(rx_tid->tid, RX_MPDU_DESC_INFO0_TID);
3046 
3047 	reo_ent_ring->rx_mpdu_info.info0 = cpu_to_le32(mpdu_info);
3048 	reo_ent_ring->rx_mpdu_info.peer_meta_data =
3049 		reo_dest_ring->rx_mpdu_info.peer_meta_data;
3050 
3051 	/* Firmware expects physical address to be filled in queue_addr_lo in
3052 	 * the MLO scenario and in case of non MLO peer meta data needs to be
3053 	 * filled.
3054 	 * TODO: Need to handle for MLO scenario.
3055 	 */
3056 	reo_ent_ring->queue_addr_lo = reo_dest_ring->rx_mpdu_info.peer_meta_data;
3057 	reo_ent_ring->info0 = le32_encode_bits(dst_ind,
3058 					       HAL_REO_ENTR_RING_INFO0_DEST_IND);
3059 
3060 	reo_ent_ring->info1 = le32_encode_bits(rx_tid->cur_sn,
3061 					       HAL_REO_ENTR_RING_INFO1_MPDU_SEQ_NUM);
3062 	dest_ring_info0 = le32_get_bits(reo_dest_ring->info0,
3063 					HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
3064 	reo_ent_ring->info2 =
3065 		cpu_to_le32(u32_get_bits(dest_ring_info0,
3066 					 HAL_REO_ENTR_RING_INFO2_SRC_LINK_ID));
3067 
3068 	ath12k_hal_srng_access_end(ab, srng);
3069 	spin_unlock_bh(&srng->lock);
3070 
3071 	return 0;
3072 
3073 err_free_desc:
3074 	spin_lock_bh(&dp->rx_desc_lock);
3075 	list_del(&desc_info->list);
3076 	list_add_tail(&desc_info->list, &dp->rx_desc_free_list);
3077 	desc_info->skb = NULL;
3078 	spin_unlock_bh(&dp->rx_desc_lock);
3079 err_unmap_dma:
3080 	dma_unmap_single(ab->dev, buf_paddr, defrag_skb->len + skb_tailroom(defrag_skb),
3081 			 DMA_FROM_DEVICE);
3082 	return ret;
3083 }
3084 
3085 static int ath12k_dp_rx_h_cmp_frags(struct ath12k_base *ab,
3086 				    struct sk_buff *a, struct sk_buff *b)
3087 {
3088 	int frag1, frag2;
3089 
3090 	frag1 = ath12k_dp_rx_h_frag_no(ab, a);
3091 	frag2 = ath12k_dp_rx_h_frag_no(ab, b);
3092 
3093 	return frag1 - frag2;
3094 }
3095 
3096 static void ath12k_dp_rx_h_sort_frags(struct ath12k_base *ab,
3097 				      struct sk_buff_head *frag_list,
3098 				      struct sk_buff *cur_frag)
3099 {
3100 	struct sk_buff *skb;
3101 	int cmp;
3102 
3103 	skb_queue_walk(frag_list, skb) {
3104 		cmp = ath12k_dp_rx_h_cmp_frags(ab, skb, cur_frag);
3105 		if (cmp < 0)
3106 			continue;
3107 		__skb_queue_before(frag_list, skb, cur_frag);
3108 		return;
3109 	}
3110 	__skb_queue_tail(frag_list, cur_frag);
3111 }
3112 
3113 static u64 ath12k_dp_rx_h_get_pn(struct ath12k *ar, struct sk_buff *skb)
3114 {
3115 	struct ieee80211_hdr *hdr;
3116 	u64 pn = 0;
3117 	u8 *ehdr;
3118 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
3119 
3120 	hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz);
3121 	ehdr = skb->data + hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control);
3122 
3123 	pn = ehdr[0];
3124 	pn |= (u64)ehdr[1] << 8;
3125 	pn |= (u64)ehdr[4] << 16;
3126 	pn |= (u64)ehdr[5] << 24;
3127 	pn |= (u64)ehdr[6] << 32;
3128 	pn |= (u64)ehdr[7] << 40;
3129 
3130 	return pn;
3131 }
3132 
3133 static bool
3134 ath12k_dp_rx_h_defrag_validate_incr_pn(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid)
3135 {
3136 	struct ath12k_base *ab = ar->ab;
3137 	enum hal_encrypt_type encrypt_type;
3138 	struct sk_buff *first_frag, *skb;
3139 	struct hal_rx_desc *desc;
3140 	u64 last_pn;
3141 	u64 cur_pn;
3142 
3143 	first_frag = skb_peek(&rx_tid->rx_frags);
3144 	desc = (struct hal_rx_desc *)first_frag->data;
3145 
3146 	encrypt_type = ath12k_dp_rx_h_enctype(ab, desc);
3147 	if (encrypt_type != HAL_ENCRYPT_TYPE_CCMP_128 &&
3148 	    encrypt_type != HAL_ENCRYPT_TYPE_CCMP_256 &&
3149 	    encrypt_type != HAL_ENCRYPT_TYPE_GCMP_128 &&
3150 	    encrypt_type != HAL_ENCRYPT_TYPE_AES_GCMP_256)
3151 		return true;
3152 
3153 	last_pn = ath12k_dp_rx_h_get_pn(ar, first_frag);
3154 	skb_queue_walk(&rx_tid->rx_frags, skb) {
3155 		if (skb == first_frag)
3156 			continue;
3157 
3158 		cur_pn = ath12k_dp_rx_h_get_pn(ar, skb);
3159 		if (cur_pn != last_pn + 1)
3160 			return false;
3161 		last_pn = cur_pn;
3162 	}
3163 	return true;
3164 }
3165 
3166 static int ath12k_dp_rx_frag_h_mpdu(struct ath12k *ar,
3167 				    struct sk_buff *msdu,
3168 				    struct hal_reo_dest_ring *ring_desc)
3169 {
3170 	struct ath12k_base *ab = ar->ab;
3171 	struct hal_rx_desc *rx_desc;
3172 	struct ath12k_peer *peer;
3173 	struct ath12k_dp_rx_tid *rx_tid;
3174 	struct sk_buff *defrag_skb = NULL;
3175 	u32 peer_id;
3176 	u16 seqno, frag_no;
3177 	u8 tid;
3178 	int ret = 0;
3179 	bool more_frags;
3180 
3181 	rx_desc = (struct hal_rx_desc *)msdu->data;
3182 	peer_id = ath12k_dp_rx_h_peer_id(ab, rx_desc);
3183 	tid = ath12k_dp_rx_h_tid(ab, rx_desc);
3184 	seqno = ath12k_dp_rx_h_seq_no(ab, rx_desc);
3185 	frag_no = ath12k_dp_rx_h_frag_no(ab, msdu);
3186 	more_frags = ath12k_dp_rx_h_more_frags(ab, msdu);
3187 
3188 	if (!ath12k_dp_rx_h_seq_ctrl_valid(ab, rx_desc) ||
3189 	    !ath12k_dp_rx_h_fc_valid(ab, rx_desc) ||
3190 	    tid > IEEE80211_NUM_TIDS)
3191 		return -EINVAL;
3192 
3193 	/* received unfragmented packet in reo
3194 	 * exception ring, this shouldn't happen
3195 	 * as these packets typically come from
3196 	 * reo2sw srngs.
