1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 /* inlined helper functions */ 28 29 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 30 size_t len) 31 { 32 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 33 } 34 35 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 36 { 37 return (enum ath10k_htc_ep_id)pipe_id; 38 } 39 40 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 41 { 42 dev_kfree_skb(pkt->skb); 43 pkt->skb = NULL; 44 pkt->alloc_len = 0; 45 pkt->act_len = 0; 46 pkt->trailer_only = false; 47 } 48 49 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 50 size_t act_len, size_t full_len, 51 bool part_of_bundle, 52 bool last_in_bundle) 53 { 54 pkt->skb = dev_alloc_skb(full_len); 55 if (!pkt->skb) 56 return -ENOMEM; 57 58 pkt->act_len = act_len; 59 pkt->alloc_len = full_len; 60 pkt->part_of_bundle = part_of_bundle; 61 pkt->last_in_bundle = last_in_bundle; 62 pkt->trailer_only = false; 63 64 return 0; 65 } 66 67 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 68 { 69 bool trailer_only = false; 70 struct ath10k_htc_hdr *htc_hdr = 71 (struct ath10k_htc_hdr *)pkt->skb->data; 72 u16 len = __le16_to_cpu(htc_hdr->len); 73 74 if (len == htc_hdr->trailer_len) 75 trailer_only = true; 76 77 return trailer_only; 78 } 79 80 /* sdio/mmc functions */ 81 82 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 83 unsigned int address, 84 unsigned char val) 85 { 86 *arg = FIELD_PREP(BIT(31), write) | 87 FIELD_PREP(BIT(27), raw) | 88 FIELD_PREP(BIT(26), 1) | 89 FIELD_PREP(GENMASK(25, 9), address) | 90 FIELD_PREP(BIT(8), 1) | 91 FIELD_PREP(GENMASK(7, 0), val); 92 } 93 94 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 95 unsigned int address, 96 unsigned char byte) 97 { 98 struct mmc_command io_cmd; 99 100 memset(&io_cmd, 0, sizeof(io_cmd)); 101 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 102 io_cmd.opcode = SD_IO_RW_DIRECT; 103 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 104 105 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 106 } 107 108 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 109 unsigned int address, 110 unsigned char *byte) 111 { 112 struct mmc_command io_cmd; 113 int ret; 114 115 memset(&io_cmd, 0, sizeof(io_cmd)); 116 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 117 io_cmd.opcode = SD_IO_RW_DIRECT; 118 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 119 120 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 121 if (!ret) 122 *byte = io_cmd.resp[0]; 123 124 return ret; 125 } 126 127 static int ath10k_sdio_config(struct ath10k *ar) 128 { 129 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 130 struct sdio_func *func = ar_sdio->func; 131 unsigned char byte, asyncintdelay = 2; 132 int ret; 133 134 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 135 136 sdio_claim_host(func); 137 138 byte = 0; 139 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 140 SDIO_CCCR_DRIVE_STRENGTH, 141 &byte); 142 143 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 144 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 145 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 146 147 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 148 SDIO_CCCR_DRIVE_STRENGTH, 149 byte); 150 151 byte = 0; 152 ret = ath10k_sdio_func0_cmd52_rd_byte( 153 func->card, 154 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 155 &byte); 156 157 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 158 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 159 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 160 161 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 162 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 163 byte); 164 if (ret) { 165 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 166 goto out; 167 } 168 169 byte = 0; 170 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 171 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 172 &byte); 173 174 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 175 176 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 177 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 178 byte); 179 if (ret) { 180 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 181 ret); 182 goto out; 183 } 184 185 byte = 0; 186 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 187 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 188 &byte); 189 190 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 191 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 192 193 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 194 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 195 byte); 196 197 /* give us some time to enable, in ms */ 198 func->enable_timeout = 100; 199 200 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 201 if (ret) { 202 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 203 ar_sdio->mbox_info.block_size, ret); 204 goto out; 205 } 206 207 out: 208 sdio_release_host(func); 209 return ret; 210 } 211 212 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 213 { 214 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 215 struct sdio_func *func = ar_sdio->func; 216 int ret; 217 218 sdio_claim_host(func); 219 220 sdio_writel(func, val, addr, &ret); 221 if (ret) { 222 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 223 val, addr, ret); 224 goto out; 225 } 226 227 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 228 addr, val); 229 230 out: 231 sdio_release_host(func); 232 233 return ret; 234 } 235 236 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 237 { 238 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 239 struct sdio_func *func = ar_sdio->func; 240 __le32 *buf; 241 int ret; 242 243 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 244 if (!buf) 245 return -ENOMEM; 246 247 *buf = cpu_to_le32(val); 248 249 sdio_claim_host(func); 250 251 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 252 if (ret) { 253 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 254 val, addr, ret); 255 goto out; 256 } 257 258 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 259 addr, val); 260 261 out: 262 sdio_release_host(func); 263 264 kfree(buf); 265 266 return ret; 267 } 268 269 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 270 { 271 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 272 struct sdio_func *func = ar_sdio->func; 273 int ret; 274 275 sdio_claim_host(func); 276 *val = sdio_readl(func, addr, &ret); 277 if (ret) { 278 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 279 addr, ret); 280 goto out; 281 } 282 283 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 284 addr, *val); 285 286 out: 287 sdio_release_host(func); 288 289 return ret; 290 } 291 292 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 293 { 294 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 295 struct sdio_func *func = ar_sdio->func; 296 int ret; 297 298 sdio_claim_host(func); 299 300 ret = sdio_memcpy_fromio(func, buf, addr, len); 301 if (ret) { 302 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 303 addr, ret); 304 goto out; 305 } 306 307 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 308 addr, buf, len); 309 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 310 311 out: 312 sdio_release_host(func); 313 314 return ret; 315 } 316 317 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 318 { 319 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 