1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 5 * 6 * Permission to use, copy, modify, and/or distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/host.h> 23 #include <linux/mmc/sdio_func.h> 24 #include <linux/mmc/sdio_ids.h> 25 #include <linux/mmc/sdio.h> 26 #include <linux/mmc/sd.h> 27 #include <linux/bitfield.h> 28 #include "core.h" 29 #include "bmi.h" 30 #include "debug.h" 31 #include "hif.h" 32 #include "htc.h" 33 #include "mac.h" 34 #include "targaddrs.h" 35 #include "trace.h" 36 #include "sdio.h" 37 38 /* inlined helper functions */ 39 40 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 41 size_t len) 42 { 43 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 44 } 45 46 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 47 { 48 return (enum ath10k_htc_ep_id)pipe_id; 49 } 50 51 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 52 { 53 dev_kfree_skb(pkt->skb); 54 pkt->skb = NULL; 55 pkt->alloc_len = 0; 56 pkt->act_len = 0; 57 pkt->trailer_only = false; 58 } 59 60 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 61 size_t act_len, size_t full_len, 62 bool part_of_bundle, 63 bool last_in_bundle) 64 { 65 pkt->skb = dev_alloc_skb(full_len); 66 if (!pkt->skb) 67 return -ENOMEM; 68 69 pkt->act_len = act_len; 70 pkt->alloc_len = full_len; 71 pkt->part_of_bundle = part_of_bundle; 72 pkt->last_in_bundle = last_in_bundle; 73 pkt->trailer_only = false; 74 75 return 0; 76 } 77 78 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 79 { 80 bool trailer_only = false; 81 struct ath10k_htc_hdr *htc_hdr = 82 (struct ath10k_htc_hdr *)pkt->skb->data; 83 u16 len = __le16_to_cpu(htc_hdr->len); 84 85 if (len == htc_hdr->trailer_len) 86 trailer_only = true; 87 88 return trailer_only; 89 } 90 91 /* sdio/mmc functions */ 92 93 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 94 unsigned int address, 95 unsigned char val) 96 { 97 *arg = FIELD_PREP(BIT(31), write) | 98 FIELD_PREP(BIT(27), raw) | 99 FIELD_PREP(BIT(26), 1) | 100 FIELD_PREP(GENMASK(25, 9), address) | 101 FIELD_PREP(BIT(8), 1) | 102 FIELD_PREP(GENMASK(7, 0), val); 103 } 104 105 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 106 unsigned int address, 107 unsigned char byte) 108 { 109 struct mmc_command io_cmd; 110 111 memset(&io_cmd, 0, sizeof(io_cmd)); 112 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 113 io_cmd.opcode = SD_IO_RW_DIRECT; 114 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 115 116 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 117 } 118 119 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 120 unsigned int address, 121 unsigned char *byte) 122 { 123 struct mmc_command io_cmd; 124 int ret; 125 126 memset(&io_cmd, 0, sizeof(io_cmd)); 127 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 128 io_cmd.opcode = SD_IO_RW_DIRECT; 129 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 130 131 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 132 if (!ret) 133 *byte = io_cmd.resp[0]; 134 135 return ret; 136 } 137 138 static int ath10k_sdio_config(struct ath10k *ar) 139 { 140 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 141 struct sdio_func *func = ar_sdio->func; 142 unsigned char byte, asyncintdelay = 2; 143 int ret; 144 145 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 146 147 sdio_claim_host(func); 148 149 byte = 0; 150 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 151 SDIO_CCCR_DRIVE_STRENGTH, 152 &byte); 153 154 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 155 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 156 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 157 158 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 159 SDIO_CCCR_DRIVE_STRENGTH, 160 byte); 161 162 byte = 0; 163 ret = ath10k_sdio_func0_cmd52_rd_byte( 164 func->card, 165 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 166 &byte); 167 168 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 169 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 170 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 171 172 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 173 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 174 byte); 175 if (ret) { 176 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 177 goto out; 178 } 179 180 byte = 0; 181 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 182 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 183 &byte); 184 185 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 186 187 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 188 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 189 byte); 190 if (ret) { 191 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 192 ret); 193 goto out; 194 } 195 196 byte = 0; 197 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 198 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 199 &byte); 200 201 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 202 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 203 204 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 205 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 206 byte); 207 208 /* give us some time to enable, in ms */ 209 func->enable_timeout = 100; 210 211 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 212 if (ret) { 213 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 214 ar_sdio->mbox_info.block_size, ret); 215 goto out; 216 } 217 218 out: 219 sdio_release_host(func); 220 return ret; 221 } 222 223 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 224 { 225 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 226 struct sdio_func *func = ar_sdio->func; 227 int ret; 228 229 sdio_claim_host(func); 230 231 sdio_writel(func, val, addr, &ret); 232 if (ret) { 233 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 234 val, addr, ret); 235 goto out; 236 } 237 238 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 239 addr, val); 240 241 out: 242 sdio_release_host(func); 243 244 return ret; 245 } 246 247 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 248 { 249 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 250 struct sdio_func *func = ar_sdio->func; 251 __le32 *buf; 252 int ret; 253 254 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 255 if (!buf) 256 return -ENOMEM; 257 258 *buf = cpu_to_le32(val); 259 260 sdio_claim_host(func); 261 262 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 263 if (ret) { 264 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 265 val, addr, ret); 266 goto out; 267 } 268 269 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 270 addr, val); 271 272 out: 273 sdio_release_host(func); 274 275 kfree(buf); 276 277 return ret; 278 } 279 280 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 281 { 282 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 283 struct sdio_func *func = ar_sdio->func; 284 int ret; 285 286 sdio_claim_host(func); 287 *val = sdio_readl(func, addr, &ret); 288 if (ret) { 289 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 290 addr, ret); 291 goto out; 292 } 293 294 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 295 addr, *val); 296 297 out: 298 sdio_release_host(func); 299 300 return ret; 301 } 302 303 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 304 { 305 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 