1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2018 The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/bits.h>
7 #include <linux/clk.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/property.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/remoteproc/qcom_rproc.h>
16 #include <linux/of_address.h>
17 #include <linux/iommu.h>
18 
19 #include "ce.h"
20 #include "coredump.h"
21 #include "debug.h"
22 #include "hif.h"
23 #include "htc.h"
24 #include "snoc.h"
25 
26 #define ATH10K_SNOC_RX_POST_RETRY_MS 50
27 #define CE_POLL_PIPE 4
28 #define ATH10K_SNOC_WAKE_IRQ 2
29 
30 static char *const ce_name[] = {
31 	"WLAN_CE_0",
32 	"WLAN_CE_1",
33 	"WLAN_CE_2",
34 	"WLAN_CE_3",
35 	"WLAN_CE_4",
36 	"WLAN_CE_5",
37 	"WLAN_CE_6",
38 	"WLAN_CE_7",
39 	"WLAN_CE_8",
40 	"WLAN_CE_9",
41 	"WLAN_CE_10",
42 	"WLAN_CE_11",
43 };
44 
45 static const char * const ath10k_regulators[] = {
46 	"vdd-0.8-cx-mx",
47 	"vdd-1.8-xo",
48 	"vdd-1.3-rfa",
49 	"vdd-3.3-ch0",
50 	"vdd-3.3-ch1",
51 };
52 
53 static const char * const ath10k_clocks[] = {
54 	"cxo_ref_clk_pin", "qdss",
55 };
56 
57 static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
58 static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
59 static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
60 static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
61 static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
62 static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
63 
64 static const struct ath10k_snoc_drv_priv drv_priv = {
65 	.hw_rev = ATH10K_HW_WCN3990,
66 	.dma_mask = DMA_BIT_MASK(35),
67 	.msa_size = 0x100000,
68 };
69 
70 #define WCN3990_SRC_WR_IDX_OFFSET 0x3C
71 #define WCN3990_DST_WR_IDX_OFFSET 0x40
72 
73 static struct ath10k_shadow_reg_cfg target_shadow_reg_cfg_map[] = {
74 		{
75 			.ce_id = __cpu_to_le16(0),
76 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
77 		},
78 
79 		{
80 			.ce_id = __cpu_to_le16(3),
81 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
82 		},
83 
84 		{
85 			.ce_id = __cpu_to_le16(4),
86 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
87 		},
88 
89 		{
90 			.ce_id = __cpu_to_le16(5),
91 			.reg_offset =  __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
92 		},
93 
94 		{
95 			.ce_id = __cpu_to_le16(7),
96 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
97 		},
98 
99 		{
100 			.ce_id = __cpu_to_le16(1),
101 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
102 		},
103 
104 		{
105 			.ce_id = __cpu_to_le16(2),
106 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
107 		},
108 
109 		{
110 			.ce_id = __cpu_to_le16(7),
111 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
112 		},
113 
114 		{
115 			.ce_id = __cpu_to_le16(8),
116 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
117 		},
118 
119 		{
120 			.ce_id = __cpu_to_le16(9),
121 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
122 		},
123 
124 		{
125 			.ce_id = __cpu_to_le16(10),
126 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
127 		},
128 
129 		{
130 			.ce_id = __cpu_to_le16(11),
131 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
132 		},
133 };
134 
135 static struct ce_attr host_ce_config_wlan[] = {
136 	/* CE0: host->target HTC control streams */
137 	{
138 		.flags = CE_ATTR_FLAGS,
139 		.src_nentries = 16,
140 		.src_sz_max = 2048,
141 		.dest_nentries = 0,
142 		.send_cb = ath10k_snoc_htc_tx_cb,
143 	},
144 
145 	/* CE1: target->host HTT + HTC control */
146 	{
147 		.flags = CE_ATTR_FLAGS,
148 		.src_nentries = 0,
149 		.src_sz_max = 2048,
150 		.dest_nentries = 512,
151 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
152 	},
153 
154 	/* CE2: target->host WMI */
155 	{
156 		.flags = CE_ATTR_FLAGS,
157 		.src_nentries = 0,
158 		.src_sz_max = 2048,
159 		.dest_nentries = 64,
160 		.recv_cb = ath10k_snoc_htc_rx_cb,
161 	},
162 
163 	/* CE3: host->target WMI */
164 	{
165 		.flags = CE_ATTR_FLAGS,
166 		.src_nentries = 32,
167 		.src_sz_max = 2048,
168 		.dest_nentries = 0,
169 		.send_cb = ath10k_snoc_htc_tx_cb,
170 	},
171 
172 	/* CE4: host->target HTT */
173 	{
174 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
175 		.src_nentries = 2048,
176 		.src_sz_max = 256,
177 		.dest_nentries = 0,
178 		.send_cb = ath10k_snoc_htt_tx_cb,
179 	},
180 
181 	/* CE5: target->host HTT (ipa_uc->target ) */
182 	{
183 		.flags = CE_ATTR_FLAGS,
184 		.src_nentries = 0,
185 		.src_sz_max = 512,
186 		.dest_nentries = 512,
187 		.recv_cb = ath10k_snoc_htt_rx_cb,
188 	},
189 
190 	/* CE6: target autonomous hif_memcpy */
191 	{
192 		.flags = CE_ATTR_FLAGS,
193 		.src_nentries = 0,
194 		.src_sz_max = 0,
195 		.dest_nentries = 0,
196 	},
197 
198 	/* CE7: ce_diag, the Diagnostic Window */
199 	{
200 		.flags = CE_ATTR_FLAGS,
201 		.src_nentries = 2,
202 		.src_sz_max = 2048,
203 		.dest_nentries = 2,
204 	},
205 
206 	/* CE8: Target to uMC */
207 	{
208 		.flags = CE_ATTR_FLAGS,
209 		.src_nentries = 0,
210 		.src_sz_max = 2048,
211 		.dest_nentries = 128,
212 	},
213 
214 	/* CE9 target->host HTT */
215 	{
216 		.flags = CE_ATTR_FLAGS,
217 		.src_nentries = 0,
218 		.src_sz_max = 2048,
219 		.dest_nentries = 512,
220 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
221 	},
222 
223 	/* CE10: target->host HTT */
224 	{
225 		.flags = CE_ATTR_FLAGS,
226 		.src_nentries = 0,
227 		.src_sz_max = 2048,
228 		.dest_nentries = 512,
229 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
230 	},
231 
232 	/* CE11: target -> host PKTLOG */
233 	{
234 		.flags = CE_ATTR_FLAGS,
235 		.src_nentries = 0,
236 		.src_sz_max = 2048,
237 		.dest_nentries = 512,
238 		.recv_cb = ath10k_snoc_pktlog_rx_cb,
239 	},
240 };
241 
242 static struct ce_pipe_config target_ce_config_wlan[] = {
243 	/* CE0: host->target HTC control and raw streams */
244 	{
245 		.pipenum = __cpu_to_le32(0),
246 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE1: target->host HTT + HTC control */
254 	{
255 		.pipenum = __cpu_to_le32(1),
256 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
257 		.nentries = __cpu_to_le32(32),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE2: target->host WMI */
264 	{
265 		.pipenum = __cpu_to_le32(2),
266 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
267 		.nentries = __cpu_to_le32(64),
268 		.nbytes_max = __cpu_to_le32(2048),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* CE3: host->target WMI */
274 	{
275 		.pipenum = __cpu_to_le32(3),
276 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
277 		.nentries = __cpu_to_le32(32),
278 		.nbytes_max = __cpu_to_le32(2048),
279 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
280 		.reserved = __cpu_to_le32(0),
281 	},
282 
283 	/* CE4: host->target HTT */
284 	{
285 		.pipenum = __cpu_to_le32(4),
286 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
287 		.nentries = __cpu_to_le32(256),
288 		.nbytes_max = __cpu_to_le32(256),
289 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
290 		.reserved = __cpu_to_le32(0),
291 	},
292 
293 	/* CE5: target->host HTT (HIF->HTT) */
294 	{
295 		.pipenum = __cpu_to_le32(5),
296 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
297 		.nentries = __cpu_to_le32(1024),
298 		.nbytes_max = __cpu_to_le32(64),
299 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
300 		.reserved = __cpu_to_le32(0),
301 	},
302 
303 	/* CE6: Reserved for target autonomous hif_memcpy */
304 	{
305 		.pipenum = __cpu_to_le32(6),
306 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
307 		.nentries = __cpu_to_le32(32),
308 		.nbytes_max = __cpu_to_le32(16384),
309 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
310 		.reserved = __cpu_to_le32(0),
311 	},
312 
313 	/* CE7 used only by Host */
314 	{
315 		.pipenum = __cpu_to_le32(7),
316 		.pipedir = __cpu_to_le32(4),
317 		.nentries = __cpu_to_le32(0),
318 		.nbytes_max = __cpu_to_le32(0),
319 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
320 		.reserved = __cpu_to_le32(0),
321 	},
322 
323 	/* CE8 Target to uMC */
324 	{
325 		.pipenum = __cpu_to_le32(8),
326 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
327 		.nentries = __cpu_to_le32(32),
328 		.nbytes_max = __cpu_to_le32(2048),
329 		.flags = __cpu_to_le32(0),
330 		.reserved = __cpu_to_le32(0),
331 	},
332 
333 	/* CE9 target->host HTT */
334 	{
335 		.pipenum = __cpu_to_le32(9),
336 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
