1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) 28 29 /* inlined helper functions */ 30 31 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 32 size_t len) 33 { 34 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 35 } 36 37 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 38 { 39 return (enum ath10k_htc_ep_id)pipe_id; 40 } 41 42 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 43 { 44 dev_kfree_skb(pkt->skb); 45 pkt->skb = NULL; 46 pkt->alloc_len = 0; 47 pkt->act_len = 0; 48 pkt->trailer_only = false; 49 } 50 51 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 52 size_t act_len, size_t full_len, 53 bool part_of_bundle, 54 bool last_in_bundle) 55 { 56 pkt->skb = dev_alloc_skb(full_len); 57 if (!pkt->skb) 58 return -ENOMEM; 59 60 pkt->act_len = act_len; 61 pkt->alloc_len = full_len; 62 pkt->part_of_bundle = part_of_bundle; 63 pkt->last_in_bundle = last_in_bundle; 64 pkt->trailer_only = false; 65 66 return 0; 67 } 68 69 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 70 { 71 bool trailer_only = false; 72 struct ath10k_htc_hdr *htc_hdr = 73 (struct ath10k_htc_hdr *)pkt->skb->data; 74 u16 len = __le16_to_cpu(htc_hdr->len); 75 76 if (len == htc_hdr->trailer_len) 77 trailer_only = true; 78 79 return trailer_only; 80 } 81 82 /* sdio/mmc functions */ 83 84 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 85 unsigned int address, 86 unsigned char val) 87 { 88 *arg = FIELD_PREP(BIT(31), write) | 89 FIELD_PREP(BIT(27), raw) | 90 FIELD_PREP(BIT(26), 1) | 91 FIELD_PREP(GENMASK(25, 9), address) | 92 FIELD_PREP(BIT(8), 1) | 93 FIELD_PREP(GENMASK(7, 0), val); 94 } 95 96 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 97 unsigned int address, 98 unsigned char byte) 99 { 100 struct mmc_command io_cmd; 101 102 memset(&io_cmd, 0, sizeof(io_cmd)); 103 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 104 io_cmd.opcode = SD_IO_RW_DIRECT; 105 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 106 107 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 108 } 109 110 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 111 unsigned int address, 112 unsigned char *byte) 113 { 114 struct mmc_command io_cmd; 115 int ret; 116 117 memset(&io_cmd, 0, sizeof(io_cmd)); 118 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 119 io_cmd.opcode = SD_IO_RW_DIRECT; 120 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 121 122 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 123 if (!ret) 124 *byte = io_cmd.resp[0]; 125 126 return ret; 127 } 128 129 static int ath10k_sdio_config(struct ath10k *ar) 130 { 131 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 132 struct sdio_func *func = ar_sdio->func; 133 unsigned char byte, asyncintdelay = 2; 134 int ret; 135 136 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 137 138 sdio_claim_host(func); 139 140 byte = 0; 141 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 142 SDIO_CCCR_DRIVE_STRENGTH, 143 &byte); 144 145 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 146 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 147 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 148 149 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 150 SDIO_CCCR_DRIVE_STRENGTH, 151 byte); 152 153 byte = 0; 154 ret = ath10k_sdio_func0_cmd52_rd_byte( 155 func->card, 156 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 157 &byte); 158 159 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 160 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 161 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 162 163 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 165 byte); 166 if (ret) { 167 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 168 goto out; 169 } 170 171 byte = 0; 172 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 173 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 174 &byte); 175 176 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 177 178 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 179 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 180 byte); 181 if (ret) { 182 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 183 ret); 184 goto out; 185 } 186 187 byte = 0; 188 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 189 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 190 &byte); 191 192 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 193 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 194 195 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 196 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 197 byte); 198 199 /* give us some time to enable, in ms */ 200 func->enable_timeout = 100; 201 202 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 203 if (ret) { 204 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 205 ar_sdio->mbox_info.block_size, ret); 206 goto out; 207 } 208 209 out: 210 sdio_release_host(func); 211 return ret; 212 } 213 214 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 215 { 216 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 217 struct sdio_func *func = ar_sdio->func; 218 int ret; 219 220 sdio_claim_host(func); 221 222 sdio_writel(func, val, addr, &ret); 223 if (ret) { 224 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 225 val, addr, ret); 226 goto out; 227 } 228 229 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 230 addr, val); 231 232 out: 233 sdio_release_host(func); 234 235 return ret; 236 } 237 238 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 239 { 240 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 241 struct sdio_func *func = ar_sdio->func; 242 __le32 *buf; 243 int ret; 244 245 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 246 if (!buf) 247 return -ENOMEM; 248 249 *buf = cpu_to_le32(val); 250 251 sdio_claim_host(func); 252 253 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 254 if (ret) { 255 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 256 val, addr, ret); 257 goto out; 258 } 259 260 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 261 addr, val); 262 263 out: 264 sdio_release_host(func); 265 266 kfree(buf); 267 268 return ret; 269 } 270 271 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 272 { 273 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 274 struct sdio_func *func = ar_sdio->func; 275 int ret; 276 277 sdio_claim_host(func); 278 *val = sdio_readl(func, addr, &ret); 279 if (ret) { 280 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 281 addr, ret); 282 goto out; 283 } 284 285 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 286 addr, *val); 287 288 out: 289 sdio_release_host(func); 290 291 return ret; 292 } 293 294 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 295 { 296 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 297 struct sdio_func *func = ar_sdio->func; 298 int ret; 299 300 sdio_claim_host(func); 301 302 ret = sdio_memcpy_fromio(func, buf, addr, len); 303 if (ret) { 304 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 305 addr, ret); 306 goto out; 307 } 308 309 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 310 addr, buf, len); 311 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 312 313 out: 314 sdio_release_host(func); 315 316 return ret; 317 } 318 319 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 320 { 321 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 322 struct sdio_func *func = ar_sdio->func; 323 int ret; 324 325 sdio_claim_host(func); 326 327 /* For some reason toio() doesn't have const for the buffer, need 328 * an ugly hack to workaround that. 329 */ 330 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 331 if (ret) { 332 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 333 addr, ret); 334 goto out; 335 } 336 337 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 338 addr, buf, len); 339 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 340 341 out: 342 sdio_release_host(func); 343 344 return ret; 345 } 346 347 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 348 { 349 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 350 struct sdio_func *func = ar_sdio->func; 351 int ret; 352 353 sdio_claim_host(func); 354 355 len = round_down(len, ar_sdio->mbox_info.block_size); 356 357 ret = sdio_readsb(func, buf, addr, len); 358 if (ret) { 359 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 360 addr, ret); 361 goto out; 362 } 363 364 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 365 addr, buf, len); 366 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 367 368 out: 369 sdio_release_host(func); 370 371 return ret; 372 } 373 374 /* HIF mbox functions */ 375 376 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 377 struct ath10k_sdio_rx_data *pkt, 378 u32 *lookaheads, 379 int *n_lookaheads) 380 { 381 struct ath10k_htc *htc = &ar->htc; 382 struct sk_buff *skb = pkt->skb; 383 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 384 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 385 enum ath10k_htc_ep_id eid; 386 u8 *trailer; 387 int ret; 388 389 if (trailer_present) { 390 trailer = skb->data + skb->len - htc_hdr->trailer_len; 391 392 eid = pipe_id_to_eid(htc_hdr->eid); 393 394 ret = ath10k_htc_process_trailer(htc, 395 trailer, 396 htc_hdr->trailer_len, 397 eid, 398 lookaheads, 399 n_lookaheads); 400 if (ret) 401 return ret; 402 403 if (is_trailer_only_msg(pkt)) 404 pkt->trailer_only = true; 405 406 skb_trim(skb, skb->len - htc_hdr->trailer_len); 407 } 408 409 skb_pull(skb, sizeof(*htc_hdr)); 410 411 return 0; 412 } 413 414 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 415 u32 lookaheads[], 416 int *n_lookahead) 417 { 418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 419 struct ath10k_htc *htc = &ar->htc; 420 struct ath10k_sdio_rx_data *pkt; 421 struct ath10k_htc_ep *ep; 422 struct ath10k_skb_rxcb *cb; 423 enum ath10k_htc_ep_id id; 424 int ret, i, *n_lookahead_local; 425 u32 *lookaheads_local; 426 int lookahead_idx = 0; 427 428 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 429 lookaheads_local = lookaheads; 430 n_lookahead_local = n_lookahead; 431 432 id = ((struct ath10k_htc_hdr *) 433 &lookaheads[lookahead_idx++])->eid; 434 435 if (id >= ATH10K_HTC_EP_COUNT) { 436 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 437 id); 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 ep = &htc->endpoint[id]; 443 444 if (ep->service_id == 0) { 445 ath10k_warn(ar, "ep %d is not connected\n", id); 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 pkt = &ar_sdio->rx_pkts[i]; 451 452 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 453 /* Only read lookahead's from RX trailers 454 * for the last packet in a bundle. 455 */ 456 lookahead_idx--; 457 lookaheads_local = NULL; 458 n_lookahead_local = NULL; 459 } 460 461 ret = ath10k_sdio_mbox_rx_process_packet(ar, 462 pkt, 463 lookaheads_local, 464 n_lookahead_local); 465 if (ret) 466 goto out; 467 468 if (!pkt->trailer_only) { 469 cb = ATH10K_SKB_RXCB(pkt->skb); 470 cb->eid = id; 471 472 skb_queue_tail(&ar_sdio->rx_head, pkt->skb); 473 queue_work(ar->workqueue_aux, 474 &ar_sdio->async_work_rx); 475 } else { 476 kfree_skb(pkt->skb); 477 } 478 479 /* The RX complete handler now owns the skb...*/ 480 pkt->skb = NULL; 481 pkt->alloc_len = 0; 482 } 483 484 ret = 0; 485 486 out: 487 /* Free all packets that was not passed on to the RX completion 488 * handler... 489 */ 490 for (; i < ar_sdio->n_rx_pkts; i++) 491 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 492 493 return ret; 494 } 495 496 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, 497 struct ath10k_sdio_rx_data *rx_pkts, 498 struct ath10k_htc_hdr *htc_hdr, 499 size_t full_len, size_t act_len, 500 size_t *bndl_cnt) 501 { 502 int ret, i; 503 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; 504 505 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); 506 507 if (*bndl_cnt > max_msgs) { 508 ath10k_warn(ar, 509 "HTC bundle length %u exceeds maximum %u\n", 510 le16_to_cpu(htc_hdr->len), 511 max_msgs); 512 return -ENOMEM; 513 } 514 515 /* Allocate bndl_cnt extra skb's for the bundle. 516 * The package containing the 517 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 518 * in bndl_cnt. The skb for that packet will be 519 * allocated separately. 520 */ 521 for (i = 0; i < *bndl_cnt; i++) { 522 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 523 act_len, 524 full_len, 525 true, 526 false); 527 if (ret) 528 return ret; 529 } 530 531 return 0; 532 } 533 534 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 535 u32 lookaheads[], int n_lookaheads) 536 { 537 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 538 struct ath10k_htc_hdr *htc_hdr; 539 size_t full_len, act_len; 540 bool last_in_bundle; 541 int ret, i; 542 int pkt_cnt = 0; 543 544 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 545 ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n", 546 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); 547 ret = -ENOMEM; 548 goto err; 549 } 550 551 for (i = 0; i < n_lookaheads; i++) { 552 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 553 last_in_bundle = false; 554 555 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 556 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", 557 le16_to_cpu(htc_hdr->len), 558 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 559 ret = -ENOMEM; 560 goto err; 561 } 562 563 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 564 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 565 566 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 567 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 568 htc_hdr->eid, htc_hdr->flags, 569 le16_to_cpu(htc_hdr->len)); 570 ret = -EINVAL; 571 goto err; 572 } 573 574 if (ath10k_htc_get_bundle_count( 575 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { 576 /* HTC header indicates that every packet to follow 577 * has the same padded length so that it can be 578 * optimally fetched as a full bundle. 579 */ 580 size_t bndl_cnt; 581 582 ret = ath10k_sdio_mbox_alloc_bundle(ar, 583 &ar_sdio->rx_pkts[pkt_cnt], 584 htc_hdr, 585 full_len, 586 act_len, 587 &bndl_cnt); 588 589 if (ret) { 590 ath10k_warn(ar, "failed to allocate a bundle: %d\n", 591 ret); 592 goto err; 593 } 594 595 pkt_cnt += bndl_cnt; 596 597 /* next buffer will be the last in the bundle */ 598 last_in_bundle = true; 599 } 600 601 /* Allocate skb for packet. If the packet had the 602 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 603 * packet skb's have been allocated in the previous step. 604 */ 605 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 606 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 607 608 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], 609 act_len, 610 full_len, 611 last_in_bundle, 612 last_in_bundle); 613 if (ret) { 614 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 615 goto err; 616 } 617 618 pkt_cnt++; 619 } 620 621 ar_sdio->n_rx_pkts = pkt_cnt; 622 623 return 0; 624 625 err: 626 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 627 if (!ar_sdio->rx_pkts[i].alloc_len) 628 break; 629 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 630 } 631 632 return ret; 633 } 634 635 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 636 { 637 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 638 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; 639 struct sk_buff *skb = pkt->skb; 640 struct ath10k_htc_hdr *htc_hdr; 641 int ret; 642 643 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 644 skb->data, pkt->alloc_len); 645 if (ret) 646 goto err; 647 648 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 649 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 650 651 if (pkt->act_len > pkt->alloc_len) { 652 ret = -EINVAL; 653 goto err; 654 } 655 656 skb_put(skb, pkt->act_len); 657 return 0; 658 659 err: 660 ar_sdio->n_rx_pkts = 0; 661 ath10k_sdio_mbox_free_rx_pkt(pkt); 662 663 return ret; 664 } 665 666 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) 667 { 668 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 669 struct ath10k_sdio_rx_data *pkt; 670 struct ath10k_htc_hdr *htc_hdr; 671 int ret, i; 672 u32 pkt_offset, virt_pkt_len; 673 674 virt_pkt_len = 0; 675 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 676 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; 677 678 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { 679 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); 680 ret = -E2BIG; 681 goto err; 682 } 683 684 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 685 ar_sdio->vsg_buffer, virt_pkt_len); 686 if (ret) { 687 ath10k_warn(ar, "failed to read bundle packets: %d", ret); 688 goto err; 689 } 690 691 pkt_offset = 0; 692 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 693 pkt = &ar_sdio->rx_pkts[i]; 694 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); 695 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 696 697 if (pkt->act_len > pkt->alloc_len) { 698 ret = -EINVAL; 699 goto err; 700 } 701 702 skb_put_data(pkt->skb, htc_hdr, pkt->act_len); 703 pkt_offset += pkt->alloc_len; 704 } 705 706 return 0; 707 708 err: 709 /* Free all packets that was not successfully fetched. */ 710 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 711 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 712 713 ar_sdio->n_rx_pkts = 0; 714 715 return ret; 716 } 717 718 /* This is the timeout for mailbox processing done in the sdio irq 719 * handler. The timeout is deliberately set quite high since SDIO dump logs 720 * over serial port can/will add a substantial overhead to the processing 721 * (if enabled). 722 */ 723 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 724 725 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 726 u32 msg_lookahead, bool *done) 727 { 728 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 729 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 730 int n_lookaheads = 1; 731 unsigned long timeout; 732 int ret; 733 734 *done = true; 735 736 /* Copy the lookahead obtained from the HTC register table into our 737 * temp array as a start value. 738 */ 739 lookaheads[0] = msg_lookahead; 740 741 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 742 do { 743 /* Try to allocate as many HTC RX packets indicated by 744 * n_lookaheads. 745 */ 746 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 747 n_lookaheads); 748 if (ret) 749 break; 750 751 if (ar_sdio->n_rx_pkts >= 2) 752 /* A recv bundle was detected, force IRQ status 753 * re-check again. 754 */ 755 *done = false; 756 757 if (ar_sdio->n_rx_pkts > 1) 758 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); 759 else 760 ret = ath10k_sdio_mbox_rx_fetch(ar); 761 762 /* Process fetched packets. This will potentially update 763 * n_lookaheads depending on if the packets contain lookahead 764 * reports. 765 */ 766 n_lookaheads = 0; 767 ret = ath10k_sdio_mbox_rx_process_packets(ar, 768 lookaheads, 769 &n_lookaheads); 770 771 if (!n_lookaheads || ret) 772 break; 773 774 /* For SYNCH processing, if we get here, we are running 775 * through the loop again due to updated lookaheads. Set 776 * flag that we should re-check IRQ status registers again 777 * before leaving IRQ processing, this can net better 778 * performance in high throughput situations. 779 */ 780 *done = false; 781 } while (time_before(jiffies, timeout)); 782 783 if (ret && (ret != -ECANCELED)) 784 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 785 ret); 786 787 return ret; 788 } 789 790 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 791 { 792 u32 val; 793 int ret; 794 795 /* TODO: Add firmware crash handling */ 796 ath10k_warn(ar, "firmware crashed\n"); 797 798 /* read counter to clear the interrupt, the debug error interrupt is 799 * counter 0. 800 */ 801 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 802 if (ret) 803 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 804 805 return ret; 806 } 807 808 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 809 { 810 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 811 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 812 u8 counter_int_status; 813 int ret; 814 815 mutex_lock(&irq_data->mtx); 816 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 817 irq_data->irq_en_reg->cntr_int_status_en; 818 819 /* NOTE: other modules like GMBOX may use the counter interrupt for 820 * credit flow control on other counters, we only need to check for 821 * the debug assertion counter interrupt. 822 */ 823 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 824 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 825 else 826 ret = 0; 827 828 mutex_unlock(&irq_data->mtx); 829 830 return ret; 831 } 832 833 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 834 { 835 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 836 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 837 u8 error_int_status; 838 int ret; 839 840 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 841 842 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 843 if (!error_int_status) { 844 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 845 error_int_status); 846 return -EIO; 847 } 848 849 ath10k_dbg(ar, ATH10K_DBG_SDIO, 850 "sdio error_int_status 0x%x\n", error_int_status); 851 852 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 853 error_int_status)) 854 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 855 856 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 857 error_int_status)) 858 ath10k_warn(ar, "rx underflow interrupt error\n"); 859 860 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 861 error_int_status)) 862 ath10k_warn(ar, "tx overflow interrupt error\n"); 863 864 /* Clear the interrupt */ 865 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 866 867 /* set W1C value to clear the interrupt, this hits the register first */ 868 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 869 error_int_status); 870 if (ret) { 871 ath10k_warn(ar, "unable to write to error int status address: %d\n", 872 ret); 873 return ret; 874 } 875 876 return 0; 877 } 878 879 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 880 { 881 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 882 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 883 u8 cpu_int_status; 884 int ret; 885 886 mutex_lock(&irq_data->mtx); 887 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 888 irq_data->irq_en_reg->cpu_int_status_en; 889 if (!cpu_int_status) { 890 ath10k_warn(ar, "CPU interrupt status is zero\n"); 891 ret = -EIO; 892 goto out; 893 } 894 895 /* Clear the interrupt */ 896 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 897 898 /* Set up the register transfer buffer to hit the register 4 times, 899 * this is done to make the access 4-byte aligned to mitigate issues 900 * with host bus interconnects that restrict bus transfer lengths to 901 * be a multiple of 4-bytes. 902 * 903 * Set W1C value to clear the interrupt, this hits the register first. 904 */ 905 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 906 cpu_int_status); 907 if (ret) { 908 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 909 ret); 910 goto out; 911 } 912 913 out: 914 mutex_unlock(&irq_data->mtx); 915 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) { 916 ath10k_err(ar, "firmware crashed!\n"); 917 queue_work(ar->workqueue, &ar->restart_work); 918 } 919 return ret; 920 } 921 922 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 923 u8 *host_int_status, 924 u32 *lookahead) 925 { 926 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 927 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 928 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 929 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 930 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 931 int ret; 932 933 mutex_lock(&irq_data->mtx); 934 935 *lookahead = 0; 936 *host_int_status = 0; 937 938 /* int_status_en is supposed to be non zero, otherwise interrupts 939 * shouldn't be enabled. There is however a short time frame during 940 * initialization between the irq register and int_status_en init 941 * where this can happen. 942 * We silently ignore this condition. 943 */ 944 if (!irq_en_reg->int_status_en) { 945 ret = 0; 946 goto out; 947 } 948 949 /* Read the first sizeof(struct ath10k_irq_proc_registers) 950 * bytes of the HTC register table. This 951 * will yield us the value of different int status 952 * registers and the lookahead registers. 