1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 /* inlined helper functions */ 28 29 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 30 size_t len) 31 { 32 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 33 } 34 35 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 36 { 37 return (enum ath10k_htc_ep_id)pipe_id; 38 } 39 40 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 41 { 42 dev_kfree_skb(pkt->skb); 43 pkt->skb = NULL; 44 pkt->alloc_len = 0; 45 pkt->act_len = 0; 46 pkt->trailer_only = false; 47 } 48 49 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 50 size_t act_len, size_t full_len, 51 bool part_of_bundle, 52 bool last_in_bundle) 53 { 54 pkt->skb = dev_alloc_skb(full_len); 55 if (!pkt->skb) 56 return -ENOMEM; 57 58 pkt->act_len = act_len; 59 pkt->alloc_len = full_len; 60 pkt->part_of_bundle = part_of_bundle; 61 pkt->last_in_bundle = last_in_bundle; 62 pkt->trailer_only = false; 63 64 return 0; 65 } 66 67 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 68 { 69 bool trailer_only = false; 70 struct ath10k_htc_hdr *htc_hdr = 71 (struct ath10k_htc_hdr *)pkt->skb->data; 72 u16 len = __le16_to_cpu(htc_hdr->len); 73 74 if (len == htc_hdr->trailer_len) 75 trailer_only = true; 76 77 return trailer_only; 78 } 79 80 /* sdio/mmc functions */ 81 82 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 83 unsigned int address, 84 unsigned char val) 85 { 86 *arg = FIELD_PREP(BIT(31), write) | 87 FIELD_PREP(BIT(27), raw) | 88 FIELD_PREP(BIT(26), 1) | 89 FIELD_PREP(GENMASK(25, 9), address) | 90 FIELD_PREP(BIT(8), 1) | 91 FIELD_PREP(GENMASK(7, 0), val); 92 } 93 94 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 95 unsigned int address, 96 unsigned char byte) 97 { 98 struct mmc_command io_cmd; 99 100 memset(&io_cmd, 0, sizeof(io_cmd)); 101 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 102 io_cmd.opcode = SD_IO_RW_DIRECT; 103 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 104 105 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 106 } 107 108 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 109 unsigned int address, 110 unsigned char *byte) 111 { 112 struct mmc_command io_cmd; 113 int ret; 114 115 memset(&io_cmd, 0, sizeof(io_cmd)); 116 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 117 io_cmd.opcode = SD_IO_RW_DIRECT; 118 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 119 120 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 121 if (!ret) 122 *byte = io_cmd.resp[0]; 123 124 return ret; 125 } 126 127 static int ath10k_sdio_config(struct ath10k *ar) 128 { 129 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 130 struct sdio_func *func = ar_sdio->func; 131 unsigned char byte, asyncintdelay = 2; 132 int ret; 133 134 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 135 136 sdio_claim_host(func); 137 138 byte = 0; 139 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 140 SDIO_CCCR_DRIVE_STRENGTH, 141 &byte); 142 143 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 144 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 145 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 146 147 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 148 SDIO_CCCR_DRIVE_STRENGTH, 149 byte); 150 151 byte = 0; 152 ret = ath10k_sdio_func0_cmd52_rd_byte( 153 func->card, 154 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 155 &byte); 156 157 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 158 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 159 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 160 161 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 162 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 163 byte); 164 if (ret) { 165 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 166 goto out; 167 } 168 169 byte = 0; 170 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 171 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 172 &byte); 173 174 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 175 176 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 177 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 178 byte); 179 if (ret) { 180 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 181 ret); 182 goto out; 183 } 184 185 byte = 0; 186 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 187 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 188 &byte); 189 190 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 191 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 192 193 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 194 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 195 byte); 196 197 /* give us some time to enable, in ms */ 198 func->enable_timeout = 100; 199 200 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 201 if (ret) { 202 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 203 ar_sdio->mbox_info.block_size, ret); 204 goto out; 205 } 206 207 out: 208 sdio_release_host(func); 209 return ret; 210 } 211 212 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 213 { 214 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 215 struct sdio_func *func = ar_sdio->func; 216 int ret; 217 218 sdio_claim_host(func); 219 220 sdio_writel(func, val, addr, &ret); 221 if (ret) { 222 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 223 val, addr, ret); 224 goto out; 225 } 226 227 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 228 addr, val); 229 230 out: 231 sdio_release_host(func); 232 233 return ret; 234 } 235 236 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 237 { 238 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 239 struct sdio_func *func = ar_sdio->func; 240 __le32 *buf; 241 int ret; 242 243 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 244 if (!buf) 245 return -ENOMEM; 246 247 *buf = cpu_to_le32(val); 248 249 sdio_claim_host(func); 250 251 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 252 if (ret) { 253 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 254 val, addr, ret); 255 goto out; 256 } 257 258 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 259 addr, val); 260 261 out: 262 sdio_release_host(func); 263 264 kfree(buf); 265 266 return ret; 267 } 268 269 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 270 { 271 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 272 struct sdio_func *func = ar_sdio->func; 273 int ret; 274 275 sdio_claim_host(func); 276 *val = sdio_readl(func, addr, &ret); 277 if (ret) { 278 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 279 addr, ret); 280 goto out; 281 } 282 283 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 284 addr, *val); 285 286 out: 287 sdio_release_host(func); 288 289 return ret; 290 } 291 292 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 293 { 294 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 295 struct sdio_func *func = ar_sdio->func; 296 int ret; 297 298 sdio_claim_host(func); 299 300 ret = sdio_memcpy_fromio(func, buf, addr, len); 301 if (ret) { 302 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 303 addr, ret); 304 goto out; 305 } 306 307 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 308 addr, buf, len); 309 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 310 311 out: 312 sdio_release_host(func); 313 314 return ret; 315 } 316 317 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 