3197 	 */
3198 	if (WARN_ON_ONCE(!frag_no && !more_frags))
3199 		return -EINVAL;
3200 
3201 	spin_lock_bh(&ab->base_lock);
3202 	peer = ath12k_peer_find_by_id(ab, peer_id);
3203 	if (!peer) {
3204 		ath12k_warn(ab, "failed to find the peer to de-fragment received fragment peer_id %d\n",
3205 			    peer_id);
3206 		ret = -ENOENT;
3207 		goto out_unlock;
3208 	}
3209 	rx_tid = &peer->rx_tid[tid];
3210 
3211 	if ((!skb_queue_empty(&rx_tid->rx_frags) && seqno != rx_tid->cur_sn) ||
3212 	    skb_queue_empty(&rx_tid->rx_frags)) {
3213 		/* Flush stored fragments and start a new sequence */
3214 		ath12k_dp_rx_frags_cleanup(rx_tid, true);
3215 		rx_tid->cur_sn = seqno;
3216 	}
3217 
3218 	if (rx_tid->rx_frag_bitmap & BIT(frag_no)) {
3219 		/* Fragment already present */
3220 		ret = -EINVAL;
3221 		goto out_unlock;
3222 	}
3223 
3224 	if (frag_no > __fls(rx_tid->rx_frag_bitmap))
3225 		__skb_queue_tail(&rx_tid->rx_frags, msdu);
3226 	else
3227 		ath12k_dp_rx_h_sort_frags(ab, &rx_tid->rx_frags, msdu);
3228 
3229 	rx_tid->rx_frag_bitmap |= BIT(frag_no);
3230 	if (!more_frags)
3231 		rx_tid->last_frag_no = frag_no;
3232 
3233 	if (frag_no == 0) {
3234 		rx_tid->dst_ring_desc = kmemdup(ring_desc,
3235 						sizeof(*rx_tid->dst_ring_desc),
3236 						GFP_ATOMIC);
3237 		if (!rx_tid->dst_ring_desc) {
3238 			ret = -ENOMEM;
3239 			goto out_unlock;
3240 		}
3241 	} else {
3242 		ath12k_dp_rx_link_desc_return(ab, ring_desc,
3243 					      HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
3244 	}
3245 
3246 	if (!rx_tid->last_frag_no ||
3247 	    rx_tid->rx_frag_bitmap != GENMASK(rx_tid->last_frag_no, 0)) {
3248 		mod_timer(&rx_tid->frag_timer, jiffies +
3249 					       ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS);
3250 		goto out_unlock;
3251 	}
3252 
3253 	spin_unlock_bh(&ab->base_lock);
3254 	del_timer_sync(&rx_tid->frag_timer);
3255 	spin_lock_bh(&ab->base_lock);
3256 
3257 	peer = ath12k_peer_find_by_id(ab, peer_id);
3258 	if (!peer)
3259 		goto err_frags_cleanup;
3260 
3261 	if (!ath12k_dp_rx_h_defrag_validate_incr_pn(ar, rx_tid))
3262 		goto err_frags_cleanup;
3263 
3264 	if (ath12k_dp_rx_h_defrag(ar, peer, rx_tid, &defrag_skb))
3265 		goto err_frags_cleanup;
3266 
3267 	if (!defrag_skb)
3268 		goto err_frags_cleanup;
3269 
3270 	if (ath12k_dp_rx_h_defrag_reo_reinject(ar, rx_tid, defrag_skb))
3271 		goto err_frags_cleanup;
3272 
3273 	ath12k_dp_rx_frags_cleanup(rx_tid, false);
3274 	goto out_unlock;
3275 
3276 err_frags_cleanup:
3277 	dev_kfree_skb_any(defrag_skb);
3278 	ath12k_dp_rx_frags_cleanup(rx_tid, true);
3279 out_unlock:
3280 	spin_unlock_bh(&ab->base_lock);
3281 	return ret;
3282 }
3283 
3284 static int
3285 ath12k_dp_process_rx_err_buf(struct ath12k *ar, struct hal_reo_dest_ring *desc,
3286 			     bool drop, u32 cookie)
3287 {
3288 	struct ath12k_base *ab = ar->ab;
3289 	struct sk_buff *msdu;
3290 	struct ath12k_skb_rxcb *rxcb;
3291 	struct hal_rx_desc *rx_desc;
3292 	u16 msdu_len;
3293 	u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz;
3294 	struct ath12k_rx_desc_info *desc_info;
3295 	u64 desc_va;
3296 
3297 	desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 |
3298 		   le32_to_cpu(desc->buf_va_lo));
3299 	desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va);
3300 
3301 	/* retry manual desc retrieval */
3302 	if (!desc_info) {
3303 		desc_info = ath12k_dp_get_rx_desc(ab, cookie);
3304 		if (!desc_info) {
3305 			ath12k_warn(ab, "Invalid cookie in manual desc retrieval");
3306 			return -EINVAL;
3307 		}
3308 	}
3309 
3310 	if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
3311 		ath12k_warn(ab, " RX Exception, Check HW CC implementation");
3312 
3313 	msdu = desc_info->skb;