320 struct sdio_func *func = ar_sdio->func; 321 int ret; 322 323 sdio_claim_host(func); 324 325 /* For some reason toio() doesn't have const for the buffer, need 326 * an ugly hack to workaround that. 327 */ 328 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 329 if (ret) { 330 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 331 addr, ret); 332 goto out; 333 } 334 335 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 336 addr, buf, len); 337 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 338 339 out: 340 sdio_release_host(func); 341 342 return ret; 343 } 344 345 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 346 { 347 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 348 struct sdio_func *func = ar_sdio->func; 349 int ret; 350 351 sdio_claim_host(func); 352 353 len = round_down(len, ar_sdio->mbox_info.block_size); 354 355 ret = sdio_readsb(func, buf, addr, len); 356 if (ret) { 357 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 358 addr, ret); 359 goto out; 360 } 361 362 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 363 addr, buf, len); 364 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 365 366 out: 367 sdio_release_host(func); 368 369 return ret; 370 } 371 372 /* HIF mbox functions */ 373 374 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 375 struct ath10k_sdio_rx_data *pkt, 376 u32 *lookaheads, 377 int *n_lookaheads) 378 { 379 struct ath10k_htc *htc = &ar->htc; 380 struct sk_buff *skb = pkt->skb; 381 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 382 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 383 enum ath10k_htc_ep_id eid; 384 u16 payload_len; 385 u8 *trailer; 386 int ret; 387 388 payload_len = le16_to_cpu(htc_hdr->len); 389 skb->len = payload_len + sizeof(struct ath10k_htc_hdr); 390 391 if (trailer_present) { 392 trailer = skb->data + sizeof(*htc_hdr) + 393 payload_len - htc_hdr->trailer_len; 394 395 eid = pipe_id_to_eid(htc_hdr->eid); 396 397 ret = ath10k_htc_process_trailer(htc, 398 trailer, 399 htc_hdr->trailer_len, 400 eid, 401 lookaheads, 402 n_lookaheads); 403 if (ret) 404 return ret; 405 406 if (is_trailer_only_msg(pkt)) 407 pkt->trailer_only = true; 408 409 skb_trim(skb, skb->len - htc_hdr->trailer_len); 410 } 411 412 skb_pull(skb, sizeof(*htc_hdr)); 413 414 return 0; 415 } 416 417 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 418 u32 lookaheads[], 419 int *n_lookahead) 420 { 421 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 422 struct ath10k_htc *htc = &ar->htc; 423 struct ath10k_sdio_rx_data *pkt; 424 struct ath10k_htc_ep *ep; 425 enum ath10k_htc_ep_id id; 426 int ret, i, *n_lookahead_local; 427 u32 *lookaheads_local; 428 int lookahead_idx = 0; 429 430 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 431 lookaheads_local = lookaheads; 432 n_lookahead_local = n_lookahead; 433 434 id = ((struct ath10k_htc_hdr *) 435 &lookaheads[lookahead_idx++])->eid; 436 437 if (id >= ATH10K_HTC_EP_COUNT) { 438 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 439 id); 440 ret = -ENOMEM; 441 goto out; 442 } 443 444 ep = &htc->endpoint[id]; 445 446 if (ep->service_id == 0) { 447 ath10k_warn(ar, "ep %d is not connected\n", id); 448 ret = -ENOMEM; 449 goto out; 450 } 451 452 pkt = &ar_sdio->rx_pkts[i]; 453 454 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 455 /* Only read lookahead's from RX trailers 456 * for the last packet in a bundle. 457 */ 458 lookahead_idx--; 459 lookaheads_local = NULL; 460 n_lookahead_local = NULL; 461 } 462 463 ret = ath10k_sdio_mbox_rx_process_packet(ar, 464 pkt, 465 lookaheads_local, 466 n_lookahead_local); 467 if (ret) 468 goto out; 469 470 if (!pkt->trailer_only) 471 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 472 else 473 kfree_skb(pkt->skb); 474 475 /* The RX complete handler now owns the skb...*/ 476 pkt->skb = NULL; 477 pkt->alloc_len = 0; 478 } 479 480 ret = 0; 481 482 out: 483 /* Free all packets that was not passed on to the RX completion 484 * handler... 485 */ 486 for (; i < ar_sdio->n_rx_pkts; i++) 487 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 488 489 return ret; 490 } 491 492 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 493 struct ath10k_sdio_rx_data *rx_pkts, 494 struct ath10k_htc_hdr *htc_hdr, 495 size_t full_len, size_t act_len, 496 size_t *bndl_cnt) 497 { 498 int ret, i; 499 500 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 501 502 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) { 503 ath10k_warn(ar, 504 "HTC bundle length %u exceeds maximum %u\n", 505 le16_to_cpu(htc_hdr->len), 506 HTC_HOST_MAX_MSG_PER_RX_BUNDLE); 507 return -ENOMEM; 508 } 509 510 /* Allocate bndl_cnt extra skb's for the bundle. 511 * The package containing the 512 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 513 * in bndl_cnt. The skb for that packet will be 514 * allocated separately. 515 */ 516 for (i = 0; i < *bndl_cnt; i++) { 517 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 518 act_len, 519 full_len, 520 true, 521 false); 522 if (ret) 523 return ret; 524 } 525 526 return 0; 527 } 528 529 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 530 u32 lookaheads[], int n_lookaheads) 531 { 532 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 533 struct ath10k_htc_hdr *htc_hdr; 534 size_t full_len, act_len; 535 bool last_in_bundle; 536 int ret, i; 537 538 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 539 ath10k_warn(ar, 540 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 541 n_lookaheads, 542 ATH10K_SDIO_MAX_RX_MSGS); 543 ret = -ENOMEM; 544 goto err; 545 } 546 547 for (i = 0; i < n_lookaheads; i++) { 548 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 549 last_in_bundle = false; 550 551 if (le16_to_cpu(htc_hdr->len) > 552 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 553 ath10k_warn(ar, 554 "payload length %d exceeds max htc length: %zu\n", 555 le16_to_cpu(htc_hdr->len), 556 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 557 ret = -ENOMEM; 558 goto err; 559 } 560 561 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 562 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 563 564 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 565 ath10k_warn(ar, 566 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 567 htc_hdr->eid, htc_hdr->flags, 568 le16_to_cpu(htc_hdr->len)); 569 ret = -EINVAL; 570 goto err; 571 } 572 573 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 574 /* HTC header indicates that every packet to follow 575 * has the same padded length so that it can be 576 * optimally fetched as a full bundle. 