306 struct sdio_func *func = ar_sdio->func; 307 int ret; 308 309 sdio_claim_host(func); 310 311 ret = sdio_memcpy_fromio(func, buf, addr, len); 312 if (ret) { 313 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 314 addr, ret); 315 goto out; 316 } 317 318 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 319 addr, buf, len); 320 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 321 322 out: 323 sdio_release_host(func); 324 325 return ret; 326 } 327 328 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 329 { 330 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 331 struct sdio_func *func = ar_sdio->func; 332 int ret; 333 334 sdio_claim_host(func); 335 336 /* For some reason toio() doesn't have const for the buffer, need 337 * an ugly hack to workaround that. 338 */ 339 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 340 if (ret) { 341 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 342 addr, ret); 343 goto out; 344 } 345 346 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 347 addr, buf, len); 348 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 349 350 out: 351 sdio_release_host(func); 352 353 return ret; 354 } 355 356 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 357 { 358 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 359 struct sdio_func *func = ar_sdio->func; 360 int ret; 361 362 sdio_claim_host(func); 363 364 len = round_down(len, ar_sdio->mbox_info.block_size); 365 366 ret = sdio_readsb(func, buf, addr, len); 367 if (ret) { 368 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 369 addr, ret); 370 goto out; 371 } 372 373 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 374 addr, buf, len); 375 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 376 377 out: 378 sdio_release_host(func); 379 380 return ret; 381 } 382 383 /* HIF mbox functions */ 384 385 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 386 struct ath10k_sdio_rx_data *pkt, 387 u32 *lookaheads, 388 int *n_lookaheads) 389 { 390 struct ath10k_htc *htc = &ar->htc; 391 struct sk_buff *skb = pkt->skb; 392 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 393 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 394 enum ath10k_htc_ep_id eid; 395 u16 payload_len; 396 u8 *trailer; 397 int ret; 398 399 payload_len = le16_to_cpu(htc_hdr->len); 400 401 if (trailer_present) { 402 trailer = skb->data + sizeof(*htc_hdr) + 403 payload_len - htc_hdr->trailer_len; 404 405 eid = pipe_id_to_eid(htc_hdr->eid); 406 407 ret = ath10k_htc_process_trailer(htc, 408 trailer, 409 htc_hdr->trailer_len, 410 eid, 411 lookaheads, 412 n_lookaheads); 413 if (ret) 414 return ret; 415 416 if (is_trailer_only_msg(pkt)) 417 pkt->trailer_only = true; 418 419 skb_trim(skb, skb->len - htc_hdr->trailer_len); 420 } 421 422 skb_pull(skb, sizeof(*htc_hdr)); 423 424 return 0; 425 } 426 427 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 428 u32 lookaheads[], 429 int *n_lookahead) 430 { 431 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 432 struct ath10k_htc *htc = &ar->htc; 433 struct ath10k_sdio_rx_data *pkt; 434 struct ath10k_htc_ep *ep; 435 enum ath10k_htc_ep_id id; 436 int ret, i, *n_lookahead_local; 437 u32 *lookaheads_local; 438 int lookahead_idx = 0; 439 440 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 441 lookaheads_local = lookaheads; 442 n_lookahead_local = n_lookahead; 443 444 id = ((struct ath10k_htc_hdr *) 445 &lookaheads[lookahead_idx++])->eid; 446 447 if (id >= ATH10K_HTC_EP_COUNT) { 448 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 449 id); 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 ep = &htc->endpoint[id]; 455 456 if (ep->service_id == 0) { 457 ath10k_warn(ar, "ep %d is not connected\n", id); 458 ret = -ENOMEM; 459 goto out; 460 } 461 462 pkt = &ar_sdio->rx_pkts[i]; 463 464 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 465 /* Only read lookahead's from RX trailers 466 * for the last packet in a bundle. 467 */ 468 lookahead_idx--; 469 lookaheads_local = NULL; 470 n_lookahead_local = NULL; 471 } 472 473 ret = ath10k_sdio_mbox_rx_process_packet(ar, 474 pkt, 475 lookaheads_local, 476 n_lookahead_local); 477 if (ret) 478 goto out; 479 480 if (!pkt->trailer_only) 481 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 482 else 483 kfree_skb(pkt->skb); 484 485 /* The RX complete handler now owns the skb...*/ 486 pkt->skb = NULL; 487 pkt->alloc_len = 0; 488 } 489 490 ret = 0; 491 492 out: 493 /* Free all packets that was not passed on to the RX completion 494 * handler... 495 */ 496 for (; i < ar_sdio->n_rx_pkts; i++) 497 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 498 499 return ret; 500 } 501 502 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 503 struct ath10k_sdio_rx_data *rx_pkts, 504 struct ath10k_htc_hdr *htc_hdr, 505 size_t full_len, size_t act_len, 506 size_t *bndl_cnt) 507 { 508 int ret, i; 509 510 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 511 512 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) { 513 ath10k_warn(ar, 514 "HTC bundle length %u exceeds maximum %u\n", 515 le16_to_cpu(htc_hdr->len), 516 HTC_HOST_MAX_MSG_PER_RX_BUNDLE); 517 return -ENOMEM; 518 } 519 520 /* Allocate bndl_cnt extra skb's for the bundle. 521 * The package containing the 522 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 523 * in bndl_cnt. The skb for that packet will be 524 * allocated separately. 525 */ 526 for (i = 0; i < *bndl_cnt; i++) { 527 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 528 act_len, 529 full_len, 530 true, 531 false); 532 if (ret) 533 return ret; 534 } 535 536 return 0; 537 } 538 539 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 540 u32 lookaheads[], int n_lookaheads) 541 { 542 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 543 struct ath10k_htc_hdr *htc_hdr; 544 size_t full_len, act_len; 545 bool last_in_bundle; 546 int ret, i; 547 548 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 549 ath10k_warn(ar, 550 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 551 n_lookaheads, 552 ATH10K_SDIO_MAX_RX_MSGS); 553 ret = -ENOMEM; 554 goto err; 555 } 556 557 for (i = 0; i < n_lookaheads; i++) { 558 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 559 last_in_bundle = false; 560 561 if (le16_to_cpu(htc_hdr->len) > 562 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 563 ath10k_warn(ar, 564 "payload length %d exceeds max htc length: %zu\n", 565 le16_to_cpu(htc_hdr->len), 566 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 567 ret = -ENOMEM; 568 goto err; 569 } 570 571 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 572 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 573 574 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 575 ath10k_warn(ar, 576 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 577 htc_hdr->eid, htc_hdr->flags, 578 le16_to_cpu(htc_hdr->len)); 579 ret = -EINVAL; 580 goto err; 581 } 582 583 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 584 /* HTC header indicates that every packet to follow 585 * has the same padded length so that it can be 586 * optimally fetched as a full bundle. 