1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 /* inlined helper functions */ 28 29 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 30 size_t len) 31 { 32 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 33 } 34 35 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 36 { 37 return (enum ath10k_htc_ep_id)pipe_id; 38 } 39 40 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 41 { 42 dev_kfree_skb(pkt->skb); 43 pkt->skb = NULL; 44 pkt->alloc_len = 0; 45 pkt->act_len = 0; 46 pkt->trailer_only = false; 47 } 48 49 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 50 size_t act_len, size_t full_len, 51 bool part_of_bundle, 52 bool last_in_bundle) 53 { 54 pkt->skb = dev_alloc_skb(full_len); 55 if (!pkt->skb) 56 return -ENOMEM; 57 58 pkt->act_len = act_len; 59 pkt->alloc_len = full_len; 60 pkt->part_of_bundle = part_of_bundle; 61 pkt->last_in_bundle = last_in_bundle; 62 pkt->trailer_only = false; 63 64 return 0; 65 } 66 67 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 68 { 69 bool trailer_only = false; 70 struct ath10k_htc_hdr *htc_hdr = 71 (struct ath10k_htc_hdr *)pkt->skb->data; 72 u16 len = __le16_to_cpu(htc_hdr->len); 73 74 if (len == htc_hdr->trailer_len) 75 trailer_only = true; 76 77 return trailer_only; 78 } 79 80 /* sdio/mmc functions */ 81 82 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 83 unsigned int address, 84 unsigned char val) 85 { 86 *arg = FIELD_PREP(BIT(31), write) | 87 FIELD_PREP(BIT(27), raw) | 88 FIELD_PREP(BIT(26), 1) | 89 FIELD_PREP(GENMASK(25, 9), address) | 90 FIELD_PREP(BIT(8), 1) | 91 FIELD_PREP(GENMASK(7, 0), val); 92 } 93 94 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 95 unsigned int address, 96 unsigned char byte) 97 { 98 struct mmc_command io_cmd; 99 100 memset(&io_cmd, 0, sizeof(io_cmd)); 101 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 102 io_cmd.opcode = SD_IO_RW_DIRECT; 103 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 104 105 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 106 } 107 108 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 109 unsigned int address, 110 unsigned char *byte) 111 { 112 struct mmc_command io_cmd; 113 int ret; 114 115 memset(&io_cmd, 0, sizeof(io_cmd)); 116 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 117 io_cmd.opcode = SD_IO_RW_DIRECT; 118 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 119 120 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 121 if (!ret) 122 *byte = io_cmd.resp[0]; 123 124 return ret; 125 } 126 127 static int ath10k_sdio_config(struct ath10k *ar) 128 { 129 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 130 struct sdio_func *func = ar_sdio->func; 131 unsigned char byte, asyncintdelay = 2; 132 int ret; 133 134 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 135 136 sdio_claim_host(func); 137 138 byte = 0; 139 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 140 SDIO_CCCR_DRIVE_STRENGTH, 141 &byte); 142 143 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 144 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 145 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 146 147 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 148 SDIO_CCCR_DRIVE_STRENGTH, 149 byte); 150 151 byte = 0; 152 ret = ath10k_sdio_func0_cmd52_rd_byte( 153 func->card, 154 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 155 &byte); 156 157 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 158 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 159 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 160 161 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 162 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 163 byte); 164 if (ret) { 165 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 166 goto out; 167 } 168 169 byte = 0; 170 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 171 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 172 &byte); 173 174 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 175 176 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 177 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 178 byte); 179 if (ret) { 180 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 181 ret); 182 goto out; 183 } 184 185 byte = 0; 186 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 187 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 188 &byte); 189 190 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 191 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 192 193 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 194 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 195 byte); 196 197 /* give us some time to enable, in ms */ 198 func->enable_timeout = 100; 199 200 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 201 if (ret) { 202 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 203 ar_sdio->mbox_info.block_size, ret); 204 goto out; 205 } 206 207 out: 208 sdio_release_host(func); 209 return ret; 210 } 211 212 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 213 { 214 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 215 struct sdio_func *func = ar_sdio->func; 216 int ret; 217 218 sdio_claim_host(func); 219 220 sdio_writel(func, val, addr, &ret); 221 if (ret) { 222 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 223 val, addr, ret); 224 goto out; 225 } 226 227 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 228 addr, val); 229 230 out: 231 sdio_release_host(func); 232 233 return ret; 234 } 235 236 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 237 { 238 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 239 struct sdio_func *func = ar_sdio->func; 240 __le32 *buf; 241 int ret; 242 243 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 244 if (!buf) 245 return -ENOMEM; 246 247 *buf = cpu_to_le32(val); 248 249 sdio_claim_host(func); 250 251 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 252 if (ret) { 253 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 254 val, addr, ret); 255 goto out; 256 } 257 258 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 259 addr, val); 260 261 out: 262 sdio_release_host(func); 263 264 kfree(buf); 265 266 return ret; 267 } 268 269 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 270 { 271 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 272 struct sdio_func *func = ar_sdio->func; 273 int ret; 274 275 sdio_claim_host(func); 276 *val = sdio_readl(func, addr, &ret); 277 if (ret) { 278 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 279 addr, ret); 280 goto out; 281 } 282 283 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 284 addr, *val); 285 286 out: 287 sdio_release_host(func); 288 289 return ret; 290 } 291 292 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 293 { 294 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 295 struct sdio_func *func = ar_sdio->func; 296 int ret; 297 298 sdio_claim_host(func); 299 300 ret = sdio_memcpy_fromio(func, buf, addr, len); 301 if (ret) { 302 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 303 addr, ret); 304 goto out; 305 } 306 307 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 308 addr, buf, len); 309 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 310 311 out: 312 sdio_release_host(func); 313 314 return ret; 315 } 316 317 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 318 { 319 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 320 struct sdio_func *func = ar_sdio->func; 321 int ret; 322 323 sdio_claim_host(func); 324 325 /* For some reason toio() doesn't have const for the buffer, need 326 * an ugly hack to workaround that. 327 */ 328 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 329 if (ret) { 330 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 331 addr, ret); 332 goto out; 333 } 334 335 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 336 addr, buf, len); 337 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 338 339 out: 340 sdio_release_host(func); 341 342 return ret; 343 } 344 345 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 346 { 347 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 348 struct sdio_func *func = ar_sdio->func; 349 int ret; 350 351 sdio_claim_host(func); 352 353 len = round_down(len, ar_sdio->mbox_info.block_size); 354 355 ret = sdio_readsb(func, buf, addr, len); 356 if (ret) { 357 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 358 addr, ret); 359 goto out; 360 } 361 362 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 363 addr, buf, len); 364 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 365 366 out: 367 sdio_release_host(func); 368 369 return ret; 370 } 371 372 /* HIF mbox functions */ 373 374 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 375 struct ath10k_sdio_rx_data *pkt, 376 u32 *lookaheads, 377 int *n_lookaheads) 378 { 379 struct ath10k_htc *htc = &ar->htc; 380 struct sk_buff *skb = pkt->skb; 381 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 382 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 383 enum ath10k_htc_ep_id eid; 384 u8 *trailer; 385 int ret; 386 387 if (trailer_present) { 388 trailer = skb->data + skb->len - htc_hdr->trailer_len; 389 390 eid = pipe_id_to_eid(htc_hdr->eid); 391 392 ret = ath10k_htc_process_trailer(htc, 393 trailer, 394 htc_hdr->trailer_len, 395 eid, 396 lookaheads, 397 n_lookaheads); 398 if (ret) 399 return ret; 400 401 if (is_trailer_only_msg(pkt)) 402 pkt->trailer_only = true; 403 404 skb_trim(skb, skb->len - htc_hdr->trailer_len); 405 } 406 407 skb_pull(skb, sizeof(*htc_hdr)); 408 409 return 0; 410 } 411 412 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 413 u32 lookaheads[], 414 int *n_lookahead) 415 { 416 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 417 struct ath10k_htc *htc = &ar->htc; 418 struct ath10k_sdio_rx_data *pkt; 419 struct ath10k_htc_ep *ep; 420 enum ath10k_htc_ep_id id; 421 int ret, i, *n_lookahead_local; 422 u32 *lookaheads_local; 423 int lookahead_idx = 0; 424 425 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 426 lookaheads_local = lookaheads; 427 n_lookahead_local = n_lookahead; 428 429 id = ((struct ath10k_htc_hdr *) 430 &lookaheads[lookahead_idx++])->eid; 431 432 if (id >= ATH10K_HTC_EP_COUNT) { 433 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 434 id); 435 ret = -ENOMEM; 436 goto out; 437 } 438 439 ep = &htc->endpoint[id]; 440 441 if (ep->service_id == 0) { 442 ath10k_warn(ar, "ep %d is not connected\n", id); 443 ret = -ENOMEM; 444 goto out; 445 } 446 447 pkt = &ar_sdio->rx_pkts[i]; 448 449 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 450 /* Only read lookahead's from RX trailers 451 * for the last packet in a bundle. 452 */ 453 lookahead_idx--; 454 lookaheads_local = NULL; 455 n_lookahead_local = NULL; 456 } 457 458 ret = ath10k_sdio_mbox_rx_process_packet(ar, 459 pkt, 460 lookaheads_local, 461 n_lookahead_local); 462 if (ret) 463 goto out; 464 465 if (!pkt->trailer_only) 466 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 467 else 468 kfree_skb(pkt->skb); 469 470 /* The RX complete handler now owns the skb...*/ 471 pkt->skb = NULL; 472 pkt->alloc_len = 0; 473 } 474 475 ret = 0; 476 477 out: 478 /* Free all packets that was not passed on to the RX completion 479 * handler... 480 */ 481 for (; i < ar_sdio->n_rx_pkts; i++) 482 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 483 484 return ret; 485 } 486 487 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 488 struct ath10k_sdio_rx_data *rx_pkts, 489 struct ath10k_htc_hdr *htc_hdr, 490 size_t full_len, size_t act_len, 491 size_t *bndl_cnt) 492 { 493 int ret, i; 494 495 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 496 497 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) { 498 ath10k_warn(ar, 499 "HTC bundle length %u exceeds maximum %u\n", 500 le16_to_cpu(htc_hdr->len), 501 HTC_HOST_MAX_MSG_PER_RX_BUNDLE); 502 return -ENOMEM; 503 } 504 505 /* Allocate bndl_cnt extra skb's for the bundle. 506 * The package containing the 507 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 508 * in bndl_cnt. The skb for that packet will be 509 * allocated separately. 510 */ 511 for (i = 0; i < *bndl_cnt; i++) { 512 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 513 act_len, 514 full_len, 515 true, 516 false); 517 if (ret) 518 return ret; 519 } 520 521 return 0; 522 } 523 524 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 525 u32 lookaheads[], int n_lookaheads) 526 { 527 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 528 struct ath10k_htc_hdr *htc_hdr; 529 size_t full_len, act_len; 530 bool last_in_bundle; 531 int ret, i; 532 533 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 534 ath10k_warn(ar, 535 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 536 n_lookaheads, 537 ATH10K_SDIO_MAX_RX_MSGS); 538 ret = -ENOMEM; 539 goto err; 540 } 541 542 for (i = 0; i < n_lookaheads; i++) { 543 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 544 last_in_bundle = false; 545 546 if (le16_to_cpu(htc_hdr->len) > 547 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 548 ath10k_warn(ar, 549 "payload length %d exceeds max htc length: %zu\n", 550 le16_to_cpu(htc_hdr->len), 551 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 552 ret = -ENOMEM; 553 goto err; 554 } 555 556 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 557 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 558 559 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 560 ath10k_warn(ar, 561 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 562 htc_hdr->eid, htc_hdr->flags, 563 le16_to_cpu(htc_hdr->len)); 564 ret = -EINVAL; 565 goto err; 566 } 567 568 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 569 /* HTC header indicates that every packet to follow 570 * has the same padded length so that it can be 571 * optimally fetched as a full bundle. 572 */ 573 size_t bndl_cnt; 574 575 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 576 &ar_sdio->rx_pkts[i], 577 htc_hdr, 578 full_len, 579 act_len, 580 &bndl_cnt); 581 582 if (ret) { 583 ath10k_warn(ar, "alloc_bundle error %d\n", ret); 584 goto err; 585 } 586 587 n_lookaheads += bndl_cnt; 588 i += bndl_cnt; 589 /*Next buffer will be the last in the bundle */ 590 last_in_bundle = true; 591 } 592 593 /* Allocate skb for packet. If the packet had the 594 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 595 * packet skb's have been allocated in the previous step. 596 */ 597 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 598 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 599 600 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 601 act_len, 602 full_len, 603 last_in_bundle, 604 last_in_bundle); 605 if (ret) { 606 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 607 goto err; 608 } 609 } 610 611 ar_sdio->n_rx_pkts = i; 612 613 return 0; 614 615 err: 616 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 617 if (!ar_sdio->rx_pkts[i].alloc_len) 618 break; 619 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 620 } 621 622 return ret; 623 } 624 625 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 626 struct ath10k_sdio_rx_data *pkt) 627 { 628 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 629 struct sk_buff *skb = pkt->skb; 630 struct ath10k_htc_hdr *htc_hdr; 631 int ret; 632 633 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 634 skb->data, pkt->alloc_len); 635 if (ret) 636 goto out; 637 638 /* Update actual length. The original length may be incorrect, 639 * as the FW will bundle multiple packets as long as their sizes 640 * fit within the same aligned length (pkt->alloc_len). 