318 { 319 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 320 struct sdio_func *func = ar_sdio->func; 321 int ret; 322 323 sdio_claim_host(func); 324 325 /* For some reason toio() doesn't have const for the buffer, need 326 * an ugly hack to workaround that. 327 */ 328 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 329 if (ret) { 330 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 331 addr, ret); 332 goto out; 333 } 334 335 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 336 addr, buf, len); 337 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 338 339 out: 340 sdio_release_host(func); 341 342 return ret; 343 } 344 345 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 346 { 347 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 348 struct sdio_func *func = ar_sdio->func; 349 int ret; 350 351 sdio_claim_host(func); 352 353 len = round_down(len, ar_sdio->mbox_info.block_size); 354 355 ret = sdio_readsb(func, buf, addr, len); 356 if (ret) { 357 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 358 addr, ret); 359 goto out; 360 } 361 362 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 363 addr, buf, len); 364 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 365 366 out: 367 sdio_release_host(func); 368 369 return ret; 370 } 371 372 /* HIF mbox functions */ 373 374 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 375 struct ath10k_sdio_rx_data *pkt, 376 u32 *lookaheads, 377 int *n_lookaheads) 378 { 379 struct ath10k_htc *htc = &ar->htc; 380 struct sk_buff *skb = pkt->skb; 381 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 382 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 383 enum ath10k_htc_ep_id eid; 384 u16 payload_len; 385 u8 *trailer; 386 int ret; 387 388 payload_len = le16_to_cpu(htc_hdr->len); 389 skb->len = payload_len + sizeof(struct ath10k_htc_hdr); 390 391 if (trailer_present) { 392 trailer = skb->data + sizeof(*htc_hdr) + 393 payload_len - htc_hdr->trailer_len; 394 395 eid = pipe_id_to_eid(htc_hdr->eid); 396 397 ret = ath10k_htc_process_trailer(htc, 398 trailer, 399 htc_hdr->trailer_len, 400 eid, 401 lookaheads, 402 n_lookaheads); 403 if (ret) 404 return ret; 405 406 if (is_trailer_only_msg(pkt)) 407 pkt->trailer_only = true; 408 409 skb_trim(skb, skb->len - htc_hdr->trailer_len); 410 } 411 412 skb_pull(skb, sizeof(*htc_hdr)); 413 414 return 0; 415 } 416 417 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 418 u32 lookaheads[], 419 int *n_lookahead) 420 { 421 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 422 struct ath10k_htc *htc = &ar->htc; 423 struct ath10k_sdio_rx_data *pkt; 424 struct ath10k_htc_ep *ep; 425 enum ath10k_htc_ep_id id; 426 int ret, i, *n_lookahead_local; 427 u32 *lookaheads_local; 428 int lookahead_idx = 0; 429 430 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 431 lookaheads_local = lookaheads; 432 n_lookahead_local = n_lookahead; 433 434 id = ((struct ath10k_htc_hdr *) 435 &lookaheads[lookahead_idx++])->eid; 436 437 if (id >= ATH10K_HTC_EP_COUNT) { 438 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 439 id); 440 ret = -ENOMEM; 441 goto out; 442 } 443 444 ep = &htc->endpoint[id]; 445 446 if (ep->service_id == 0) { 447 ath10k_warn(ar, "ep %d is not connected\n", id); 448 ret = -ENOMEM; 449 goto out; 450 } 451 452 pkt = &ar_sdio->rx_pkts[i]; 453 454 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 455 /* Only read lookahead's from RX trailers 456 * for the last packet in a bundle. 457 */ 458 lookahead_idx--; 459 lookaheads_local = NULL; 460 n_lookahead_local = NULL; 461 } 462 463 ret = ath10k_sdio_mbox_rx_process_packet(ar, 464 pkt, 465 lookaheads_local, 466 n_lookahead_local); 467 if (ret) 468 goto out; 469 470 if (!pkt->trailer_only) 471 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 472 else 473 kfree_skb(pkt->skb); 474 475 /* The RX complete handler now owns the skb...*/ 476 pkt->skb = NULL; 477 pkt->alloc_len = 0; 478 } 479 480 ret = 0; 481 482 out: 483 /* Free all packets that was not passed on to the RX completion 484 * handler... 485 */ 486 for (; i < ar_sdio->n_rx_pkts; i++) 487 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 488 489 return ret; 490 } 491 492 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 493 struct ath10k_sdio_rx_data *rx_pkts, 494 struct ath10k_htc_hdr *htc_hdr, 495 size_t full_len, size_t act_len, 496 size_t *bndl_cnt) 497 { 498 int ret, i; 499 500 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 501 502 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) { 503 ath10k_warn(ar, 504 "HTC bundle length %u exceeds maximum %u\n", 505 le16_to_cpu(htc_hdr->len), 506 HTC_HOST_MAX_MSG_PER_RX_BUNDLE); 507 return -ENOMEM; 508 } 509 510 /* Allocate bndl_cnt extra skb's for the bundle. 511 * The package containing the 512 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 513 * in bndl_cnt. The skb for that packet will be 514 * allocated separately. 515 */ 516 for (i = 0; i < *bndl_cnt; i++) { 517 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 518 act_len, 519 full_len, 520 true, 521 false); 522 if (ret) 523 return ret; 524 } 525 526 return 0; 527 } 528 529 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 530 u32 lookaheads[], int n_lookaheads) 531 { 532 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 533 struct ath10k_htc_hdr *htc_hdr; 534 size_t full_len, act_len; 535 bool last_in_bundle; 536 int ret, i; 537 538 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 539 ath10k_warn(ar, 540 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 541 n_lookaheads, 542 ATH10K_SDIO_MAX_RX_MSGS); 543 ret = -ENOMEM; 544 goto err; 545 } 546 547 for (i = 0; i < n_lookaheads; i++) { 548 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 549 last_in_bundle = false; 550 551 if (le16_to_cpu(htc_hdr->len) > 552 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 553 ath10k_warn(ar, 554 "payload length %d exceeds max htc length: %zu\n", 555 le16_to_cpu(htc_hdr->len), 556 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 557 ret = -ENOMEM; 558 goto err; 559 } 560 561 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 562 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 563 564 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 565 ath10k_warn(ar, 566 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 567 htc_hdr->eid, htc_hdr->flags, 568 le16_to_cpu(htc_hdr->len)); 569 ret = -EINVAL; 570 goto err; 571 } 572 573 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 574 /* HTC header indicates that every packet to follow 575 * has the same padded length so that it can be 576 * optimally fetched as a full bundle. 