3314 	desc_info->skb = NULL;
3315 	spin_lock_bh(&ab->dp.rx_desc_lock);
3316 	list_move_tail(&desc_info->list, &ab->dp.rx_desc_free_list);
3317 	spin_unlock_bh(&ab->dp.rx_desc_lock);
3318 
3319 	rxcb = ATH12K_SKB_RXCB(msdu);
3320 	dma_unmap_single(ar->ab->dev, rxcb->paddr,
3321 			 msdu->len + skb_tailroom(msdu),
3322 			 DMA_FROM_DEVICE);
3323 
3324 	if (drop) {
3325 		dev_kfree_skb_any(msdu);
3326 		return 0;
3327 	}
3328 
3329 	rcu_read_lock();
3330 	if (!rcu_dereference(ar->ab->pdevs_active[ar->pdev_idx])) {
3331 		dev_kfree_skb_any(msdu);
3332 		goto exit;
3333 	}
3334 
3335 	if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
3336 		dev_kfree_skb_any(msdu);
3337 		goto exit;
3338 	}
3339 
3340 	rx_desc = (struct hal_rx_desc *)msdu->data;
3341 	msdu_len = ath12k_dp_rx_h_msdu_len(ar->ab, rx_desc);
3342 	if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) {
3343 		ath12k_warn(ar->ab, "invalid msdu leng %u", msdu_len);
3344 		ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "", rx_desc,
3345 				sizeof(*rx_desc));
3346 		dev_kfree_skb_any(msdu);
3347 		goto exit;
3348 	}
3349 
3350 	skb_put(msdu, hal_rx_desc_sz + msdu_len);
3351 
3352 	if (ath12k_dp_rx_frag_h_mpdu(ar, msdu, desc)) {
3353 		dev_kfree_skb_any(msdu);
3354 		ath12k_dp_rx_link_desc_return(ar->ab, desc,
3355 					      HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
3356 	}
3357 exit:
3358 	rcu_read_unlock();
3359 	return 0;
3360 }
3361 
3362 int ath12k_dp_rx_process_err(struct ath12k_base *ab, struct napi_struct *napi,
3363 			     int budget)
3364 {
3365 	u32 msdu_cookies[HAL_NUM_RX_MSDUS_PER_LINK_DESC];
3366 	struct dp_link_desc_bank *link_desc_banks;
3367 	enum hal_rx_buf_return_buf_manager rbm;
3368 	struct hal_rx_msdu_link *link_desc_va;
3369 	int tot_n_bufs_reaped, quota, ret, i;
3370 	struct hal_reo_dest_ring *reo_desc;
3371 	struct dp_rxdma_ring *rx_ring;
3372 	struct dp_srng *reo_except;
3373 	u32 desc_bank, num_msdus;
3374 	struct hal_srng *srng;
3375 	struct ath12k_dp *dp;
3376 	int mac_id;
3377 	struct ath12k *ar;
3378 	dma_addr_t paddr;
3379 	bool is_frag;
3380 	bool drop = false;
3381 
3382 	tot_n_bufs_reaped = 0;
3383 	quota = budget;
3384 
3385 	dp = &ab->dp;
3386 	reo_except = &dp->reo_except_ring;
3387 	link_desc_banks = dp->link_desc_banks;
3388 
3389 	srng = &ab->hal.srng_list[reo_except->ring_id];
3390 
3391 	spin_lock_bh(&srng->lock);
3392 
3393 	ath12k_hal_srng_access_begin(ab, srng);
3394 
3395 	while (budget &&
3396 	       (reo_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
3397 		ab->soc_stats.err_ring_pkts++;
3398 		ret = ath12k_hal_desc_reo_parse_err(ab, reo_desc, &paddr,
3399 						    &desc_bank);
3400 		if (ret) {
3401 			ath12k_warn(ab, "failed to parse error reo desc %d\n",
3402 				    ret);
3403 			continue;
3404 		}
3405 		link_desc_va = link_desc_banks[desc_bank].vaddr +
3406 			       (paddr - link_desc_banks[desc_bank].paddr);
3407 		ath12k_hal_rx_msdu_link_info_get(link_desc_va, &num_msdus, msdu_cookies,
3408 						 &rbm);
3409 		if (rbm != HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST &&
3410 		    rbm != HAL_RX_BUF_RBM_SW3_BM &&
3411 		    rbm != ab->hw_params->hal_params->rx_buf_rbm) {
3412 			ab->soc_stats.invalid_rbm++;
3413 			ath12k_warn(ab, "invalid return buffer manager %d\n", rbm);
3414 			ath12k_dp_rx_link_desc_return(ab, reo_desc,
3415 						      HAL_WBM_REL_BM_ACT_REL_MSDU);
3416 			continue;
3417 		}
3418 
3419 		is_frag = !!(le32_to_cpu(reo_desc->rx_mpdu_info.info0) &
3420 			     RX_MPDU_DESC_INFO0_FRAG_FLAG);
3421 
3422 		/* Process only rx fragments with one msdu per link desc below, and drop
3423 		 * msdu's indicated due to error reasons.