337 		.nentries = __cpu_to_le32(32),
338 		.nbytes_max = __cpu_to_le32(2048),
339 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
340 		.reserved = __cpu_to_le32(0),
341 	},
342 
343 	/* CE10 target->host HTT */
344 	{
345 		.pipenum = __cpu_to_le32(10),
346 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
347 		.nentries = __cpu_to_le32(32),
348 		.nbytes_max = __cpu_to_le32(2048),
349 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
350 		.reserved = __cpu_to_le32(0),
351 	},
352 
353 	/* CE11 target autonomous qcache memcpy */
354 	{
355 		.pipenum = __cpu_to_le32(11),
356 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
357 		.nentries = __cpu_to_le32(32),
358 		.nbytes_max = __cpu_to_le32(2048),
359 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
360 		.reserved = __cpu_to_le32(0),
361 	},
362 };
363 
364 static struct ce_service_to_pipe target_service_to_ce_map_wlan[] = {
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
367 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
368 		__cpu_to_le32(3),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
372 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
373 		__cpu_to_le32(2),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
377 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
378 		__cpu_to_le32(3),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
382 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
383 		__cpu_to_le32(2),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
387 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
388 		__cpu_to_le32(3),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
392 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
393 		__cpu_to_le32(2),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
397 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
398 		__cpu_to_le32(3),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
402 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
403 		__cpu_to_le32(2),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
407 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
408 		__cpu_to_le32(3),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
412 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
413 		__cpu_to_le32(2),
414 	},
415 	{
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
417 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
418 		__cpu_to_le32(0),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
422 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
423 		__cpu_to_le32(2),
424 	},
425 	{ /* not used */
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
427 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
428 		__cpu_to_le32(0),
429 	},
430 	{ /* not used */
431 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
432 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
433 		__cpu_to_le32(2),
434 	},
435 	{
436 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
437 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
438 		__cpu_to_le32(4),
439 	},
440 	{
441 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
442 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
443 		__cpu_to_le32(1),
444 	},
445 	{ /* not used */
446 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
447 		__cpu_to_le32(PIPEDIR_OUT),
448 		__cpu_to_le32(5),
449 	},
450 	{ /* in = DL = target -> host */
451 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG),
452 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
453 		__cpu_to_le32(9),
454 	},
455 	{ /* in = DL = target -> host */
456 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG),
457 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
458 		__cpu_to_le32(10),
459 	},
460 	{ /* in = DL = target -> host pktlog */
461 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG),
462 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
463 		__cpu_to_le32(11),
464 	},
465 	/* (Additions here) */
466 
467 	{ /* must be last */
468 		__cpu_to_le32(0),
469 		__cpu_to_le32(0),
470 		__cpu_to_le32(0),
471 	},
472 };
473 
474 static void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value)
475 {
476 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
477 
478 	iowrite32(value, ar_snoc->mem + offset);
479 }
480 
481 static u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset)
482 {
483 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
484 	u32 val;
485 
486 	val = ioread32(ar_snoc->mem + offset);
487 
488 	return val;
489 }
490 
491 static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe)
492 {
493 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
494 	struct ath10k *ar = pipe->hif_ce_state;
495 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
496 	struct sk_buff *skb;
497 	dma_addr_t paddr;
498 	int ret;
499 
500 	skb = dev_alloc_skb(pipe->buf_sz);
501 	if (!skb)
502 		return -ENOMEM;
503 
504 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
505 
506 	paddr = dma_map_single(ar->dev, skb->data,
507 			       skb->len + skb_tailroom(skb),
508 			       DMA_FROM_DEVICE);
509 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
510 		ath10k_warn(ar, "failed to dma map snoc rx buf\n");
511 		dev_kfree_skb_any(skb);
512 		return -EIO;
513 	}
514 
515 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
516 
517 	spin_lock_bh(&ce->ce_lock);
518 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
519 	spin_unlock_bh(&ce->ce_lock);
520 	if (ret) {
521 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
522 				 DMA_FROM_DEVICE);
523 		dev_kfree_skb_any(skb);
524 		return ret;
525 	}
526 
527 	return 0;
528 }
529 
530 static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe)
531 {
532 	struct ath10k *ar = pipe->hif_ce_state;
533 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
534 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
535 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
536 	int ret, num;
537 
538 	if (pipe->buf_sz == 0)
539 		return;
540 
541 	if (!ce_pipe->dest_ring)
542 		return;
543 
544 	spin_lock_bh(&ce->ce_lock);
545 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
546 	spin_unlock_bh(&ce->ce_lock);
547 	while (num--) {
548 		ret = __ath10k_snoc_rx_post_buf(pipe);
549 		if (ret) {
550 			if (ret == -ENOSPC)
551 				break;
552 			ath10k_warn(ar, "failed to post rx buf: %d\n", ret);
553 			mod_timer(&ar_snoc->rx_post_retry, jiffies +
554 				  ATH10K_SNOC_RX_POST_RETRY_MS);
555 			break;
556 		}
557 	}
558 }
559 
560 static void ath10k_snoc_rx_post(struct ath10k *ar)
561 {
562 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
563 	int i;
564 
565 	for (i = 0; i < CE_COUNT; i++)
566 		ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]);
567 }
568 
569 static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state,
570 				      void (*callback)(struct ath10k *ar,
571 						       struct sk_buff *skb))
572 {
573 	struct ath10k *ar = ce_state->ar;
574 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
575 	struct ath10k_snoc_pipe *pipe_info =  &ar_snoc->pipe_info[ce_state->id];
576 	struct sk_buff *skb;
577 	struct sk_buff_head list;
578 	void *transfer_context;
579 	unsigned int nbytes, max_nbytes;
580 
581 	__skb_queue_head_init(&list);
582 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
583 					     &nbytes) == 0) {
584 		skb = transfer_context;
585 		max_nbytes = skb->len + skb_tailroom(skb);
586 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
587 				 max_nbytes, DMA_FROM_DEVICE);
588 
589 		if (unlikely(max_nbytes < nbytes)) {
590 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)\n",
591 				    nbytes, max_nbytes);
592 			dev_kfree_skb_any(skb);
593 			continue;
594 		}
595 
596 		skb_put(skb, nbytes);
597 		__skb_queue_tail(&list, skb);
598 	}
599 
600 	while ((skb = __skb_dequeue(&list))) {
601 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n",
602 			   ce_state->id, skb->len);
603 
604 		callback(ar, skb);
605 	}
606 
607 	ath10k_snoc_rx_post_pipe(pipe_info);
608 }
609 
610 static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
611 {
612 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
613 }
614 
615 static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
616 {
617 	/* CE4 polling needs to be done whenever CE pipe which transports
618 	 * HTT Rx (target->host) is processed.