577 */ 578 size_t bndl_cnt; 579 580 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 581 &ar_sdio->rx_pkts[i], 582 htc_hdr, 583 full_len, 584 act_len, 585 &bndl_cnt); 586 587 n_lookaheads += bndl_cnt; 588 i += bndl_cnt; 589 /*Next buffer will be the last in the bundle */ 590 last_in_bundle = true; 591 } 592 593 /* Allocate skb for packet. If the packet had the 594 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 595 * packet skb's have been allocated in the previous step. 596 */ 597 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 598 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 599 600 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 601 act_len, 602 full_len, 603 last_in_bundle, 604 last_in_bundle); 605 } 606 607 ar_sdio->n_rx_pkts = i; 608 609 return 0; 610 611 err: 612 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 613 if (!ar_sdio->rx_pkts[i].alloc_len) 614 break; 615 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 616 } 617 618 return ret; 619 } 620 621 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 622 struct ath10k_sdio_rx_data *pkt) 623 { 624 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 625 struct sk_buff *skb = pkt->skb; 626 int ret; 627 628 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 629 skb->data, pkt->alloc_len); 630 pkt->status = ret; 631 if (!ret) 632 skb_put(skb, pkt->act_len); 633 634 return ret; 635 } 636 637 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 638 { 639 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 640 int ret, i; 641 642 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 643 ret = ath10k_sdio_mbox_rx_packet(ar, 644 &ar_sdio->rx_pkts[i]); 645 if (ret) 646 goto err; 647 } 648 649 return 0; 650 651 err: 652 /* Free all packets that was not successfully fetched. */ 653 for (; i < ar_sdio->n_rx_pkts; i++) 654 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 655 656 return ret; 657 } 658 659 /* This is the timeout for mailbox processing done in the sdio irq 660 * handler. The timeout is deliberately set quite high since SDIO dump logs 661 * over serial port can/will add a substantial overhead to the processing 662 * (if enabled). 663 */ 664 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 665 666 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 667 u32 msg_lookahead, bool *done) 668 { 669 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 670 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 671 int n_lookaheads = 1; 672 unsigned long timeout; 673 int ret; 674 675 *done = true; 676 677 /* Copy the lookahead obtained from the HTC register table into our 678 * temp array as a start value. 679 */ 680 lookaheads[0] = msg_lookahead; 681 682 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 683 do { 684 /* Try to allocate as many HTC RX packets indicated by 685 * n_lookaheads. 686 */ 687 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 688 n_lookaheads); 689 if (ret) 690 break; 691 692 if (ar_sdio->n_rx_pkts >= 2) 693 /* A recv bundle was detected, force IRQ status 694 * re-check again. 695 */ 696 *done = false; 697 698 ret = ath10k_sdio_mbox_rx_fetch(ar); 699 700 /* Process fetched packets. This will potentially update 701 * n_lookaheads depending on if the packets contain lookahead 702 * reports. 703 */ 704 n_lookaheads = 0; 705 ret = ath10k_sdio_mbox_rx_process_packets(ar, 706 lookaheads, 707 &n_lookaheads); 708 709 if (!n_lookaheads || ret) 710 break; 711 712 /* For SYNCH processing, if we get here, we are running 713 * through the loop again due to updated lookaheads. Set 714 * flag that we should re-check IRQ status registers again 715 * before leaving IRQ processing, this can net better 716 * performance in high throughput situations. 717 */ 718 *done = false; 719 } while (time_before(jiffies, timeout)); 720 721 if (ret && (ret != -ECANCELED)) 722 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 723 ret); 724 725 return ret; 726 } 727 728 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 729 { 730 u32 val; 731 int ret; 732 733 /* TODO: Add firmware crash handling */ 734 ath10k_warn(ar, "firmware crashed\n"); 735 736 /* read counter to clear the interrupt, the debug error interrupt is 737 * counter 0. 738 */ 739 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 740 if (ret) 741 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 742 743 return ret; 744 } 745 746 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 747 { 748 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 749 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 750 u8 counter_int_status; 751 int ret; 752 753 mutex_lock(&irq_data->mtx); 754 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 755 irq_data->irq_en_reg->cntr_int_status_en; 756 757 /* NOTE: other modules like GMBOX may use the counter interrupt for 758 * credit flow control on other counters, we only need to check for 759 * the debug assertion counter interrupt. 760 */ 761 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 762 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 763 else 764 ret = 0; 765 766 mutex_unlock(&irq_data->mtx); 767 768 return ret; 769 } 770 771 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 772 { 773 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 774 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 775 u8 error_int_status; 776 int ret; 777 778 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 779 780 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 781 if (!error_int_status) { 782 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 783 error_int_status); 784 return -EIO; 785 } 786 787 ath10k_dbg(ar, ATH10K_DBG_SDIO, 788 "sdio error_int_status 0x%x\n", error_int_status); 789 790 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 791 error_int_status)) 792 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 793 794 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 795 error_int_status)) 796 ath10k_warn(ar, "rx underflow interrupt error\n"); 797 798 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 799 error_int_status)) 800 ath10k_warn(ar, "tx overflow interrupt error\n"); 801 802 /* Clear the interrupt */ 803 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 804 805 /* set W1C value to clear the interrupt, this hits the register first */ 806 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 807 error_int_status); 808 if (ret) { 809 ath10k_warn(ar, "unable to write to error int status address: %d\n", 810 ret); 811 return ret; 812 } 813 814 return 0; 815 } 816 817 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 818 { 819 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 820 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 821 u8 cpu_int_status; 822 int ret; 823 824 mutex_lock(&irq_data->mtx); 825 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 826 irq_data->irq_en_reg->cpu_int_status_en; 827 if (!cpu_int_status) { 828 ath10k_warn(ar, "CPU interrupt status is zero\n"); 829 ret = -EIO; 830 goto out; 831 } 832 833 /* Clear the interrupt */ 834 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 835 836 /* Set up the register transfer buffer to hit the register 4 times, 837 * this is done to make the access 4-byte aligned to mitigate issues 838 * with host bus interconnects that restrict bus transfer lengths to 839 * be a multiple of 4-bytes. 840 * 841 * Set W1C value to clear the interrupt, this hits the register first. 842 */ 843 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 844 cpu_int_status); 845 if (ret) { 846 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 847 ret); 848 goto out; 849 } 850 851 out: 852 mutex_unlock(&irq_data->mtx); 853 return ret; 854 } 855 856 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 857 u8 *host_int_status, 858 u32 *lookahead) 859 { 860 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 861 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 862 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 863 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 864 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 865 int ret; 866 867 mutex_lock(&irq_data->mtx); 868 869 *lookahead = 0; 870 *host_int_status = 0; 871 872 /* int_status_en is supposed to be non zero, otherwise interrupts 873 * shouldn't be enabled. There is however a short time frame during 874 * initialization between the irq register and int_status_en init 875 * where this can happen. 