3424 		 */
3425 		if (!is_frag || num_msdus > 1) {
3426 			drop = true;
3427 			/* Return the link desc back to wbm idle list */
3428 			ath12k_dp_rx_link_desc_return(ab, reo_desc,
3429 						      HAL_WBM_REL_BM_ACT_PUT_IN_IDLE);
3430 		}
3431 
3432 		for (i = 0; i < num_msdus; i++) {
3433 			mac_id = le32_get_bits(reo_desc->info0,
3434 					       HAL_REO_DEST_RING_INFO0_SRC_LINK_ID);
3435 
3436 			ar = ab->pdevs[mac_id].ar;
3437 
3438 			if (!ath12k_dp_process_rx_err_buf(ar, reo_desc, drop,
3439 							  msdu_cookies[i]))
3440 				tot_n_bufs_reaped++;
3441 		}
3442 
3443 		if (tot_n_bufs_reaped >= quota) {
3444 			tot_n_bufs_reaped = quota;
3445 			goto exit;
3446 		}
3447 
3448 		budget = quota - tot_n_bufs_reaped;
3449 	}
3450 
3451 exit:
3452 	ath12k_hal_srng_access_end(ab, srng);
3453 
3454 	spin_unlock_bh(&srng->lock);
3455 
3456 	rx_ring = &dp->rx_refill_buf_ring;
3457 
3458 	ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, tot_n_bufs_reaped,
3459 				    ab->hw_params->hal_params->rx_buf_rbm, true);
3460 
3461 	return tot_n_bufs_reaped;
3462 }
3463 
3464 static void ath12k_dp_rx_null_q_desc_sg_drop(struct ath12k *ar,
3465 					     int msdu_len,
3466 					     struct sk_buff_head *msdu_list)
3467 {
3468 	struct sk_buff *skb, *tmp;
3469 	struct ath12k_skb_rxcb *rxcb;
3470 	int n_buffs;
3471 
3472 	n_buffs = DIV_ROUND_UP(msdu_len,
3473 			       (DP_RX_BUFFER_SIZE - ar->ab->hw_params->hal_desc_sz));
3474 
3475 	skb_queue_walk_safe(msdu_list, skb, tmp) {
3476 		rxcb = ATH12K_SKB_RXCB(skb);
3477 		if (rxcb->err_rel_src == HAL_WBM_REL_SRC_MODULE_REO &&
3478 		    rxcb->err_code == HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO) {
3479 			if (!n_buffs)
3480 				break;
3481 			__skb_unlink(skb, msdu_list);
3482 			dev_kfree_skb_any(skb);
3483 			n_buffs--;
3484 		}
3485 	}
3486 }
3487 
3488 static int ath12k_dp_rx_h_null_q_desc(struct ath12k *ar, struct sk_buff *msdu,
3489 				      struct ieee80211_rx_status *status,
3490 				      struct sk_buff_head *msdu_list)
3491 {
3492 	struct ath12k_base *ab = ar->ab;
3493 	u16 msdu_len, peer_id;
3494 	struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data;
3495 	u8 l3pad_bytes;
3496 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
3497 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
3498 
3499 	msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc);
3500 	peer_id = ath12k_dp_rx_h_peer_id(ab, desc);
3501 
3502 	spin_lock(&ab->base_lock);
3503 	if (!ath12k_peer_find_by_id(ab, peer_id)) {
3504 		spin_unlock(&ab->base_lock);
3505 		ath12k_dbg(ab, ATH12K_DBG_DATA, "invalid peer id received in wbm err pkt%d\n",
3506 			   peer_id);
3507 		return -EINVAL;
3508 	}
3509 	spin_unlock(&ab->base_lock);
3510 
3511 	if (!rxcb->is_frag && ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE)) {
3512 		/* First buffer will be freed by the caller, so deduct it's length */
3513 		msdu_len = msdu_len - (DP_RX_BUFFER_SIZE - hal_rx_desc_sz);
3514 		ath12k_dp_rx_null_q_desc_sg_drop(ar, msdu_len, msdu_list);
3515 		return -EINVAL;
3516 	}
3517 
3518 	/* Even after cleaning up the sg buffers in the msdu list with above check
3519 	 * any msdu received with continuation flag needs to be dropped as invalid.
3520 	 * This protects against some random err frame with continuation flag.
3521 	 */
3522 	if (rxcb->is_continuation)
3523 		return -EINVAL;
3524 
3525 	if (!ath12k_dp_rx_h_msdu_done(ab, desc)) {
3526 		ath12k_warn(ar->ab,
3527 			    "msdu_done bit not set in null_q_des processing\n");
3528 		__skb_queue_purge(msdu_list);
3529 		return -EIO;
3530 	}
3531 
3532 	/* Handle NULL queue descriptor violations arising out a missing
3533 	 * REO queue for a given peer or a given TID. This typically
3534 	 * may happen if a packet is received on a QOS enabled TID before the
3535 	 * ADDBA negotiation for that TID, when the TID queue is setup. Or
3536 	 * it may also happen for MC/BC frames if they are not routed to the
3537 	 * non-QOS TID queue, in the absence of any other default TID queue.
3538 	 * This error can show up both in a REO destination or WBM release ring.
3539 	 */
3540 
3541 	if (rxcb->is_frag) {
3542 		skb_pull(msdu, hal_rx_desc_sz);
3543 	} else {
3544 		l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc);
3545 
3546 		if ((hal_rx_desc_sz + l3pad_bytes + msdu_len) > DP_RX_BUFFER_SIZE)
3547 			return -EINVAL;
3548 
3549 		skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len);
3550 		skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes);
3551 	}
3552 	ath12k_dp_rx_h_ppdu(ar, desc, status);
3553 
3554 	ath12k_dp_rx_h_mpdu(ar, msdu, desc, status);
3555 
3556 	rxcb->tid = ath12k_dp_rx_h_tid(ab, desc);
3557 
3558 	/* Please note that caller will having the access to msdu and completing
3559 	 * rx with mac80211. Need not worry about cleaning up amsdu_list.
3560 	 */
3561 
3562 	return 0;
3563 }
3564 
3565 static bool ath12k_dp_rx_h_reo_err(struct ath12k *ar, struct sk_buff *msdu,
3566 				   struct ieee80211_rx_status *status,
3567 				   struct sk_buff_head *msdu_list)
3568 {
3569 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
3570 	bool drop = false;
3571 
3572 	ar->ab->soc_stats.reo_error[rxcb->err_code]++;
3573 
3574 	switch (rxcb->err_code) {
3575 	case HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO:
3576 		if (ath12k_dp_rx_h_null_q_desc(ar, msdu, status, msdu_list))
3577 			drop = true;
3578 		break;
3579 	case HAL_REO_DEST_RING_ERROR_CODE_PN_CHECK_FAILED:
3580 		/* TODO: Do not drop PN failed packets in the driver;
3581 		 * instead, it is good to drop such packets in mac80211
3582 		 * after incrementing the replay counters.
3583 		 */
3584 		fallthrough;
3585 	default:
3586 		/* TODO: Review other errors and process them to mac80211
3587 		 * as appropriate.