953 */ 954 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 955 irq_proc_reg, sizeof(*irq_proc_reg)); 956 if (ret) { 957 queue_work(ar->workqueue, &ar->restart_work); 958 ath10k_warn(ar, "read int status fail, start recovery\n"); 959 goto out; 960 } 961 962 /* Update only those registers that are enabled */ 963 *host_int_status = irq_proc_reg->host_int_status & 964 irq_en_reg->int_status_en; 965 966 /* Look at mbox status */ 967 if (!(*host_int_status & htc_mbox)) { 968 *lookahead = 0; 969 ret = 0; 970 goto out; 971 } 972 973 /* Mask out pending mbox value, we use look ahead as 974 * the real flag for mbox processing. 975 */ 976 *host_int_status &= ~htc_mbox; 977 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 978 *lookahead = le32_to_cpu( 979 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 980 if (!*lookahead) 981 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 982 } 983 984 out: 985 mutex_unlock(&irq_data->mtx); 986 return ret; 987 } 988 989 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 990 bool *done) 991 { 992 u8 host_int_status; 993 u32 lookahead; 994 int ret; 995 996 /* NOTE: HIF implementation guarantees that the context of this 997 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 998 * sleep or call any API that can block or switch thread/task 999 * contexts. This is a fully schedulable context. 1000 */ 1001 1002 ret = ath10k_sdio_mbox_read_int_status(ar, 1003 &host_int_status, 1004 &lookahead); 1005 if (ret) { 1006 *done = true; 1007 goto out; 1008 } 1009 1010 if (!host_int_status && !lookahead) { 1011 ret = 0; 1012 *done = true; 1013 goto out; 1014 } 1015 1016 if (lookahead) { 1017 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1018 "sdio pending mailbox msg lookahead 0x%08x\n", 1019 lookahead); 1020 1021 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 1022 lookahead, 1023 done); 1024 if (ret) 1025 goto out; 1026 } 1027 1028 /* now, handle the rest of the interrupts */ 1029 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1030 "sdio host_int_status 0x%x\n", host_int_status); 1031 1032 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 1033 /* CPU Interrupt */ 1034 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 1035 if (ret) 1036 goto out; 1037 } 1038 1039 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 1040 /* Error Interrupt */ 1041 ret = ath10k_sdio_mbox_proc_err_intr(ar); 1042 if (ret) 1043 goto out; 1044 } 1045 1046 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1047 /* Counter Interrupt */ 1048 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1049 1050 ret = 0; 1051 1052 out: 1053 /* An optimization to bypass reading the IRQ status registers 1054 * unecessarily which can re-wake the target, if upper layers 1055 * determine that we are in a low-throughput mode, we can rely on 1056 * taking another interrupt rather than re-checking the status 1057 * registers which can re-wake the target. 1058 * 1059 * NOTE : for host interfaces that makes use of detecting pending 1060 * mbox messages at hif can not use this optimization due to 1061 * possible side effects, SPI requires the host to drain all 1062 * messages from the mailbox before exiting the ISR routine. 1063 */ 1064 1065 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1066 "sdio pending irqs done %d status %d", 1067 *done, ret); 1068 1069 return ret; 1070 } 1071 1072 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1073 { 1074 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1075 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1076 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1077 1078 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1079 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1080 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1081 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1082 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1083 1084 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1085 1086 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1087 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1088 switch (dev_id_base) { 1089 case QCA_MANUFACTURER_ID_AR6005_BASE: 1090 if (dev_id_chiprev < 4) 1091 mbox_info->ext_info[0].htc_ext_sz = 1092 ATH10K_HIF_MBOX0_EXT_WIDTH; 1093 else 1094 /* from QCA6174 2.0(0x504), the width has been extended 1095 * to 56K 1096 */ 1097 mbox_info->ext_info[0].htc_ext_sz = 1098 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1099 break; 1100 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1101 mbox_info->ext_info[0].htc_ext_sz = 1102 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1103 break; 1104 default: 1105 mbox_info->ext_info[0].htc_ext_sz = 1106 ATH10K_HIF_MBOX0_EXT_WIDTH; 1107 } 1108 1109 mbox_info->ext_info[1].htc_ext_addr = 1110 mbox_info->ext_info[0].htc_ext_addr + 1111 mbox_info->ext_info[0].htc_ext_sz + 1112 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1113 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1114 } 1115 1116 /* BMI functions */ 1117 1118 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1119 { 1120 u32 addr, cmd_credits; 1121 unsigned long timeout; 1122 int ret; 1123 1124 /* Read the counter register to get the command credits */ 1125 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1126 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1127 cmd_credits = 0; 1128 1129 while (time_before(jiffies, timeout) && !cmd_credits) { 1130 /* Hit the credit counter with a 4-byte access, the first byte 1131 * read will hit the counter and cause a decrement, while the 1132 * remaining 3 bytes has no effect. The rationale behind this 1133 * is to make all HIF accesses 4-byte aligned. 1134 */ 1135 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1136 if (ret) { 1137 ath10k_warn(ar, 1138 "unable to decrement the command credit count register: %d\n", 1139 ret); 1140 return ret; 1141 } 1142 1143 /* The counter is only 8 bits. 1144 * Ignore anything in the upper 3 bytes 1145 */ 1146 cmd_credits &= 0xFF; 1147 } 1148 1149 if (!cmd_credits) { 1150 ath10k_warn(ar, "bmi communication timeout\n"); 1151 return -ETIMEDOUT; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1158 { 1159 unsigned long timeout; 1160 u32 rx_word; 1161 int ret; 1162 1163 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1164 rx_word = 0; 1165 1166 while ((time_before(jiffies, timeout)) && !rx_word) { 1167 ret = ath10k_sdio_read32(ar, 1168 MBOX_HOST_INT_STATUS_ADDRESS, 1169 &rx_word); 1170 if (ret) { 1171 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1172 return ret; 1173 } 1174 1175 /* all we really want is one bit */ 1176 rx_word &= 1; 1177 } 1178 1179 if (!rx_word) { 1180 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1181 return -EINVAL; 1182 } 1183 1184 return ret; 1185 } 1186 1187 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1188 void *req, u32 req_len, 1189 void *resp, u32 *resp_len) 1190 { 1191 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1192 u32 addr; 1193 int ret; 1194 1195 if (req) { 1196 ret = ath10k_sdio_bmi_credits(ar); 1197 if (ret) 1198 return ret; 1199 1200 addr = ar_sdio->mbox_info.htc_addr; 1201 1202 memcpy(ar_sdio->bmi_buf, req, req_len); 1203 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1204 if (ret) { 1205 ath10k_warn(ar, 1206 "unable to send the bmi data to the device: %d\n", 1207 ret); 1208 return ret; 1209 } 1210 } 1211 1212 if (!resp || !resp_len) 1213 /* No response expected */ 1214 return 0; 1215 1216 /* During normal bootup, small reads may be required. 1217 * Rather than issue an HIF Read and then wait as the Target 1218 * adds successive bytes to the FIFO, we wait here until 1219 * we know that response data is available. 1220 * 1221 * This allows us to cleanly timeout on an unexpected 1222 * Target failure rather than risk problems at the HIF level. 1223 * In particular, this avoids SDIO timeouts and possibly garbage 1224 * data on some host controllers. And on an interconnect 1225 * such as Compact Flash (as well as some SDIO masters) which 1226 * does not provide any indication on data timeout, it avoids 1227 * a potential hang or garbage response. 