587 */ 588 size_t bndl_cnt; 589 590 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 591 &ar_sdio->rx_pkts[i], 592 htc_hdr, 593 full_len, 594 act_len, 595 &bndl_cnt); 596 597 n_lookaheads += bndl_cnt; 598 i += bndl_cnt; 599 /*Next buffer will be the last in the bundle */ 600 last_in_bundle = true; 601 } 602 603 /* Allocate skb for packet. If the packet had the 604 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 605 * packet skb's have been allocated in the previous step. 606 */ 607 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 608 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 609 610 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 611 act_len, 612 full_len, 613 last_in_bundle, 614 last_in_bundle); 615 } 616 617 ar_sdio->n_rx_pkts = i; 618 619 return 0; 620 621 err: 622 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 623 if (!ar_sdio->rx_pkts[i].alloc_len) 624 break; 625 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 626 } 627 628 return ret; 629 } 630 631 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 632 struct ath10k_sdio_rx_data *pkt) 633 { 634 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 635 struct sk_buff *skb = pkt->skb; 636 int ret; 637 638 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 639 skb->data, pkt->alloc_len); 640 pkt->status = ret; 641 if (!ret) 642 skb_put(skb, pkt->act_len); 643 644 return ret; 645 } 646 647 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 648 { 649 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 650 int ret, i; 651 652 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 653 ret = ath10k_sdio_mbox_rx_packet(ar, 654 &ar_sdio->rx_pkts[i]); 655 if (ret) 656 goto err; 657 } 658 659 return 0; 660 661 err: 662 /* Free all packets that was not successfully fetched. */ 663 for (; i < ar_sdio->n_rx_pkts; i++) 664 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 665 666 return ret; 667 } 668 669 /* This is the timeout for mailbox processing done in the sdio irq 670 * handler. The timeout is deliberately set quite high since SDIO dump logs 671 * over serial port can/will add a substantial overhead to the processing 672 * (if enabled). 673 */ 674 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 675 676 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 677 u32 msg_lookahead, bool *done) 678 { 679 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 680 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 681 int n_lookaheads = 1; 682 unsigned long timeout; 683 int ret; 684 685 *done = true; 686 687 /* Copy the lookahead obtained from the HTC register table into our 688 * temp array as a start value. 689 */ 690 lookaheads[0] = msg_lookahead; 691 692 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 693 do { 694 /* Try to allocate as many HTC RX packets indicated by 695 * n_lookaheads. 696 */ 697 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 698 n_lookaheads); 699 if (ret) 700 break; 701 702 if (ar_sdio->n_rx_pkts >= 2) 703 /* A recv bundle was detected, force IRQ status 704 * re-check again. 705 */ 706 *done = false; 707 708 ret = ath10k_sdio_mbox_rx_fetch(ar); 709 710 /* Process fetched packets. This will potentially update 711 * n_lookaheads depending on if the packets contain lookahead 712 * reports. 713 */ 714 n_lookaheads = 0; 715 ret = ath10k_sdio_mbox_rx_process_packets(ar, 716 lookaheads, 717 &n_lookaheads); 718 719 if (!n_lookaheads || ret) 720 break; 721 722 /* For SYNCH processing, if we get here, we are running 723 * through the loop again due to updated lookaheads. Set 724 * flag that we should re-check IRQ status registers again 725 * before leaving IRQ processing, this can net better 726 * performance in high throughput situations. 727 */ 728 *done = false; 729 } while (time_before(jiffies, timeout)); 730 731 if (ret && (ret != -ECANCELED)) 732 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 733 ret); 734 735 return ret; 736 } 737 738 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 739 { 740 u32 val; 741 int ret; 742 743 /* TODO: Add firmware crash handling */ 744 ath10k_warn(ar, "firmware crashed\n"); 745 746 /* read counter to clear the interrupt, the debug error interrupt is 747 * counter 0. 748 */ 749 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 750 if (ret) 751 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 752 753 return ret; 754 } 755 756 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 757 { 758 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 759 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 760 u8 counter_int_status; 761 int ret; 762 763 mutex_lock(&irq_data->mtx); 764 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 765 irq_data->irq_en_reg->cntr_int_status_en; 766 767 /* NOTE: other modules like GMBOX may use the counter interrupt for 768 * credit flow control on other counters, we only need to check for 769 * the debug assertion counter interrupt. 770 */ 771 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 772 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 773 else 774 ret = 0; 775 776 mutex_unlock(&irq_data->mtx); 777 778 return ret; 779 } 780 781 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 782 { 783 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 784 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 785 u8 error_int_status; 786 int ret; 787 788 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 789 790 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 791 if (!error_int_status) { 792 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 793 error_int_status); 794 return -EIO; 795 } 796 797 ath10k_dbg(ar, ATH10K_DBG_SDIO, 798 "sdio error_int_status 0x%x\n", error_int_status); 799 800 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 801 error_int_status)) 802 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 803 804 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 805 error_int_status)) 806 ath10k_warn(ar, "rx underflow interrupt error\n"); 807 808 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 809 error_int_status)) 810 ath10k_warn(ar, "tx overflow interrupt error\n"); 811 812 /* Clear the interrupt */ 813 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 814 815 /* set W1C value to clear the interrupt, this hits the register first */ 816 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 817 error_int_status); 818 if (ret) { 819 ath10k_warn(ar, "unable to write to error int status address: %d\n", 820 ret); 821 return ret; 822 } 823 824 return 0; 825 } 826 827 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 828 { 829 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 830 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 831 u8 cpu_int_status; 832 int ret; 833 834 mutex_lock(&irq_data->mtx); 835 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 836 irq_data->irq_en_reg->cpu_int_status_en; 837 if (!cpu_int_status) { 838 ath10k_warn(ar, "CPU interrupt status is zero\n"); 839 ret = -EIO; 840 goto out; 841 } 842 843 /* Clear the interrupt */ 844 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 845 846 /* Set up the register transfer buffer to hit the register 4 times, 847 * this is done to make the access 4-byte aligned to mitigate issues 848 * with host bus interconnects that restrict bus transfer lengths to 849 * be a multiple of 4-bytes. 850 * 851 * Set W1C value to clear the interrupt, this hits the register first. 