3588 		 */
3589 		drop = true;
3590 		break;
3591 	}
3592 
3593 	return drop;
3594 }
3595 
3596 static void ath12k_dp_rx_h_tkip_mic_err(struct ath12k *ar, struct sk_buff *msdu,
3597 					struct ieee80211_rx_status *status)
3598 {
3599 	struct ath12k_base *ab = ar->ab;
3600 	u16 msdu_len;
3601 	struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data;
3602 	u8 l3pad_bytes;
3603 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
3604 	u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz;
3605 
3606 	rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, desc);
3607 	rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, desc);
3608 
3609 	l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc);
3610 	msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc);
3611 	skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len);
3612 	skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes);
3613 
3614 	ath12k_dp_rx_h_ppdu(ar, desc, status);
3615 
3616 	status->flag |= (RX_FLAG_MMIC_STRIPPED | RX_FLAG_MMIC_ERROR |
3617 			 RX_FLAG_DECRYPTED);
3618 
3619 	ath12k_dp_rx_h_undecap(ar, msdu, desc,
3620 			       HAL_ENCRYPT_TYPE_TKIP_MIC, status, false);
3621 }
3622 
3623 static bool ath12k_dp_rx_h_rxdma_err(struct ath12k *ar,  struct sk_buff *msdu,
3624 				     struct ieee80211_rx_status *status)
3625 {
3626 	struct ath12k_base *ab = ar->ab;
3627 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
3628 	struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data;
3629 	bool drop = false;
3630 	u32 err_bitmap;
3631 
3632 	ar->ab->soc_stats.rxdma_error[rxcb->err_code]++;
3633 
3634 	switch (rxcb->err_code) {
3635 	case HAL_REO_ENTR_RING_RXDMA_ECODE_DECRYPT_ERR:
3636 	case HAL_REO_ENTR_RING_RXDMA_ECODE_TKIP_MIC_ERR:
3637 		err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc);
3638 		if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) {
3639 			ath12k_dp_rx_h_tkip_mic_err(ar, msdu, status);
3640 			break;
3641 		}
3642 		fallthrough;
3643 	default:
3644 		/* TODO: Review other rxdma error code to check if anything is
3645 		 * worth reporting to mac80211
3646 		 */
3647 		drop = true;
3648 		break;
3649 	}
3650 
3651 	return drop;
3652 }
3653 
3654 static void ath12k_dp_rx_wbm_err(struct ath12k *ar,
3655 				 struct napi_struct *napi,
3656 				 struct sk_buff *msdu,
3657 				 struct sk_buff_head *msdu_list)
3658 {
3659 	struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu);
3660 	struct ieee80211_rx_status rxs = {0};
3661 	bool drop = true;
3662 
3663 	switch (rxcb->err_rel_src) {
3664 	case HAL_WBM_REL_SRC_MODULE_REO:
3665 		drop = ath12k_dp_rx_h_reo_err(ar, msdu, &rxs, msdu_list);
3666 		break;
3667 	case HAL_WBM_REL_SRC_MODULE_RXDMA:
3668 		drop = ath12k_dp_rx_h_rxdma_err(ar, msdu, &rxs);
3669 		break;
3670 	default:
3671 		/* msdu will get freed */
3672 		break;
3673 	}
3674 
3675 	if (drop) {
3676 		dev_kfree_skb_any(msdu);
3677 		return;
3678 	}
3679 
3680 	ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rxs);
3681 }
3682 
3683 int ath12k_dp_rx_process_wbm_err(struct ath12k_base *ab,
3684 				 struct napi_struct *napi, int budget)
3685 {
3686 	struct ath12k *ar;
3687 	struct ath12k_dp *dp = &ab->dp;
3688 	struct dp_rxdma_ring *rx_ring;
3689 	struct hal_rx_wbm_rel_info err_info;
3690 	struct hal_srng *srng;
3691 	struct sk_buff *msdu;
3692 	struct sk_buff_head msdu_list[MAX_RADIOS];
3693 	struct ath12k_skb_rxcb *rxcb;
3694 	void *rx_desc;
3695 	int mac_id;
3696 	int num_buffs_reaped = 0;
3697 	struct ath12k_rx_desc_info *desc_info;
3698 	int ret, i;
3699 
3700 	for (i = 0; i < ab->num_radios; i++)
3701 		__skb_queue_head_init(&msdu_list[i]);
3702 
3703 	srng = &ab->hal.srng_list[dp->rx_rel_ring.ring_id];
3704 	rx_ring = &dp->rx_refill_buf_ring;
3705 
3706 	spin_lock_bh(&srng->lock);
3707 
3708 	ath12k_hal_srng_access_begin(ab, srng);
3709 
3710 	while (budget) {
3711 		rx_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng);
3712 		if (!rx_desc)
3713 			break;
3714 
3715 		ret = ath12k_hal_wbm_desc_parse_err(ab, rx_desc, &err_info);
3716 		if (ret) {
3717 			ath12k_warn(ab,
3718 				    "failed to parse rx error in wbm_rel ring desc %d\n",
3719 				    ret);
3720 			continue;
3721 		}
3722 
3723 		desc_info = (struct ath12k_rx_desc_info *)err_info.rx_desc;
3724 
3725 		/* retry manual desc retrieval if hw cc is not done */
3726 		if (!desc_info) {
3727 			desc_info = ath12k_dp_get_rx_desc(ab, err_info.cookie);
3728 			if (!desc_info) {
3729 				ath12k_warn(ab, "Invalid cookie in manual desc retrieval");
3730 				continue;
3731 			}
3732 		}
3733 
3734 		/* FIXME: Extract mac id correctly. Since descs are not tied
3735 		 * to mac, we can extract from vdev id in ring desc.