577 */ 578 size_t bndl_cnt; 579 580 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 581 &ar_sdio->rx_pkts[i], 582 htc_hdr, 583 full_len, 584 act_len, 585 &bndl_cnt); 586 587 if (ret) { 588 ath10k_warn(ar, "alloc_bundle error %d\n", ret); 589 goto err; 590 } 591 592 n_lookaheads += bndl_cnt; 593 i += bndl_cnt; 594 /*Next buffer will be the last in the bundle */ 595 last_in_bundle = true; 596 } 597 598 /* Allocate skb for packet. If the packet had the 599 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 600 * packet skb's have been allocated in the previous step. 601 */ 602 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 603 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 604 605 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 606 act_len, 607 full_len, 608 last_in_bundle, 609 last_in_bundle); 610 if (ret) { 611 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 612 goto err; 613 } 614 } 615 616 ar_sdio->n_rx_pkts = i; 617 618 return 0; 619 620 err: 621 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 622 if (!ar_sdio->rx_pkts[i].alloc_len) 623 break; 624 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 625 } 626 627 return ret; 628 } 629 630 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 631 struct ath10k_sdio_rx_data *pkt) 632 { 633 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 634 struct sk_buff *skb = pkt->skb; 635 int ret; 636 637 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 638 skb->data, pkt->alloc_len); 639 pkt->status = ret; 640 if (!ret) 641 skb_put(skb, pkt->act_len); 642 643 return ret; 644 } 645 646 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 647 { 648 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 649 int ret, i; 650 651 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 652 ret = ath10k_sdio_mbox_rx_packet(ar, 653 &ar_sdio->rx_pkts[i]); 654 if (ret) 655 goto err; 656 } 657 658 return 0; 659 660 err: 661 /* Free all packets that was not successfully fetched. */ 662 for (; i < ar_sdio->n_rx_pkts; i++) 663 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 664 665 return ret; 666 } 667 668 /* This is the timeout for mailbox processing done in the sdio irq 669 * handler. The timeout is deliberately set quite high since SDIO dump logs 670 * over serial port can/will add a substantial overhead to the processing 671 * (if enabled). 672 */ 673 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 674 675 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 676 u32 msg_lookahead, bool *done) 677 { 678 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 679 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 680 int n_lookaheads = 1; 681 unsigned long timeout; 682 int ret; 683 684 *done = true; 685 686 /* Copy the lookahead obtained from the HTC register table into our 687 * temp array as a start value. 688 */ 689 lookaheads[0] = msg_lookahead; 690 691 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 692 do { 693 /* Try to allocate as many HTC RX packets indicated by 694 * n_lookaheads. 695 */ 696 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 697 n_lookaheads); 698 if (ret) 699 break; 700 701 if (ar_sdio->n_rx_pkts >= 2) 702 /* A recv bundle was detected, force IRQ status 703 * re-check again. 704 */ 705 *done = false; 706 707 ret = ath10k_sdio_mbox_rx_fetch(ar); 708 709 /* Process fetched packets. This will potentially update 710 * n_lookaheads depending on if the packets contain lookahead 711 * reports. 712 */ 713 n_lookaheads = 0; 714 ret = ath10k_sdio_mbox_rx_process_packets(ar, 715 lookaheads, 716 &n_lookaheads); 717 718 if (!n_lookaheads || ret) 719 break; 720 721 /* For SYNCH processing, if we get here, we are running 722 * through the loop again due to updated lookaheads. Set 723 * flag that we should re-check IRQ status registers again 724 * before leaving IRQ processing, this can net better 725 * performance in high throughput situations. 726 */ 727 *done = false; 728 } while (time_before(jiffies, timeout)); 729 730 if (ret && (ret != -ECANCELED)) 731 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 732 ret); 733 734 return ret; 735 } 736 737 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 738 { 739 u32 val; 740 int ret; 741 742 /* TODO: Add firmware crash handling */ 743 ath10k_warn(ar, "firmware crashed\n"); 744 745 /* read counter to clear the interrupt, the debug error interrupt is 746 * counter 0. 747 */ 748 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 749 if (ret) 750 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 751 752 return ret; 753 } 754 755 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 756 { 757 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 758 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 759 u8 counter_int_status; 760 int ret; 761 762 mutex_lock(&irq_data->mtx); 763 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 764 irq_data->irq_en_reg->cntr_int_status_en; 765 766 /* NOTE: other modules like GMBOX may use the counter interrupt for 767 * credit flow control on other counters, we only need to check for 768 * the debug assertion counter interrupt. 769 */ 770 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 771 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 772 else 773 ret = 0; 774 775 mutex_unlock(&irq_data->mtx); 776 777 return ret; 778 } 779 780 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 781 { 782 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 783 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 784 u8 error_int_status; 785 int ret; 786 787 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 788 789 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 790 if (!error_int_status) { 791 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 792 error_int_status); 793 return -EIO; 794 } 795 796 ath10k_dbg(ar, ATH10K_DBG_SDIO, 797 "sdio error_int_status 0x%x\n", error_int_status); 798 799 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 800 error_int_status)) 801 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 802 803 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 804 error_int_status)) 805 ath10k_warn(ar, "rx underflow interrupt error\n"); 806 807 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 808 error_int_status)) 809 ath10k_warn(ar, "tx overflow interrupt error\n"); 810 811 /* Clear the interrupt */ 812 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 813 814 /* set W1C value to clear the interrupt, this hits the register first */ 815 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 816 error_int_status); 817 if (ret) { 818 ath10k_warn(ar, "unable to write to error int status address: %d\n", 819 ret); 820 return ret; 821 } 822 823 return 0; 824 } 825 826 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 827 { 828 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 829 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 830 u8 cpu_int_status; 831 int ret; 832 833 mutex_lock(&irq_data->mtx); 834 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 835 irq_data->irq_en_reg->cpu_int_status_en; 836 if (!cpu_int_status) { 837 ath10k_warn(ar, "CPU interrupt status is zero\n"); 838 ret = -EIO; 839 goto out; 840 } 841 842 /* Clear the interrupt */ 843 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 844 845 /* Set up the register transfer buffer to hit the register 4 times, 846 * this is done to make the access 4-byte aligned to mitigate issues 847 * with host bus interconnects that restrict bus transfer lengths to 848 * be a multiple of 4-bytes. 849 * 850 * Set W1C value to clear the interrupt, this hits the register first. 851 */ 852 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 853 cpu_int_status); 854 if (ret) { 855 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 856 ret); 857 goto out; 858 } 859 860 out: 861 mutex_unlock(&irq_data->mtx); 862 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) { 863 ath10k_err(ar, "firmware crashed!