852 */ 853 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 854 cpu_int_status); 855 if (ret) { 856 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 857 ret); 858 goto out; 859 } 860 861 out: 862 mutex_unlock(&irq_data->mtx); 863 return ret; 864 } 865 866 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 867 u8 *host_int_status, 868 u32 *lookahead) 869 { 870 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 871 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 872 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 873 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 874 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 875 int ret; 876 877 mutex_lock(&irq_data->mtx); 878 879 *lookahead = 0; 880 *host_int_status = 0; 881 882 /* int_status_en is supposed to be non zero, otherwise interrupts 883 * shouldn't be enabled. There is however a short time frame during 884 * initialization between the irq register and int_status_en init 885 * where this can happen. 886 * We silently ignore this condition. 887 */ 888 if (!irq_en_reg->int_status_en) { 889 ret = 0; 890 goto out; 891 } 892 893 /* Read the first sizeof(struct ath10k_irq_proc_registers) 894 * bytes of the HTC register table. This 895 * will yield us the value of different int status 896 * registers and the lookahead registers. 897 */ 898 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 899 irq_proc_reg, sizeof(*irq_proc_reg)); 900 if (ret) 901 goto out; 902 903 /* Update only those registers that are enabled */ 904 *host_int_status = irq_proc_reg->host_int_status & 905 irq_en_reg->int_status_en; 906 907 /* Look at mbox status */ 908 if (!(*host_int_status & htc_mbox)) { 909 *lookahead = 0; 910 ret = 0; 911 goto out; 912 } 913 914 /* Mask out pending mbox value, we use look ahead as 915 * the real flag for mbox processing. 916 */ 917 *host_int_status &= ~htc_mbox; 918 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 919 *lookahead = le32_to_cpu( 920 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 921 if (!*lookahead) 922 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 923 } 924 925 out: 926 mutex_unlock(&irq_data->mtx); 927 return ret; 928 } 929 930 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 931 bool *done) 932 { 933 u8 host_int_status; 934 u32 lookahead; 935 int ret; 936 937 /* NOTE: HIF implementation guarantees that the context of this 938 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 939 * sleep or call any API that can block or switch thread/task 940 * contexts. This is a fully schedulable context. 941 */ 942 943 ret = ath10k_sdio_mbox_read_int_status(ar, 944 &host_int_status, 945 &lookahead); 946 if (ret) { 947 *done = true; 948 goto out; 949 } 950 951 if (!host_int_status && !lookahead) { 952 ret = 0; 953 *done = true; 954 goto out; 955 } 956 957 if (lookahead) { 958 ath10k_dbg(ar, ATH10K_DBG_SDIO, 959 "sdio pending mailbox msg lookahead 0x%08x\n", 960 lookahead); 961 962 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 963 lookahead, 964 done); 965 if (ret) 966 goto out; 967 } 968 969 /* now, handle the rest of the interrupts */ 970 ath10k_dbg(ar, ATH10K_DBG_SDIO, 971 "sdio host_int_status 0x%x\n", host_int_status); 972 973 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 974 /* CPU Interrupt */ 975 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 976 if (ret) 977 goto out; 978 } 979 980 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 981 /* Error Interrupt */ 982 ret = ath10k_sdio_mbox_proc_err_intr(ar); 983 if (ret) 984 goto out; 985 } 986 987 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 988 /* Counter Interrupt */ 989 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 990 991 ret = 0; 992 993 out: 994 /* An optimization to bypass reading the IRQ status registers 995 * unecessarily which can re-wake the target, if upper layers 996 * determine that we are in a low-throughput mode, we can rely on 997 * taking another interrupt rather than re-checking the status 998 * registers which can re-wake the target. 999 * 1000 * NOTE : for host interfaces that makes use of detecting pending 1001 * mbox messages at hif can not use this optimization due to 1002 * possible side effects, SPI requires the host to drain all 1003 * messages from the mailbox before exiting the ISR routine. 1004 */ 1005 1006 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1007 "sdio pending irqs done %d status %d", 1008 *done, ret); 1009 1010 return ret; 1011 } 1012 1013 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1014 { 1015 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1016 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1017 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1018 1019 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1020 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1021 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1022 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1023 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1024 1025 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1026 1027 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1028 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1029 switch (dev_id_base) { 1030 case QCA_MANUFACTURER_ID_AR6005_BASE: 1031 if (dev_id_chiprev < 4) 1032 mbox_info->ext_info[0].htc_ext_sz = 1033 ATH10K_HIF_MBOX0_EXT_WIDTH; 1034 else 1035 /* from QCA6174 2.0(0x504), the width has been extended 1036 * to 56K 1037 */ 1038 mbox_info->ext_info[0].htc_ext_sz = 1039 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1040 break; 1041 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1042 mbox_info->ext_info[0].htc_ext_sz = 1043 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1044 break; 1045 default: 1046 mbox_info->ext_info[0].htc_ext_sz = 1047 ATH10K_HIF_MBOX0_EXT_WIDTH; 1048 } 1049 1050 mbox_info->ext_info[1].htc_ext_addr = 1051 mbox_info->ext_info[0].htc_ext_addr + 1052 mbox_info->ext_info[0].htc_ext_sz + 1053 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1054 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1055 } 1056 1057 /* BMI functions */ 1058 1059 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1060 { 1061 u32 addr, cmd_credits; 1062 unsigned long timeout; 1063 int ret; 1064 1065 /* Read the counter register to get the command credits */ 1066 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1067 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1068 cmd_credits = 0; 1069 1070 while (time_before(jiffies, timeout) && !cmd_credits) { 1071 /* Hit the credit counter with a 4-byte access, the first byte 1072 * read will hit the counter and cause a decrement, while the 1073 * remaining 3 bytes has no effect. The rationale behind this 1074 * is to make all HIF accesses 4-byte aligned. 