3736 		 */
3737 		mac_id = 0;
3738 
3739 		if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC)
3740 			ath12k_warn(ab, "WBM RX err, Check HW CC implementation");
3741 
3742 		msdu = desc_info->skb;
3743 		desc_info->skb = NULL;
3744 
3745 		spin_lock_bh(&dp->rx_desc_lock);
3746 		list_move_tail(&desc_info->list, &dp->rx_desc_free_list);
3747 		spin_unlock_bh(&dp->rx_desc_lock);
3748 
3749 		rxcb = ATH12K_SKB_RXCB(msdu);
3750 		dma_unmap_single(ab->dev, rxcb->paddr,
3751 				 msdu->len + skb_tailroom(msdu),
3752 				 DMA_FROM_DEVICE);
3753 
3754 		num_buffs_reaped++;
3755 
3756 		if (!err_info.continuation)
3757 			budget--;
3758 
3759 		if (err_info.push_reason !=
3760 		    HAL_REO_DEST_RING_PUSH_REASON_ERR_DETECTED) {
3761 			dev_kfree_skb_any(msdu);
3762 			continue;
3763 		}
3764 
3765 		rxcb->err_rel_src = err_info.err_rel_src;
3766 		rxcb->err_code = err_info.err_code;
3767 		rxcb->rx_desc = (struct hal_rx_desc *)msdu->data;
3768 		__skb_queue_tail(&msdu_list[mac_id], msdu);
3769 
3770 		rxcb->is_first_msdu = err_info.first_msdu;
3771 		rxcb->is_last_msdu = err_info.last_msdu;
3772 		rxcb->is_continuation = err_info.continuation;
3773 	}
3774 
3775 	ath12k_hal_srng_access_end(ab, srng);
3776 
3777 	spin_unlock_bh(&srng->lock);
3778 
3779 	if (!num_buffs_reaped)
3780 		goto done;
3781 
3782 	ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped,
3783 				    ab->hw_params->hal_params->rx_buf_rbm, true);
3784 
3785 	rcu_read_lock();
3786 	for (i = 0; i <  ab->num_radios; i++) {
3787 		if (!rcu_dereference(ab->pdevs_active[i])) {
3788 			__skb_queue_purge(&msdu_list[i]);
3789 			continue;
3790 		}
3791 
3792 		ar = ab->pdevs[i].ar;
3793 
3794 		if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
3795 			__skb_queue_purge(&msdu_list[i]);
3796 			continue;
3797 		}
3798 
3799 		while ((msdu = __skb_dequeue(&msdu_list[i])) != NULL)
3800 			ath12k_dp_rx_wbm_err(ar, napi, msdu, &msdu_list[i]);
3801 	}
3802 	rcu_read_unlock();
3803 done:
3804 	return num_buffs_reaped;
3805 }
3806 
3807 void ath12k_dp_rx_process_reo_status(struct ath12k_base *ab)
3808 {
3809 	struct ath12k_dp *dp = &ab->dp;
3810 	struct hal_tlv_64_hdr *hdr;
3811 	struct hal_srng *srng;
3812 	struct ath12k_dp_rx_reo_cmd *cmd, *tmp;
3813 	bool found = false;
3814 	u16 tag;
3815 	struct hal_reo_status reo_status;
3816 
3817 	srng = &ab->hal.srng_list[dp->reo_status_ring.ring_id];
3818 
3819 	memset(&reo_status, 0, sizeof(reo_status));
3820 
3821 	spin_lock_bh(&srng->lock);
3822 
3823 	ath12k_hal_srng_access_begin(ab, srng);
3824 
3825 	while ((hdr = ath12k_hal_srng_dst_get_next_entry(ab, srng))) {
3826 		tag = u64_get_bits(hdr->tl, HAL_SRNG_TLV_HDR_TAG);
3827 
3828 		switch (tag) {
3829 		case HAL_REO_GET_QUEUE_STATS_STATUS:
3830 			ath12k_hal_reo_status_queue_stats(ab, hdr,
3831 							  &reo_status);
3832 			break;
3833 		case HAL_REO_FLUSH_QUEUE_STATUS:
3834 			ath12k_hal_reo_flush_queue_status(ab, hdr,
3835 							  &reo_status);
3836 			break;
3837 		case HAL_REO_FLUSH_CACHE_STATUS:
3838 			ath12k_hal_reo_flush_cache_status(ab, hdr,
3839 							  &reo_status);
3840 			break;
3841 		case HAL_REO_UNBLOCK_CACHE_STATUS:
3842 			ath12k_hal_reo_unblk_cache_status(ab, hdr,
3843 							  &reo_status);
3844 			break;
3845 		case HAL_REO_FLUSH_TIMEOUT_LIST_STATUS:
3846 			ath12k_hal_reo_flush_timeout_list_status(ab, hdr,
3847 								 &reo_status);
3848 			break;
3849 		case HAL_REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS:
3850 			ath12k_hal_reo_desc_thresh_reached_status(ab, hdr,
3851 								  &reo_status);
3852 			break;
3853 		case HAL_REO_UPDATE_RX_REO_QUEUE_STATUS:
3854 			ath12k_hal_reo_update_rx_reo_queue_status(ab, hdr,
3855 								  &reo_status);
3856 			break;
3857 		default:
3858 			ath12k_warn(ab, "Unknown reo status type %d\n", tag);
3859 			continue;
3860 		}
3861 
3862 		spin_lock_bh(&dp->reo_cmd_lock);
3863 		list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) {
3864 			if (reo_status.uniform_hdr.cmd_num == cmd->cmd_num) {
3865 				found = true;
3866 				list_del(&cmd->list);
3867 				break;
3868 			}
3869 		}
3870 		spin_unlock_bh(&dp->reo_cmd_lock);
3871 
3872 		if (found) {
3873 			cmd->handler(dp, (void *)&cmd->data,
3874 				     reo_status.uniform_hdr.cmd_status);
3875 			kfree(cmd);
3876 		}
3877 
3878 		found = false;
3879 	}
3880 
3881 	ath12k_hal_srng_access_end(ab, srng);
3882 
3883 	spin_unlock_bh(&srng->lock);
3884 }
3885 
3886 void ath12k_dp_rx_free(struct ath12k_base *ab)
3887 {
3888 	struct ath12k_dp *dp = &ab->dp;
3889 	int i;
3890 
3891 	ath12k_dp_srng_cleanup(ab, &dp->rx_refill_buf_ring.refill_buf_ring);
3892 
3893 	for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
3894 		if (ab->hw_params->rx_mac_buf_ring)
3895 			ath12k_dp_srng_cleanup(ab, &dp->rx_mac_buf_ring[i]);
3896 	}
3897 
3898 	for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++)
3899 		ath12k_dp_srng_cleanup(ab, &dp->rxdma_err_dst_ring[i]);
3900 
3901 	ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring);
3902 	ath12k_dp_srng_cleanup(ab, &dp->tx_mon_buf_ring.refill_buf_ring);
3903 
3904 	ath12k_dp_rxdma_buf_free(ab);
3905 }
3906 
3907 void ath12k_dp_rx_pdev_free(struct ath12k_base *ab, int mac_id)
3908 {