641 */ 642 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 643 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 644 if (pkt->act_len > pkt->alloc_len) { 645 ath10k_warn(ar, "rx packet too large (%zu > %zu)\n", 646 pkt->act_len, pkt->alloc_len); 647 ret = -EMSGSIZE; 648 goto out; 649 } 650 651 skb_put(skb, pkt->act_len); 652 653 out: 654 pkt->status = ret; 655 656 return ret; 657 } 658 659 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 660 { 661 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 662 int ret, i; 663 664 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 665 ret = ath10k_sdio_mbox_rx_packet(ar, 666 &ar_sdio->rx_pkts[i]); 667 if (ret) 668 goto err; 669 } 670 671 return 0; 672 673 err: 674 /* Free all packets that was not successfully fetched. */ 675 for (; i < ar_sdio->n_rx_pkts; i++) 676 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 677 678 return ret; 679 } 680 681 /* This is the timeout for mailbox processing done in the sdio irq 682 * handler. The timeout is deliberately set quite high since SDIO dump logs 683 * over serial port can/will add a substantial overhead to the processing 684 * (if enabled). 685 */ 686 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 687 688 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 689 u32 msg_lookahead, bool *done) 690 { 691 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 692 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 693 int n_lookaheads = 1; 694 unsigned long timeout; 695 int ret; 696 697 *done = true; 698 699 /* Copy the lookahead obtained from the HTC register table into our 700 * temp array as a start value. 701 */ 702 lookaheads[0] = msg_lookahead; 703 704 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 705 do { 706 /* Try to allocate as many HTC RX packets indicated by 707 * n_lookaheads. 708 */ 709 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 710 n_lookaheads); 711 if (ret) 712 break; 713 714 if (ar_sdio->n_rx_pkts >= 2) 715 /* A recv bundle was detected, force IRQ status 716 * re-check again. 717 */ 718 *done = false; 719 720 ret = ath10k_sdio_mbox_rx_fetch(ar); 721 722 /* Process fetched packets. This will potentially update 723 * n_lookaheads depending on if the packets contain lookahead 724 * reports. 725 */ 726 n_lookaheads = 0; 727 ret = ath10k_sdio_mbox_rx_process_packets(ar, 728 lookaheads, 729 &n_lookaheads); 730 731 if (!n_lookaheads || ret) 732 break; 733 734 /* For SYNCH processing, if we get here, we are running 735 * through the loop again due to updated lookaheads. Set 736 * flag that we should re-check IRQ status registers again 737 * before leaving IRQ processing, this can net better 738 * performance in high throughput situations. 739 */ 740 *done = false; 741 } while (time_before(jiffies, timeout)); 742 743 if (ret && (ret != -ECANCELED)) 744 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 745 ret); 746 747 return ret; 748 } 749 750 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 751 { 752 u32 val; 753 int ret; 754 755 /* TODO: Add firmware crash handling */ 756 ath10k_warn(ar, "firmware crashed\n"); 757 758 /* read counter to clear the interrupt, the debug error interrupt is 759 * counter 0. 760 */ 761 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 762 if (ret) 763 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 764 765 return ret; 766 } 767 768 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 769 { 770 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 771 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 772 u8 counter_int_status; 773 int ret; 774 775 mutex_lock(&irq_data->mtx); 776 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 777 irq_data->irq_en_reg->cntr_int_status_en; 778 779 /* NOTE: other modules like GMBOX may use the counter interrupt for 780 * credit flow control on other counters, we only need to check for 781 * the debug assertion counter interrupt. 782 */ 783 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 784 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 785 else 786 ret = 0; 787 788 mutex_unlock(&irq_data->mtx); 789 790 return ret; 791 } 792 793 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 794 { 795 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 796 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 797 u8 error_int_status; 798 int ret; 799 800 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 801 802 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 803 if (!error_int_status) { 804 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 805 error_int_status); 806 return -EIO; 807 } 808 809 ath10k_dbg(ar, ATH10K_DBG_SDIO, 810 "sdio error_int_status 0x%x\n", error_int_status); 811 812 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 813 error_int_status)) 814 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 815 816 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 817 error_int_status)) 818 ath10k_warn(ar, "rx underflow interrupt error\n"); 819 820 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 821 error_int_status)) 822 ath10k_warn(ar, "tx overflow interrupt error\n"); 823 824 /* Clear the interrupt */ 825 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 826 827 /* set W1C value to clear the interrupt, this hits the register first */ 828 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 829 error_int_status); 830 if (ret) { 831 ath10k_warn(ar, "unable to write to error int status address: %d\n", 832 ret); 833 return ret; 834 } 835 836 return 0; 837 } 838 839 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 840 { 841 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 842 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 843 u8 cpu_int_status; 844 int ret; 845 846 mutex_lock(&irq_data->mtx); 847 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 848 irq_data->irq_en_reg->cpu_int_status_en; 849 if (!cpu_int_status) { 850 ath10k_warn(ar, "CPU interrupt status is zero\n"); 851 ret = -EIO; 852 goto out; 853 } 854 855 /* Clear the interrupt */ 856 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 857 858 /* Set up the register transfer buffer to hit the register 4 times, 859 * this is done to make the access 4-byte aligned to mitigate issues 860 * with host bus interconnects that restrict bus transfer lengths to 861 * be a multiple of 4-bytes. 862 * 863 * Set W1C value to clear the interrupt, this hits the register first. 864 */ 865 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 866 cpu_int_status); 867 if (ret) { 868 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 869 ret); 870 goto out; 871 } 872 873 out: 874 mutex_unlock(&irq_data->mtx); 875 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) { 876 ath10k_err(ar, "firmware crashed!