1075 */ 1076 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1077 if (ret) { 1078 ath10k_warn(ar, 1079 "unable to decrement the command credit count register: %d\n", 1080 ret); 1081 return ret; 1082 } 1083 1084 /* The counter is only 8 bits. 1085 * Ignore anything in the upper 3 bytes 1086 */ 1087 cmd_credits &= 0xFF; 1088 } 1089 1090 if (!cmd_credits) { 1091 ath10k_warn(ar, "bmi communication timeout\n"); 1092 return -ETIMEDOUT; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1099 { 1100 unsigned long timeout; 1101 u32 rx_word; 1102 int ret; 1103 1104 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1105 rx_word = 0; 1106 1107 while ((time_before(jiffies, timeout)) && !rx_word) { 1108 ret = ath10k_sdio_read32(ar, 1109 MBOX_HOST_INT_STATUS_ADDRESS, 1110 &rx_word); 1111 if (ret) { 1112 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1113 return ret; 1114 } 1115 1116 /* all we really want is one bit */ 1117 rx_word &= 1; 1118 } 1119 1120 if (!rx_word) { 1121 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1122 return -EINVAL; 1123 } 1124 1125 return ret; 1126 } 1127 1128 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1129 void *req, u32 req_len, 1130 void *resp, u32 *resp_len) 1131 { 1132 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1133 u32 addr; 1134 int ret; 1135 1136 if (req) { 1137 ret = ath10k_sdio_bmi_credits(ar); 1138 if (ret) 1139 return ret; 1140 1141 addr = ar_sdio->mbox_info.htc_addr; 1142 1143 memcpy(ar_sdio->bmi_buf, req, req_len); 1144 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1145 if (ret) { 1146 ath10k_warn(ar, 1147 "unable to send the bmi data to the device: %d\n", 1148 ret); 1149 return ret; 1150 } 1151 } 1152 1153 if (!resp || !resp_len) 1154 /* No response expected */ 1155 return 0; 1156 1157 /* During normal bootup, small reads may be required. 1158 * Rather than issue an HIF Read and then wait as the Target 1159 * adds successive bytes to the FIFO, we wait here until 1160 * we know that response data is available. 1161 * 1162 * This allows us to cleanly timeout on an unexpected 1163 * Target failure rather than risk problems at the HIF level. 1164 * In particular, this avoids SDIO timeouts and possibly garbage 1165 * data on some host controllers. And on an interconnect 1166 * such as Compact Flash (as well as some SDIO masters) which 1167 * does not provide any indication on data timeout, it avoids 1168 * a potential hang or garbage response. 1169 * 1170 * Synchronization is more difficult for reads larger than the 1171 * size of the MBOX FIFO (128B), because the Target is unable 1172 * to push the 129th byte of data until AFTER the Host posts an 1173 * HIF Read and removes some FIFO data. So for large reads the 1174 * Host proceeds to post an HIF Read BEFORE all the data is 1175 * actually available to read. Fortunately, large BMI reads do 1176 * not occur in practice -- they're supported for debug/development. 1177 * 1178 * So Host/Target BMI synchronization is divided into these cases: 1179 * CASE 1: length < 4 1180 * Should not happen 1181 * 1182 * CASE 2: 4 <= length <= 128 1183 * Wait for first 4 bytes to be in FIFO 1184 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1185 * a BMI command credit, which indicates that the ENTIRE 1186 * response is available in the the FIFO 1187 * 1188 * CASE 3: length > 128 1189 * Wait for the first 4 bytes to be in FIFO 1190 * 1191 * For most uses, a small timeout should be sufficient and we will 1192 * usually see a response quickly; but there may be some unusual 1193 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1194 * For now, we use an unbounded busy loop while waiting for 1195 * BMI_EXECUTE. 1196 * 1197 * If BMI_EXECUTE ever needs to support longer-latency execution, 1198 * especially in production, this code needs to be enhanced to sleep 1199 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1200 * a function of Host processor speed. 1201 */ 1202 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1203 if (ret) 1204 return ret; 1205 1206 /* We always read from the start of the mbox address */ 1207 addr = ar_sdio->mbox_info.htc_addr; 1208 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1209 if (ret) { 1210 ath10k_warn(ar, 1211 "unable to read the bmi data from the device: %d\n", 1212 ret); 1213 return ret; 1214 } 1215 1216 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1217 1218 return 0; 1219 } 1220 1221 /* sdio async handling functions */ 1222 1223 static struct ath10k_sdio_bus_request 1224 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1225 { 1226 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1227 struct ath10k_sdio_bus_request *bus_req; 1228 1229 spin_lock_bh(&ar_sdio->lock); 1230 1231 if (list_empty(&ar_sdio->bus_req_freeq)) { 1232 bus_req = NULL; 1233 goto out; 1234 } 1235 1236 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1237 struct ath10k_sdio_bus_request, list); 1238 list_del(&bus_req->list); 1239 1240 out: 1241 spin_unlock_bh(&ar_sdio->lock); 1242 return bus_req; 1243 } 1244 1245 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1246 struct ath10k_sdio_bus_request *bus_req) 1247 { 1248 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1249 1250 memset(bus_req, 0, sizeof(*bus_req)); 1251 1252 spin_lock_bh(&ar_sdio->lock); 1253 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1254 spin_unlock_bh(&ar_sdio->lock); 1255 } 1256 1257 static void __ath10k_sdio_write_async(struct ath10k *ar, 1258 struct ath10k_sdio_bus_request *req) 1259 { 1260 struct ath10k_htc_ep *ep; 1261 struct sk_buff *skb; 1262 int ret; 1263 1264 skb = req->skb; 1265 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1266 if (ret) 1267 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1268 req->address, ret); 1269 1270 if (req->htc_msg) { 1271 ep = &ar->htc.endpoint[req->eid]; 1272 ath10k_htc_notify_tx_completion(ep, skb); 1273 } else if (req->comp) { 1274 complete(req->comp); 1275 } 1276 1277 ath10k_sdio_free_bus_req(ar, req); 1278 } 1279 1280 static void ath10k_sdio_write_async_work(struct work_struct *work) 1281 { 1282 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1283 wr_async_work); 1284 struct ath10k *ar = ar_sdio->ar; 1285 struct ath10k_sdio_bus_request *req, *tmp_req; 1286 1287 spin_lock_bh(&ar_sdio->wr_async_lock); 1288 1289 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1290 list_del(&req->list); 1291 spin_unlock_bh(&ar_sdio->wr_async_lock); 1292 __ath10k_sdio_write_async(ar, req); 1293 spin_lock_bh(&ar_sdio->wr_async_lock); 1294 } 1295 1296 spin_unlock_bh(&ar_sdio->wr_async_lock); 1297 } 1298 1299 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1300 struct sk_buff *skb, 1301 struct completion *comp, 1302 bool htc_msg, enum ath10k_htc_ep_id eid) 1303 { 1304 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1305 struct ath10k_sdio_bus_request *bus_req; 1306 1307 /* Allocate a bus request for the message and queue it on the 1308 * SDIO workqueue. 1309 */ 1310 bus_req = ath10k_sdio_alloc_busreq(ar); 1311 if (!bus_req) { 1312 ath10k_warn(ar, 1313 "unable to allocate bus request for async request\n"); 1314 return -ENOMEM; 1315 } 1316 1317 bus_req->skb = skb; 1318 bus_req->eid = eid; 1319 bus_req->address = addr; 1320 bus_req->htc_msg = htc_msg; 1321 bus_req->comp = comp; 1322 1323 spin_lock_bh(&ar_sdio->wr_async_lock); 1324 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1325 spin_unlock_bh(&ar_sdio->wr_async_lock); 1326 1327 return 0; 1328 } 1329 1330 /* IRQ handler */ 1331 1332 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1333 { 1334 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1335 struct ath10k *ar = ar_sdio->ar; 1336 unsigned long timeout; 1337 bool done = false; 1338 int ret; 1339 1340 /* Release the host during interrupts so we can pick it back up when 1341 * we process commands. 