\n"); 864 queue_work(ar->workqueue, &ar->restart_work); 865 } 866 return ret; 867 } 868 869 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 870 u8 *host_int_status, 871 u32 *lookahead) 872 { 873 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 874 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 875 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 876 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 877 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 878 int ret; 879 880 mutex_lock(&irq_data->mtx); 881 882 *lookahead = 0; 883 *host_int_status = 0; 884 885 /* int_status_en is supposed to be non zero, otherwise interrupts 886 * shouldn't be enabled. There is however a short time frame during 887 * initialization between the irq register and int_status_en init 888 * where this can happen. 889 * We silently ignore this condition. 890 */ 891 if (!irq_en_reg->int_status_en) { 892 ret = 0; 893 goto out; 894 } 895 896 /* Read the first sizeof(struct ath10k_irq_proc_registers) 897 * bytes of the HTC register table. This 898 * will yield us the value of different int status 899 * registers and the lookahead registers. 900 */ 901 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 902 irq_proc_reg, sizeof(*irq_proc_reg)); 903 if (ret) 904 goto out; 905 906 /* Update only those registers that are enabled */ 907 *host_int_status = irq_proc_reg->host_int_status & 908 irq_en_reg->int_status_en; 909 910 /* Look at mbox status */ 911 if (!(*host_int_status & htc_mbox)) { 912 *lookahead = 0; 913 ret = 0; 914 goto out; 915 } 916 917 /* Mask out pending mbox value, we use look ahead as 918 * the real flag for mbox processing. 919 */ 920 *host_int_status &= ~htc_mbox; 921 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 922 *lookahead = le32_to_cpu( 923 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 924 if (!*lookahead) 925 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 926 } 927 928 out: 929 mutex_unlock(&irq_data->mtx); 930 return ret; 931 } 932 933 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 934 bool *done) 935 { 936 u8 host_int_status; 937 u32 lookahead; 938 int ret; 939 940 /* NOTE: HIF implementation guarantees that the context of this 941 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 942 * sleep or call any API that can block or switch thread/task 943 * contexts. This is a fully schedulable context. 944 */ 945 946 ret = ath10k_sdio_mbox_read_int_status(ar, 947 &host_int_status, 948 &lookahead); 949 if (ret) { 950 *done = true; 951 goto out; 952 } 953 954 if (!host_int_status && !lookahead) { 955 ret = 0; 956 *done = true; 957 goto out; 958 } 959 960 if (lookahead) { 961 ath10k_dbg(ar, ATH10K_DBG_SDIO, 962 "sdio pending mailbox msg lookahead 0x%08x\n", 963 lookahead); 964 965 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 966 lookahead, 967 done); 968 if (ret) 969 goto out; 970 } 971 972 /* now, handle the rest of the interrupts */ 973 ath10k_dbg(ar, ATH10K_DBG_SDIO, 974 "sdio host_int_status 0x%x\n", host_int_status); 975 976 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 977 /* CPU Interrupt */ 978 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 979 if (ret) 980 goto out; 981 } 982 983 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 984 /* Error Interrupt */ 985 ret = ath10k_sdio_mbox_proc_err_intr(ar); 986 if (ret) 987 goto out; 988 } 989 990 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 991 /* Counter Interrupt */ 992 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 993 994 ret = 0; 995 996 out: 997 /* An optimization to bypass reading the IRQ status registers 998 * unecessarily which can re-wake the target, if upper layers 999 * determine that we are in a low-throughput mode, we can rely on 1000 * taking another interrupt rather than re-checking the status 1001 * registers which can re-wake the target. 1002 * 1003 * NOTE : for host interfaces that makes use of detecting pending 1004 * mbox messages at hif can not use this optimization due to 1005 * possible side effects, SPI requires the host to drain all 1006 * messages from the mailbox before exiting the ISR routine. 1007 */ 1008 1009 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1010 "sdio pending irqs done %d status %d", 1011 *done, ret); 1012 1013 return ret; 1014 } 1015 1016 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1017 { 1018 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1019 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1020 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1021 1022 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1023 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1024 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1025 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1026 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1027 1028 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1029 1030 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1031 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1032 switch (dev_id_base) { 1033 case QCA_MANUFACTURER_ID_AR6005_BASE: 1034 if (dev_id_chiprev < 4) 1035 mbox_info->ext_info[0].htc_ext_sz = 1036 ATH10K_HIF_MBOX0_EXT_WIDTH; 1037 else 1038 /* from QCA6174 2.0(0x504), the width has been extended 1039 * to 56K 1040 */ 1041 mbox_info->ext_info[0].htc_ext_sz = 1042 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1043 break; 1044 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1045 mbox_info->ext_info[0].htc_ext_sz = 1046 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1047 break; 1048 default: 1049 mbox_info->ext_info[0].htc_ext_sz = 1050 ATH10K_HIF_MBOX0_EXT_WIDTH; 1051 } 1052 1053 mbox_info->ext_info[1].htc_ext_addr = 1054 mbox_info->ext_info[0].htc_ext_addr + 1055 mbox_info->ext_info[0].htc_ext_sz + 1056 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1057 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1058 } 1059 1060 /* BMI functions */ 1061 1062 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1063 { 1064 u32 addr, cmd_credits; 1065 unsigned long timeout; 1066 int ret; 1067 1068 /* Read the counter register to get the command credits */ 1069 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1070 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1071 cmd_credits = 0; 1072 1073 while (time_before(jiffies, timeout) && !cmd_credits) { 1074 /* Hit the credit counter with a 4-byte access, the first byte 1075 * read will hit the counter and cause a decrement, while the 1076 * remaining 3 bytes has no effect. The rationale behind this 1077 * is to make all HIF accesses 4-byte aligned. 1078 */ 1079 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1080 if (ret) { 1081 ath10k_warn(ar, 1082 "unable to decrement the command credit count register: %d\n", 1083 ret); 1084 return ret; 1085 } 1086 1087 /* The counter is only 8 bits. 1088 * Ignore anything in the upper 3 bytes 1089 */ 1090 cmd_credits &= 0xFF; 1091 } 1092 1093 if (!cmd_credits) { 1094 ath10k_warn(ar, "bmi communication timeout\n"); 1095 return -ETIMEDOUT; 1096 } 1097 1098 return 0; 1099 } 1100 1101 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1102 { 1103 unsigned long timeout; 1104 u32 rx_word; 1105 int ret; 1106 1107 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1108 rx_word = 0; 1109 1110 while ((time_before(jiffies, timeout)) && !rx_word) { 1111 ret = ath10k_sdio_read32(ar, 1112 MBOX_HOST_INT_STATUS_ADDRESS, 1113 &rx_word); 1114 if (ret) { 1115 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1116 return ret; 1117 } 1118 1119 /* all we really want is one bit */ 1120 rx_word &= 1; 1121 } 1122 1123 if (!rx_word) { 1124 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1125 return -EINVAL; 1126 } 1127 1128 return ret; 1129 } 1130 1131 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1132 void *req, u32 req_len, 1133 void *resp, u32 *resp_len) 1134 { 1135 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1136 u32 addr; 1137 int ret; 1138 1139 if (req) { 1140 ret = ath10k_sdio_bmi_credits(ar); 1141 if (ret) 1142 return ret; 1143 1144 addr = ar_sdio->mbox_info.htc_addr; 1145 1146 memcpy(ar_sdio->bmi_buf, req, req_len); 1147 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1148 if (ret) { 1149 ath10k_warn(ar, 1150 "unable to send the bmi data to the device: %d\n", 1151 ret); 1152 return ret; 1153 } 1154 } 1155 1156 if (!resp || !resp_len) 1157 /* No response expected */ 1158 return 0; 1159 1160 /* During normal bootup, small reads may be required. 