619 	 */
620 	ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
621 
622 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
623 }
624 
625 /* Called by lower (CE) layer when data is received from the Target.
626  * WCN3990 firmware uses separate CE(CE11) to transfer pktlog data.
627  */
628 static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
629 {
630 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
631 }
632 
633 static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
634 {
635 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
636 	ath10k_htt_t2h_msg_handler(ar, skb);
637 }
638 
639 static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
640 {
641 	ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
642 	ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver);
643 }
644 
645 static void ath10k_snoc_rx_replenish_retry(struct timer_list *t)
646 {
647 	struct ath10k_snoc *ar_snoc = from_timer(ar_snoc, t, rx_post_retry);
648 	struct ath10k *ar = ar_snoc->ar;
649 
650 	ath10k_snoc_rx_post(ar);
651 }
652 
653 static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
654 {
655 	struct ath10k *ar = ce_state->ar;
656 	struct sk_buff_head list;
657 	struct sk_buff *skb;
658 
659 	__skb_queue_head_init(&list);
660 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
661 		if (!skb)
662 			continue;
663 
664 		__skb_queue_tail(&list, skb);
665 	}
666 
667 	while ((skb = __skb_dequeue(&list)))
668 		ath10k_htc_tx_completion_handler(ar, skb);
669 }
670 
671 static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
672 {
673 	struct ath10k *ar = ce_state->ar;
674 	struct sk_buff *skb;
675 
676 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
677 		if (!skb)
678 			continue;
679 
680 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
681 				 skb->len, DMA_TO_DEVICE);
682 		ath10k_htt_hif_tx_complete(ar, skb);
683 	}
684 }
685 
686 static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
687 				 struct ath10k_hif_sg_item *items, int n_items)
688 {
689 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
690 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
691 	struct ath10k_snoc_pipe *snoc_pipe;
692 	struct ath10k_ce_pipe *ce_pipe;
693 	int err, i = 0;
694 
695 	snoc_pipe = &ar_snoc->pipe_info[pipe_id];
696 	ce_pipe = snoc_pipe->ce_hdl;
697 	spin_lock_bh(&ce->ce_lock);
698 
699 	for (i = 0; i < n_items - 1; i++) {
700 		ath10k_dbg(ar, ATH10K_DBG_SNOC,
701 			   "snoc tx item %d paddr %pad len %d n_items %d\n",
702 			   i, &items[i].paddr, items[i].len, n_items);
703 
704 		err = ath10k_ce_send_nolock(ce_pipe,
705 					    items[i].transfer_context,
706 					    items[i].paddr,
707 					    items[i].len,
708 					    items[i].transfer_id,
709 					    CE_SEND_FLAG_GATHER);
710 		if (err)
711 			goto err;
712 	}
713 
714 	ath10k_dbg(ar, ATH10K_DBG_SNOC,
715 		   "snoc tx item %d paddr %pad len %d n_items %d\n",
716 		   i, &items[i].paddr, items[i].len, n_items);
717 
718 	err = ath10k_ce_send_nolock(ce_pipe,
719 				    items[i].transfer_context,
720 				    items[i].paddr,
721 				    items[i].len,
722 				    items[i].transfer_id,
723 				    0);
724 	if (err)
725 		goto err;
726 
727 	spin_unlock_bh(&ce->ce_lock);
728 
729 	return 0;
730 
731 err:
732 	for (; i > 0; i--)
733 		__ath10k_ce_send_revert(ce_pipe);
734 
735 	spin_unlock_bh(&ce->ce_lock);
736 	return err;
737 }
738 
739 static int ath10k_snoc_hif_get_target_info(struct ath10k *ar,
740 					   struct bmi_target_info *target_info)
741 {
742 	target_info->version = ATH10K_HW_WCN3990;
743 	target_info->type = ATH10K_HW_WCN3990;
744 
745 	return 0;
746 }
747 
748 static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
749 {
750 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
751 
752 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n");
753 
754 	return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl);
755 }
756 
757 static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe,
758 						int force)
759 {
760 	int resources;
761 
762 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n");
763 
764 	if (!force) {
765 		resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe);
766 
767 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
768 			return;
769 	}
770 	ath10k_ce_per_engine_service(ar, pipe);
771 }
772 
773 static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar,
774 					       u16 service_id,
775 					       u8 *ul_pipe, u8 *dl_pipe)
776 {
777 	const struct ce_service_to_pipe *entry;
778 	bool ul_set = false, dl_set = false;
779 	int i;
780 
781 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n");
782 
783 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
784 		entry = &target_service_to_ce_map_wlan[i];
785 
786 		if (__le32_to_cpu(entry->service_id) != service_id)
787 			continue;
788 
789 		switch (__le32_to_cpu(entry->pipedir)) {
790 		case PIPEDIR_NONE:
791 			break;
792 		case PIPEDIR_IN:
793 			WARN_ON(dl_set);
794 			*dl_pipe = __le32_to_cpu(entry->pipenum);
795 			dl_set = true;
796 			break;
797 		case PIPEDIR_OUT:
798 			WARN_ON(ul_set);
799 			*ul_pipe = __le32_to_cpu(entry->pipenum);
800 			ul_set = true;
801 			break;
802 		case PIPEDIR_INOUT:
803 			WARN_ON(dl_set);
804 			WARN_ON(ul_set);
805 			*dl_pipe = __le32_to_cpu(entry->pipenum);
806 			*ul_pipe = __le32_to_cpu(entry->pipenum);
807 			dl_set = true;
808 			ul_set = true;
809 			break;
810 		}
811 	}
812 
813 	if (!ul_set || !dl_set)
814 		return -ENOENT;
815 
816 	return 0;
817 }
818 
819 static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar,
820 					     u8 *ul_pipe, u8 *dl_pipe)
821 {
822 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n");
823 
824 	(void)ath10k_snoc_hif_map_service_to_pipe(ar,
825 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
826 						 ul_pipe, dl_pipe);
827 }
828 
829 static inline void ath10k_snoc_irq_disable(struct ath10k *ar)
830 {
831 	ath10k_ce_disable_interrupts(ar);
832 }
833 
834 static inline void ath10k_snoc_irq_enable(struct ath10k *ar)
835 {
836 	ath10k_ce_enable_interrupts(ar);
837 }
838 