1228 * 1229 * Synchronization is more difficult for reads larger than the 1230 * size of the MBOX FIFO (128B), because the Target is unable 1231 * to push the 129th byte of data until AFTER the Host posts an 1232 * HIF Read and removes some FIFO data. So for large reads the 1233 * Host proceeds to post an HIF Read BEFORE all the data is 1234 * actually available to read. Fortunately, large BMI reads do 1235 * not occur in practice -- they're supported for debug/development. 1236 * 1237 * So Host/Target BMI synchronization is divided into these cases: 1238 * CASE 1: length < 4 1239 * Should not happen 1240 * 1241 * CASE 2: 4 <= length <= 128 1242 * Wait for first 4 bytes to be in FIFO 1243 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1244 * a BMI command credit, which indicates that the ENTIRE 1245 * response is available in the the FIFO 1246 * 1247 * CASE 3: length > 128 1248 * Wait for the first 4 bytes to be in FIFO 1249 * 1250 * For most uses, a small timeout should be sufficient and we will 1251 * usually see a response quickly; but there may be some unusual 1252 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1253 * For now, we use an unbounded busy loop while waiting for 1254 * BMI_EXECUTE. 1255 * 1256 * If BMI_EXECUTE ever needs to support longer-latency execution, 1257 * especially in production, this code needs to be enhanced to sleep 1258 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1259 * a function of Host processor speed. 1260 */ 1261 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1262 if (ret) 1263 return ret; 1264 1265 /* We always read from the start of the mbox address */ 1266 addr = ar_sdio->mbox_info.htc_addr; 1267 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1268 if (ret) { 1269 ath10k_warn(ar, 1270 "unable to read the bmi data from the device: %d\n", 1271 ret); 1272 return ret; 1273 } 1274 1275 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1276 1277 return 0; 1278 } 1279 1280 /* sdio async handling functions */ 1281 1282 static struct ath10k_sdio_bus_request 1283 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1284 { 1285 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1286 struct ath10k_sdio_bus_request *bus_req; 1287 1288 spin_lock_bh(&ar_sdio->lock); 1289 1290 if (list_empty(&ar_sdio->bus_req_freeq)) { 1291 bus_req = NULL; 1292 goto out; 1293 } 1294 1295 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1296 struct ath10k_sdio_bus_request, list); 1297 list_del(&bus_req->list); 1298 1299 out: 1300 spin_unlock_bh(&ar_sdio->lock); 1301 return bus_req; 1302 } 1303 1304 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1305 struct ath10k_sdio_bus_request *bus_req) 1306 { 1307 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1308 1309 memset(bus_req, 0, sizeof(*bus_req)); 1310 1311 spin_lock_bh(&ar_sdio->lock); 1312 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1313 spin_unlock_bh(&ar_sdio->lock); 1314 } 1315 1316 static void __ath10k_sdio_write_async(struct ath10k *ar, 1317 struct ath10k_sdio_bus_request *req) 1318 { 1319 struct ath10k_htc_ep *ep; 1320 struct sk_buff *skb; 1321 int ret; 1322 1323 skb = req->skb; 1324 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1325 if (ret) 1326 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1327 req->address, ret); 1328 1329 if (req->htc_msg) { 1330 ep = &ar->htc.endpoint[req->eid]; 1331 ath10k_htc_notify_tx_completion(ep, skb); 1332 } else if (req->comp) { 1333 complete(req->comp); 1334 } 1335 1336 ath10k_sdio_free_bus_req(ar, req); 1337 } 1338 1339 /* To improve throughput use workqueue to deliver packets to HTC layer, 1340 * this way SDIO bus is utilised much better. 1341 */ 1342 static void ath10k_rx_indication_async_work(struct work_struct *work) 1343 { 1344 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1345 async_work_rx); 1346 struct ath10k *ar = ar_sdio->ar; 1347 struct ath10k_htc_ep *ep; 1348 struct ath10k_skb_rxcb *cb; 1349 struct sk_buff *skb; 1350 1351 while (true) { 1352 skb = skb_dequeue(&ar_sdio->rx_head); 1353 if (!skb) 1354 break; 1355 cb = ATH10K_SKB_RXCB(skb); 1356 ep = &ar->htc.endpoint[cb->eid]; 1357 ep->ep_ops.ep_rx_complete(ar, skb); 1358 } 1359 1360 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) 1361 napi_schedule(&ar->napi); 1362 } 1363 1364 static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state) 1365 { 1366 struct ath10k *ar = ar_sdio->ar; 1367 unsigned char rtc_state = 0; 1368 int ret = 0; 1369 1370 rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret); 1371 if (ret) { 1372 ath10k_warn(ar, "failed to read rtc state: %d\n", ret); 1373 return ret; 1374 } 1375 1376 *state = rtc_state & 0x3; 1377 1378 return ret; 1379 } 1380 1381 static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1382 { 1383 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1384 u32 val; 1385 int retry = ATH10K_CIS_READ_RETRY, ret = 0; 1386 unsigned char rtc_state = 0; 1387 1388 sdio_claim_host(ar_sdio->func); 1389 1390 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1391 if (ret) { 1392 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1393 ret); 1394 goto release; 1395 } 1396 1397 if (enable_sleep) { 1398 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1399 ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE; 1400 } else { 1401 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1402 ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE; 1403 } 1404 1405 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1406 if (ret) { 1407 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1408 ret); 1409 } 1410 1411 if (!enable_sleep) { 1412 do { 1413 udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US); 1414 ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state); 1415 1416 if (ret) { 1417 ath10k_warn(ar, "failed to disable mbox sleep: %d", ret); 1418 break; 1419 } 1420 1421 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n", 1422 rtc_state); 1423 1424 if (rtc_state == ATH10K_CIS_RTC_STATE_ON) 1425 break; 1426 1427 udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US); 1428 retry--; 1429 } while (retry > 0); 1430 } 1431 1432 release: 1433 sdio_release_host(ar_sdio->func); 1434 1435 return ret; 1436 } 1437 1438 static void ath10k_sdio_sleep_timer_handler(struct timer_list *t) 1439 { 1440 struct ath10k_sdio *ar_sdio = from_timer(ar_sdio, t, sleep_timer); 1441 1442 ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE; 1443 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1444 } 1445 1446 static void ath10k_sdio_write_async_work(struct work_struct *work) 1447 { 1448 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1449 wr_async_work); 1450 struct ath10k *ar = ar_sdio->ar; 1451 struct ath10k_sdio_bus_request *req, *tmp_req; 1452 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1453 1454 spin_lock_bh(&ar_sdio->wr_async_lock); 1455 1456 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1457 list_del(&req->list); 1458 spin_unlock_bh(&ar_sdio->wr_async_lock); 1459 1460 if (req->address >= mbox_info->htc_addr && 1461 ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) { 1462 ath10k_sdio_set_mbox_sleep(ar, false); 1463 mod_timer(&ar_sdio->sleep_timer, jiffies + 1464 msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS)); 1465 } 1466 1467 __ath10k_sdio_write_async(ar, req); 1468 spin_lock_bh(&ar_sdio->wr_async_lock); 1469 } 1470 1471 spin_unlock_bh(&ar_sdio->wr_async_lock); 1472 1473 if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE) 1474 ath10k_sdio_set_mbox_sleep(ar, true); 1475 } 1476 1477 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1478 struct sk_buff *skb, 1479 struct completion *comp, 1480 bool htc_msg, enum ath10k_htc_ep_id eid) 1481 { 1482 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1483 struct ath10k_sdio_bus_request *bus_req; 1484 1485 /* Allocate a bus request for the message and queue it on the 1486 * SDIO workqueue. 