1161 * Rather than issue an HIF Read and then wait as the Target 1162 * adds successive bytes to the FIFO, we wait here until 1163 * we know that response data is available. 1164 * 1165 * This allows us to cleanly timeout on an unexpected 1166 * Target failure rather than risk problems at the HIF level. 1167 * In particular, this avoids SDIO timeouts and possibly garbage 1168 * data on some host controllers. And on an interconnect 1169 * such as Compact Flash (as well as some SDIO masters) which 1170 * does not provide any indication on data timeout, it avoids 1171 * a potential hang or garbage response. 1172 * 1173 * Synchronization is more difficult for reads larger than the 1174 * size of the MBOX FIFO (128B), because the Target is unable 1175 * to push the 129th byte of data until AFTER the Host posts an 1176 * HIF Read and removes some FIFO data. So for large reads the 1177 * Host proceeds to post an HIF Read BEFORE all the data is 1178 * actually available to read. Fortunately, large BMI reads do 1179 * not occur in practice -- they're supported for debug/development. 1180 * 1181 * So Host/Target BMI synchronization is divided into these cases: 1182 * CASE 1: length < 4 1183 * Should not happen 1184 * 1185 * CASE 2: 4 <= length <= 128 1186 * Wait for first 4 bytes to be in FIFO 1187 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1188 * a BMI command credit, which indicates that the ENTIRE 1189 * response is available in the the FIFO 1190 * 1191 * CASE 3: length > 128 1192 * Wait for the first 4 bytes to be in FIFO 1193 * 1194 * For most uses, a small timeout should be sufficient and we will 1195 * usually see a response quickly; but there may be some unusual 1196 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1197 * For now, we use an unbounded busy loop while waiting for 1198 * BMI_EXECUTE. 1199 * 1200 * If BMI_EXECUTE ever needs to support longer-latency execution, 1201 * especially in production, this code needs to be enhanced to sleep 1202 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1203 * a function of Host processor speed. 1204 */ 1205 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1206 if (ret) 1207 return ret; 1208 1209 /* We always read from the start of the mbox address */ 1210 addr = ar_sdio->mbox_info.htc_addr; 1211 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1212 if (ret) { 1213 ath10k_warn(ar, 1214 "unable to read the bmi data from the device: %d\n", 1215 ret); 1216 return ret; 1217 } 1218 1219 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1220 1221 return 0; 1222 } 1223 1224 /* sdio async handling functions */ 1225 1226 static struct ath10k_sdio_bus_request 1227 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1228 { 1229 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1230 struct ath10k_sdio_bus_request *bus_req; 1231 1232 spin_lock_bh(&ar_sdio->lock); 1233 1234 if (list_empty(&ar_sdio->bus_req_freeq)) { 1235 bus_req = NULL; 1236 goto out; 1237 } 1238 1239 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1240 struct ath10k_sdio_bus_request, list); 1241 list_del(&bus_req->list); 1242 1243 out: 1244 spin_unlock_bh(&ar_sdio->lock); 1245 return bus_req; 1246 } 1247 1248 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1249 struct ath10k_sdio_bus_request *bus_req) 1250 { 1251 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1252 1253 memset(bus_req, 0, sizeof(*bus_req)); 1254 1255 spin_lock_bh(&ar_sdio->lock); 1256 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1257 spin_unlock_bh(&ar_sdio->lock); 1258 } 1259 1260 static void __ath10k_sdio_write_async(struct ath10k *ar, 1261 struct ath10k_sdio_bus_request *req) 1262 { 1263 struct ath10k_htc_ep *ep; 1264 struct sk_buff *skb; 1265 int ret; 1266 1267 skb = req->skb; 1268 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1269 if (ret) 1270 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1271 req->address, ret); 1272 1273 if (req->htc_msg) { 1274 ep = &ar->htc.endpoint[req->eid]; 1275 ath10k_htc_notify_tx_completion(ep, skb); 1276 } else if (req->comp) { 1277 complete(req->comp); 1278 } 1279 1280 ath10k_sdio_free_bus_req(ar, req); 1281 } 1282 1283 static void ath10k_sdio_write_async_work(struct work_struct *work) 1284 { 1285 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1286 wr_async_work); 1287 struct ath10k *ar = ar_sdio->ar; 1288 struct ath10k_sdio_bus_request *req, *tmp_req; 1289 1290 spin_lock_bh(&ar_sdio->wr_async_lock); 1291 1292 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1293 list_del(&req->list); 1294 spin_unlock_bh(&ar_sdio->wr_async_lock); 1295 __ath10k_sdio_write_async(ar, req); 1296 spin_lock_bh(&ar_sdio->wr_async_lock); 1297 } 1298 1299 spin_unlock_bh(&ar_sdio->wr_async_lock); 1300 } 1301 1302 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1303 struct sk_buff *skb, 1304 struct completion *comp, 1305 bool htc_msg, enum ath10k_htc_ep_id eid) 1306 { 1307 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1308 struct ath10k_sdio_bus_request *bus_req; 1309 1310 /* Allocate a bus request for the message and queue it on the 1311 * SDIO workqueue. 1312 */ 1313 bus_req = ath10k_sdio_alloc_busreq(ar); 1314 if (!bus_req) { 1315 ath10k_warn(ar, 1316 "unable to allocate bus request for async request\n"); 1317 return -ENOMEM; 1318 } 1319 1320 bus_req->skb = skb; 1321 bus_req->eid = eid; 1322 bus_req->address = addr; 1323 bus_req->htc_msg = htc_msg; 1324 bus_req->comp = comp; 1325 1326 spin_lock_bh(&ar_sdio->wr_async_lock); 1327 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1328 spin_unlock_bh(&ar_sdio->wr_async_lock); 1329 1330 return 0; 1331 } 1332 1333 /* IRQ handler */ 1334 1335 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1336 { 1337 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1338 struct ath10k *ar = ar_sdio->ar; 1339 unsigned long timeout; 1340 bool done = false; 1341 int ret; 1342 1343 /* Release the host during interrupts so we can pick it back up when 1344 * we process commands. 