839 static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
840 {
841 	struct ath10k_ce_pipe *ce_pipe;
842 	struct ath10k_ce_ring *ce_ring;
843 	struct sk_buff *skb;
844 	struct ath10k *ar;
845 	int i;
846 
847 	ar = snoc_pipe->hif_ce_state;
848 	ce_pipe = snoc_pipe->ce_hdl;
849 	ce_ring = ce_pipe->dest_ring;
850 
851 	if (!ce_ring)
852 		return;
853 
854 	if (!snoc_pipe->buf_sz)
855 		return;
856 
857 	for (i = 0; i < ce_ring->nentries; i++) {
858 		skb = ce_ring->per_transfer_context[i];
859 		if (!skb)
860 			continue;
861 
862 		ce_ring->per_transfer_context[i] = NULL;
863 
864 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
865 				 skb->len + skb_tailroom(skb),
866 				 DMA_FROM_DEVICE);
867 		dev_kfree_skb_any(skb);
868 	}
869 }
870 
871 static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
872 {
873 	struct ath10k_ce_pipe *ce_pipe;
874 	struct ath10k_ce_ring *ce_ring;
875 	struct sk_buff *skb;
876 	struct ath10k *ar;
877 	int i;
878 
879 	ar = snoc_pipe->hif_ce_state;
880 	ce_pipe = snoc_pipe->ce_hdl;
881 	ce_ring = ce_pipe->src_ring;
882 
883 	if (!ce_ring)
884 		return;
885 
886 	if (!snoc_pipe->buf_sz)
887 		return;
888 
889 	for (i = 0; i < ce_ring->nentries; i++) {
890 		skb = ce_ring->per_transfer_context[i];
891 		if (!skb)
892 			continue;
893 
894 		ce_ring->per_transfer_context[i] = NULL;
895 
896 		ath10k_htc_tx_completion_handler(ar, skb);
897 	}
898 }
899 
900 static void ath10k_snoc_buffer_cleanup(struct ath10k *ar)
901 {
902 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
903 	struct ath10k_snoc_pipe *pipe_info;
904 	int pipe_num;
905 
906 	del_timer_sync(&ar_snoc->rx_post_retry);
907 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
908 		pipe_info = &ar_snoc->pipe_info[pipe_num];
909 		ath10k_snoc_rx_pipe_cleanup(pipe_info);
910 		ath10k_snoc_tx_pipe_cleanup(pipe_info);
911 	}
912 }
913 
914 static void ath10k_snoc_hif_stop(struct ath10k *ar)
915 {
916 	if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
917 		ath10k_snoc_irq_disable(ar);
918 
919 	ath10k_core_napi_sync_disable(ar);
920 	ath10k_snoc_buffer_cleanup(ar);
921 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
922 }
923 
924 static int ath10k_snoc_hif_start(struct ath10k *ar)
925 {
926 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
927 
928 	bitmap_clear(ar_snoc->pending_ce_irqs, 0, CE_COUNT_MAX);
929 
930 	ath10k_core_napi_enable(ar);
931 	ath10k_snoc_irq_enable(ar);
932 	ath10k_snoc_rx_post(ar);
933 
934 	clear_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
935 
936 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
937 
938 	return 0;
939 }
940 
941 static int ath10k_snoc_init_pipes(struct ath10k *ar)
942 {
943 	int i, ret;
944 
945 	for (i = 0; i < CE_COUNT; i++) {
946 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
947 		if (ret) {
948 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
949 				   i, ret);
950 			return ret;
951 		}
952 	}
953 
954 	return 0;
955 }
956 
957 static int ath10k_snoc_wlan_enable(struct ath10k *ar,
958 				   enum ath10k_firmware_mode fw_mode)
959 {
960 	struct ath10k_tgt_pipe_cfg tgt_cfg[CE_COUNT_MAX];
961 	struct ath10k_qmi_wlan_enable_cfg cfg;
962 	enum wlfw_driver_mode_enum_v01 mode;
963 	int pipe_num;
964 
965 	for (pipe_num = 0; pipe_num < CE_COUNT_MAX; pipe_num++) {
966 		tgt_cfg[pipe_num].pipe_num =
967 				target_ce_config_wlan[pipe_num].pipenum;
968 		tgt_cfg[pipe_num].pipe_dir =
969 				target_ce_config_wlan[pipe_num].pipedir;
970 		tgt_cfg[pipe_num].nentries =
971 				target_ce_config_wlan[pipe_num].nentries;
972 		tgt_cfg[pipe_num].nbytes_max =
973 				target_ce_config_wlan[pipe_num].nbytes_max;
974 		tgt_cfg[pipe_num].flags =
975 				target_ce_config_wlan[pipe_num].flags;
976 		tgt_cfg[pipe_num].reserved = 0;
977 	}
978 
979 	cfg.num_ce_tgt_cfg = sizeof(target_ce_config_wlan) /
980 				sizeof(struct ath10k_tgt_pipe_cfg);
981 	cfg.ce_tgt_cfg = (struct ath10k_tgt_pipe_cfg *)
982 		&tgt_cfg;
983 	cfg.num_ce_svc_pipe_cfg = sizeof(target_service_to_ce_map_wlan) /
984 				  sizeof(struct ath10k_svc_pipe_cfg);
985 	cfg.ce_svc_cfg = (struct ath10k_svc_pipe_cfg *)
986 		&target_service_to_ce_map_wlan;
987 	cfg.num_shadow_reg_cfg = ARRAY_SIZE(target_shadow_reg_cfg_map);
988 	cfg.shadow_reg_cfg = (struct ath10k_shadow_reg_cfg *)
989 		&target_shadow_reg_cfg_map;
990 
991 	switch (fw_mode) {
992 	case ATH10K_FIRMWARE_MODE_NORMAL:
993 		mode = QMI_WLFW_MISSION_V01;
994 		break;
995 	case ATH10K_FIRMWARE_MODE_UTF:
996 		mode = QMI_WLFW_FTM_V01;
997 		break;
998 	default:
999 		ath10k_err(ar, "invalid firmware mode %d\n", fw_mode);
1000 		return -EINVAL;
1001 	}
1002 
1003 	return ath10k_qmi_wlan_enable(ar, &cfg, mode,
1004 				       NULL);
1005 }
1006 
1007 static int ath10k_hw_power_on(struct ath10k *ar)
1008 {
1009 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1010 	int ret;
1011 
1012 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power on\n");
1013 
1014 	ret = regulator_bulk_enable(ar_snoc->num_vregs, ar_snoc->vregs);
1015 	if (ret)
1016 		return ret;
1017 
1018 	ret = clk_bulk_prepare_enable(ar_snoc->num_clks, ar_snoc->clks);
1019 	if (ret)
1020 		goto vreg_off;
1021 
1022 	return ret;
1023 
1024 vreg_off:
1025 	regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs);
1026 	return ret;
1027 }
1028 
1029 static int ath10k_hw_power_off(struct ath10k *ar)
1030 {
1031 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1032 
1033 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power off\n");
1034 
1035 	clk_bulk_disable_unprepare(ar_snoc->num_clks, ar_snoc->clks);
1036 
1037 	return regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs);
1038 }
1039 
1040 static void ath10k_snoc_wlan_disable(struct ath10k *ar)
1041 {
1042 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1043 
1044 	/* If both ATH10K_FLAG_CRASH_FLUSH and ATH10K_SNOC_FLAG_RECOVERY
1045 	 * flags are not set, it means that the driver has restarted
1046 	 * due to a crash inject via debugfs. In this case, the driver
1047 	 * needs to restart the firmware and hence send qmi wlan disable,
1048 	 * during the driver restart sequence.