1487 */ 1488 bus_req = ath10k_sdio_alloc_busreq(ar); 1489 if (!bus_req) { 1490 ath10k_warn(ar, 1491 "unable to allocate bus request for async request\n"); 1492 return -ENOMEM; 1493 } 1494 1495 bus_req->skb = skb; 1496 bus_req->eid = eid; 1497 bus_req->address = addr; 1498 bus_req->htc_msg = htc_msg; 1499 bus_req->comp = comp; 1500 1501 spin_lock_bh(&ar_sdio->wr_async_lock); 1502 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1503 spin_unlock_bh(&ar_sdio->wr_async_lock); 1504 1505 return 0; 1506 } 1507 1508 /* IRQ handler */ 1509 1510 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1511 { 1512 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1513 struct ath10k *ar = ar_sdio->ar; 1514 unsigned long timeout; 1515 bool done = false; 1516 int ret; 1517 1518 /* Release the host during interrupts so we can pick it back up when 1519 * we process commands. 1520 */ 1521 sdio_release_host(ar_sdio->func); 1522 1523 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1524 do { 1525 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1526 if (ret) 1527 break; 1528 } while (time_before(jiffies, timeout) && !done); 1529 1530 ath10k_mac_tx_push_pending(ar); 1531 1532 sdio_claim_host(ar_sdio->func); 1533 1534 if (ret && ret != -ECANCELED) 1535 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1536 ret); 1537 } 1538 1539 /* sdio HIF functions */ 1540 1541 static int ath10k_sdio_disable_intrs(struct ath10k *ar) 1542 { 1543 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1544 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1545 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1546 int ret; 1547 1548 mutex_lock(&irq_data->mtx); 1549 1550 memset(regs, 0, sizeof(*regs)); 1551 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1552 ®s->int_status_en, sizeof(*regs)); 1553 if (ret) 1554 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1555 1556 mutex_unlock(&irq_data->mtx); 1557 1558 return ret; 1559 } 1560 1561 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1562 enum ath10k_firmware_mode fw_mode) 1563 { 1564 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1565 struct sdio_func *func = ar_sdio->func; 1566 int ret; 1567 1568 if (!ar_sdio->is_disabled) 1569 return 0; 1570 1571 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1572 1573 ret = ath10k_sdio_config(ar); 1574 if (ret) { 1575 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1576 return ret; 1577 } 1578 1579 sdio_claim_host(func); 1580 1581 ret = sdio_enable_func(func); 1582 if (ret) { 1583 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1584 sdio_release_host(func); 1585 return ret; 1586 } 1587 1588 sdio_release_host(func); 1589 1590 /* Wait for hardware to initialise. It should take a lot less than 1591 * 20 ms but let's be conservative here. 1592 */ 1593 msleep(20); 1594 1595 ar_sdio->is_disabled = false; 1596 1597 ret = ath10k_sdio_disable_intrs(ar); 1598 if (ret) 1599 return ret; 1600 1601 return 0; 1602 } 1603 1604 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1605 { 1606 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1607 int ret; 1608 1609 if (ar_sdio->is_disabled) 1610 return; 1611 1612 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1613 1614 del_timer_sync(&ar_sdio->sleep_timer); 1615 ath10k_sdio_set_mbox_sleep(ar, true); 1616 1617 /* Disable the card */ 1618 sdio_claim_host(ar_sdio->func); 1619 1620 ret = sdio_disable_func(ar_sdio->func); 1621 if (ret) { 1622 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1623 sdio_release_host(ar_sdio->func); 1624 return; 1625 } 1626 1627 ret = mmc_hw_reset(ar_sdio->func->card->host); 1628 if (ret) 1629 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1630 1631 sdio_release_host(ar_sdio->func); 1632 1633 ar_sdio->is_disabled = true; 1634 } 1635 1636 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1637 struct ath10k_hif_sg_item *items, int n_items) 1638 { 1639 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1640 enum ath10k_htc_ep_id eid; 1641 struct sk_buff *skb; 1642 int ret, i; 1643 1644 eid = pipe_id_to_eid(pipe_id); 1645 1646 for (i = 0; i < n_items; i++) { 1647 size_t padded_len; 1648 u32 address; 1649 1650 skb = items[i].transfer_context; 1651 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1652 skb->len); 1653 skb_trim(skb, padded_len); 1654 1655 /* Write TX data to the end of the mbox address space */ 1656 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1657 skb->len; 1658 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1659 NULL, true, eid); 1660 if (ret) 1661 return ret; 1662 } 1663 1664 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1665 1666 return 0; 1667 } 1668 1669 static int ath10k_sdio_enable_intrs(struct ath10k *ar) 1670 { 1671 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1672 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1673 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1674 int ret; 1675 1676 mutex_lock(&irq_data->mtx); 1677 1678 /* Enable all but CPU interrupts */ 1679 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1680 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1681 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1682 1683 /* NOTE: There are some cases where HIF can do detection of 1684 * pending mbox messages which is disabled now. 1685 */ 1686 regs->int_status_en |= 1687 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1688 1689 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1690 * #0 is used for report assertion from target 1691 */ 1692 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1693 1694 /* Set up the Error Interrupt status Register */ 1695 regs->err_int_status_en = 1696 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1697 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1698 1699 /* Enable Counter interrupt status register to get fatal errors for 1700 * debugging. 1701 */ 1702 regs->cntr_int_status_en = 1703 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1704 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1705 1706 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1707 ®s->int_status_en, sizeof(*regs)); 1708 if (ret) 1709 ath10k_warn(ar, 1710 "failed to update mbox interrupt status register : %d\n", 1711 ret); 1712 1713 mutex_unlock(&irq_data->mtx); 1714 return ret; 1715 } 1716 1717 /* HIF diagnostics */ 1718 1719 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1720 size_t buf_len) 1721 { 1722 int ret; 1723 void *mem; 1724 1725 mem = kzalloc(buf_len, GFP_KERNEL); 1726 if (!mem) 1727 return -ENOMEM; 1728 1729 /* set window register to start read cycle */ 1730 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1731 if (ret) { 1732 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1733 goto out; 1734 } 1735 1736 /* read the data */ 1737 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len); 1738 if (ret) { 1739 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1740 ret); 1741 goto out; 1742 } 1743 1744 memcpy(buf, mem, buf_len); 1745 1746 out: 1747 kfree(mem); 1748 1749 return ret; 1750 } 1751 1752 static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address, 1753 u32 *value) 1754 { 1755 __le32 *val; 1756 int ret; 1757 1758 val = kzalloc(sizeof(*val), GFP_KERNEL); 1759 if (!val) 1760 return -ENOMEM; 1761 1762 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1763 if (ret) 1764 goto out; 1765 1766 *value = __le32_to_cpu(*val); 1767 1768 out: 1769 kfree(val); 1770 1771 return ret; 1772 } 1773 1774 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1775 const void *data, int nbytes) 1776 { 1777 int ret; 1778 1779 /* set write data */ 1780 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1781 if (ret) { 1782 ath10k_warn(ar, 1783 "failed to write 0x%p to mbox window data address: %d\n", 1784 data, ret); 1785 return ret; 1786 } 1787 1788 /* set window register, which starts the write cycle */ 1789 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1790 if (ret) { 1791 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1792 return ret; 1793 } 1794 1795 return 0; 1796 } 1797 1798 static int ath10k_sdio_hif_start_post(struct ath10k *ar) 1799 { 1800 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1801 u32 addr, val; 1802 int ret = 0; 1803 1804 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1805 1806 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1807 if (ret) { 1808 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1809 return ret; 1810 } 1811 1812 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1813 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1814 "sdio mailbox swap service enabled\n"); 1815 ar_sdio->swap_mbox = true; 1816 } else { 1817 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1818 "sdio mailbox swap service disabled\n"); 1819 ar_sdio->swap_mbox = false; 1820 } 1821 1822 ath10k_sdio_set_mbox_sleep(ar, true); 1823 1824 return 0; 1825 } 1826 1827 static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar) 1828 { 1829 u32 addr, val; 1830 int ret; 1831 1832 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1833 1834 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1835 if (ret) { 1836 ath10k_warn(ar, 1837 "unable to read hi_acs_flags for htt tx comple : %d\n", ret); 1838 return ret; 1839 } 1840 1841 ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK); 1842 1843 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n", 1844 ret ? " " : " not "); 1845 1846 return ret; 1847 } 1848 1849 /* HIF start/stop */ 1850 1851 static int ath10k_sdio_hif_start(struct ath10k *ar) 1852 { 1853 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1854 int ret; 1855 1856 napi_enable(&ar->napi); 1857 1858 /* Sleep 20 ms before HIF interrupts are disabled. 