\n"); 877 queue_work(ar->workqueue, &ar->restart_work); 878 } 879 return ret; 880 } 881 882 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 883 u8 *host_int_status, 884 u32 *lookahead) 885 { 886 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 887 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 888 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 889 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 890 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 891 int ret; 892 893 mutex_lock(&irq_data->mtx); 894 895 *lookahead = 0; 896 *host_int_status = 0; 897 898 /* int_status_en is supposed to be non zero, otherwise interrupts 899 * shouldn't be enabled. There is however a short time frame during 900 * initialization between the irq register and int_status_en init 901 * where this can happen. 902 * We silently ignore this condition. 903 */ 904 if (!irq_en_reg->int_status_en) { 905 ret = 0; 906 goto out; 907 } 908 909 /* Read the first sizeof(struct ath10k_irq_proc_registers) 910 * bytes of the HTC register table. This 911 * will yield us the value of different int status 912 * registers and the lookahead registers. 913 */ 914 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 915 irq_proc_reg, sizeof(*irq_proc_reg)); 916 if (ret) 917 goto out; 918 919 /* Update only those registers that are enabled */ 920 *host_int_status = irq_proc_reg->host_int_status & 921 irq_en_reg->int_status_en; 922 923 /* Look at mbox status */ 924 if (!(*host_int_status & htc_mbox)) { 925 *lookahead = 0; 926 ret = 0; 927 goto out; 928 } 929 930 /* Mask out pending mbox value, we use look ahead as 931 * the real flag for mbox processing. 932 */ 933 *host_int_status &= ~htc_mbox; 934 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 935 *lookahead = le32_to_cpu( 936 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 937 if (!*lookahead) 938 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 939 } 940 941 out: 942 mutex_unlock(&irq_data->mtx); 943 return ret; 944 } 945 946 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 947 bool *done) 948 { 949 u8 host_int_status; 950 u32 lookahead; 951 int ret; 952 953 /* NOTE: HIF implementation guarantees that the context of this 954 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 955 * sleep or call any API that can block or switch thread/task 956 * contexts. This is a fully schedulable context. 957 */ 958 959 ret = ath10k_sdio_mbox_read_int_status(ar, 960 &host_int_status, 961 &lookahead); 962 if (ret) { 963 *done = true; 964 goto out; 965 } 966 967 if (!host_int_status && !lookahead) { 968 ret = 0; 969 *done = true; 970 goto out; 971 } 972 973 if (lookahead) { 974 ath10k_dbg(ar, ATH10K_DBG_SDIO, 975 "sdio pending mailbox msg lookahead 0x%08x\n", 976 lookahead); 977 978 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 979 lookahead, 980 done); 981 if (ret) 982 goto out; 983 } 984 985 /* now, handle the rest of the interrupts */ 986 ath10k_dbg(ar, ATH10K_DBG_SDIO, 987 "sdio host_int_status 0x%x\n", host_int_status); 988 989 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 990 /* CPU Interrupt */ 991 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 992 if (ret) 993 goto out; 994 } 995 996 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 997 /* Error Interrupt */ 998 ret = ath10k_sdio_mbox_proc_err_intr(ar); 999 if (ret) 1000 goto out; 1001 } 1002 1003 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1004 /* Counter Interrupt */ 1005 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1006 1007 ret = 0; 1008 1009 out: 1010 /* An optimization to bypass reading the IRQ status registers 1011 * unecessarily which can re-wake the target, if upper layers 1012 * determine that we are in a low-throughput mode, we can rely on 1013 * taking another interrupt rather than re-checking the status 1014 * registers which can re-wake the target. 1015 * 1016 * NOTE : for host interfaces that makes use of detecting pending 1017 * mbox messages at hif can not use this optimization due to 1018 * possible side effects, SPI requires the host to drain all 1019 * messages from the mailbox before exiting the ISR routine. 1020 */ 1021 1022 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1023 "sdio pending irqs done %d status %d", 1024 *done, ret); 1025 1026 return ret; 1027 } 1028 1029 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1030 { 1031 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1032 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1033 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1034 1035 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1036 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1037 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1038 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1039 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1040 1041 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1042 1043 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1044 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1045 switch (dev_id_base) { 1046 case QCA_MANUFACTURER_ID_AR6005_BASE: 1047 if (dev_id_chiprev < 4) 1048 mbox_info->ext_info[0].htc_ext_sz = 1049 ATH10K_HIF_MBOX0_EXT_WIDTH; 1050 else 1051 /* from QCA6174 2.0(0x504), the width has been extended 1052 * to 56K 1053 */ 1054 mbox_info->ext_info[0].htc_ext_sz = 1055 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1056 break; 1057 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1058 mbox_info->ext_info[0].htc_ext_sz = 1059 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1060 break; 1061 default: 1062 mbox_info->ext_info[0].htc_ext_sz = 1063 ATH10K_HIF_MBOX0_EXT_WIDTH; 1064 } 1065 1066 mbox_info->ext_info[1].htc_ext_addr = 1067 mbox_info->ext_info[0].htc_ext_addr + 1068 mbox_info->ext_info[0].htc_ext_sz + 1069 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1070 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1071 } 1072 1073 /* BMI functions */ 1074 1075 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1076 { 1077 u32 addr, cmd_credits; 1078 unsigned long timeout; 1079 int ret; 1080 1081 /* Read the counter register to get the command credits */ 1082 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1083 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1084 cmd_credits = 0; 1085 1086 while (time_before(jiffies, timeout) && !cmd_credits) { 1087 /* Hit the credit counter with a 4-byte access, the first byte 1088 * read will hit the counter and cause a decrement, while the 1089 * remaining 3 bytes has no effect. The rationale behind this 1090 * is to make all HIF accesses 4-byte aligned. 