876 * We silently ignore this condition. 877 */ 878 if (!irq_en_reg->int_status_en) { 879 ret = 0; 880 goto out; 881 } 882 883 /* Read the first sizeof(struct ath10k_irq_proc_registers) 884 * bytes of the HTC register table. This 885 * will yield us the value of different int status 886 * registers and the lookahead registers. 887 */ 888 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 889 irq_proc_reg, sizeof(*irq_proc_reg)); 890 if (ret) 891 goto out; 892 893 /* Update only those registers that are enabled */ 894 *host_int_status = irq_proc_reg->host_int_status & 895 irq_en_reg->int_status_en; 896 897 /* Look at mbox status */ 898 if (!(*host_int_status & htc_mbox)) { 899 *lookahead = 0; 900 ret = 0; 901 goto out; 902 } 903 904 /* Mask out pending mbox value, we use look ahead as 905 * the real flag for mbox processing. 906 */ 907 *host_int_status &= ~htc_mbox; 908 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 909 *lookahead = le32_to_cpu( 910 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 911 if (!*lookahead) 912 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 913 } 914 915 out: 916 mutex_unlock(&irq_data->mtx); 917 return ret; 918 } 919 920 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 921 bool *done) 922 { 923 u8 host_int_status; 924 u32 lookahead; 925 int ret; 926 927 /* NOTE: HIF implementation guarantees that the context of this 928 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 929 * sleep or call any API that can block or switch thread/task 930 * contexts. This is a fully schedulable context. 931 */ 932 933 ret = ath10k_sdio_mbox_read_int_status(ar, 934 &host_int_status, 935 &lookahead); 936 if (ret) { 937 *done = true; 938 goto out; 939 } 940 941 if (!host_int_status && !lookahead) { 942 ret = 0; 943 *done = true; 944 goto out; 945 } 946 947 if (lookahead) { 948 ath10k_dbg(ar, ATH10K_DBG_SDIO, 949 "sdio pending mailbox msg lookahead 0x%08x\n", 950 lookahead); 951 952 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 953 lookahead, 954 done); 955 if (ret) 956 goto out; 957 } 958 959 /* now, handle the rest of the interrupts */ 960 ath10k_dbg(ar, ATH10K_DBG_SDIO, 961 "sdio host_int_status 0x%x\n", host_int_status); 962 963 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 964 /* CPU Interrupt */ 965 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 966 if (ret) 967 goto out; 968 } 969 970 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 971 /* Error Interrupt */ 972 ret = ath10k_sdio_mbox_proc_err_intr(ar); 973 if (ret) 974 goto out; 975 } 976 977 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 978 /* Counter Interrupt */ 979 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 980 981 ret = 0; 982 983 out: 984 /* An optimization to bypass reading the IRQ status registers 985 * unecessarily which can re-wake the target, if upper layers 986 * determine that we are in a low-throughput mode, we can rely on 987 * taking another interrupt rather than re-checking the status 988 * registers which can re-wake the target. 989 * 990 * NOTE : for host interfaces that makes use of detecting pending 991 * mbox messages at hif can not use this optimization due to 992 * possible side effects, SPI requires the host to drain all 993 * messages from the mailbox before exiting the ISR routine. 994 */ 995 996 ath10k_dbg(ar, ATH10K_DBG_SDIO, 997 "sdio pending irqs done %d status %d", 998 *done, ret); 999 1000 return ret; 1001 } 1002 1003 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1004 { 1005 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1006 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1007 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1008 1009 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1010 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1011 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1012 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1013 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1014 1015 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1016 1017 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1018 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1019 switch (dev_id_base) { 1020 case QCA_MANUFACTURER_ID_AR6005_BASE: 1021 if (dev_id_chiprev < 4) 1022 mbox_info->ext_info[0].htc_ext_sz = 1023 ATH10K_HIF_MBOX0_EXT_WIDTH; 1024 else 1025 /* from QCA6174 2.0(0x504), the width has been extended 1026 * to 56K 1027 */ 1028 mbox_info->ext_info[0].htc_ext_sz = 1029 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1030 break; 1031 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1032 mbox_info->ext_info[0].htc_ext_sz = 1033 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1034 break; 1035 default: 1036 mbox_info->ext_info[0].htc_ext_sz = 1037 ATH10K_HIF_MBOX0_EXT_WIDTH; 1038 } 1039 1040 mbox_info->ext_info[1].htc_ext_addr = 1041 mbox_info->ext_info[0].htc_ext_addr + 1042 mbox_info->ext_info[0].htc_ext_sz + 1043 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1044 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1045 } 1046 1047 /* BMI functions */ 1048 1049 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1050 { 1051 u32 addr, cmd_credits; 1052 unsigned long timeout; 1053 int ret; 1054 1055 /* Read the counter register to get the command credits */ 1056 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1057 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1058 cmd_credits = 0; 1059 1060 while (time_before(jiffies, timeout) && !cmd_credits) { 1061 /* Hit the credit counter with a 4-byte access, the first byte 1062 * read will hit the counter and cause a decrement, while the 1063 * remaining 3 bytes has no effect. The rationale behind this 1064 * is to make all HIF accesses 4-byte aligned. 1065 */ 1066 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1067 if (ret) { 1068 ath10k_warn(ar, 1069 "unable to decrement the command credit count register: %d\n", 1070 ret); 1071 return ret; 1072 } 1073 1074 /* The counter is only 8 bits. 1075 * Ignore anything in the upper 3 bytes 1076 */ 1077 cmd_credits &= 0xFF; 1078 } 1079 1080 if (!cmd_credits) { 1081 ath10k_warn(ar, "bmi communication timeout\n"); 1082 return -ETIMEDOUT; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1089 { 1090 unsigned long timeout; 1091 u32 rx_word; 1092 int ret; 1093 1094 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1095 rx_word = 0; 1096 1097 while ((time_before(jiffies, timeout)) && !rx_word) { 1098 ret = ath10k_sdio_read32(ar, 1099 MBOX_HOST_INT_STATUS_ADDRESS, 1100 &rx_word); 1101 if (ret) { 1102 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1103 return ret; 1104 } 1105 1106 /* all we really want is one bit */ 1107 rx_word &= 1; 1108 } 1109 1110 if (!rx_word) { 1111 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1112 return -EINVAL; 1113 } 1114 1115 return ret; 1116 } 1117 1118 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1119 void *req, u32 req_len, 1120 void *resp, u32 *resp_len) 1121 { 1122 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1123 u32 addr; 1124 int ret; 1125 1126 if (req) { 1127 ret = ath10k_sdio_bmi_credits(ar); 1128 if (ret) 1129 return ret; 1130 1131 addr = ar_sdio->mbox_info.htc_addr; 1132 1133 memcpy(ar_sdio->bmi_buf, req, req_len); 1134 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1135 if (ret) { 1136 ath10k_warn(ar, 1137 "unable to send the bmi data to the device: %d\n", 1138 ret); 1139 return ret; 1140 } 1141 } 1142 1143 if (!resp || !resp_len) 1144 /* No response expected */ 1145 return 0; 1146 1147 /* During normal bootup, small reads may be required. 