1342 */ 1343 sdio_release_host(ar_sdio->func); 1344 1345 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1346 do { 1347 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1348 if (ret) 1349 break; 1350 } while (time_before(jiffies, timeout) && !done); 1351 1352 ath10k_mac_tx_push_pending(ar); 1353 1354 sdio_claim_host(ar_sdio->func); 1355 1356 if (ret && ret != -ECANCELED) 1357 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1358 ret); 1359 } 1360 1361 /* sdio HIF functions */ 1362 1363 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1364 { 1365 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1366 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1367 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1368 int ret; 1369 1370 mutex_lock(&irq_data->mtx); 1371 1372 memset(regs, 0, sizeof(*regs)); 1373 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1374 ®s->int_status_en, sizeof(*regs)); 1375 if (ret) 1376 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1377 1378 mutex_unlock(&irq_data->mtx); 1379 1380 return ret; 1381 } 1382 1383 static int ath10k_sdio_hif_power_up(struct ath10k *ar) 1384 { 1385 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1386 struct sdio_func *func = ar_sdio->func; 1387 int ret; 1388 1389 if (!ar_sdio->is_disabled) 1390 return 0; 1391 1392 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1393 1394 sdio_claim_host(func); 1395 1396 ret = sdio_enable_func(func); 1397 if (ret) { 1398 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1399 sdio_release_host(func); 1400 return ret; 1401 } 1402 1403 sdio_release_host(func); 1404 1405 /* Wait for hardware to initialise. It should take a lot less than 1406 * 20 ms but let's be conservative here. 1407 */ 1408 msleep(20); 1409 1410 ar_sdio->is_disabled = false; 1411 1412 ret = ath10k_sdio_hif_disable_intrs(ar); 1413 if (ret) 1414 return ret; 1415 1416 return 0; 1417 } 1418 1419 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1420 { 1421 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1422 int ret; 1423 1424 if (ar_sdio->is_disabled) 1425 return; 1426 1427 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1428 1429 /* Disable the card */ 1430 sdio_claim_host(ar_sdio->func); 1431 ret = sdio_disable_func(ar_sdio->func); 1432 sdio_release_host(ar_sdio->func); 1433 1434 if (ret) 1435 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1436 1437 ar_sdio->is_disabled = true; 1438 } 1439 1440 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1441 struct ath10k_hif_sg_item *items, int n_items) 1442 { 1443 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1444 enum ath10k_htc_ep_id eid; 1445 struct sk_buff *skb; 1446 int ret, i; 1447 1448 eid = pipe_id_to_eid(pipe_id); 1449 1450 for (i = 0; i < n_items; i++) { 1451 size_t padded_len; 1452 u32 address; 1453 1454 skb = items[i].transfer_context; 1455 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1456 skb->len); 1457 skb_trim(skb, padded_len); 1458 1459 /* Write TX data to the end of the mbox address space */ 1460 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1461 skb->len; 1462 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1463 NULL, true, eid); 1464 if (ret) 1465 return ret; 1466 } 1467 1468 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1469 1470 return 0; 1471 } 1472 1473 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1474 { 1475 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1476 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1477 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1478 int ret; 1479 1480 mutex_lock(&irq_data->mtx); 1481 1482 /* Enable all but CPU interrupts */ 1483 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1484 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1485 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1486 1487 /* NOTE: There are some cases where HIF can do detection of 1488 * pending mbox messages which is disabled now. 1489 */ 1490 regs->int_status_en |= 1491 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1492 1493 /* Set up the CPU Interrupt status Register */ 1494 regs->cpu_int_status_en = 0; 1495 1496 /* Set up the Error Interrupt status Register */ 1497 regs->err_int_status_en = 1498 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1499 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1500 1501 /* Enable Counter interrupt status register to get fatal errors for 1502 * debugging. 1503 */ 1504 regs->cntr_int_status_en = 1505 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1506 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1507 1508 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1509 ®s->int_status_en, sizeof(*regs)); 1510 if (ret) 1511 ath10k_warn(ar, 1512 "failed to update mbox interrupt status register : %d\n", 1513 ret); 1514 1515 mutex_unlock(&irq_data->mtx); 1516 return ret; 1517 } 1518 1519 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1520 { 1521 u32 val; 1522 int ret; 1523 1524 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1525 if (ret) { 1526 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1527 ret); 1528 return ret; 1529 } 1530 1531 if (enable_sleep) 1532 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1533 else 1534 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1535 1536 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1537 if (ret) { 1538 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1539 ret); 1540 return ret; 1541 } 1542 1543 return 0; 1544 } 1545 1546 /* HIF diagnostics */ 1547 1548 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1549 size_t buf_len) 1550 { 1551 int ret; 1552 1553 /* set window register to start read cycle */ 1554 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1555 if (ret) { 1556 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1557 return ret; 1558 } 1559 1560 /* read the data */ 1561 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1562 if (ret) { 1563 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1564 ret); 1565 return ret; 1566 } 1567 1568 return 0; 1569 } 1570 1571 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1572 u32 *value) 1573 { 1574 __le32 *val; 1575 int ret; 1576 1577 val = kzalloc(sizeof(*val), GFP_KERNEL); 1578 if (!val) 1579 return -ENOMEM; 1580 1581 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1582 if (ret) 1583 goto out; 1584 1585 *value = __le32_to_cpu(*val); 1586 1587 out: 1588 kfree(val); 1589 1590 return ret; 1591 } 1592 1593 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1594 const void *data, int nbytes) 1595 { 1596 int ret; 1597 1598 /* set write data */ 1599 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1600 if (ret) { 1601 ath10k_warn(ar, 1602 "failed to write 0x%p to mbox window data address: %d\n", 1603 data, ret); 1604 return ret; 1605 } 1606 1607 /* set window register, which starts the write cycle */ 1608 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1609 if (ret) { 1610 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1611 return ret; 1612 } 1613 1614 return 0; 1615 } 1616 1617 /* HIF start/stop */ 1618 1619 static int ath10k_sdio_hif_start(struct ath10k *ar) 1620 { 1621 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1622 u32 addr, val; 1623 int ret; 1624 1625 /* Sleep 20 ms before HIF interrupts are disabled. 