1049 	 */
1050 	if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags) ||
1051 	    !test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags))
1052 		ath10k_qmi_wlan_disable(ar);
1053 }
1054 
1055 static void ath10k_snoc_hif_power_down(struct ath10k *ar)
1056 {
1057 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
1058 
1059 	ath10k_snoc_wlan_disable(ar);
1060 	ath10k_ce_free_rri(ar);
1061 	ath10k_hw_power_off(ar);
1062 }
1063 
1064 static int ath10k_snoc_hif_power_up(struct ath10k *ar,
1065 				    enum ath10k_firmware_mode fw_mode)
1066 {
1067 	int ret;
1068 
1069 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n",
1070 		   __func__, ar->state);
1071 
1072 	ret = ath10k_hw_power_on(ar);
1073 	if (ret) {
1074 		ath10k_err(ar, "failed to power on device: %d\n", ret);
1075 		return ret;
1076 	}
1077 
1078 	ret = ath10k_snoc_wlan_enable(ar, fw_mode);
1079 	if (ret) {
1080 		ath10k_err(ar, "failed to enable wcn3990: %d\n", ret);
1081 		goto err_hw_power_off;
1082 	}
1083 
1084 	ath10k_ce_alloc_rri(ar);
1085 
1086 	ret = ath10k_snoc_init_pipes(ar);
1087 	if (ret) {
1088 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
1089 		goto err_free_rri;
1090 	}
1091 
1092 	return 0;
1093 
1094 err_free_rri:
1095 	ath10k_ce_free_rri(ar);
1096 	ath10k_snoc_wlan_disable(ar);
1097 
1098 err_hw_power_off:
1099 	ath10k_hw_power_off(ar);
1100 
1101 	return ret;
1102 }
1103 
1104 static int ath10k_snoc_hif_set_target_log_mode(struct ath10k *ar,
1105 					       u8 fw_log_mode)
1106 {
1107 	u8 fw_dbg_mode;
1108 
1109 	if (fw_log_mode)
1110 		fw_dbg_mode = ATH10K_ENABLE_FW_LOG_CE;
1111 	else
1112 		fw_dbg_mode = ATH10K_ENABLE_FW_LOG_DIAG;
1113 
1114 	return ath10k_qmi_set_fw_log_mode(ar, fw_dbg_mode);
1115 }
1116 
1117 #ifdef CONFIG_PM
1118 static int ath10k_snoc_hif_suspend(struct ath10k *ar)
1119 {
1120 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1121 	int ret;
1122 
1123 	if (!device_may_wakeup(ar->dev))
1124 		return -EPERM;
1125 
1126 	ret = enable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line);
1127 	if (ret) {
1128 		ath10k_err(ar, "failed to enable wakeup irq :%d\n", ret);
1129 		return ret;
1130 	}
1131 
1132 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device suspended\n");
1133 
1134 	return ret;
1135 }
1136 
1137 static int ath10k_snoc_hif_resume(struct ath10k *ar)
1138 {
1139 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1140 	int ret;
1141 
1142 	if (!device_may_wakeup(ar->dev))
1143 		return -EPERM;
1144 
1145 	ret = disable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line);
1146 	if (ret) {
1147 		ath10k_err(ar, "failed to disable wakeup irq: %d\n", ret);
1148 		return ret;
1149 	}
1150 
1151 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device resumed\n");
1152 
1153 	return ret;
1154 }
1155 #endif
1156 
1157 static const struct ath10k_hif_ops ath10k_snoc_hif_ops = {
1158 	.read32		= ath10k_snoc_read32,
1159 	.write32	= ath10k_snoc_write32,
1160 	.start		= ath10k_snoc_hif_start,
1161 	.stop		= ath10k_snoc_hif_stop,
1162 	.map_service_to_pipe	= ath10k_snoc_hif_map_service_to_pipe,
1163 	.get_default_pipe	= ath10k_snoc_hif_get_default_pipe,
1164 	.power_up		= ath10k_snoc_hif_power_up,
1165 	.power_down		= ath10k_snoc_hif_power_down,
1166 	.tx_sg			= ath10k_snoc_hif_tx_sg,
1167 	.send_complete_check	= ath10k_snoc_hif_send_complete_check,
1168 	.get_free_queue_number	= ath10k_snoc_hif_get_free_queue_number,
1169 	.get_target_info	= ath10k_snoc_hif_get_target_info,
1170 	.set_target_log_mode    = ath10k_snoc_hif_set_target_log_mode,
1171 
1172 #ifdef CONFIG_PM
1173 	.suspend                = ath10k_snoc_hif_suspend,
1174 	.resume                 = ath10k_snoc_hif_resume,
1175 #endif
1176 };
1177 
1178 static const struct ath10k_bus_ops ath10k_snoc_bus_ops = {
1179 	.read32		= ath10k_snoc_read32,
1180 	.write32	= ath10k_snoc_write32,
1181 };
1182 
1183 static int ath10k_snoc_get_ce_id_from_irq(struct ath10k *ar, int irq)
1184 {
1185 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1186 	int i;
1187 
1188 	for (i = 0; i < CE_COUNT_MAX; i++) {
1189 		if (ar_snoc->ce_irqs[i].irq_line == irq)
1190 			return i;
1191 	}
1192 	ath10k_err(ar, "No matching CE id for irq %d\n", irq);
1193 
1194 	return -EINVAL;
1195 }
1196 
1197 static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg)
1198 {
1199 	struct ath10k *ar = arg;
1200 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1201 	int ce_id = ath10k_snoc_get_ce_id_from_irq(ar, irq);
1202 
1203 	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) {
1204 		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
1205 			    ce_id);
1206 		return IRQ_HANDLED;
1207 	}
1208 
1209 	ath10k_ce_disable_interrupt(ar, ce_id);
1210 	set_bit(ce_id, ar_snoc->pending_ce_irqs);
1211 
1212 	napi_schedule(&ar->napi);
1213 
1214 	return IRQ_HANDLED;
1215 }
1216 
1217 static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget)
1218 {
1219 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
1220 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1221 	int done = 0;
1222 	int ce_id;
1223 
1224 	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) {
1225 		napi_complete(ctx);
1226 		return done;
1227 	}
1228 
1229 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1230 		if (test_and_clear_bit(ce_id, ar_snoc->pending_ce_irqs)) {
1231 			ath10k_ce_per_engine_service(ar, ce_id);
1232 			ath10k_ce_enable_interrupt(ar, ce_id);
1233 		}
1234 
1235 	done = ath10k_htt_txrx_compl_task(ar, budget);
1236 
1237 	if (done < budget)
1238 		napi_complete(ctx);
1239 
1240 	return done;
1241 }
1242 
1243 static void ath10k_snoc_init_napi(struct ath10k *ar)
1244 {
1245 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll,
1246 		       ATH10K_NAPI_BUDGET);
1247 }
1248 
1249 static int ath10k_snoc_request_irq(struct ath10k *ar)
1250 {
1251 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1252 	int irqflags = IRQF_TRIGGER_RISING;
1253 	int ret, id;
1254 
1255 	for (id = 0; id < CE_COUNT_MAX; id++) {
1256 		ret = request_irq(ar_snoc->ce_irqs[id].irq_line,
1257 				  ath10k_snoc_per_engine_handler,
1258 				  irqflags, ce_name[id], ar);
1259 		if (ret) {
1260 			ath10k_err(ar,
1261 				   "failed to register IRQ handler for CE %d: %d\n",