1148 * Rather than issue an HIF Read and then wait as the Target 1149 * adds successive bytes to the FIFO, we wait here until 1150 * we know that response data is available. 1151 * 1152 * This allows us to cleanly timeout on an unexpected 1153 * Target failure rather than risk problems at the HIF level. 1154 * In particular, this avoids SDIO timeouts and possibly garbage 1155 * data on some host controllers. And on an interconnect 1156 * such as Compact Flash (as well as some SDIO masters) which 1157 * does not provide any indication on data timeout, it avoids 1158 * a potential hang or garbage response. 1159 * 1160 * Synchronization is more difficult for reads larger than the 1161 * size of the MBOX FIFO (128B), because the Target is unable 1162 * to push the 129th byte of data until AFTER the Host posts an 1163 * HIF Read and removes some FIFO data. So for large reads the 1164 * Host proceeds to post an HIF Read BEFORE all the data is 1165 * actually available to read. Fortunately, large BMI reads do 1166 * not occur in practice -- they're supported for debug/development. 1167 * 1168 * So Host/Target BMI synchronization is divided into these cases: 1169 * CASE 1: length < 4 1170 * Should not happen 1171 * 1172 * CASE 2: 4 <= length <= 128 1173 * Wait for first 4 bytes to be in FIFO 1174 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1175 * a BMI command credit, which indicates that the ENTIRE 1176 * response is available in the the FIFO 1177 * 1178 * CASE 3: length > 128 1179 * Wait for the first 4 bytes to be in FIFO 1180 * 1181 * For most uses, a small timeout should be sufficient and we will 1182 * usually see a response quickly; but there may be some unusual 1183 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1184 * For now, we use an unbounded busy loop while waiting for 1185 * BMI_EXECUTE. 1186 * 1187 * If BMI_EXECUTE ever needs to support longer-latency execution, 1188 * especially in production, this code needs to be enhanced to sleep 1189 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1190 * a function of Host processor speed. 1191 */ 1192 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1193 if (ret) 1194 return ret; 1195 1196 /* We always read from the start of the mbox address */ 1197 addr = ar_sdio->mbox_info.htc_addr; 1198 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1199 if (ret) { 1200 ath10k_warn(ar, 1201 "unable to read the bmi data from the device: %d\n", 1202 ret); 1203 return ret; 1204 } 1205 1206 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1207 1208 return 0; 1209 } 1210 1211 /* sdio async handling functions */ 1212 1213 static struct ath10k_sdio_bus_request 1214 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1215 { 1216 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1217 struct ath10k_sdio_bus_request *bus_req; 1218 1219 spin_lock_bh(&ar_sdio->lock); 1220 1221 if (list_empty(&ar_sdio->bus_req_freeq)) { 1222 bus_req = NULL; 1223 goto out; 1224 } 1225 1226 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1227 struct ath10k_sdio_bus_request, list); 1228 list_del(&bus_req->list); 1229 1230 out: 1231 spin_unlock_bh(&ar_sdio->lock); 1232 return bus_req; 1233 } 1234 1235 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1236 struct ath10k_sdio_bus_request *bus_req) 1237 { 1238 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1239 1240 memset(bus_req, 0, sizeof(*bus_req)); 1241 1242 spin_lock_bh(&ar_sdio->lock); 1243 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1244 spin_unlock_bh(&ar_sdio->lock); 1245 } 1246 1247 static void __ath10k_sdio_write_async(struct ath10k *ar, 1248 struct ath10k_sdio_bus_request *req) 1249 { 1250 struct ath10k_htc_ep *ep; 1251 struct sk_buff *skb; 1252 int ret; 1253 1254 skb = req->skb; 1255 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1256 if (ret) 1257 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1258 req->address, ret); 1259 1260 if (req->htc_msg) { 1261 ep = &ar->htc.endpoint[req->eid]; 1262 ath10k_htc_notify_tx_completion(ep, skb); 1263 } else if (req->comp) { 1264 complete(req->comp); 1265 } 1266 1267 ath10k_sdio_free_bus_req(ar, req); 1268 } 1269 1270 static void ath10k_sdio_write_async_work(struct work_struct *work) 1271 { 1272 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1273 wr_async_work); 1274 struct ath10k *ar = ar_sdio->ar; 1275 struct ath10k_sdio_bus_request *req, *tmp_req; 1276 1277 spin_lock_bh(&ar_sdio->wr_async_lock); 1278 1279 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1280 list_del(&req->list); 1281 spin_unlock_bh(&ar_sdio->wr_async_lock); 1282 __ath10k_sdio_write_async(ar, req); 1283 spin_lock_bh(&ar_sdio->wr_async_lock); 1284 } 1285 1286 spin_unlock_bh(&ar_sdio->wr_async_lock); 1287 } 1288 1289 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1290 struct sk_buff *skb, 1291 struct completion *comp, 1292 bool htc_msg, enum ath10k_htc_ep_id eid) 1293 { 1294 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1295 struct ath10k_sdio_bus_request *bus_req; 1296 1297 /* Allocate a bus request for the message and queue it on the 1298 * SDIO workqueue. 1299 */ 1300 bus_req = ath10k_sdio_alloc_busreq(ar); 1301 if (!bus_req) { 1302 ath10k_warn(ar, 1303 "unable to allocate bus request for async request\n"); 1304 return -ENOMEM; 1305 } 1306 1307 bus_req->skb = skb; 1308 bus_req->eid = eid; 1309 bus_req->address = addr; 1310 bus_req->htc_msg = htc_msg; 1311 bus_req->comp = comp; 1312 1313 spin_lock_bh(&ar_sdio->wr_async_lock); 1314 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1315 spin_unlock_bh(&ar_sdio->wr_async_lock); 1316 1317 return 0; 1318 } 1319 1320 /* IRQ handler */ 1321 1322 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1323 { 1324 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1325 struct ath10k *ar = ar_sdio->ar; 1326 unsigned long timeout; 1327 bool done = false; 1328 int ret; 1329 1330 /* Release the host during interrupts so we can pick it back up when 1331 * we process commands. 