1626 * This will give target plenty of time to process the BMI done 1627 * request before interrupts are disabled. 1628 */ 1629 msleep(20); 1630 ret = ath10k_sdio_hif_disable_intrs(ar); 1631 if (ret) 1632 return ret; 1633 1634 /* eid 0 always uses the lower part of the extended mailbox address 1635 * space (ext_info[0].htc_ext_addr). 1636 */ 1637 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1638 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1639 1640 sdio_claim_host(ar_sdio->func); 1641 1642 /* Register the isr */ 1643 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1644 if (ret) { 1645 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1646 sdio_release_host(ar_sdio->func); 1647 return ret; 1648 } 1649 1650 sdio_release_host(ar_sdio->func); 1651 1652 ret = ath10k_sdio_hif_enable_intrs(ar); 1653 if (ret) 1654 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1655 1656 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1657 1658 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1659 if (ret) { 1660 ath10k_warn(ar, "unable to read hi_acs_flags address: %d\n", ret); 1661 return ret; 1662 } 1663 1664 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1665 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1666 "sdio mailbox swap service enabled\n"); 1667 ar_sdio->swap_mbox = true; 1668 } 1669 1670 /* Enable sleep and then disable it again */ 1671 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1672 if (ret) 1673 return ret; 1674 1675 /* Wait for 20ms for the written value to take effect */ 1676 msleep(20); 1677 1678 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1679 if (ret) 1680 return ret; 1681 1682 return 0; 1683 } 1684 1685 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1686 1687 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1688 { 1689 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1690 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1691 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1692 struct sk_buff *skb; 1693 struct completion irqs_disabled_comp; 1694 int ret; 1695 1696 skb = dev_alloc_skb(sizeof(*regs)); 1697 if (!skb) 1698 return; 1699 1700 mutex_lock(&irq_data->mtx); 1701 1702 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1703 memcpy(skb->data, regs, sizeof(*regs)); 1704 skb_put(skb, sizeof(*regs)); 1705 1706 mutex_unlock(&irq_data->mtx); 1707 1708 init_completion(&irqs_disabled_comp); 1709 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1710 skb, &irqs_disabled_comp, false, 0); 1711 if (ret) 1712 goto out; 1713 1714 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1715 1716 /* Wait for the completion of the IRQ disable request. 1717 * If there is a timeout we will try to disable irq's anyway. 1718 */ 1719 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1720 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1721 if (!ret) 1722 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1723 1724 sdio_claim_host(ar_sdio->func); 1725 1726 ret = sdio_release_irq(ar_sdio->func); 1727 if (ret) 1728 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1729 1730 sdio_release_host(ar_sdio->func); 1731 1732 out: 1733 kfree_skb(skb); 1734 } 1735 1736 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1737 { 1738 struct ath10k_sdio_bus_request *req, *tmp_req; 1739 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1740 1741 ath10k_sdio_irq_disable(ar); 1742 1743 cancel_work_sync(&ar_sdio->wr_async_work); 1744 1745 spin_lock_bh(&ar_sdio->wr_async_lock); 1746 1747 /* Free all bus requests that have not been handled */ 1748 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1749 struct ath10k_htc_ep *ep; 1750 1751 list_del(&req->list); 1752 1753 if (req->htc_msg) { 1754 ep = &ar->htc.endpoint[req->eid]; 1755 ath10k_htc_notify_tx_completion(ep, req->skb); 1756 } else if (req->skb) { 1757 kfree_skb(req->skb); 1758 } 1759 ath10k_sdio_free_bus_req(ar, req); 1760 } 1761 1762 spin_unlock_bh(&ar_sdio->wr_async_lock); 1763 } 1764 1765 #ifdef CONFIG_PM 1766 1767 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1768 { 1769 return -EOPNOTSUPP; 1770 } 1771 1772 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1773 { 1774 switch (ar->state) { 1775 case ATH10K_STATE_OFF: 1776 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1777 "sdio resume configuring sdio\n"); 1778 1779 /* need to set sdio settings after power is cut from sdio */ 1780 ath10k_sdio_config(ar); 1781 break; 1782 1783 case ATH10K_STATE_ON: 1784 default: 1785 break; 1786 } 1787 1788 return 0; 1789 } 1790 #endif 1791 1792 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1793 u16 service_id, 1794 u8 *ul_pipe, u8 *dl_pipe) 1795 { 1796 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1797 struct ath10k_htc *htc = &ar->htc; 1798 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1799 enum ath10k_htc_ep_id eid; 1800 bool ep_found = false; 1801 int i; 1802 1803 /* For sdio, we are interested in the mapping between eid 1804 * and pipeid rather than service_id to pipe_id. 1805 * First we find out which eid has been allocated to the 1806 * service... 1807 */ 1808 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1809 if (htc->endpoint[i].service_id == service_id) { 1810 eid = htc->endpoint[i].eid; 1811 ep_found = true; 1812 break; 1813 } 1814 } 1815 1816 if (!ep_found) 1817 return -EINVAL; 1818 1819 /* Then we create the simplest mapping possible between pipeid 1820 * and eid 1821 */ 1822 *ul_pipe = *dl_pipe = (u8)eid; 1823 1824 /* Normally, HTT will use the upper part of the extended 1825 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1826 * the lower part (ext_info[0].htc_ext_addr). 1827 * If fw wants swapping of mailbox addresses, the opposite is true. 1828 */ 1829 if (ar_sdio->swap_mbox) { 1830 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1831 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1832 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1833 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1834 } else { 1835 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1836 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1837 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1838 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1839 } 1840 1841 switch (service_id) { 1842 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1843 /* HTC ctrl ep mbox address has already been setup in 1844 * ath10k_sdio_hif_start 1845 */ 1846 break; 1847 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1848 ar_sdio->mbox_addr[eid] = wmi_addr; 1849 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1850 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1851 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1852 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1853 break; 1854 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1855 ar_sdio->mbox_addr[eid] = htt_addr; 1856 ar_sdio->mbox_size[eid] = htt_mbox_size; 1857 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1858 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1859 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1860 break; 1861 default: 1862 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1863 service_id); 1864 return -EINVAL; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1871 u8 *ul_pipe, u8 *dl_pipe) 1872 { 1873 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1874 1875 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1876 * case) == 0 1877 */ 1878 *ul_pipe = 0; 1879 *dl_pipe = 0; 1880 } 1881 1882 /* This op is currently only used by htc_wait_target if the HTC ready 1883 * message times out. It is not applicable for SDIO since there is nothing 1884 * we can do if the HTC ready message does not arrive in time. 1885 * TODO: Make this op non mandatory by introducing a NULL check in the 1886 * hif op wrapper. 