3909 	struct ath12k *ar = ab->pdevs[mac_id].ar;
3910 
3911 	ath12k_dp_rx_pdev_srng_free(ar);
3912 }
3913 
3914 int ath12k_dp_rxdma_ring_sel_config_qcn9274(struct ath12k_base *ab)
3915 {
3916 	struct ath12k_dp *dp = &ab->dp;
3917 	struct htt_rx_ring_tlv_filter tlv_filter = {0};
3918 	u32 ring_id;
3919 	int ret;
3920 	u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz;
3921 
3922 	ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
3923 
3924 	tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING;
3925 	tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR;
3926 	tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST |
3927 					HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST |
3928 					HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA;
3929 	tlv_filter.offset_valid = true;
3930 	tlv_filter.rx_packet_offset = hal_rx_desc_sz;
3931 
3932 	tlv_filter.rx_mpdu_start_offset =
3933 			ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset();
3934 	tlv_filter.rx_msdu_end_offset =
3935 		ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset();
3936 
3937 	/* TODO: Selectively subscribe to required qwords within msdu_end
3938 	 * and mpdu_start and setup the mask in below msg
3939 	 * and modify the rx_desc struct
3940 	 */
3941 	ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, 0,
3942 					       HAL_RXDMA_BUF,
3943 					       DP_RXDMA_REFILL_RING_SIZE,
3944 					       &tlv_filter);
3945 
3946 	return ret;
3947 }
3948 
3949 int ath12k_dp_rxdma_ring_sel_config_wcn7850(struct ath12k_base *ab)
3950 {
3951 	struct ath12k_dp *dp = &ab->dp;
3952 	struct htt_rx_ring_tlv_filter tlv_filter = {0};
3953 	u32 ring_id;
3954 	int ret;
3955 	u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz;
3956 	int i;
3957 
3958 	ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
3959 
3960 	tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING;
3961 	tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR;
3962 	tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST |
3963 					HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST |
3964 					HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA;
3965 	tlv_filter.offset_valid = true;
3966 	tlv_filter.rx_packet_offset = hal_rx_desc_sz;
3967 
3968 	tlv_filter.rx_header_offset = offsetof(struct hal_rx_desc_wcn7850, pkt_hdr_tlv);
3969 
3970 	tlv_filter.rx_mpdu_start_offset =
3971 			ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset();
3972 	tlv_filter.rx_msdu_end_offset =
3973 		ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset();
3974 
3975 	/* TODO: Selectively subscribe to required qwords within msdu_end
3976 	 * and mpdu_start and setup the mask in below msg
3977 	 * and modify the rx_desc struct
3978 	 */
3979 
3980 	for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
3981 		ring_id = dp->rx_mac_buf_ring[i].ring_id;
3982 		ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, i,
3983 						       HAL_RXDMA_BUF,
3984 						       DP_RXDMA_REFILL_RING_SIZE,
3985 						       &tlv_filter);
3986 	}
3987 
3988 	return ret;
3989 }
3990 
3991 int ath12k_dp_rx_htt_setup(struct ath12k_base *ab)
3992 {
3993 	struct ath12k_dp *dp = &ab->dp;
3994 	u32 ring_id;
3995 	int i, ret;
3996 
3997 	/* TODO: Need to verify the HTT setup for QCN9224 */
3998 	ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id;
3999 	ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_BUF);
4000 	if (ret) {
4001 		ath12k_warn(ab, "failed to configure rx_refill_buf_ring %d\n",
4002 			    ret);
4003 		return ret;
4004 	}
4005 
4006 	if (ab->hw_params->rx_mac_buf_ring) {
4007 		for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
4008 			ring_id = dp->rx_mac_buf_ring[i].ring_id;
4009 			ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4010 							  i, HAL_RXDMA_BUF);
4011 			if (ret) {
4012 				ath12k_warn(ab, "failed to configure rx_mac_buf_ring%d %d\n",
4013 					    i, ret);
4014 				return ret;
4015 			}
4016 		}
4017 	}
4018 
4019 	for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) {
4020 		ring_id = dp->rxdma_err_dst_ring[i].ring_id;
4021 		ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4022 						  i, HAL_RXDMA_DST);
4023 		if (ret) {
4024 			ath12k_warn(ab, "failed to configure rxdma_err_dest_ring%d %d\n",
4025 				    i, ret);
4026 			return ret;
4027 		}
4028 	}
4029 
4030 	if (ab->hw_params->rxdma1_enable) {
4031 		ring_id = dp->rxdma_mon_buf_ring.refill_buf_ring.ring_id;
4032 		ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4033 						  0, HAL_RXDMA_MONITOR_BUF);
4034 		if (ret) {
4035 			ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n",
4036 				    ret);
4037 			return ret;
4038 		}
4039 
4040 		ring_id = dp->tx_mon_buf_ring.refill_buf_ring.ring_id;
4041 		ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4042 						  0, HAL_TX_MONITOR_BUF);
4043 		if (ret) {
4044 			ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n",
4045 				    ret);
4046 			return ret;
4047 		}
4048 	}
4049 
4050 	ret = ab->hw_params->hw_ops->rxdma_ring_sel_config(ab);
4051 	if (ret) {
4052 		ath12k_warn(ab, "failed to setup rxdma ring selection config\n");
4053 		return ret;
4054 	}
4055 
4056 	return 0;
4057 }
4058 
4059 int ath12k_dp_rx_alloc(struct ath12k_base *ab)