1332 */ 1333 sdio_release_host(ar_sdio->func); 1334 1335 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1336 do { 1337 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1338 if (ret) 1339 break; 1340 } while (time_before(jiffies, timeout) && !done); 1341 1342 ath10k_mac_tx_push_pending(ar); 1343 1344 sdio_claim_host(ar_sdio->func); 1345 1346 if (ret && ret != -ECANCELED) 1347 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1348 ret); 1349 } 1350 1351 /* sdio HIF functions */ 1352 1353 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1354 { 1355 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1356 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1357 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1358 int ret; 1359 1360 mutex_lock(&irq_data->mtx); 1361 1362 memset(regs, 0, sizeof(*regs)); 1363 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1364 ®s->int_status_en, sizeof(*regs)); 1365 if (ret) 1366 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1367 1368 mutex_unlock(&irq_data->mtx); 1369 1370 return ret; 1371 } 1372 1373 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1374 enum ath10k_firmware_mode fw_mode) 1375 { 1376 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1377 struct sdio_func *func = ar_sdio->func; 1378 int ret; 1379 1380 if (!ar_sdio->is_disabled) 1381 return 0; 1382 1383 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1384 1385 ret = ath10k_sdio_config(ar); 1386 if (ret) { 1387 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1388 return ret; 1389 } 1390 1391 sdio_claim_host(func); 1392 1393 ret = sdio_enable_func(func); 1394 if (ret) { 1395 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1396 sdio_release_host(func); 1397 return ret; 1398 } 1399 1400 sdio_release_host(func); 1401 1402 /* Wait for hardware to initialise. It should take a lot less than 1403 * 20 ms but let's be conservative here. 1404 */ 1405 msleep(20); 1406 1407 ar_sdio->is_disabled = false; 1408 1409 ret = ath10k_sdio_hif_disable_intrs(ar); 1410 if (ret) 1411 return ret; 1412 1413 return 0; 1414 } 1415 1416 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1417 { 1418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1419 int ret; 1420 1421 if (ar_sdio->is_disabled) 1422 return; 1423 1424 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1425 1426 /* Disable the card */ 1427 sdio_claim_host(ar_sdio->func); 1428 1429 ret = sdio_disable_func(ar_sdio->func); 1430 if (ret) { 1431 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1432 sdio_release_host(ar_sdio->func); 1433 return; 1434 } 1435 1436 ret = mmc_hw_reset(ar_sdio->func->card->host); 1437 if (ret) 1438 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1439 1440 sdio_release_host(ar_sdio->func); 1441 1442 ar_sdio->is_disabled = true; 1443 } 1444 1445 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1446 struct ath10k_hif_sg_item *items, int n_items) 1447 { 1448 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1449 enum ath10k_htc_ep_id eid; 1450 struct sk_buff *skb; 1451 int ret, i; 1452 1453 eid = pipe_id_to_eid(pipe_id); 1454 1455 for (i = 0; i < n_items; i++) { 1456 size_t padded_len; 1457 u32 address; 1458 1459 skb = items[i].transfer_context; 1460 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1461 skb->len); 1462 skb_trim(skb, padded_len); 1463 1464 /* Write TX data to the end of the mbox address space */ 1465 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1466 skb->len; 1467 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1468 NULL, true, eid); 1469 if (ret) 1470 return ret; 1471 } 1472 1473 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1474 1475 return 0; 1476 } 1477 1478 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1479 { 1480 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1481 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1482 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1483 int ret; 1484 1485 mutex_lock(&irq_data->mtx); 1486 1487 /* Enable all but CPU interrupts */ 1488 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1489 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1490 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1491 1492 /* NOTE: There are some cases where HIF can do detection of 1493 * pending mbox messages which is disabled now. 1494 */ 1495 regs->int_status_en |= 1496 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1497 1498 /* Set up the CPU Interrupt status Register */ 1499 regs->cpu_int_status_en = 0; 1500 1501 /* Set up the Error Interrupt status Register */ 1502 regs->err_int_status_en = 1503 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1504 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1505 1506 /* Enable Counter interrupt status register to get fatal errors for 1507 * debugging. 1508 */ 1509 regs->cntr_int_status_en = 1510 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1511 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1512 1513 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1514 ®s->int_status_en, sizeof(*regs)); 1515 if (ret) 1516 ath10k_warn(ar, 1517 "failed to update mbox interrupt status register : %d\n", 1518 ret); 1519 1520 mutex_unlock(&irq_data->mtx); 1521 return ret; 1522 } 1523 1524 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1525 { 1526 u32 val; 1527 int ret; 1528 1529 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1530 if (ret) { 1531 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1532 ret); 1533 return ret; 1534 } 1535 1536 if (enable_sleep) 1537 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1538 else 1539 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1540 1541 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1542 if (ret) { 1543 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1544 ret); 1545 return ret; 1546 } 1547 1548 return 0; 1549 } 1550 1551 /* HIF diagnostics */ 1552 1553 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1554 size_t buf_len) 1555 { 1556 int ret; 1557 1558 /* set window register to start read cycle */ 1559 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1560 if (ret) { 1561 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1562 return ret; 1563 } 1564 1565 /* read the data */ 1566 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1567 if (ret) { 1568 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1569 ret); 1570 return ret; 1571 } 1572 1573 return 0; 1574 } 1575 1576 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1577 u32 *value) 1578 { 1579 __le32 *val; 1580 int ret; 1581 1582 val = kzalloc(sizeof(*val), GFP_KERNEL); 1583 if (!val) 1584 return -ENOMEM; 1585 1586 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1587 if (ret) 1588 goto out; 1589 1590 *value = __le32_to_cpu(*val); 1591 1592 out: 1593 kfree(val); 1594 1595 return ret; 1596 } 1597 1598 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1599 const void *data, int nbytes) 1600 { 1601 int ret; 1602 1603 /* set write data */ 1604 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1605 if (ret) { 1606 ath10k_warn(ar, 1607 "failed to write 0x%p to mbox window data address: %d\n", 1608 data, ret); 1609 return ret; 1610 } 1611 1612 /* set window register, which starts the write cycle */ 1613 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1614 if (ret) { 1615 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1616 return ret; 1617 } 1618 1619 return 0; 1620 } 1621 1622 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar) 1623 { 1624 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1625 u32 addr, val; 1626 int ret = 0; 1627 1628 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1629 1630 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1631 if (ret) { 1632 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1633 return ret; 1634 } 1635 1636 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1637 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1638 "sdio mailbox swap service enabled\n"); 1639 ar_sdio->swap_mbox = true; 1640 } 1641 return 0; 1642 } 1643 1644 /* HIF start/stop */ 1645 1646 static int ath10k_sdio_hif_start(struct ath10k *ar) 1647 { 1648 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1649 int ret; 1650 1651 /* Sleep 20 ms before HIF interrupts are disabled. 