1887 */ 1888 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1889 u8 pipe, int force) 1890 { 1891 } 1892 1893 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1894 .tx_sg = ath10k_sdio_hif_tx_sg, 1895 .diag_read = ath10k_sdio_hif_diag_read, 1896 .diag_write = ath10k_sdio_hif_diag_write_mem, 1897 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1898 .start = ath10k_sdio_hif_start, 1899 .stop = ath10k_sdio_hif_stop, 1900 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1901 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1902 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1903 .power_up = ath10k_sdio_hif_power_up, 1904 .power_down = ath10k_sdio_hif_power_down, 1905 #ifdef CONFIG_PM 1906 .suspend = ath10k_sdio_hif_suspend, 1907 .resume = ath10k_sdio_hif_resume, 1908 #endif 1909 }; 1910 1911 #ifdef CONFIG_PM_SLEEP 1912 1913 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1914 * suspend. We instead follow cfg80211 suspend/resume handlers. 1915 */ 1916 static int ath10k_sdio_pm_suspend(struct device *device) 1917 { 1918 return 0; 1919 } 1920 1921 static int ath10k_sdio_pm_resume(struct device *device) 1922 { 1923 return 0; 1924 } 1925 1926 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1927 ath10k_sdio_pm_resume); 1928 1929 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1930 1931 #else 1932 1933 #define ATH10K_SDIO_PM_OPS NULL 1934 1935 #endif /* CONFIG_PM_SLEEP */ 1936 1937 static int ath10k_sdio_probe(struct sdio_func *func, 1938 const struct sdio_device_id *id) 1939 { 1940 struct ath10k_sdio *ar_sdio; 1941 struct ath10k *ar; 1942 enum ath10k_hw_rev hw_rev; 1943 u32 chip_id, dev_id_base; 1944 int ret, i; 1945 1946 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1947 * If there will be newer chipsets that does not use the hw reg 1948 * setup as defined in qca6174_regs and qca6174_values, this 1949 * assumption is no longer valid and hw_rev must be setup differently 1950 * depending on chipset. 1951 */ 1952 hw_rev = ATH10K_HW_QCA6174; 1953 1954 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 1955 hw_rev, &ath10k_sdio_hif_ops); 1956 if (!ar) { 1957 dev_err(&func->dev, "failed to allocate core\n"); 1958 return -ENOMEM; 1959 } 1960 1961 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1962 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1963 func->num, func->vendor, func->device, 1964 func->max_blksize, func->cur_blksize); 1965 1966 ar_sdio = ath10k_sdio_priv(ar); 1967 1968 ar_sdio->irq_data.irq_proc_reg = 1969 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 1970 GFP_KERNEL); 1971 if (!ar_sdio->irq_data.irq_proc_reg) { 1972 ret = -ENOMEM; 1973 goto err_core_destroy; 1974 } 1975 1976 ar_sdio->irq_data.irq_en_reg = 1977 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 1978 GFP_KERNEL); 1979 if (!ar_sdio->irq_data.irq_en_reg) { 1980 ret = -ENOMEM; 1981 goto err_core_destroy; 1982 } 1983 1984 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 1985 if (!ar_sdio->bmi_buf) { 1986 ret = -ENOMEM; 1987 goto err_core_destroy; 1988 } 1989 1990 ar_sdio->func = func; 1991 sdio_set_drvdata(func, ar_sdio); 1992 1993 ar_sdio->is_disabled = true; 1994 ar_sdio->ar = ar; 1995 1996 spin_lock_init(&ar_sdio->lock); 1997 spin_lock_init(&ar_sdio->wr_async_lock); 1998 mutex_init(&ar_sdio->irq_data.mtx); 1999 2000 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2001 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2002 2003 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2004 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2005 if (!ar_sdio->workqueue) { 2006 ret = -ENOMEM; 2007 goto err_core_destroy; 2008 } 2009 2010 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2011 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2012 2013 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2014 switch (dev_id_base) { 2015 case QCA_MANUFACTURER_ID_AR6005_BASE: 2016 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2017 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2018 break; 2019 default: 2020 ret = -ENODEV; 2021 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2022 dev_id_base, id->device); 2023 goto err_free_wq; 2024 } 2025 2026 ar->id.vendor = id->vendor; 2027 ar->id.device = id->device; 2028 2029 ath10k_sdio_set_mbox_info(ar); 2030 2031 ret = ath10k_sdio_config(ar); 2032 if (ret) { 2033 ath10k_err(ar, "failed to config sdio: %d\n", ret); 2034 goto err_free_wq; 2035 } 2036 2037 /* TODO: don't know yet how to get chip_id with SDIO */ 2038 chip_id = 0; 2039 ret = ath10k_core_register(ar, chip_id); 2040 if (ret) { 2041 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2042 goto err_free_wq; 2043 } 2044 2045 /* TODO: remove this once SDIO support is fully implemented */ 2046 ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n"); 2047 2048 return 0; 2049 2050 err_free_wq: 2051 destroy_workqueue(ar_sdio->workqueue); 2052 err_core_destroy: 2053 ath10k_core_destroy(ar); 2054 2055 return ret; 2056 } 2057 2058 static void ath10k_sdio_remove(struct sdio_func *func) 2059 { 2060 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2061 struct ath10k *ar = ar_sdio->ar; 2062 2063 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2064 "sdio removed func %d vendor 0x%x device 0x%x\n", 2065 func->num, func->vendor, func->device); 2066 2067 (void)ath10k_sdio_hif_disable_intrs(ar); 2068 cancel_work_sync(&ar_sdio->wr_async_work); 2069 ath10k_core_unregister(ar); 2070 ath10k_core_destroy(ar); 2071 } 2072 2073 static const struct sdio_device_id ath10k_sdio_devices[] = { 2074 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2075 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2076 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2077 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2078 {}, 2079 }; 2080 2081 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2082 2083 static struct sdio_driver ath10k_sdio_driver = { 2084 .name = "ath10k_sdio", 2085 .id_table = ath10k_sdio_devices, 2086 .probe = ath10k_sdio_probe, 2087 .remove = ath10k_sdio_remove, 2088 .drv.pm = ATH10K_SDIO_PM_OPS, 2089 }; 2090 2091 static int __init ath10k_sdio_init(void) 2092 { 2093 int ret; 2094 2095 ret = sdio_register_driver(&ath10k_sdio_driver); 2096 if (ret) 2097 pr_err("sdio driver registration failed: %d\n", ret); 2098 2099 return ret; 2100 } 2101 2102 static void __exit ath10k_sdio_exit(void) 2103 { 2104 sdio_unregister_driver(&ath10k_sdio_driver); 2105 } 2106 2107 module_init(ath10k_sdio_init); 2108 module_exit(ath10k_sdio_exit); 2109 2110 MODULE_AUTHOR("Qualcomm Atheros"); 2111 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2112 MODULE_LICENSE("Dual BSD/GPL"); 2113