1345 */ 1346 sdio_release_host(ar_sdio->func); 1347 1348 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1349 do { 1350 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1351 if (ret) 1352 break; 1353 } while (time_before(jiffies, timeout) && !done); 1354 1355 ath10k_mac_tx_push_pending(ar); 1356 1357 sdio_claim_host(ar_sdio->func); 1358 1359 if (ret && ret != -ECANCELED) 1360 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1361 ret); 1362 } 1363 1364 /* sdio HIF functions */ 1365 1366 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1367 { 1368 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1369 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1370 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1371 int ret; 1372 1373 mutex_lock(&irq_data->mtx); 1374 1375 memset(regs, 0, sizeof(*regs)); 1376 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1377 ®s->int_status_en, sizeof(*regs)); 1378 if (ret) 1379 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1380 1381 mutex_unlock(&irq_data->mtx); 1382 1383 return ret; 1384 } 1385 1386 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1387 enum ath10k_firmware_mode fw_mode) 1388 { 1389 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1390 struct sdio_func *func = ar_sdio->func; 1391 int ret; 1392 1393 if (!ar_sdio->is_disabled) 1394 return 0; 1395 1396 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1397 1398 ret = ath10k_sdio_config(ar); 1399 if (ret) { 1400 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1401 return ret; 1402 } 1403 1404 sdio_claim_host(func); 1405 1406 ret = sdio_enable_func(func); 1407 if (ret) { 1408 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1409 sdio_release_host(func); 1410 return ret; 1411 } 1412 1413 sdio_release_host(func); 1414 1415 /* Wait for hardware to initialise. It should take a lot less than 1416 * 20 ms but let's be conservative here. 1417 */ 1418 msleep(20); 1419 1420 ar_sdio->is_disabled = false; 1421 1422 ret = ath10k_sdio_hif_disable_intrs(ar); 1423 if (ret) 1424 return ret; 1425 1426 return 0; 1427 } 1428 1429 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1430 { 1431 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1432 int ret; 1433 1434 if (ar_sdio->is_disabled) 1435 return; 1436 1437 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1438 1439 /* Disable the card */ 1440 sdio_claim_host(ar_sdio->func); 1441 1442 ret = sdio_disable_func(ar_sdio->func); 1443 if (ret) { 1444 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1445 sdio_release_host(ar_sdio->func); 1446 return; 1447 } 1448 1449 ret = mmc_hw_reset(ar_sdio->func->card->host); 1450 if (ret) 1451 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1452 1453 sdio_release_host(ar_sdio->func); 1454 1455 ar_sdio->is_disabled = true; 1456 } 1457 1458 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1459 struct ath10k_hif_sg_item *items, int n_items) 1460 { 1461 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1462 enum ath10k_htc_ep_id eid; 1463 struct sk_buff *skb; 1464 int ret, i; 1465 1466 eid = pipe_id_to_eid(pipe_id); 1467 1468 for (i = 0; i < n_items; i++) { 1469 size_t padded_len; 1470 u32 address; 1471 1472 skb = items[i].transfer_context; 1473 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1474 skb->len); 1475 skb_trim(skb, padded_len); 1476 1477 /* Write TX data to the end of the mbox address space */ 1478 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1479 skb->len; 1480 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1481 NULL, true, eid); 1482 if (ret) 1483 return ret; 1484 } 1485 1486 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1487 1488 return 0; 1489 } 1490 1491 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1492 { 1493 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1494 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1495 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1496 int ret; 1497 1498 mutex_lock(&irq_data->mtx); 1499 1500 /* Enable all but CPU interrupts */ 1501 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1502 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1503 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1504 1505 /* NOTE: There are some cases where HIF can do detection of 1506 * pending mbox messages which is disabled now. 1507 */ 1508 regs->int_status_en |= 1509 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1510 1511 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1512 * #0 is used for report assertion from target 1513 */ 1514 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1515 1516 /* Set up the Error Interrupt status Register */ 1517 regs->err_int_status_en = 1518 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1519 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1520 1521 /* Enable Counter interrupt status register to get fatal errors for 1522 * debugging. 1523 */ 1524 regs->cntr_int_status_en = 1525 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1526 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1527 1528 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1529 ®s->int_status_en, sizeof(*regs)); 1530 if (ret) 1531 ath10k_warn(ar, 1532 "failed to update mbox interrupt status register : %d\n", 1533 ret); 1534 1535 mutex_unlock(&irq_data->mtx); 1536 return ret; 1537 } 1538 1539 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1540 { 1541 u32 val; 1542 int ret; 1543 1544 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1545 if (ret) { 1546 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1547 ret); 1548 return ret; 1549 } 1550 1551 if (enable_sleep) 1552 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1553 else 1554 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1555 1556 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1557 if (ret) { 1558 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1559 ret); 1560 return ret; 1561 } 1562 1563 return 0; 1564 } 1565 1566 /* HIF diagnostics */ 1567 1568 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1569 size_t buf_len) 1570 { 1571 int ret; 1572 1573 /* set window register to start read cycle */ 1574 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1575 if (ret) { 1576 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1577 return ret; 1578 } 1579 1580 /* read the data */ 1581 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1582 if (ret) { 1583 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1584 ret); 1585 return ret; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1592 u32 *value) 1593 { 1594 __le32 *val; 1595 int ret; 1596 1597 val = kzalloc(sizeof(*val), GFP_KERNEL); 1598 if (!val) 1599 return -ENOMEM; 1600 1601 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1602 if (ret) 1603 goto out; 1604 1605 *value = __le32_to_cpu(*val); 1606 1607 out: 1608 kfree(val); 1609 1610 return ret; 1611 } 1612 1613 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1614 const void *data, int nbytes) 1615 { 1616 int ret; 1617 1618 /* set write data */ 1619 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1620 if (ret) { 1621 ath10k_warn(ar, 1622 "failed to write 0x%p to mbox window data address: %d\n", 1623 data, ret); 1624 return ret; 1625 } 1626 1627 /* set window register, which starts the write cycle */ 1628 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1629 if (ret) { 1630 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1631 return ret; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar) 1638 { 1639 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1640 u32 addr, val; 1641 int ret = 0; 1642 1643 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1644 1645 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1646 if (ret) { 1647 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1648 return ret; 1649 } 1650 1651 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1652 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1653 "sdio mailbox swap service enabled\n"); 1654 ar_sdio->swap_mbox = true; 1655 } else { 1656 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1657 "sdio mailbox swap service disabled\n"); 1658 ar_sdio->swap_mbox = false; 1659 } 1660 1661 return 0; 1662 } 1663 1664 /* HIF start/stop */ 1665 1666 static int ath10k_sdio_hif_start(struct ath10k *ar) 1667 { 1668 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1669 int ret; 1670 1671 /* Sleep 20 ms before HIF interrupts are disabled. 