1091 */ 1092 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1093 if (ret) { 1094 ath10k_warn(ar, 1095 "unable to decrement the command credit count register: %d\n", 1096 ret); 1097 return ret; 1098 } 1099 1100 /* The counter is only 8 bits. 1101 * Ignore anything in the upper 3 bytes 1102 */ 1103 cmd_credits &= 0xFF; 1104 } 1105 1106 if (!cmd_credits) { 1107 ath10k_warn(ar, "bmi communication timeout\n"); 1108 return -ETIMEDOUT; 1109 } 1110 1111 return 0; 1112 } 1113 1114 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1115 { 1116 unsigned long timeout; 1117 u32 rx_word; 1118 int ret; 1119 1120 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1121 rx_word = 0; 1122 1123 while ((time_before(jiffies, timeout)) && !rx_word) { 1124 ret = ath10k_sdio_read32(ar, 1125 MBOX_HOST_INT_STATUS_ADDRESS, 1126 &rx_word); 1127 if (ret) { 1128 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1129 return ret; 1130 } 1131 1132 /* all we really want is one bit */ 1133 rx_word &= 1; 1134 } 1135 1136 if (!rx_word) { 1137 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1138 return -EINVAL; 1139 } 1140 1141 return ret; 1142 } 1143 1144 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1145 void *req, u32 req_len, 1146 void *resp, u32 *resp_len) 1147 { 1148 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1149 u32 addr; 1150 int ret; 1151 1152 if (req) { 1153 ret = ath10k_sdio_bmi_credits(ar); 1154 if (ret) 1155 return ret; 1156 1157 addr = ar_sdio->mbox_info.htc_addr; 1158 1159 memcpy(ar_sdio->bmi_buf, req, req_len); 1160 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1161 if (ret) { 1162 ath10k_warn(ar, 1163 "unable to send the bmi data to the device: %d\n", 1164 ret); 1165 return ret; 1166 } 1167 } 1168 1169 if (!resp || !resp_len) 1170 /* No response expected */ 1171 return 0; 1172 1173 /* During normal bootup, small reads may be required. 1174 * Rather than issue an HIF Read and then wait as the Target 1175 * adds successive bytes to the FIFO, we wait here until 1176 * we know that response data is available. 1177 * 1178 * This allows us to cleanly timeout on an unexpected 1179 * Target failure rather than risk problems at the HIF level. 1180 * In particular, this avoids SDIO timeouts and possibly garbage 1181 * data on some host controllers. And on an interconnect 1182 * such as Compact Flash (as well as some SDIO masters) which 1183 * does not provide any indication on data timeout, it avoids 1184 * a potential hang or garbage response. 1185 * 1186 * Synchronization is more difficult for reads larger than the 1187 * size of the MBOX FIFO (128B), because the Target is unable 1188 * to push the 129th byte of data until AFTER the Host posts an 1189 * HIF Read and removes some FIFO data. So for large reads the 1190 * Host proceeds to post an HIF Read BEFORE all the data is 1191 * actually available to read. Fortunately, large BMI reads do 1192 * not occur in practice -- they're supported for debug/development. 1193 * 1194 * So Host/Target BMI synchronization is divided into these cases: 1195 * CASE 1: length < 4 1196 * Should not happen 1197 * 1198 * CASE 2: 4 <= length <= 128 1199 * Wait for first 4 bytes to be in FIFO 1200 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1201 * a BMI command credit, which indicates that the ENTIRE 1202 * response is available in the the FIFO 1203 * 1204 * CASE 3: length > 128 1205 * Wait for the first 4 bytes to be in FIFO 1206 * 1207 * For most uses, a small timeout should be sufficient and we will 1208 * usually see a response quickly; but there may be some unusual 1209 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1210 * For now, we use an unbounded busy loop while waiting for 1211 * BMI_EXECUTE. 1212 * 1213 * If BMI_EXECUTE ever needs to support longer-latency execution, 1214 * especially in production, this code needs to be enhanced to sleep 1215 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1216 * a function of Host processor speed. 1217 */ 1218 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1219 if (ret) 1220 return ret; 1221 1222 /* We always read from the start of the mbox address */ 1223 addr = ar_sdio->mbox_info.htc_addr; 1224 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1225 if (ret) { 1226 ath10k_warn(ar, 1227 "unable to read the bmi data from the device: %d\n", 1228 ret); 1229 return ret; 1230 } 1231 1232 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1233 1234 return 0; 1235 } 1236 1237 /* sdio async handling functions */ 1238 1239 static struct ath10k_sdio_bus_request 1240 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1241 { 1242 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1243 struct ath10k_sdio_bus_request *bus_req; 1244 1245 spin_lock_bh(&ar_sdio->lock); 1246 1247 if (list_empty(&ar_sdio->bus_req_freeq)) { 1248 bus_req = NULL; 1249 goto out; 1250 } 1251 1252 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1253 struct ath10k_sdio_bus_request, list); 1254 list_del(&bus_req->list); 1255 1256 out: 1257 spin_unlock_bh(&ar_sdio->lock); 1258 return bus_req; 1259 } 1260 1261 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1262 struct ath10k_sdio_bus_request *bus_req) 1263 { 1264 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1265 1266 memset(bus_req, 0, sizeof(*bus_req)); 1267 1268 spin_lock_bh(&ar_sdio->lock); 1269 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1270 spin_unlock_bh(&ar_sdio->lock); 1271 } 1272 1273 static void __ath10k_sdio_write_async(struct ath10k *ar, 1274 struct ath10k_sdio_bus_request *req) 1275 { 1276 struct ath10k_htc_ep *ep; 1277 struct sk_buff *skb; 1278 int ret; 1279 1280 skb = req->skb; 1281 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1282 if (ret) 1283 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1284 req->address, ret); 1285 1286 if (req->htc_msg) { 1287 ep = &ar->htc.endpoint[req->eid]; 1288 ath10k_htc_notify_tx_completion(ep, skb); 1289 } else if (req->comp) { 1290 complete(req->comp); 1291 } 1292 1293 ath10k_sdio_free_bus_req(ar, req); 1294 } 1295 1296 static void ath10k_sdio_write_async_work(struct work_struct *work) 1297 { 1298 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1299 wr_async_work); 1300 struct ath10k *ar = ar_sdio->ar; 1301 struct ath10k_sdio_bus_request *req, *tmp_req; 1302 1303 spin_lock_bh(&ar_sdio->wr_async_lock); 1304 1305 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1306 list_del(&req->list); 1307 spin_unlock_bh(&ar_sdio->wr_async_lock); 1308 __ath10k_sdio_write_async(ar, req); 1309 spin_lock_bh(&ar_sdio->wr_async_lock); 1310 } 1311 1312 spin_unlock_bh(&ar_sdio->wr_async_lock); 1313 } 1314 1315 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1316 struct sk_buff *skb, 1317 struct completion *comp, 1318 bool htc_msg, enum ath10k_htc_ep_id eid) 1319 { 1320 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1321 struct ath10k_sdio_bus_request *bus_req; 1322 1323 /* Allocate a bus request for the message and queue it on the 1324 * SDIO workqueue. 1325 */ 1326 bus_req = ath10k_sdio_alloc_busreq(ar); 1327 if (!bus_req) { 1328 ath10k_warn(ar, 1329 "unable to allocate bus request for async request\n"); 1330 return -ENOMEM; 1331 } 1332 1333 bus_req->skb = skb; 1334 bus_req->eid = eid; 1335 bus_req->address = addr; 1336 bus_req->htc_msg = htc_msg; 1337 bus_req->comp = comp; 1338 1339 spin_lock_bh(&ar_sdio->wr_async_lock); 1340 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1341 spin_unlock_bh(&ar_sdio->wr_async_lock); 1342 1343 return 0; 1344 } 1345 1346 /* IRQ handler */ 1347 1348 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1349 { 1350 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1351 struct ath10k *ar = ar_sdio->ar; 1352 unsigned long timeout; 1353 bool done = false; 1354 int ret; 1355 1356 /* Release the host during interrupts so we can pick it back up when 1357 * we process commands. 