1262 				   id, ret);
1263 			goto err_irq;
1264 		}
1265 	}
1266 
1267 	return 0;
1268 
1269 err_irq:
1270 	for (id -= 1; id >= 0; id--)
1271 		free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
1272 
1273 	return ret;
1274 }
1275 
1276 static void ath10k_snoc_free_irq(struct ath10k *ar)
1277 {
1278 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1279 	int id;
1280 
1281 	for (id = 0; id < CE_COUNT_MAX; id++)
1282 		free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
1283 }
1284 
1285 static int ath10k_snoc_resource_init(struct ath10k *ar)
1286 {
1287 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1288 	struct platform_device *pdev;
1289 	struct resource *res;
1290 	int i, ret = 0;
1291 
1292 	pdev = ar_snoc->dev;
1293 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase");
1294 	if (!res) {
1295 		ath10k_err(ar, "Memory base not found in DT\n");
1296 		return -EINVAL;
1297 	}
1298 
1299 	ar_snoc->mem_pa = res->start;
1300 	ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa,
1301 				    resource_size(res));
1302 	if (!ar_snoc->mem) {
1303 		ath10k_err(ar, "Memory base ioremap failed with physical address %pa\n",
1304 			   &ar_snoc->mem_pa);
1305 		return -EINVAL;
1306 	}
1307 
1308 	for (i = 0; i < CE_COUNT; i++) {
1309 		res = platform_get_resource(ar_snoc->dev, IORESOURCE_IRQ, i);
1310 		if (!res) {
1311 			ath10k_err(ar, "failed to get IRQ%d\n", i);
1312 			ret = -ENODEV;
1313 			goto out;
1314 		}
1315 		ar_snoc->ce_irqs[i].irq_line = res->start;
1316 	}
1317 
1318 	ret = device_property_read_u32(&pdev->dev, "qcom,xo-cal-data",
1319 				       &ar_snoc->xo_cal_data);
1320 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc xo-cal-data return %d\n", ret);
1321 	if (ret == 0) {
1322 		ar_snoc->xo_cal_supported = true;
1323 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "xo cal data %x\n",
1324 			   ar_snoc->xo_cal_data);
1325 	}
1326 	ret = 0;
1327 
1328 out:
1329 	return ret;
1330 }
1331 
1332 static void ath10k_snoc_quirks_init(struct ath10k *ar)
1333 {
1334 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1335 	struct device *dev = &ar_snoc->dev->dev;
1336 
1337 	if (of_property_read_bool(dev->of_node, "qcom,snoc-host-cap-8bit-quirk"))
1338 		set_bit(ATH10K_SNOC_FLAG_8BIT_HOST_CAP_QUIRK, &ar_snoc->flags);
1339 }
1340 
1341 int ath10k_snoc_fw_indication(struct ath10k *ar, u64 type)
1342 {
1343 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1344 	struct ath10k_bus_params bus_params = {};
1345 	int ret;
1346 
1347 	if (test_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags))
1348 		return 0;
1349 
1350 	switch (type) {
1351 	case ATH10K_QMI_EVENT_FW_READY_IND:
1352 		if (test_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags)) {
1353 			ath10k_core_start_recovery(ar);
1354 			break;
1355 		}
1356 
1357 		bus_params.dev_type = ATH10K_DEV_TYPE_LL;
1358 		bus_params.chip_id = ar_snoc->target_info.soc_version;
1359 		ret = ath10k_core_register(ar, &bus_params);
1360 		if (ret) {
1361 			ath10k_err(ar, "Failed to register driver core: %d\n",
1362 				   ret);
1363 			return ret;
1364 		}
1365 		set_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags);
1366 		break;
1367 	case ATH10K_QMI_EVENT_FW_DOWN_IND:
1368 		set_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
1369 		set_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags);
1370 		break;
1371 	default:
1372 		ath10k_err(ar, "invalid fw indication: %llx\n", type);
1373 		return -EINVAL;
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 static int ath10k_snoc_setup_resource(struct ath10k *ar)
1380 {
1381 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1382 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1383 	struct ath10k_snoc_pipe *pipe;
1384 	int i, ret;
1385 
1386 	timer_setup(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, 0);
1387 	spin_lock_init(&ce->ce_lock);
1388 	for (i = 0; i < CE_COUNT; i++) {
1389 		pipe = &ar_snoc->pipe_info[i];
1390 		pipe->ce_hdl = &ce->ce_states[i];
1391 		pipe->pipe_num = i;
1392 		pipe->hif_ce_state = ar;
1393 
1394 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
1395 		if (ret) {
1396 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1397 				   i, ret);
1398 			return ret;
1399 		}
1400 
1401 		pipe->buf_sz = host_ce_config_wlan[i].src_sz_max;
1402 	}
1403 	ath10k_snoc_init_napi(ar);
1404 
1405 	return 0;
1406 }
1407 
1408 static void ath10k_snoc_release_resource(struct ath10k *ar)
1409 {
1410 	int i;
1411 
1412 	netif_napi_del(&ar->napi);
1413 	for (i = 0; i < CE_COUNT; i++)
1414 		ath10k_ce_free_pipe(ar, i);
1415 }
1416 
1417 static void ath10k_msa_dump_memory(struct ath10k *ar,
1418 				   struct ath10k_fw_crash_data *crash_data)
1419 {
1420 	const struct ath10k_hw_mem_layout *mem_layout;
1421 	const struct ath10k_mem_region *current_region;
1422 	struct ath10k_dump_ram_data_hdr *hdr;
1423 	size_t buf_len;
1424 	u8 *buf;
1425 
1426 	if (!crash_data || !crash_data->ramdump_buf)
1427 		return;
1428 
1429 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1430 	if (!mem_layout)
1431 		return;
1432 
1433 	current_region = &mem_layout->region_table.regions[0];
1434 
1435 	buf = crash_data->ramdump_buf;
1436 	buf_len = crash_data->ramdump_buf_len;
1437 	memset(buf, 0, buf_len);
1438 
1439 	/* Reserve space for the header. */
1440 	hdr = (void *)buf;
1441 	buf += sizeof(*hdr);
1442 	buf_len -= sizeof(*hdr);
1443 
1444 	hdr->region_type = cpu_to_le32(current_region->type);
1445 	hdr->start = cpu_to_le32((unsigned long)ar->msa.vaddr);
1446 	hdr->length = cpu_to_le32(ar->msa.mem_size);
1447 
1448 	if (current_region->len < ar->msa.mem_size) {
1449 		memcpy(buf, ar->msa.vaddr, current_region->len);
1450 		ath10k_warn(ar, "msa dump length is less than msa size %x, %x\n",
1451 			    current_region->len, ar->msa.mem_size);
1452 	} else {
1453 		memcpy(buf, ar->msa.vaddr, ar->msa.mem_size);
1454 	}
1455 }
1456 
1457 void ath10k_snoc_fw_crashed_dump(struct ath10k *ar)
1458 {
1459 	struct ath10k_fw_crash_data *crash_data;
1460 	char guid[UUID_STRING_LEN + 1];
1461 
1462 	mutex_lock(&ar->dump_mutex);
1463 
1464 	spin_lock_bh(&ar->data_lock);
1465 	ar->stats.fw_crash_counter++;
1466 	spin_unlock_bh(&ar->data_lock);
1467 