1672 * This will give target plenty of time to process the BMI done 1673 * request before interrupts are disabled. 1674 */ 1675 msleep(20); 1676 ret = ath10k_sdio_hif_disable_intrs(ar); 1677 if (ret) 1678 return ret; 1679 1680 /* eid 0 always uses the lower part of the extended mailbox address 1681 * space (ext_info[0].htc_ext_addr). 1682 */ 1683 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1684 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1685 1686 sdio_claim_host(ar_sdio->func); 1687 1688 /* Register the isr */ 1689 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1690 if (ret) { 1691 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1692 sdio_release_host(ar_sdio->func); 1693 return ret; 1694 } 1695 1696 sdio_release_host(ar_sdio->func); 1697 1698 ret = ath10k_sdio_hif_enable_intrs(ar); 1699 if (ret) 1700 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1701 1702 /* Enable sleep and then disable it again */ 1703 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1704 if (ret) 1705 return ret; 1706 1707 /* Wait for 20ms for the written value to take effect */ 1708 msleep(20); 1709 1710 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1711 if (ret) 1712 return ret; 1713 1714 return 0; 1715 } 1716 1717 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1718 1719 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1720 { 1721 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1722 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1723 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1724 struct sk_buff *skb; 1725 struct completion irqs_disabled_comp; 1726 int ret; 1727 1728 skb = dev_alloc_skb(sizeof(*regs)); 1729 if (!skb) 1730 return; 1731 1732 mutex_lock(&irq_data->mtx); 1733 1734 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1735 memcpy(skb->data, regs, sizeof(*regs)); 1736 skb_put(skb, sizeof(*regs)); 1737 1738 mutex_unlock(&irq_data->mtx); 1739 1740 init_completion(&irqs_disabled_comp); 1741 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1742 skb, &irqs_disabled_comp, false, 0); 1743 if (ret) 1744 goto out; 1745 1746 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1747 1748 /* Wait for the completion of the IRQ disable request. 1749 * If there is a timeout we will try to disable irq's anyway. 1750 */ 1751 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1752 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1753 if (!ret) 1754 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1755 1756 sdio_claim_host(ar_sdio->func); 1757 1758 ret = sdio_release_irq(ar_sdio->func); 1759 if (ret) 1760 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1761 1762 sdio_release_host(ar_sdio->func); 1763 1764 out: 1765 kfree_skb(skb); 1766 } 1767 1768 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1769 { 1770 struct ath10k_sdio_bus_request *req, *tmp_req; 1771 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1772 1773 ath10k_sdio_irq_disable(ar); 1774 1775 cancel_work_sync(&ar_sdio->wr_async_work); 1776 1777 spin_lock_bh(&ar_sdio->wr_async_lock); 1778 1779 /* Free all bus requests that have not been handled */ 1780 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1781 struct ath10k_htc_ep *ep; 1782 1783 list_del(&req->list); 1784 1785 if (req->htc_msg) { 1786 ep = &ar->htc.endpoint[req->eid]; 1787 ath10k_htc_notify_tx_completion(ep, req->skb); 1788 } else if (req->skb) { 1789 kfree_skb(req->skb); 1790 } 1791 ath10k_sdio_free_bus_req(ar, req); 1792 } 1793 1794 spin_unlock_bh(&ar_sdio->wr_async_lock); 1795 } 1796 1797 #ifdef CONFIG_PM 1798 1799 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1800 { 1801 return -EOPNOTSUPP; 1802 } 1803 1804 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1805 { 1806 switch (ar->state) { 1807 case ATH10K_STATE_OFF: 1808 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1809 "sdio resume configuring sdio\n"); 1810 1811 /* need to set sdio settings after power is cut from sdio */ 1812 ath10k_sdio_config(ar); 1813 break; 1814 1815 case ATH10K_STATE_ON: 1816 default: 1817 break; 1818 } 1819 1820 return 0; 1821 } 1822 #endif 1823 1824 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1825 u16 service_id, 1826 u8 *ul_pipe, u8 *dl_pipe) 1827 { 1828 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1829 struct ath10k_htc *htc = &ar->htc; 1830 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1831 enum ath10k_htc_ep_id eid; 1832 bool ep_found = false; 1833 int i; 1834 1835 /* For sdio, we are interested in the mapping between eid 1836 * and pipeid rather than service_id to pipe_id. 1837 * First we find out which eid has been allocated to the 1838 * service... 1839 */ 1840 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1841 if (htc->endpoint[i].service_id == service_id) { 1842 eid = htc->endpoint[i].eid; 1843 ep_found = true; 1844 break; 1845 } 1846 } 1847 1848 if (!ep_found) 1849 return -EINVAL; 1850 1851 /* Then we create the simplest mapping possible between pipeid 1852 * and eid 1853 */ 1854 *ul_pipe = *dl_pipe = (u8)eid; 1855 1856 /* Normally, HTT will use the upper part of the extended 1857 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1858 * the lower part (ext_info[0].htc_ext_addr). 1859 * If fw wants swapping of mailbox addresses, the opposite is true. 1860 */ 1861 if (ar_sdio->swap_mbox) { 1862 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1863 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1864 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1865 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1866 } else { 1867 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1868 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1869 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1870 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1871 } 1872 1873 switch (service_id) { 1874 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1875 /* HTC ctrl ep mbox address has already been setup in 1876 * ath10k_sdio_hif_start 1877 */ 1878 break; 1879 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1880 ar_sdio->mbox_addr[eid] = wmi_addr; 1881 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1882 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1883 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1884 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1885 break; 1886 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1887 ar_sdio->mbox_addr[eid] = htt_addr; 1888 ar_sdio->mbox_size[eid] = htt_mbox_size; 1889 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1890 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1891 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1892 break; 1893 default: 1894 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1895 service_id); 1896 return -EINVAL; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1903 u8 *ul_pipe, u8 *dl_pipe) 1904 { 1905 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1906 1907 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1908 * case) == 0 1909 */ 1910 *ul_pipe = 0; 1911 *dl_pipe = 0; 1912 } 1913 1914 /* This op is currently only used by htc_wait_target if the HTC ready 1915 * message times out. It is not applicable for SDIO since there is nothing 1916 * we can do if the HTC ready message does not arrive in time. 1917 * TODO: Make this op non mandatory by introducing a NULL check in the 1918 * hif op wrapper. 