1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2015-2016 Qualcomm Atheros, Inc. 4 */ 5 6 /* This file has implementation for code swap logic. With code swap feature, 7 * target can run the fw binary with even smaller IRAM size by using host 8 * memory to store some of the code segments. 9 */ 10 11 #include "core.h" 12 #include "bmi.h" 13 #include "debug.h" 14 15 static int ath10k_swap_code_seg_fill(struct ath10k *ar, 16 struct ath10k_swap_code_seg_info *seg_info, 17 const void *data, size_t data_len) 18 { 19 u8 *virt_addr = seg_info->virt_address[0]; 20 u8 swap_magic[ATH10K_SWAP_CODE_SEG_MAGIC_BYTES_SZ] = {}; 21 const u8 *fw_data = data; 22 union ath10k_swap_code_seg_item *swap_item; 23 u32 length = 0; 24 u32 payload_len; 25 u32 total_payload_len = 0; 26 u32 size_left = data_len; 27 28 /* Parse swap bin and copy the content to host allocated memory. 29 * The format is Address, length and value. The last 4-bytes is 30 * target write address. Currently address field is not used. 31 */ 32 seg_info->target_addr = -1; 33 while (size_left >= sizeof(*swap_item)) { 34 swap_item = (union ath10k_swap_code_seg_item *)fw_data; 35 payload_len = __le32_to_cpu(swap_item->tlv.length); 36 if ((payload_len > size_left) || 37 (payload_len == 0 && 38 size_left != sizeof(struct ath10k_swap_code_seg_tail))) { 39 ath10k_err(ar, "refusing to parse invalid tlv length %d\n", 40 payload_len); 41 return -EINVAL; 42 } 43 44 if (payload_len == 0) { 45 if (memcmp(swap_item->tail.magic_signature, swap_magic, 46 ATH10K_SWAP_CODE_SEG_MAGIC_BYTES_SZ)) { 47 ath10k_err(ar, "refusing an invalid swap file\n"); 48 return -EINVAL; 49 } 50 seg_info->target_addr = 51 __le32_to_cpu(swap_item->tail.bmi_write_addr); 52 break; 53 } 54 55 memcpy(virt_addr, swap_item->tlv.data, payload_len); 56 virt_addr += payload_len; 57 length = payload_len + sizeof(struct ath10k_swap_code_seg_tlv); 58 size_left -= length; 59 fw_data += length; 60 total_payload_len += payload_len; 61 } 62 63 if (seg_info->target_addr == -1) { 64 ath10k_err(ar, "failed to parse invalid swap file\n"); 65 return -EINVAL; 66 } 67 seg_info->seg_hw_info.swap_size = __cpu_to_le32(total_payload_len); 68 69 return 0; 70 } 71 72 static void 73 ath10k_swap_code_seg_free(struct ath10k *ar, 74 struct ath10k_swap_code_seg_info *seg_info) 75 { 76 u32 seg_size; 77 78 if (!seg_info) 79 return; 80 81 if (!seg_info->virt_address[0]) 82 return; 83 84 seg_size = __le32_to_cpu(seg_info->seg_hw_info.size); 85 dma_free_coherent(ar->dev, seg_size, seg_info->virt_address[0], 86 seg_info->paddr[0]); 87 } 88 89 static struct ath10k_swap_code_seg_info * 90 ath10k_swap_code_seg_alloc(struct ath10k *ar, size_t swap_bin_len) 91 { 92 struct ath10k_swap_code_seg_info *seg_info; 93 void *virt_addr; 94 dma_addr_t paddr; 95 96 swap_bin_len = roundup(swap_bin_len, 2); 97 if (swap_bin_len > ATH10K_SWAP_CODE_SEG_BIN_LEN_MAX) { 98 ath10k_err(ar, "refusing code swap bin because it is too big %zu > %d\n", 99 swap_bin_len, ATH10K_SWAP_CODE_SEG_BIN_LEN_MAX); 100 return NULL; 101 } 102 103 seg_info = devm_kzalloc(ar->dev, sizeof(*seg_info), GFP_KERNEL); 104 if (!seg_info) 105 return NULL; 106 107 virt_addr = dma_alloc_coherent(ar->dev, swap_bin_len, &paddr, 108 GFP_KERNEL); 109 if (!virt_addr) { 110 ath10k_err(ar, "failed to allocate dma coherent memory\n"); 111 return NULL; 112 } 113 114 seg_info->seg_hw_info.bus_addr[0] = __cpu_to_le32(paddr); 115 seg_info->seg_hw_info.size = __cpu_to_le32(swap_bin_len); 116 seg_info->seg_hw_info.swap_size = __cpu_to_le32(swap_bin_len); 117 seg_info->seg_hw_info.num_segs = 118 __cpu_to_le32(ATH10K_SWAP_CODE_SEG_NUM_SUPPORTED); 119 seg_info->seg_hw_info.size_log2 = __cpu_to_le32(ilog2(swap_bin_len)); 120 seg_info->virt_address[0] = virt_addr; 121 seg_info->paddr[0] = paddr; 122 123 return seg_info; 124 } 125 126 int ath10k_swap_code_seg_configure(struct ath10k *ar, 127 const struct ath10k_fw_file *fw_file) 128 { 129 int ret; 130 struct ath10k_swap_code_seg_info *seg_info = NULL; 131 132 if (!fw_file->firmware_swap_code_seg_info) 133 return 0; 134 135 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot found firmware code swap binary\n"); 136 137 seg_info = fw_file->firmware_swap_code_seg_info; 138 139 ret = ath10k_bmi_write_memory(ar, seg_info->target_addr, 140 &seg_info->seg_hw_info, 141 sizeof(seg_info->seg_hw_info)); 142 if (ret) { 143 ath10k_err(ar, "failed to write Code swap segment information (%d)\n", 144 ret); 145 return ret; 146 } 147 148 return 0; 149 } 150 151 void ath10k_swap_code_seg_release(struct ath10k *ar, 152 struct ath10k_fw_file *fw_file) 153 { 154 ath10k_swap_code_seg_free(ar, fw_file->firmware_swap_code_seg_info); 155 156 /* FIXME: these two assignments look to bein wrong place! Shouldn't 157 * they be in ath10k_core_free_firmware_files() like the rest? 158 */ 159 fw_file->codeswap_data = NULL; 160 fw_file->codeswap_len = 0; 161 162 fw_file->firmware_swap_code_seg_info = NULL; 163 } 164 165 int ath10k_swap_code_seg_init(struct ath10k *ar, struct ath10k_fw_file *fw_file) 166 { 167 int ret; 168 struct ath10k_swap_code_seg_info *seg_info; 169 const void *codeswap_data; 170 size_t codeswap_len; 171 172 codeswap_data = fw_file->codeswap_data; 173 codeswap_len = fw_file->codeswap_len; 174 175 if (!codeswap_len || !codeswap_data) 176 return 0; 177 178 seg_info = ath10k_swap_code_seg_alloc(ar, codeswap_len); 179 if (!seg_info) { 180 ath10k_err(ar, "failed to allocate fw code swap segment\n"); 181 return -ENOMEM; 182 } 183 184 ret = ath10k_swap_code_seg_fill(ar, seg_info, 185 codeswap_data, codeswap_len); 186 187 if (ret) { 188 ath10k_warn(ar, "failed to initialize fw code swap segment: %d\n", 189 ret); 190 ath10k_swap_code_seg_free(ar, seg_info); 191 return ret; 192 } 193 194 fw_file->firmware_swap_code_seg_info = seg_info; 195 196 return 0; 197 } 198