4060 {
4061 	struct ath12k_dp *dp = &ab->dp;
4062 	int i, ret;
4063 
4064 	idr_init(&dp->rx_refill_buf_ring.bufs_idr);
4065 	spin_lock_init(&dp->rx_refill_buf_ring.idr_lock);
4066 
4067 	idr_init(&dp->rxdma_mon_buf_ring.bufs_idr);
4068 	spin_lock_init(&dp->rxdma_mon_buf_ring.idr_lock);
4069 
4070 	idr_init(&dp->tx_mon_buf_ring.bufs_idr);
4071 	spin_lock_init(&dp->tx_mon_buf_ring.idr_lock);
4072 
4073 	ret = ath12k_dp_srng_setup(ab,
4074 				   &dp->rx_refill_buf_ring.refill_buf_ring,
4075 				   HAL_RXDMA_BUF, 0, 0,
4076 				   DP_RXDMA_BUF_RING_SIZE);
4077 	if (ret) {
4078 		ath12k_warn(ab, "failed to setup rx_refill_buf_ring\n");
4079 		return ret;
4080 	}
4081 
4082 	if (ab->hw_params->rx_mac_buf_ring) {
4083 		for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
4084 			ret = ath12k_dp_srng_setup(ab,
4085 						   &dp->rx_mac_buf_ring[i],
4086 						   HAL_RXDMA_BUF, 1,
4087 						   i, 1024);
4088 			if (ret) {
4089 				ath12k_warn(ab, "failed to setup rx_mac_buf_ring %d\n",
4090 					    i);
4091 				return ret;
4092 			}
4093 		}
4094 	}
4095 
4096 	for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) {
4097 		ret = ath12k_dp_srng_setup(ab, &dp->rxdma_err_dst_ring[i],
4098 					   HAL_RXDMA_DST, 0, i,
4099 					   DP_RXDMA_ERR_DST_RING_SIZE);
4100 		if (ret) {
4101 			ath12k_warn(ab, "failed to setup rxdma_err_dst_ring %d\n", i);
4102 			return ret;
4103 		}
4104 	}
4105 
4106 	if (ab->hw_params->rxdma1_enable) {
4107 		ret = ath12k_dp_srng_setup(ab,
4108 					   &dp->rxdma_mon_buf_ring.refill_buf_ring,
4109 					   HAL_RXDMA_MONITOR_BUF, 0, 0,
4110 					   DP_RXDMA_MONITOR_BUF_RING_SIZE);
4111 		if (ret) {
4112 			ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n");
4113 			return ret;
4114 		}
4115 
4116 		ret = ath12k_dp_srng_setup(ab,
4117 					   &dp->tx_mon_buf_ring.refill_buf_ring,
4118 					   HAL_TX_MONITOR_BUF, 0, 0,
4119 					   DP_TX_MONITOR_BUF_RING_SIZE);
4120 		if (ret) {
4121 			ath12k_warn(ab, "failed to setup DP_TX_MONITOR_BUF_RING_SIZE\n");
4122 			return ret;
4123 		}
4124 	}
4125 
4126 	ret = ath12k_dp_rxdma_buf_setup(ab);
4127 	if (ret) {
4128 		ath12k_warn(ab, "failed to setup rxdma ring\n");
4129 		return ret;
4130 	}
4131 
4132 	return 0;
4133 }
4134 
4135 int ath12k_dp_rx_pdev_alloc(struct ath12k_base *ab, int mac_id)
4136 {
4137 	struct ath12k *ar = ab->pdevs[mac_id].ar;
4138 	struct ath12k_pdev_dp *dp = &ar->dp;
4139 	u32 ring_id;
4140 	int i;
4141 	int ret;
4142 
4143 	if (!ab->hw_params->rxdma1_enable)
4144 		goto out;
4145 
4146 	ret = ath12k_dp_rx_pdev_srng_alloc(ar);
4147 	if (ret) {
4148 		ath12k_warn(ab, "failed to setup rx srngs\n");
4149 		return ret;
4150 	}
4151 
4152 	for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) {
4153 		ring_id = dp->rxdma_mon_dst_ring[i].ring_id;
4154 		ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4155 						  mac_id + i,
4156 						  HAL_RXDMA_MONITOR_DST);
4157 		if (ret) {
4158 			ath12k_warn(ab,
4159 				    "failed to configure rxdma_mon_dst_ring %d %d\n",
4160 				    i, ret);
4161 			return ret;
4162 		}
4163 
4164 		ring_id = dp->tx_mon_dst_ring[i].ring_id;
4165 		ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id,
4166 						  mac_id + i,
4167 						  HAL_TX_MONITOR_DST);
4168 		if (ret) {
4169 			ath12k_warn(ab,
4170 				    "failed to configure tx_mon_dst_ring %d %d\n",
4171 				    i, ret);
4172 			return ret;
4173 		}
4174 	}
4175 out:
4176 	return 0;
4177 }
4178 
4179 static int ath12k_dp_rx_pdev_mon_status_attach(struct ath12k *ar)
4180 {
4181 	struct ath12k_pdev_dp *dp = &ar->dp;
4182 	struct ath12k_mon_data *pmon = (struct ath12k_mon_data *)&dp->mon_data;
4183 
4184 	skb_queue_head_init(&pmon->rx_status_q);
4185 
4186 	pmon->mon_ppdu_status = DP_PPDU_STATUS_START;
4187 
4188 	memset(&pmon->rx_mon_stats, 0,
4189 	       sizeof(pmon->rx_mon_stats));
4190 	return 0;
4191 }
4192 
4193 int ath12k_dp_rx_pdev_mon_attach(struct ath12k *ar)
4194 {
4195 	struct ath12k_pdev_dp *dp = &ar->dp;
4196 	struct ath12k_mon_data *pmon = &dp->mon_data;
4197 	int ret = 0;
4198 
4199 	ret = ath12k_dp_rx_pdev_mon_status_attach(ar);
4200 	if (ret) {
4201 		ath12k_warn(ar->ab, "pdev_mon_status_attach() failed");
4202 		return ret;
4203 	}
4204 
4205 	/* if rxdma1_enable is false, no need to setup
4206 	 * rxdma_mon_desc_ring.
4207 	 */
4208 	if (!ar->ab->hw_params->rxdma1_enable)
4209 		return 0;
4210 
4211 	pmon->mon_last_linkdesc_paddr = 0;
4212 	pmon->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1;
4213 	spin_lock_init(&pmon->mon_lock);
4214 
4215 	return 0;
4216 }
4217 
4218 int ath12k_dp_rx_pktlog_start(struct ath12k_base *ab)
4219 {
4220 	/* start reap timer */
4221 	mod_timer(&ab->mon_reap_timer,
4222 		  jiffies + msecs_to_jiffies(ATH12K_MON_TIMER_INTERVAL));
4223 
4224 	return 0;
4225 }
4226 
4227 int ath12k_dp_rx_pktlog_stop(struct ath12k_base *ab, bool stop_timer)
4228 {
4229 	int ret;
4230 
4231 	if (stop_timer)
4232 		del_timer_sync(&ab->mon_reap_timer);
4233 
4234 	/* reap all the monitor related rings */
4235 	ret = ath12k_dp_purge_mon_ring(ab);
4236 	if (ret) {
4237 		ath12k_warn(ab, "failed to purge dp mon ring: %d\n", ret);
4238 		return ret;
4239 	}
4240 
4241 	return 0;
4242 }
4243