1919 */ 1920 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1921 u8 pipe, int force) 1922 { 1923 } 1924 1925 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1926 .tx_sg = ath10k_sdio_hif_tx_sg, 1927 .diag_read = ath10k_sdio_hif_diag_read, 1928 .diag_write = ath10k_sdio_hif_diag_write_mem, 1929 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1930 .start = ath10k_sdio_hif_start, 1931 .stop = ath10k_sdio_hif_stop, 1932 .swap_mailbox = ath10k_sdio_hif_swap_mailbox, 1933 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1934 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1935 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1936 .power_up = ath10k_sdio_hif_power_up, 1937 .power_down = ath10k_sdio_hif_power_down, 1938 #ifdef CONFIG_PM 1939 .suspend = ath10k_sdio_hif_suspend, 1940 .resume = ath10k_sdio_hif_resume, 1941 #endif 1942 }; 1943 1944 #ifdef CONFIG_PM_SLEEP 1945 1946 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1947 * suspend. We instead follow cfg80211 suspend/resume handlers. 1948 */ 1949 static int ath10k_sdio_pm_suspend(struct device *device) 1950 { 1951 return 0; 1952 } 1953 1954 static int ath10k_sdio_pm_resume(struct device *device) 1955 { 1956 return 0; 1957 } 1958 1959 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1960 ath10k_sdio_pm_resume); 1961 1962 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1963 1964 #else 1965 1966 #define ATH10K_SDIO_PM_OPS NULL 1967 1968 #endif /* CONFIG_PM_SLEEP */ 1969 1970 static int ath10k_sdio_probe(struct sdio_func *func, 1971 const struct sdio_device_id *id) 1972 { 1973 struct ath10k_sdio *ar_sdio; 1974 struct ath10k *ar; 1975 enum ath10k_hw_rev hw_rev; 1976 u32 dev_id_base; 1977 struct ath10k_bus_params bus_params = {}; 1978 int ret, i; 1979 1980 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1981 * If there will be newer chipsets that does not use the hw reg 1982 * setup as defined in qca6174_regs and qca6174_values, this 1983 * assumption is no longer valid and hw_rev must be setup differently 1984 * depending on chipset. 1985 */ 1986 hw_rev = ATH10K_HW_QCA6174; 1987 1988 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 1989 hw_rev, &ath10k_sdio_hif_ops); 1990 if (!ar) { 1991 dev_err(&func->dev, "failed to allocate core\n"); 1992 return -ENOMEM; 1993 } 1994 1995 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1996 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1997 func->num, func->vendor, func->device, 1998 func->max_blksize, func->cur_blksize); 1999 2000 ar_sdio = ath10k_sdio_priv(ar); 2001 2002 ar_sdio->irq_data.irq_proc_reg = 2003 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2004 GFP_KERNEL); 2005 if (!ar_sdio->irq_data.irq_proc_reg) { 2006 ret = -ENOMEM; 2007 goto err_core_destroy; 2008 } 2009 2010 ar_sdio->irq_data.irq_en_reg = 2011 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2012 GFP_KERNEL); 2013 if (!ar_sdio->irq_data.irq_en_reg) { 2014 ret = -ENOMEM; 2015 goto err_core_destroy; 2016 } 2017 2018 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 2019 if (!ar_sdio->bmi_buf) { 2020 ret = -ENOMEM; 2021 goto err_core_destroy; 2022 } 2023 2024 ar_sdio->func = func; 2025 sdio_set_drvdata(func, ar_sdio); 2026 2027 ar_sdio->is_disabled = true; 2028 ar_sdio->ar = ar; 2029 2030 spin_lock_init(&ar_sdio->lock); 2031 spin_lock_init(&ar_sdio->wr_async_lock); 2032 mutex_init(&ar_sdio->irq_data.mtx); 2033 2034 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2035 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2036 2037 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2038 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2039 if (!ar_sdio->workqueue) { 2040 ret = -ENOMEM; 2041 goto err_core_destroy; 2042 } 2043 2044 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2045 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2046 2047 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2048 switch (dev_id_base) { 2049 case QCA_MANUFACTURER_ID_AR6005_BASE: 2050 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2051 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2052 break; 2053 default: 2054 ret = -ENODEV; 2055 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2056 dev_id_base, id->device); 2057 goto err_free_wq; 2058 } 2059 2060 ar->id.vendor = id->vendor; 2061 ar->id.device = id->device; 2062 2063 ath10k_sdio_set_mbox_info(ar); 2064 2065 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2066 /* TODO: don't know yet how to get chip_id with SDIO */ 2067 bus_params.chip_id = 0; 2068 bus_params.hl_msdu_ids = true; 2069 2070 ret = ath10k_core_register(ar, &bus_params); 2071 if (ret) { 2072 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2073 goto err_free_wq; 2074 } 2075 2076 /* TODO: remove this once SDIO support is fully implemented */ 2077 ath10k_warn(ar, "WARNING: ath10k SDIO support is work-in-progress, problems may arise!\n"); 2078 2079 return 0; 2080 2081 err_free_wq: 2082 destroy_workqueue(ar_sdio->workqueue); 2083 err_core_destroy: 2084 ath10k_core_destroy(ar); 2085 2086 return ret; 2087 } 2088 2089 static void ath10k_sdio_remove(struct sdio_func *func) 2090 { 2091 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2092 struct ath10k *ar = ar_sdio->ar; 2093 2094 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2095 "sdio removed func %d vendor 0x%x device 0x%x\n", 2096 func->num, func->vendor, func->device); 2097 2098 ath10k_core_unregister(ar); 2099 ath10k_core_destroy(ar); 2100 2101 flush_workqueue(ar_sdio->workqueue); 2102 destroy_workqueue(ar_sdio->workqueue); 2103 } 2104 2105 static const struct sdio_device_id ath10k_sdio_devices[] = { 2106 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2107 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2108 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2109 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2110 {}, 2111 }; 2112 2113 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2114 2115 static struct sdio_driver ath10k_sdio_driver = { 2116 .name = "ath10k_sdio", 2117 .id_table = ath10k_sdio_devices, 2118 .probe = ath10k_sdio_probe, 2119 .remove = ath10k_sdio_remove, 2120 .drv = { 2121 .owner = THIS_MODULE, 2122 .pm = ATH10K_SDIO_PM_OPS, 2123 }, 2124 }; 2125 2126 static int __init ath10k_sdio_init(void) 2127 { 2128 int ret; 2129 2130 ret = sdio_register_driver(&ath10k_sdio_driver); 2131 if (ret) 2132 pr_err("sdio driver registration failed: %d\n", ret); 2133 2134 return ret; 2135 } 2136 2137 static void __exit ath10k_sdio_exit(void) 2138 { 2139 sdio_unregister_driver(&ath10k_sdio_driver); 2140 } 2141 2142 module_init(ath10k_sdio_init); 2143 module_exit(ath10k_sdio_exit); 2144 2145 MODULE_AUTHOR("Qualcomm Atheros"); 2146 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2147 MODULE_LICENSE("Dual BSD/GPL"); 2148