1468 	crash_data = ath10k_coredump_new(ar);
1469 
1470 	if (crash_data)
1471 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1472 	else
1473 		scnprintf(guid, sizeof(guid), "n/a");
1474 
1475 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1476 	ath10k_print_driver_info(ar);
1477 	ath10k_msa_dump_memory(ar, crash_data);
1478 	mutex_unlock(&ar->dump_mutex);
1479 }
1480 
1481 static int ath10k_snoc_modem_notify(struct notifier_block *nb, unsigned long action,
1482 				    void *data)
1483 {
1484 	struct ath10k_snoc *ar_snoc = container_of(nb, struct ath10k_snoc, nb);
1485 	struct ath10k *ar = ar_snoc->ar;
1486 	struct qcom_ssr_notify_data *notify_data = data;
1487 
1488 	switch (action) {
1489 	case QCOM_SSR_BEFORE_POWERUP:
1490 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem starting event\n");
1491 		clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1492 		break;
1493 
1494 	case QCOM_SSR_AFTER_POWERUP:
1495 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem running event\n");
1496 		break;
1497 
1498 	case QCOM_SSR_BEFORE_SHUTDOWN:
1499 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem %s event\n",
1500 			   notify_data->crashed ? "crashed" : "stopping");
1501 		if (!notify_data->crashed)
1502 			set_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1503 		else
1504 			clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1505 		break;
1506 
1507 	case QCOM_SSR_AFTER_SHUTDOWN:
1508 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem offline event\n");
1509 		break;
1510 
1511 	default:
1512 		ath10k_err(ar, "received unrecognized event %lu\n", action);
1513 		break;
1514 	}
1515 
1516 	return NOTIFY_OK;
1517 }
1518 
1519 static int ath10k_modem_init(struct ath10k *ar)
1520 {
1521 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1522 	void *notifier;
1523 	int ret;
1524 
1525 	ar_snoc->nb.notifier_call = ath10k_snoc_modem_notify;
1526 
1527 	notifier = qcom_register_ssr_notifier("mpss", &ar_snoc->nb);
1528 	if (IS_ERR(notifier)) {
1529 		ret = PTR_ERR(notifier);
1530 		ath10k_err(ar, "failed to initialize modem notifier: %d\n", ret);
1531 		return ret;
1532 	}
1533 
1534 	ar_snoc->notifier = notifier;
1535 
1536 	return 0;
1537 }
1538 
1539 static void ath10k_modem_deinit(struct ath10k *ar)
1540 {
1541 	int ret;
1542 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1543 
1544 	ret = qcom_unregister_ssr_notifier(ar_snoc->notifier, &ar_snoc->nb);
1545 	if (ret)
1546 		ath10k_err(ar, "error %d unregistering notifier\n", ret);
1547 }
1548 
1549 static int ath10k_setup_msa_resources(struct ath10k *ar, u32 msa_size)
1550 {
1551 	struct device *dev = ar->dev;
1552 	struct device_node *node;
1553 	struct resource r;
1554 	int ret;
1555 
1556 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
1557 	if (node) {
1558 		ret = of_address_to_resource(node, 0, &r);
1559 		if (ret) {
1560 			dev_err(dev, "failed to resolve msa fixed region\n");
1561 			return ret;
1562 		}
1563 		of_node_put(node);
1564 
1565 		ar->msa.paddr = r.start;
1566 		ar->msa.mem_size = resource_size(&r);
1567 		ar->msa.vaddr = devm_memremap(dev, ar->msa.paddr,
1568 					      ar->msa.mem_size,
1569 					      MEMREMAP_WT);
1570 		if (IS_ERR(ar->msa.vaddr)) {
1571 			dev_err(dev, "failed to map memory region: %pa\n",
1572 				&r.start);
1573 			return PTR_ERR(ar->msa.vaddr);
1574 		}
1575 	} else {
1576 		ar->msa.vaddr = dmam_alloc_coherent(dev, msa_size,
1577 						    &ar->msa.paddr,
1578 						    GFP_KERNEL);
1579 		if (!ar->msa.vaddr) {
1580 			ath10k_err(ar, "failed to allocate dma memory for msa region\n");
1581 			return -ENOMEM;
1582 		}
1583 		ar->msa.mem_size = msa_size;
1584 	}
1585 
1586 	ath10k_dbg(ar, ATH10K_DBG_QMI, "qmi msa.paddr: %pad , msa.vaddr: 0x%p\n",
1587 		   &ar->msa.paddr,
1588 		   ar->msa.vaddr);
1589 
1590 	return 0;
1591 }
1592 
1593 static int ath10k_fw_init(struct ath10k *ar)
1594 {
1595 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1596 	struct device *host_dev = &ar_snoc->dev->dev;
1597 	struct platform_device_info info;
1598 	struct iommu_domain *iommu_dom;
1599 	struct platform_device *pdev;
1600 	struct device_node *node;
1601 	int ret;
1602 
1603 	node = of_get_child_by_name(host_dev->of_node, "wifi-firmware");
1604 	if (!node) {
1605 		ar_snoc->use_tz = true;
1606 		return 0;
1607 	}
1608 
1609 	memset(&info, 0, sizeof(info));
1610 	info.fwnode = &node->fwnode;
1611 	info.parent = host_dev;
1612 	info.name = node->name;
1613 	info.dma_mask = DMA_BIT_MASK(32);
1614 
1615 	pdev = platform_device_register_full(&info);
1616 	if (IS_ERR(pdev)) {
1617 		of_node_put(node);
1618 		return PTR_ERR(pdev);
1619 	}
1620 
1621 	pdev->dev.of_node = node;
1622 
1623 	ret = of_dma_configure(&pdev->dev, node, true);
1624 	if (ret) {
1625 		ath10k_err(ar, "dma configure fail: %d\n", ret);
1626 		goto err_unregister;
1627 	}
1628 
1629 	ar_snoc->fw.dev = &pdev->dev;
1630 
1631 	iommu_dom = iommu_domain_alloc(&platform_bus_type);
1632 	if (!iommu_dom) {
1633 		ath10k_err(ar, "failed to allocate iommu domain\n");
1634 		ret = -ENOMEM;
1635 		goto err_unregister;
1636 	}
1637 
1638 	ret = iommu_attach_device(iommu_dom, ar_snoc->fw.dev);
1639 	if (ret) {
1640 		ath10k_err(ar, "could not attach device: %d\n", ret);
1641 		goto err_iommu_free;
1642 	}
1643 
1644 	ar_snoc->fw.iommu_domain = iommu_dom;
1645 	ar_snoc->fw.fw_start_addr = ar->msa.paddr;
1646 
1647 	ret = iommu_map(iommu_dom, ar_snoc->fw.fw_start_addr,
1648 			ar->msa.paddr, ar->msa.mem_size,
1649 			IOMMU_READ | IOMMU_WRITE);
1650 	if (ret) {
1651 		ath10k_err(ar, "failed to map firmware region: %d\n", ret);
1652 		goto err_iommu_detach;
1653 	}
1654 
1655 	of_node_put(node);
1656 
1657 	return 0;
1658 
1659 err_iommu_detach:
1660 	iommu_detach_device(iommu_dom, ar_snoc->fw.dev);
1661 
1662 err_iommu_free:
1663 	iommu_domain_free(iommu_dom);
1664 
1665 err_unregister:
1666 	platform_device_unregister(pdev);
1667 	of_node_put(node);
1668 
1669 	return ret;
1670 }
1671 
1672 static int ath10k_fw_deinit(struct ath10k *ar)
1673 {
1674 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1675 	const size_t mapped_size = ar_snoc->fw.mapped_mem_size;
1676 	struct iommu_domain *iommu;
1677 	size_t unmapped_size;
1678 
1679 	if (ar_snoc->use_tz)