1859 * This will give target plenty of time to process the BMI done 1860 * request before interrupts are disabled. 1861 */ 1862 msleep(20); 1863 ret = ath10k_sdio_disable_intrs(ar); 1864 if (ret) 1865 return ret; 1866 1867 /* eid 0 always uses the lower part of the extended mailbox address 1868 * space (ext_info[0].htc_ext_addr). 1869 */ 1870 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1871 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1872 1873 sdio_claim_host(ar_sdio->func); 1874 1875 /* Register the isr */ 1876 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1877 if (ret) { 1878 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1879 sdio_release_host(ar_sdio->func); 1880 return ret; 1881 } 1882 1883 sdio_release_host(ar_sdio->func); 1884 1885 ret = ath10k_sdio_enable_intrs(ar); 1886 if (ret) 1887 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1888 1889 /* Enable sleep and then disable it again */ 1890 ret = ath10k_sdio_set_mbox_sleep(ar, true); 1891 if (ret) 1892 return ret; 1893 1894 /* Wait for 20ms for the written value to take effect */ 1895 msleep(20); 1896 1897 ret = ath10k_sdio_set_mbox_sleep(ar, false); 1898 if (ret) 1899 return ret; 1900 1901 return 0; 1902 } 1903 1904 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1905 1906 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1907 { 1908 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1909 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1910 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1911 struct sk_buff *skb; 1912 struct completion irqs_disabled_comp; 1913 int ret; 1914 1915 skb = dev_alloc_skb(sizeof(*regs)); 1916 if (!skb) 1917 return; 1918 1919 mutex_lock(&irq_data->mtx); 1920 1921 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1922 memcpy(skb->data, regs, sizeof(*regs)); 1923 skb_put(skb, sizeof(*regs)); 1924 1925 mutex_unlock(&irq_data->mtx); 1926 1927 init_completion(&irqs_disabled_comp); 1928 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1929 skb, &irqs_disabled_comp, false, 0); 1930 if (ret) 1931 goto out; 1932 1933 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1934 1935 /* Wait for the completion of the IRQ disable request. 1936 * If there is a timeout we will try to disable irq's anyway. 1937 */ 1938 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1939 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1940 if (!ret) 1941 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1942 1943 sdio_claim_host(ar_sdio->func); 1944 1945 ret = sdio_release_irq(ar_sdio->func); 1946 if (ret) 1947 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1948 1949 sdio_release_host(ar_sdio->func); 1950 1951 out: 1952 kfree_skb(skb); 1953 } 1954 1955 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1956 { 1957 struct ath10k_sdio_bus_request *req, *tmp_req; 1958 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1959 1960 ath10k_sdio_irq_disable(ar); 1961 1962 cancel_work_sync(&ar_sdio->wr_async_work); 1963 1964 spin_lock_bh(&ar_sdio->wr_async_lock); 1965 1966 /* Free all bus requests that have not been handled */ 1967 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1968 struct ath10k_htc_ep *ep; 1969 1970 list_del(&req->list); 1971 1972 if (req->htc_msg) { 1973 ep = &ar->htc.endpoint[req->eid]; 1974 ath10k_htc_notify_tx_completion(ep, req->skb); 1975 } else if (req->skb) { 1976 kfree_skb(req->skb); 1977 } 1978 ath10k_sdio_free_bus_req(ar, req); 1979 } 1980 1981 spin_unlock_bh(&ar_sdio->wr_async_lock); 1982 1983 napi_synchronize(&ar->napi); 1984 napi_disable(&ar->napi); 1985 } 1986 1987 #ifdef CONFIG_PM 1988 1989 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1990 { 1991 return 0; 1992 } 1993 1994 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1995 { 1996 switch (ar->state) { 1997 case ATH10K_STATE_OFF: 1998 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1999 "sdio resume configuring sdio\n"); 2000 2001 /* need to set sdio settings after power is cut from sdio */ 2002 ath10k_sdio_config(ar); 2003 break; 2004 2005 case ATH10K_STATE_ON: 2006 default: 2007 break; 2008 } 2009 2010 return 0; 2011 } 2012 #endif 2013 2014 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 2015 u16 service_id, 2016 u8 *ul_pipe, u8 *dl_pipe) 2017 { 2018 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 2019 struct ath10k_htc *htc = &ar->htc; 2020 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 2021 enum ath10k_htc_ep_id eid; 2022 bool ep_found = false; 2023 int i; 2024 2025 /* For sdio, we are interested in the mapping between eid 2026 * and pipeid rather than service_id to pipe_id. 2027 * First we find out which eid has been allocated to the 2028 * service... 2029 */ 2030 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 2031 if (htc->endpoint[i].service_id == service_id) { 2032 eid = htc->endpoint[i].eid; 2033 ep_found = true; 2034 break; 2035 } 2036 } 2037 2038 if (!ep_found) 2039 return -EINVAL; 2040 2041 /* Then we create the simplest mapping possible between pipeid 2042 * and eid 2043 */ 2044 *ul_pipe = *dl_pipe = (u8)eid; 2045 2046 /* Normally, HTT will use the upper part of the extended 2047 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 2048 * the lower part (ext_info[0].htc_ext_addr). 2049 * If fw wants swapping of mailbox addresses, the opposite is true. 2050 */ 2051 if (ar_sdio->swap_mbox) { 2052 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2053 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2054 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2055 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2056 } else { 2057 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2058 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2059 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2060 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2061 } 2062 2063 switch (service_id) { 2064 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 2065 /* HTC ctrl ep mbox address has already been setup in 2066 * ath10k_sdio_hif_start 2067 */ 2068 break; 2069 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 2070 ar_sdio->mbox_addr[eid] = wmi_addr; 2071 ar_sdio->mbox_size[eid] = wmi_mbox_size; 2072 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2073 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 2074 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2075 break; 2076 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 2077 ar_sdio->mbox_addr[eid] = htt_addr; 2078 ar_sdio->mbox_size[eid] = htt_mbox_size; 2079 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2080 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 2081 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2082 break; 2083 default: 2084 ath10k_warn(ar, "unsupported HTC service id: %d\n", 2085 service_id); 2086 return -EINVAL; 2087 } 2088 2089 return 0; 2090 } 2091 2092 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 2093 u8 *ul_pipe, u8 *dl_pipe) 2094 { 2095 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 2096 2097 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 2098 * case) == 0 2099 */ 2100 *ul_pipe = 0; 2101 *dl_pipe = 0; 2102 } 2103 2104 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 2105 .tx_sg = ath10k_sdio_hif_tx_sg, 2106 .diag_read = ath10k_sdio_hif_diag_read, 2107 .diag_write = ath10k_sdio_hif_diag_write_mem, 2108 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 2109 .start = ath10k_sdio_hif_start, 2110 .stop = ath10k_sdio_hif_stop, 2111 .start_post = ath10k_sdio_hif_start_post, 2112 .get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete, 2113 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 2114 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 2115 .power_up = ath10k_sdio_hif_power_up, 2116 .power_down = ath10k_sdio_hif_power_down, 2117 #ifdef CONFIG_PM 2118 .suspend = ath10k_sdio_hif_suspend, 2119 .resume = ath10k_sdio_hif_resume, 2120 #endif 2121 }; 2122 2123 #ifdef CONFIG_PM_SLEEP 2124 2125 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 2126 * suspend. We instead follow cfg80211 suspend/resume handlers. 