1652 * This will give target plenty of time to process the BMI done 1653 * request before interrupts are disabled. 1654 */ 1655 msleep(20); 1656 ret = ath10k_sdio_hif_disable_intrs(ar); 1657 if (ret) 1658 return ret; 1659 1660 /* eid 0 always uses the lower part of the extended mailbox address 1661 * space (ext_info[0].htc_ext_addr). 1662 */ 1663 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1664 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1665 1666 sdio_claim_host(ar_sdio->func); 1667 1668 /* Register the isr */ 1669 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1670 if (ret) { 1671 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1672 sdio_release_host(ar_sdio->func); 1673 return ret; 1674 } 1675 1676 sdio_release_host(ar_sdio->func); 1677 1678 ret = ath10k_sdio_hif_enable_intrs(ar); 1679 if (ret) 1680 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1681 1682 /* Enable sleep and then disable it again */ 1683 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1684 if (ret) 1685 return ret; 1686 1687 /* Wait for 20ms for the written value to take effect */ 1688 msleep(20); 1689 1690 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1691 if (ret) 1692 return ret; 1693 1694 return 0; 1695 } 1696 1697 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1698 1699 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1700 { 1701 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1702 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1703 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1704 struct sk_buff *skb; 1705 struct completion irqs_disabled_comp; 1706 int ret; 1707 1708 skb = dev_alloc_skb(sizeof(*regs)); 1709 if (!skb) 1710 return; 1711 1712 mutex_lock(&irq_data->mtx); 1713 1714 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1715 memcpy(skb->data, regs, sizeof(*regs)); 1716 skb_put(skb, sizeof(*regs)); 1717 1718 mutex_unlock(&irq_data->mtx); 1719 1720 init_completion(&irqs_disabled_comp); 1721 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1722 skb, &irqs_disabled_comp, false, 0); 1723 if (ret) 1724 goto out; 1725 1726 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1727 1728 /* Wait for the completion of the IRQ disable request. 1729 * If there is a timeout we will try to disable irq's anyway. 1730 */ 1731 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1732 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1733 if (!ret) 1734 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1735 1736 sdio_claim_host(ar_sdio->func); 1737 1738 ret = sdio_release_irq(ar_sdio->func); 1739 if (ret) 1740 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1741 1742 sdio_release_host(ar_sdio->func); 1743 1744 out: 1745 kfree_skb(skb); 1746 } 1747 1748 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1749 { 1750 struct ath10k_sdio_bus_request *req, *tmp_req; 1751 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1752 1753 ath10k_sdio_irq_disable(ar); 1754 1755 cancel_work_sync(&ar_sdio->wr_async_work); 1756 1757 spin_lock_bh(&ar_sdio->wr_async_lock); 1758 1759 /* Free all bus requests that have not been handled */ 1760 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1761 struct ath10k_htc_ep *ep; 1762 1763 list_del(&req->list); 1764 1765 if (req->htc_msg) { 1766 ep = &ar->htc.endpoint[req->eid]; 1767 ath10k_htc_notify_tx_completion(ep, req->skb); 1768 } else if (req->skb) { 1769 kfree_skb(req->skb); 1770 } 1771 ath10k_sdio_free_bus_req(ar, req); 1772 } 1773 1774 spin_unlock_bh(&ar_sdio->wr_async_lock); 1775 } 1776 1777 #ifdef CONFIG_PM 1778 1779 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1780 { 1781 return -EOPNOTSUPP; 1782 } 1783 1784 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1785 { 1786 switch (ar->state) { 1787 case ATH10K_STATE_OFF: 1788 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1789 "sdio resume configuring sdio\n"); 1790 1791 /* need to set sdio settings after power is cut from sdio */ 1792 ath10k_sdio_config(ar); 1793 break; 1794 1795 case ATH10K_STATE_ON: 1796 default: 1797 break; 1798 } 1799 1800 return 0; 1801 } 1802 #endif 1803 1804 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1805 u16 service_id, 1806 u8 *ul_pipe, u8 *dl_pipe) 1807 { 1808 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1809 struct ath10k_htc *htc = &ar->htc; 1810 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1811 enum ath10k_htc_ep_id eid; 1812 bool ep_found = false; 1813 int i; 1814 1815 /* For sdio, we are interested in the mapping between eid 1816 * and pipeid rather than service_id to pipe_id. 1817 * First we find out which eid has been allocated to the 1818 * service... 1819 */ 1820 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1821 if (htc->endpoint[i].service_id == service_id) { 1822 eid = htc->endpoint[i].eid; 1823 ep_found = true; 1824 break; 1825 } 1826 } 1827 1828 if (!ep_found) 1829 return -EINVAL; 1830 1831 /* Then we create the simplest mapping possible between pipeid 1832 * and eid 1833 */ 1834 *ul_pipe = *dl_pipe = (u8)eid; 1835 1836 /* Normally, HTT will use the upper part of the extended 1837 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1838 * the lower part (ext_info[0].htc_ext_addr). 1839 * If fw wants swapping of mailbox addresses, the opposite is true. 1840 */ 1841 if (ar_sdio->swap_mbox) { 1842 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1843 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1844 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1845 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1846 } else { 1847 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1848 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1849 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1850 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1851 } 1852 1853 switch (service_id) { 1854 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1855 /* HTC ctrl ep mbox address has already been setup in 1856 * ath10k_sdio_hif_start 1857 */ 1858 break; 1859 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1860 ar_sdio->mbox_addr[eid] = wmi_addr; 1861 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1862 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1863 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1864 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1865 break; 1866 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1867 ar_sdio->mbox_addr[eid] = htt_addr; 1868 ar_sdio->mbox_size[eid] = htt_mbox_size; 1869 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1870 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1871 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1872 break; 1873 default: 1874 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1875 service_id); 1876 return -EINVAL; 1877 } 1878 1879 return 0; 1880 } 1881 1882 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1883 u8 *ul_pipe, u8 *dl_pipe) 1884 { 1885 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1886 1887 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1888 * case) == 0 1889 */ 1890 *ul_pipe = 0; 1891 *dl_pipe = 0; 1892 } 1893 1894 /* This op is currently only used by htc_wait_target if the HTC ready 1895 * message times out. It is not applicable for SDIO since there is nothing 1896 * we can do if the HTC ready message does not arrive in time. 1897 * TODO: Make this op non mandatory by introducing a NULL check in the 1898 * hif op wrapper. 