1358 */ 1359 sdio_release_host(ar_sdio->func); 1360 1361 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1362 do { 1363 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1364 if (ret) 1365 break; 1366 } while (time_before(jiffies, timeout) && !done); 1367 1368 ath10k_mac_tx_push_pending(ar); 1369 1370 sdio_claim_host(ar_sdio->func); 1371 1372 if (ret && ret != -ECANCELED) 1373 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1374 ret); 1375 } 1376 1377 /* sdio HIF functions */ 1378 1379 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1380 { 1381 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1382 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1383 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1384 int ret; 1385 1386 mutex_lock(&irq_data->mtx); 1387 1388 memset(regs, 0, sizeof(*regs)); 1389 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1390 ®s->int_status_en, sizeof(*regs)); 1391 if (ret) 1392 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1393 1394 mutex_unlock(&irq_data->mtx); 1395 1396 return ret; 1397 } 1398 1399 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1400 enum ath10k_firmware_mode fw_mode) 1401 { 1402 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1403 struct sdio_func *func = ar_sdio->func; 1404 int ret; 1405 1406 if (!ar_sdio->is_disabled) 1407 return 0; 1408 1409 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1410 1411 ret = ath10k_sdio_config(ar); 1412 if (ret) { 1413 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1414 return ret; 1415 } 1416 1417 sdio_claim_host(func); 1418 1419 ret = sdio_enable_func(func); 1420 if (ret) { 1421 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1422 sdio_release_host(func); 1423 return ret; 1424 } 1425 1426 sdio_release_host(func); 1427 1428 /* Wait for hardware to initialise. It should take a lot less than 1429 * 20 ms but let's be conservative here. 1430 */ 1431 msleep(20); 1432 1433 ar_sdio->is_disabled = false; 1434 1435 ret = ath10k_sdio_hif_disable_intrs(ar); 1436 if (ret) 1437 return ret; 1438 1439 return 0; 1440 } 1441 1442 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1443 { 1444 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1445 int ret; 1446 1447 if (ar_sdio->is_disabled) 1448 return; 1449 1450 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1451 1452 /* Disable the card */ 1453 sdio_claim_host(ar_sdio->func); 1454 1455 ret = sdio_disable_func(ar_sdio->func); 1456 if (ret) { 1457 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1458 sdio_release_host(ar_sdio->func); 1459 return; 1460 } 1461 1462 ret = mmc_hw_reset(ar_sdio->func->card->host); 1463 if (ret) 1464 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1465 1466 sdio_release_host(ar_sdio->func); 1467 1468 ar_sdio->is_disabled = true; 1469 } 1470 1471 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1472 struct ath10k_hif_sg_item *items, int n_items) 1473 { 1474 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1475 enum ath10k_htc_ep_id eid; 1476 struct sk_buff *skb; 1477 int ret, i; 1478 1479 eid = pipe_id_to_eid(pipe_id); 1480 1481 for (i = 0; i < n_items; i++) { 1482 size_t padded_len; 1483 u32 address; 1484 1485 skb = items[i].transfer_context; 1486 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1487 skb->len); 1488 skb_trim(skb, padded_len); 1489 1490 /* Write TX data to the end of the mbox address space */ 1491 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1492 skb->len; 1493 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1494 NULL, true, eid); 1495 if (ret) 1496 return ret; 1497 } 1498 1499 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1500 1501 return 0; 1502 } 1503 1504 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1505 { 1506 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1507 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1508 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1509 int ret; 1510 1511 mutex_lock(&irq_data->mtx); 1512 1513 /* Enable all but CPU interrupts */ 1514 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1515 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1516 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1517 1518 /* NOTE: There are some cases where HIF can do detection of 1519 * pending mbox messages which is disabled now. 1520 */ 1521 regs->int_status_en |= 1522 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1523 1524 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1525 * #0 is used for report assertion from target 1526 */ 1527 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1528 1529 /* Set up the Error Interrupt status Register */ 1530 regs->err_int_status_en = 1531 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1532 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1533 1534 /* Enable Counter interrupt status register to get fatal errors for 1535 * debugging. 1536 */ 1537 regs->cntr_int_status_en = 1538 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1539 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1540 1541 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1542 ®s->int_status_en, sizeof(*regs)); 1543 if (ret) 1544 ath10k_warn(ar, 1545 "failed to update mbox interrupt status register : %d\n", 1546 ret); 1547 1548 mutex_unlock(&irq_data->mtx); 1549 return ret; 1550 } 1551 1552 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1553 { 1554 u32 val; 1555 int ret; 1556 1557 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1558 if (ret) { 1559 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1560 ret); 1561 return ret; 1562 } 1563 1564 if (enable_sleep) 1565 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1566 else 1567 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1568 1569 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1570 if (ret) { 1571 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1572 ret); 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 1579 /* HIF diagnostics */ 1580 1581 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1582 size_t buf_len) 1583 { 1584 int ret; 1585 1586 /* set window register to start read cycle */ 1587 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1588 if (ret) { 1589 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1590 return ret; 1591 } 1592 1593 /* read the data */ 1594 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1595 if (ret) { 1596 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1597 ret); 1598 return ret; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1605 u32 *value) 1606 { 1607 __le32 *val; 1608 int ret; 1609 1610 val = kzalloc(sizeof(*val), GFP_KERNEL); 1611 if (!val) 1612 return -ENOMEM; 1613 1614 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1615 if (ret) 1616 goto out; 1617 1618 *value = __le32_to_cpu(*val); 1619 1620 out: 1621 kfree(val); 1622 1623 return ret; 1624 } 1625 1626 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1627 const void *data, int nbytes) 1628 { 1629 int ret; 1630 1631 /* set write data */ 1632 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1633 if (ret) { 1634 ath10k_warn(ar, 1635 "failed to write 0x%p to mbox window data address: %d\n", 1636 data, ret); 1637 return ret; 1638 } 1639 1640 /* set window register, which starts the write cycle */ 1641 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1642 if (ret) { 1643 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1644 return ret; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar) 1651 { 1652 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1653 u32 addr, val; 1654 int ret = 0; 1655 1656 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1657 1658 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1659 if (ret) { 1660 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1661 return ret; 1662 } 1663 1664 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1665 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1666 "sdio mailbox swap service enabled\n"); 1667 ar_sdio->swap_mbox = true; 1668 } else { 1669 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1670 "sdio mailbox swap service disabled\n"); 1671 ar_sdio->swap_mbox = false; 1672 } 1673 1674 return 0; 1675 } 1676 1677 /* HIF start/stop */ 1678 1679 static int ath10k_sdio_hif_start(struct ath10k *ar) 1680 { 1681 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1682 int ret; 1683 1684 /* Sleep 20 ms before HIF interrupts are disabled. 