2127 */ 2128 static int ath10k_sdio_pm_suspend(struct device *device) 2129 { 2130 struct sdio_func *func = dev_to_sdio_func(device); 2131 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2132 struct ath10k *ar = ar_sdio->ar; 2133 mmc_pm_flag_t pm_flag, pm_caps; 2134 int ret; 2135 2136 if (!device_may_wakeup(ar->dev)) 2137 return 0; 2138 2139 ath10k_sdio_set_mbox_sleep(ar, true); 2140 2141 pm_flag = MMC_PM_KEEP_POWER; 2142 2143 ret = sdio_set_host_pm_flags(func, pm_flag); 2144 if (ret) { 2145 pm_caps = sdio_get_host_pm_caps(func); 2146 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", 2147 pm_flag, pm_caps, ret); 2148 return ret; 2149 } 2150 2151 return ret; 2152 } 2153 2154 static int ath10k_sdio_pm_resume(struct device *device) 2155 { 2156 return 0; 2157 } 2158 2159 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 2160 ath10k_sdio_pm_resume); 2161 2162 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 2163 2164 #else 2165 2166 #define ATH10K_SDIO_PM_OPS NULL 2167 2168 #endif /* CONFIG_PM_SLEEP */ 2169 2170 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) 2171 { 2172 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2173 int done; 2174 2175 done = ath10k_htt_rx_hl_indication(ar, budget); 2176 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); 2177 2178 if (done < budget) 2179 napi_complete_done(ctx, done); 2180 2181 return done; 2182 } 2183 2184 static int ath10k_sdio_probe(struct sdio_func *func, 2185 const struct sdio_device_id *id) 2186 { 2187 struct ath10k_sdio *ar_sdio; 2188 struct ath10k *ar; 2189 enum ath10k_hw_rev hw_rev; 2190 u32 dev_id_base; 2191 struct ath10k_bus_params bus_params = {}; 2192 int ret, i; 2193 2194 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 2195 * If there will be newer chipsets that does not use the hw reg 2196 * setup as defined in qca6174_regs and qca6174_values, this 2197 * assumption is no longer valid and hw_rev must be setup differently 2198 * depending on chipset. 2199 */ 2200 hw_rev = ATH10K_HW_QCA6174; 2201 2202 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2203 hw_rev, &ath10k_sdio_hif_ops); 2204 if (!ar) { 2205 dev_err(&func->dev, "failed to allocate core\n"); 2206 return -ENOMEM; 2207 } 2208 2209 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll, 2210 ATH10K_NAPI_BUDGET); 2211 2212 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2213 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2214 func->num, func->vendor, func->device, 2215 func->max_blksize, func->cur_blksize); 2216 2217 ar_sdio = ath10k_sdio_priv(ar); 2218 2219 ar_sdio->irq_data.irq_proc_reg = 2220 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2221 GFP_KERNEL); 2222 if (!ar_sdio->irq_data.irq_proc_reg) { 2223 ret = -ENOMEM; 2224 goto err_core_destroy; 2225 } 2226 2227 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); 2228 if (!ar_sdio->vsg_buffer) { 2229 ret = -ENOMEM; 2230 goto err_core_destroy; 2231 } 2232 2233 ar_sdio->irq_data.irq_en_reg = 2234 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2235 GFP_KERNEL); 2236 if (!ar_sdio->irq_data.irq_en_reg) { 2237 ret = -ENOMEM; 2238 goto err_core_destroy; 2239 } 2240 2241 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); 2242 if (!ar_sdio->bmi_buf) { 2243 ret = -ENOMEM; 2244 goto err_core_destroy; 2245 } 2246 2247 ar_sdio->func = func; 2248 sdio_set_drvdata(func, ar_sdio); 2249 2250 ar_sdio->is_disabled = true; 2251 ar_sdio->ar = ar; 2252 2253 spin_lock_init(&ar_sdio->lock); 2254 spin_lock_init(&ar_sdio->wr_async_lock); 2255 mutex_init(&ar_sdio->irq_data.mtx); 2256 2257 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2258 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2259 2260 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2261 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2262 if (!ar_sdio->workqueue) { 2263 ret = -ENOMEM; 2264 goto err_core_destroy; 2265 } 2266 2267 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2268 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2269 2270 skb_queue_head_init(&ar_sdio->rx_head); 2271 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); 2272 2273 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2274 switch (dev_id_base) { 2275 case QCA_MANUFACTURER_ID_AR6005_BASE: 2276 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2277 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2278 break; 2279 default: 2280 ret = -ENODEV; 2281 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2282 dev_id_base, id->device); 2283 goto err_free_wq; 2284 } 2285 2286 ar->id.vendor = id->vendor; 2287 ar->id.device = id->device; 2288 2289 ath10k_sdio_set_mbox_info(ar); 2290 2291 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2292 /* TODO: don't know yet how to get chip_id with SDIO */ 2293 bus_params.chip_id = 0; 2294 bus_params.hl_msdu_ids = true; 2295 2296 ar->hw->max_mtu = ETH_DATA_LEN; 2297 2298 ret = ath10k_core_register(ar, &bus_params); 2299 if (ret) { 2300 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2301 goto err_free_wq; 2302 } 2303 2304 timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0); 2305 2306 return 0; 2307 2308 err_free_wq: 2309 destroy_workqueue(ar_sdio->workqueue); 2310 err_core_destroy: 2311 ath10k_core_destroy(ar); 2312 2313 return ret; 2314 } 2315 2316 static void ath10k_sdio_remove(struct sdio_func *func) 2317 { 2318 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2319 struct ath10k *ar = ar_sdio->ar; 2320 2321 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2322 "sdio removed func %d vendor 0x%x device 0x%x\n", 2323 func->num, func->vendor, func->device); 2324 2325 ath10k_core_unregister(ar); 2326 2327 netif_napi_del(&ar->napi); 2328 2329 ath10k_core_destroy(ar); 2330 2331 flush_workqueue(ar_sdio->workqueue); 2332 destroy_workqueue(ar_sdio->workqueue); 2333 } 2334 2335 static const struct sdio_device_id ath10k_sdio_devices[] = { 2336 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2337 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2338 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2339 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2340 {}, 2341 }; 2342 2343 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2344 2345 static struct sdio_driver ath10k_sdio_driver = { 2346 .name = "ath10k_sdio", 2347 .id_table = ath10k_sdio_devices, 2348 .probe = ath10k_sdio_probe, 2349 .remove = ath10k_sdio_remove, 2350 .drv = { 2351 .owner = THIS_MODULE, 2352 .pm = ATH10K_SDIO_PM_OPS, 2353 }, 2354 }; 2355 2356 static int __init ath10k_sdio_init(void) 2357 { 2358 int ret; 2359 2360 ret = sdio_register_driver(&ath10k_sdio_driver); 2361 if (ret) 2362 pr_err("sdio driver registration failed: %d\n", ret); 2363 2364 return ret; 2365 } 2366 2367 static void __exit ath10k_sdio_exit(void) 2368 { 2369 sdio_unregister_driver(&ath10k_sdio_driver); 2370 } 2371 2372 module_init(ath10k_sdio_init); 2373 module_exit(ath10k_sdio_exit); 2374 2375 MODULE_AUTHOR("Qualcomm Atheros"); 2376 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2377 MODULE_LICENSE("Dual BSD/GPL"); 2378