1680 		return 0;
1681 
1682 	iommu = ar_snoc->fw.iommu_domain;
1683 
1684 	unmapped_size = iommu_unmap(iommu, ar_snoc->fw.fw_start_addr,
1685 				    mapped_size);
1686 	if (unmapped_size != mapped_size)
1687 		ath10k_err(ar, "failed to unmap firmware: %zu\n",
1688 			   unmapped_size);
1689 
1690 	iommu_detach_device(iommu, ar_snoc->fw.dev);
1691 	iommu_domain_free(iommu);
1692 
1693 	platform_device_unregister(to_platform_device(ar_snoc->fw.dev));
1694 
1695 	return 0;
1696 }
1697 
1698 static const struct of_device_id ath10k_snoc_dt_match[] = {
1699 	{ .compatible = "qcom,wcn3990-wifi",
1700 	 .data = &drv_priv,
1701 	},
1702 	{ }
1703 };
1704 MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match);
1705 
1706 static int ath10k_snoc_probe(struct platform_device *pdev)
1707 {
1708 	const struct ath10k_snoc_drv_priv *drv_data;
1709 	struct ath10k_snoc *ar_snoc;
1710 	struct device *dev;
1711 	struct ath10k *ar;
1712 	u32 msa_size;
1713 	int ret;
1714 	u32 i;
1715 
1716 	dev = &pdev->dev;
1717 	drv_data = device_get_match_data(dev);
1718 	if (!drv_data) {
1719 		dev_err(dev, "failed to find matching device tree id\n");
1720 		return -EINVAL;
1721 	}
1722 
1723 	ret = dma_set_mask_and_coherent(dev, drv_data->dma_mask);
1724 	if (ret) {
1725 		dev_err(dev, "failed to set dma mask: %d\n", ret);
1726 		return ret;
1727 	}
1728 
1729 	ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC,
1730 				drv_data->hw_rev, &ath10k_snoc_hif_ops);
1731 	if (!ar) {
1732 		dev_err(dev, "failed to allocate core\n");
1733 		return -ENOMEM;
1734 	}
1735 
1736 	ar_snoc = ath10k_snoc_priv(ar);
1737 	ar_snoc->dev = pdev;
1738 	platform_set_drvdata(pdev, ar);
1739 	ar_snoc->ar = ar;
1740 	ar_snoc->ce.bus_ops = &ath10k_snoc_bus_ops;
1741 	ar->ce_priv = &ar_snoc->ce;
1742 	msa_size = drv_data->msa_size;
1743 
1744 	ath10k_snoc_quirks_init(ar);
1745 
1746 	ret = ath10k_snoc_resource_init(ar);
1747 	if (ret) {
1748 		ath10k_warn(ar, "failed to initialize resource: %d\n", ret);
1749 		goto err_core_destroy;
1750 	}
1751 
1752 	ret = ath10k_snoc_setup_resource(ar);
1753 	if (ret) {
1754 		ath10k_warn(ar, "failed to setup resource: %d\n", ret);
1755 		goto err_core_destroy;
1756 	}
1757 	ret = ath10k_snoc_request_irq(ar);
1758 	if (ret) {
1759 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
1760 		goto err_release_resource;
1761 	}
1762 
1763 	ar_snoc->num_vregs = ARRAY_SIZE(ath10k_regulators);
1764 	ar_snoc->vregs = devm_kcalloc(&pdev->dev, ar_snoc->num_vregs,
1765 				      sizeof(*ar_snoc->vregs), GFP_KERNEL);
1766 	if (!ar_snoc->vregs) {
1767 		ret = -ENOMEM;
1768 		goto err_free_irq;
1769 	}
1770 	for (i = 0; i < ar_snoc->num_vregs; i++)
1771 		ar_snoc->vregs[i].supply = ath10k_regulators[i];
1772 
1773 	ret = devm_regulator_bulk_get(&pdev->dev, ar_snoc->num_vregs,
1774 				      ar_snoc->vregs);
1775 	if (ret < 0)
1776 		goto err_free_irq;
1777 
1778 	ar_snoc->num_clks = ARRAY_SIZE(ath10k_clocks);
1779 	ar_snoc->clks = devm_kcalloc(&pdev->dev, ar_snoc->num_clks,
1780 				     sizeof(*ar_snoc->clks), GFP_KERNEL);
1781 	if (!ar_snoc->clks) {
1782 		ret = -ENOMEM;
1783 		goto err_free_irq;
1784 	}
1785 
1786 	for (i = 0; i < ar_snoc->num_clks; i++)
1787 		ar_snoc->clks[i].id = ath10k_clocks[i];
1788 
1789 	ret = devm_clk_bulk_get_optional(&pdev->dev, ar_snoc->num_clks,
1790 					 ar_snoc->clks);
1791 	if (ret)
1792 		goto err_free_irq;
1793 
1794 	ret = ath10k_setup_msa_resources(ar, msa_size);
1795 	if (ret) {
1796 		ath10k_warn(ar, "failed to setup msa resources: %d\n", ret);
1797 		goto err_free_irq;
1798 	}
1799 
1800 	ret = ath10k_fw_init(ar);
1801 	if (ret) {
1802 		ath10k_err(ar, "failed to initialize firmware: %d\n", ret);
1803 		goto err_free_irq;
1804 	}
1805 
1806 	ret = ath10k_qmi_init(ar, msa_size);
1807 	if (ret) {
1808 		ath10k_warn(ar, "failed to register wlfw qmi client: %d\n", ret);
1809 		goto err_fw_deinit;
1810 	}
1811 
1812 	ret = ath10k_modem_init(ar);
1813 	if (ret)
1814 		goto err_qmi_deinit;
1815 
1816 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc probe\n");
1817 
1818 	return 0;
1819 
1820 err_qmi_deinit:
1821 	ath10k_qmi_deinit(ar);
1822 
1823 err_fw_deinit:
1824 	ath10k_fw_deinit(ar);
1825 
1826 err_free_irq:
1827 	ath10k_snoc_free_irq(ar);
1828 
1829 err_release_resource:
1830 	ath10k_snoc_release_resource(ar);
1831 
1832 err_core_destroy:
1833 	ath10k_core_destroy(ar);
1834 
1835 	return ret;
1836 }
1837 
1838 static int ath10k_snoc_free_resources(struct ath10k *ar)
1839 {
1840 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1841 
1842 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc free resources\n");
1843 
1844 	set_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags);
1845 
1846 	ath10k_core_unregister(ar);
1847 	ath10k_fw_deinit(ar);
1848 	ath10k_snoc_free_irq(ar);
1849 	ath10k_snoc_release_resource(ar);
1850 	ath10k_modem_deinit(ar);
1851 	ath10k_qmi_deinit(ar);
1852 	ath10k_core_destroy(ar);
1853 
1854 	return 0;
1855 }
1856 
1857 static int ath10k_snoc_remove(struct platform_device *pdev)
1858 {
1859 	struct ath10k *ar = platform_get_drvdata(pdev);
1860 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1861 
1862 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc remove\n");
1863 
1864 	reinit_completion(&ar->driver_recovery);
1865 
1866 	if (test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags))
1867 		wait_for_completion_timeout(&ar->driver_recovery, 3 * HZ);
1868 
1869 	ath10k_snoc_free_resources(ar);
1870 
1871 	return 0;
1872 }
1873 
1874 static void ath10k_snoc_shutdown(struct platform_device *pdev)
1875 {
1876 	struct ath10k *ar = platform_get_drvdata(pdev);
1877 
1878 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc shutdown\n");
1879 	ath10k_snoc_free_resources(ar);
1880 }
1881 
1882 static struct platform_driver ath10k_snoc_driver = {
1883 	.probe  = ath10k_snoc_probe,
1884 	.remove = ath10k_snoc_remove,
1885 	.shutdown =  ath10k_snoc_shutdown,
1886 	.driver = {
1887 		.name   = "ath10k_snoc",
1888 		.of_match_table = ath10k_snoc_dt_match,
1889 	},
1890 };
1891 module_platform_driver(ath10k_snoc_driver);
1892 
1893 MODULE_AUTHOR("Qualcomm");
1894 MODULE_LICENSE("Dual BSD/GPL");
1895 MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");
1896