1685 * This will give target plenty of time to process the BMI done 1686 * request before interrupts are disabled. 1687 */ 1688 msleep(20); 1689 ret = ath10k_sdio_hif_disable_intrs(ar); 1690 if (ret) 1691 return ret; 1692 1693 /* eid 0 always uses the lower part of the extended mailbox address 1694 * space (ext_info[0].htc_ext_addr). 1695 */ 1696 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1697 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1698 1699 sdio_claim_host(ar_sdio->func); 1700 1701 /* Register the isr */ 1702 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1703 if (ret) { 1704 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1705 sdio_release_host(ar_sdio->func); 1706 return ret; 1707 } 1708 1709 sdio_release_host(ar_sdio->func); 1710 1711 ret = ath10k_sdio_hif_enable_intrs(ar); 1712 if (ret) 1713 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1714 1715 /* Enable sleep and then disable it again */ 1716 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1717 if (ret) 1718 return ret; 1719 1720 /* Wait for 20ms for the written value to take effect */ 1721 msleep(20); 1722 1723 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1724 if (ret) 1725 return ret; 1726 1727 return 0; 1728 } 1729 1730 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1731 1732 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1733 { 1734 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1735 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1736 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1737 struct sk_buff *skb; 1738 struct completion irqs_disabled_comp; 1739 int ret; 1740 1741 skb = dev_alloc_skb(sizeof(*regs)); 1742 if (!skb) 1743 return; 1744 1745 mutex_lock(&irq_data->mtx); 1746 1747 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1748 memcpy(skb->data, regs, sizeof(*regs)); 1749 skb_put(skb, sizeof(*regs)); 1750 1751 mutex_unlock(&irq_data->mtx); 1752 1753 init_completion(&irqs_disabled_comp); 1754 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1755 skb, &irqs_disabled_comp, false, 0); 1756 if (ret) 1757 goto out; 1758 1759 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1760 1761 /* Wait for the completion of the IRQ disable request. 1762 * If there is a timeout we will try to disable irq's anyway. 1763 */ 1764 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1765 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1766 if (!ret) 1767 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1768 1769 sdio_claim_host(ar_sdio->func); 1770 1771 ret = sdio_release_irq(ar_sdio->func); 1772 if (ret) 1773 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1774 1775 sdio_release_host(ar_sdio->func); 1776 1777 out: 1778 kfree_skb(skb); 1779 } 1780 1781 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1782 { 1783 struct ath10k_sdio_bus_request *req, *tmp_req; 1784 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1785 1786 ath10k_sdio_irq_disable(ar); 1787 1788 cancel_work_sync(&ar_sdio->wr_async_work); 1789 1790 spin_lock_bh(&ar_sdio->wr_async_lock); 1791 1792 /* Free all bus requests that have not been handled */ 1793 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1794 struct ath10k_htc_ep *ep; 1795 1796 list_del(&req->list); 1797 1798 if (req->htc_msg) { 1799 ep = &ar->htc.endpoint[req->eid]; 1800 ath10k_htc_notify_tx_completion(ep, req->skb); 1801 } else if (req->skb) { 1802 kfree_skb(req->skb); 1803 } 1804 ath10k_sdio_free_bus_req(ar, req); 1805 } 1806 1807 spin_unlock_bh(&ar_sdio->wr_async_lock); 1808 } 1809 1810 #ifdef CONFIG_PM 1811 1812 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1813 { 1814 return -EOPNOTSUPP; 1815 } 1816 1817 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1818 { 1819 switch (ar->state) { 1820 case ATH10K_STATE_OFF: 1821 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1822 "sdio resume configuring sdio\n"); 1823 1824 /* need to set sdio settings after power is cut from sdio */ 1825 ath10k_sdio_config(ar); 1826 break; 1827 1828 case ATH10K_STATE_ON: 1829 default: 1830 break; 1831 } 1832 1833 return 0; 1834 } 1835 #endif 1836 1837 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1838 u16 service_id, 1839 u8 *ul_pipe, u8 *dl_pipe) 1840 { 1841 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1842 struct ath10k_htc *htc = &ar->htc; 1843 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1844 enum ath10k_htc_ep_id eid; 1845 bool ep_found = false; 1846 int i; 1847 1848 /* For sdio, we are interested in the mapping between eid 1849 * and pipeid rather than service_id to pipe_id. 1850 * First we find out which eid has been allocated to the 1851 * service... 1852 */ 1853 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1854 if (htc->endpoint[i].service_id == service_id) { 1855 eid = htc->endpoint[i].eid; 1856 ep_found = true; 1857 break; 1858 } 1859 } 1860 1861 if (!ep_found) 1862 return -EINVAL; 1863 1864 /* Then we create the simplest mapping possible between pipeid 1865 * and eid 1866 */ 1867 *ul_pipe = *dl_pipe = (u8)eid; 1868 1869 /* Normally, HTT will use the upper part of the extended 1870 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1871 * the lower part (ext_info[0].htc_ext_addr). 1872 * If fw wants swapping of mailbox addresses, the opposite is true. 1873 */ 1874 if (ar_sdio->swap_mbox) { 1875 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1876 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1877 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1878 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1879 } else { 1880 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1881 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1882 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1883 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1884 } 1885 1886 switch (service_id) { 1887 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1888 /* HTC ctrl ep mbox address has already been setup in 1889 * ath10k_sdio_hif_start 1890 */ 1891 break; 1892 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1893 ar_sdio->mbox_addr[eid] = wmi_addr; 1894 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1895 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1896 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1897 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1898 break; 1899 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1900 ar_sdio->mbox_addr[eid] = htt_addr; 1901 ar_sdio->mbox_size[eid] = htt_mbox_size; 1902 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1903 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1904 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1905 break; 1906 default: 1907 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1908 service_id); 1909 return -EINVAL; 1910 } 1911 1912 return 0; 1913 } 1914 1915 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1916 u8 *ul_pipe, u8 *dl_pipe) 1917 { 1918 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1919 1920 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1921 * case) == 0 1922 */ 1923 *ul_pipe = 0; 1924 *dl_pipe = 0; 1925 } 1926 1927 /* This op is currently only used by htc_wait_target if the HTC ready 1928 * message times out. It is not applicable for SDIO since there is nothing 1929 * we can do if the HTC ready message does not arrive in time. 1930 * TODO: Make this op non mandatory by introducing a NULL check in the 1931 * hif op wrapper. 