1899 */ 1900 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1901 u8 pipe, int force) 1902 { 1903 } 1904 1905 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1906 .tx_sg = ath10k_sdio_hif_tx_sg, 1907 .diag_read = ath10k_sdio_hif_diag_read, 1908 .diag_write = ath10k_sdio_hif_diag_write_mem, 1909 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1910 .start = ath10k_sdio_hif_start, 1911 .stop = ath10k_sdio_hif_stop, 1912 .swap_mailbox = ath10k_sdio_hif_swap_mailbox, 1913 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1914 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1915 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1916 .power_up = ath10k_sdio_hif_power_up, 1917 .power_down = ath10k_sdio_hif_power_down, 1918 #ifdef CONFIG_PM 1919 .suspend = ath10k_sdio_hif_suspend, 1920 .resume = ath10k_sdio_hif_resume, 1921 #endif 1922 }; 1923 1924 #ifdef CONFIG_PM_SLEEP 1925 1926 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1927 * suspend. We instead follow cfg80211 suspend/resume handlers. 1928 */ 1929 static int ath10k_sdio_pm_suspend(struct device *device) 1930 { 1931 return 0; 1932 } 1933 1934 static int ath10k_sdio_pm_resume(struct device *device) 1935 { 1936 return 0; 1937 } 1938 1939 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1940 ath10k_sdio_pm_resume); 1941 1942 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1943 1944 #else 1945 1946 #define ATH10K_SDIO_PM_OPS NULL 1947 1948 #endif /* CONFIG_PM_SLEEP */ 1949 1950 static int ath10k_sdio_probe(struct sdio_func *func, 1951 const struct sdio_device_id *id) 1952 { 1953 struct ath10k_sdio *ar_sdio; 1954 struct ath10k *ar; 1955 enum ath10k_hw_rev hw_rev; 1956 u32 dev_id_base; 1957 struct ath10k_bus_params bus_params; 1958 int ret, i; 1959 1960 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1961 * If there will be newer chipsets that does not use the hw reg 1962 * setup as defined in qca6174_regs and qca6174_values, this 1963 * assumption is no longer valid and hw_rev must be setup differently 1964 * depending on chipset. 1965 */ 1966 hw_rev = ATH10K_HW_QCA6174; 1967 1968 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 1969 hw_rev, &ath10k_sdio_hif_ops); 1970 if (!ar) { 1971 dev_err(&func->dev, "failed to allocate core\n"); 1972 return -ENOMEM; 1973 } 1974 1975 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1976 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1977 func->num, func->vendor, func->device, 1978 func->max_blksize, func->cur_blksize); 1979 1980 ar_sdio = ath10k_sdio_priv(ar); 1981 1982 ar_sdio->irq_data.irq_proc_reg = 1983 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 1984 GFP_KERNEL); 1985 if (!ar_sdio->irq_data.irq_proc_reg) { 1986 ret = -ENOMEM; 1987 goto err_core_destroy; 1988 } 1989 1990 ar_sdio->irq_data.irq_en_reg = 1991 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 1992 GFP_KERNEL); 1993 if (!ar_sdio->irq_data.irq_en_reg) { 1994 ret = -ENOMEM; 1995 goto err_core_destroy; 1996 } 1997 1998 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 1999 if (!ar_sdio->bmi_buf) { 2000 ret = -ENOMEM; 2001 goto err_core_destroy; 2002 } 2003 2004 ar_sdio->func = func; 2005 sdio_set_drvdata(func, ar_sdio); 2006 2007 ar_sdio->is_disabled = true; 2008 ar_sdio->ar = ar; 2009 2010 spin_lock_init(&ar_sdio->lock); 2011 spin_lock_init(&ar_sdio->wr_async_lock); 2012 mutex_init(&ar_sdio->irq_data.mtx); 2013 2014 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2015 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2016 2017 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2018 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2019 if (!ar_sdio->workqueue) { 2020 ret = -ENOMEM; 2021 goto err_core_destroy; 2022 } 2023 2024 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2025 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2026 2027 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2028 switch (dev_id_base) { 2029 case QCA_MANUFACTURER_ID_AR6005_BASE: 2030 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2031 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2032 break; 2033 default: 2034 ret = -ENODEV; 2035 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2036 dev_id_base, id->device); 2037 goto err_free_wq; 2038 } 2039 2040 ar->id.vendor = id->vendor; 2041 ar->id.device = id->device; 2042 2043 ath10k_sdio_set_mbox_info(ar); 2044 2045 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2046 /* TODO: don't know yet how to get chip_id with SDIO */ 2047 bus_params.chip_id = 0; 2048 ret = ath10k_core_register(ar, &bus_params); 2049 if (ret) { 2050 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2051 goto err_free_wq; 2052 } 2053 2054 /* TODO: remove this once SDIO support is fully implemented */ 2055 ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n"); 2056 2057 return 0; 2058 2059 err_free_wq: 2060 destroy_workqueue(ar_sdio->workqueue); 2061 err_core_destroy: 2062 ath10k_core_destroy(ar); 2063 2064 return ret; 2065 } 2066 2067 static void ath10k_sdio_remove(struct sdio_func *func) 2068 { 2069 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2070 struct ath10k *ar = ar_sdio->ar; 2071 2072 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2073 "sdio removed func %d vendor 0x%x device 0x%x\n", 2074 func->num, func->vendor, func->device); 2075 2076 (void)ath10k_sdio_hif_disable_intrs(ar); 2077 cancel_work_sync(&ar_sdio->wr_async_work); 2078 ath10k_core_unregister(ar); 2079 ath10k_core_destroy(ar); 2080 } 2081 2082 static const struct sdio_device_id ath10k_sdio_devices[] = { 2083 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2084 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2085 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2086 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2087 {}, 2088 }; 2089 2090 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2091 2092 static struct sdio_driver ath10k_sdio_driver = { 2093 .name = "ath10k_sdio", 2094 .id_table = ath10k_sdio_devices, 2095 .probe = ath10k_sdio_probe, 2096 .remove = ath10k_sdio_remove, 2097 .drv = { 2098 .owner = THIS_MODULE, 2099 .pm = ATH10K_SDIO_PM_OPS, 2100 }, 2101 }; 2102 2103 static int __init ath10k_sdio_init(void) 2104 { 2105 int ret; 2106 2107 ret = sdio_register_driver(&ath10k_sdio_driver); 2108 if (ret) 2109 pr_err("sdio driver registration failed: %d\n", ret); 2110 2111 return ret; 2112 } 2113 2114 static void __exit ath10k_sdio_exit(void) 2115 { 2116 sdio_unregister_driver(&ath10k_sdio_driver); 2117 } 2118 2119 module_init(ath10k_sdio_init); 2120 module_exit(ath10k_sdio_exit); 2121 2122 MODULE_AUTHOR("Qualcomm Atheros"); 2123 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2124 MODULE_LICENSE("Dual BSD/GPL"); 2125