1932 */ 1933 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1934 u8 pipe, int force) 1935 { 1936 } 1937 1938 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1939 .tx_sg = ath10k_sdio_hif_tx_sg, 1940 .diag_read = ath10k_sdio_hif_diag_read, 1941 .diag_write = ath10k_sdio_hif_diag_write_mem, 1942 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1943 .start = ath10k_sdio_hif_start, 1944 .stop = ath10k_sdio_hif_stop, 1945 .swap_mailbox = ath10k_sdio_hif_swap_mailbox, 1946 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1947 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1948 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1949 .power_up = ath10k_sdio_hif_power_up, 1950 .power_down = ath10k_sdio_hif_power_down, 1951 #ifdef CONFIG_PM 1952 .suspend = ath10k_sdio_hif_suspend, 1953 .resume = ath10k_sdio_hif_resume, 1954 #endif 1955 }; 1956 1957 #ifdef CONFIG_PM_SLEEP 1958 1959 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1960 * suspend. We instead follow cfg80211 suspend/resume handlers. 1961 */ 1962 static int ath10k_sdio_pm_suspend(struct device *device) 1963 { 1964 return 0; 1965 } 1966 1967 static int ath10k_sdio_pm_resume(struct device *device) 1968 { 1969 return 0; 1970 } 1971 1972 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1973 ath10k_sdio_pm_resume); 1974 1975 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1976 1977 #else 1978 1979 #define ATH10K_SDIO_PM_OPS NULL 1980 1981 #endif /* CONFIG_PM_SLEEP */ 1982 1983 static int ath10k_sdio_probe(struct sdio_func *func, 1984 const struct sdio_device_id *id) 1985 { 1986 struct ath10k_sdio *ar_sdio; 1987 struct ath10k *ar; 1988 enum ath10k_hw_rev hw_rev; 1989 u32 dev_id_base; 1990 struct ath10k_bus_params bus_params = {}; 1991 int ret, i; 1992 1993 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1994 * If there will be newer chipsets that does not use the hw reg 1995 * setup as defined in qca6174_regs and qca6174_values, this 1996 * assumption is no longer valid and hw_rev must be setup differently 1997 * depending on chipset. 1998 */ 1999 hw_rev = ATH10K_HW_QCA6174; 2000 2001 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2002 hw_rev, &ath10k_sdio_hif_ops); 2003 if (!ar) { 2004 dev_err(&func->dev, "failed to allocate core\n"); 2005 return -ENOMEM; 2006 } 2007 2008 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2009 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2010 func->num, func->vendor, func->device, 2011 func->max_blksize, func->cur_blksize); 2012 2013 ar_sdio = ath10k_sdio_priv(ar); 2014 2015 ar_sdio->irq_data.irq_proc_reg = 2016 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2017 GFP_KERNEL); 2018 if (!ar_sdio->irq_data.irq_proc_reg) { 2019 ret = -ENOMEM; 2020 goto err_core_destroy; 2021 } 2022 2023 ar_sdio->irq_data.irq_en_reg = 2024 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2025 GFP_KERNEL); 2026 if (!ar_sdio->irq_data.irq_en_reg) { 2027 ret = -ENOMEM; 2028 goto err_core_destroy; 2029 } 2030 2031 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 2032 if (!ar_sdio->bmi_buf) { 2033 ret = -ENOMEM; 2034 goto err_core_destroy; 2035 } 2036 2037 ar_sdio->func = func; 2038 sdio_set_drvdata(func, ar_sdio); 2039 2040 ar_sdio->is_disabled = true; 2041 ar_sdio->ar = ar; 2042 2043 spin_lock_init(&ar_sdio->lock); 2044 spin_lock_init(&ar_sdio->wr_async_lock); 2045 mutex_init(&ar_sdio->irq_data.mtx); 2046 2047 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2048 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2049 2050 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2051 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2052 if (!ar_sdio->workqueue) { 2053 ret = -ENOMEM; 2054 goto err_core_destroy; 2055 } 2056 2057 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2058 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2059 2060 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2061 switch (dev_id_base) { 2062 case QCA_MANUFACTURER_ID_AR6005_BASE: 2063 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2064 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2065 break; 2066 default: 2067 ret = -ENODEV; 2068 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2069 dev_id_base, id->device); 2070 goto err_free_wq; 2071 } 2072 2073 ar->id.vendor = id->vendor; 2074 ar->id.device = id->device; 2075 2076 ath10k_sdio_set_mbox_info(ar); 2077 2078 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2079 /* TODO: don't know yet how to get chip_id with SDIO */ 2080 bus_params.chip_id = 0; 2081 bus_params.hl_msdu_ids = true; 2082 2083 ret = ath10k_core_register(ar, &bus_params); 2084 if (ret) { 2085 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2086 goto err_free_wq; 2087 } 2088 2089 return 0; 2090 2091 err_free_wq: 2092 destroy_workqueue(ar_sdio->workqueue); 2093 err_core_destroy: 2094 ath10k_core_destroy(ar); 2095 2096 return ret; 2097 } 2098 2099 static void ath10k_sdio_remove(struct sdio_func *func) 2100 { 2101 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2102 struct ath10k *ar = ar_sdio->ar; 2103 2104 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2105 "sdio removed func %d vendor 0x%x device 0x%x\n", 2106 func->num, func->vendor, func->device); 2107 2108 ath10k_core_unregister(ar); 2109 ath10k_core_destroy(ar); 2110 2111 flush_workqueue(ar_sdio->workqueue); 2112 destroy_workqueue(ar_sdio->workqueue); 2113 } 2114 2115 static const struct sdio_device_id ath10k_sdio_devices[] = { 2116 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2117 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2118 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2119 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2120 {}, 2121 }; 2122 2123 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2124 2125 static struct sdio_driver ath10k_sdio_driver = { 2126 .name = "ath10k_sdio", 2127 .id_table = ath10k_sdio_devices, 2128 .probe = ath10k_sdio_probe, 2129 .remove = ath10k_sdio_remove, 2130 .drv = { 2131 .owner = THIS_MODULE, 2132 .pm = ATH10K_SDIO_PM_OPS, 2133 }, 2134 }; 2135 2136 static int __init ath10k_sdio_init(void) 2137 { 2138 int ret; 2139 2140 ret = sdio_register_driver(&ath10k_sdio_driver); 2141 if (ret) 2142 pr_err("sdio driver registration failed: %d\n", ret); 2143 2144 return ret; 2145 } 2146 2147 static void __exit ath10k_sdio_exit(void) 2148 { 2149 sdio_unregister_driver(&ath10k_sdio_driver); 2150 } 2151 2152 module_init(ath10k_sdio_init); 2153 module_exit(ath10k_sdio_exit); 2154 2155 MODULE_AUTHOR("Qualcomm Atheros"); 2156 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2157 MODULE_LICENSE("Dual BSD/GPL"); 2158