1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) 28 29 /* inlined helper functions */ 30 31 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 32 size_t len) 33 { 34 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 35 } 36 37 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 38 { 39 return (enum ath10k_htc_ep_id)pipe_id; 40 } 41 42 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 43 { 44 dev_kfree_skb(pkt->skb); 45 pkt->skb = NULL; 46 pkt->alloc_len = 0; 47 pkt->act_len = 0; 48 pkt->trailer_only = false; 49 } 50 51 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 52 size_t act_len, size_t full_len, 53 bool part_of_bundle, 54 bool last_in_bundle) 55 { 56 pkt->skb = dev_alloc_skb(full_len); 57 if (!pkt->skb) 58 return -ENOMEM; 59 60 pkt->act_len = act_len; 61 pkt->alloc_len = full_len; 62 pkt->part_of_bundle = part_of_bundle; 63 pkt->last_in_bundle = last_in_bundle; 64 pkt->trailer_only = false; 65 66 return 0; 67 } 68 69 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 70 { 71 bool trailer_only = false; 72 struct ath10k_htc_hdr *htc_hdr = 73 (struct ath10k_htc_hdr *)pkt->skb->data; 74 u16 len = __le16_to_cpu(htc_hdr->len); 75 76 if (len == htc_hdr->trailer_len) 77 trailer_only = true; 78 79 return trailer_only; 80 } 81 82 /* sdio/mmc functions */ 83 84 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 85 unsigned int address, 86 unsigned char val) 87 { 88 *arg = FIELD_PREP(BIT(31), write) | 89 FIELD_PREP(BIT(27), raw) | 90 FIELD_PREP(BIT(26), 1) | 91 FIELD_PREP(GENMASK(25, 9), address) | 92 FIELD_PREP(BIT(8), 1) | 93 FIELD_PREP(GENMASK(7, 0), val); 94 } 95 96 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 97 unsigned int address, 98 unsigned char byte) 99 { 100 struct mmc_command io_cmd; 101 102 memset(&io_cmd, 0, sizeof(io_cmd)); 103 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 104 io_cmd.opcode = SD_IO_RW_DIRECT; 105 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 106 107 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 108 } 109 110 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 111 unsigned int address, 112 unsigned char *byte) 113 { 114 struct mmc_command io_cmd; 115 int ret; 116 117 memset(&io_cmd, 0, sizeof(io_cmd)); 118 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 119 io_cmd.opcode = SD_IO_RW_DIRECT; 120 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 121 122 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 123 if (!ret) 124 *byte = io_cmd.resp[0]; 125 126 return ret; 127 } 128 129 static int ath10k_sdio_config(struct ath10k *ar) 130 { 131 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 132 struct sdio_func *func = ar_sdio->func; 133 unsigned char byte, asyncintdelay = 2; 134 int ret; 135 136 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 137 138 sdio_claim_host(func); 139 140 byte = 0; 141 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 142 SDIO_CCCR_DRIVE_STRENGTH, 143 &byte); 144 145 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 146 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 147 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 148 149 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 150 SDIO_CCCR_DRIVE_STRENGTH, 151 byte); 152 153 byte = 0; 154 ret = ath10k_sdio_func0_cmd52_rd_byte( 155 func->card, 156 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 157 &byte); 158 159 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 160 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 161 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 162 163 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 165 byte); 166 if (ret) { 167 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 168 goto out; 169 } 170 171 byte = 0; 172 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 173 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 174 &byte); 175 176 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 177 178 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 179 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 180 byte); 181 if (ret) { 182 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 183 ret); 184 goto out; 185 } 186 187 byte = 0; 188 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 189 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 190 &byte); 191 192 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 193 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 194 195 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 196 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 197 byte); 198 199 /* give us some time to enable, in ms */ 200 func->enable_timeout = 100; 201 202 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 203 if (ret) { 204 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 205 ar_sdio->mbox_info.block_size, ret); 206 goto out; 207 } 208 209 out: 210 sdio_release_host(func); 211 return ret; 212 } 213 214 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 215 { 216 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 217 struct sdio_func *func = ar_sdio->func; 218 int ret; 219 220 sdio_claim_host(func); 221 222 sdio_writel(func, val, addr, &ret); 223 if (ret) { 224 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 225 val, addr, ret); 226 goto out; 227 } 228 229 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 230 addr, val); 231 232 out: 233 sdio_release_host(func); 234 235 return ret; 236 } 237 238 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 239 { 240 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 241 struct sdio_func *func = ar_sdio->func; 242 __le32 *buf; 243 int ret; 244 245 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 246 if (!buf) 247 return -ENOMEM; 248 249 *buf = cpu_to_le32(val); 250 251 sdio_claim_host(func); 252 253 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 254 if (ret) { 255 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 256 val, addr, ret); 257 goto out; 258 } 259 260 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 261 addr, val); 262 263 out: 264 sdio_release_host(func); 265 266 kfree(buf); 267 268 return ret; 269 } 270 271 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 272 { 273 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 274 struct sdio_func *func = ar_sdio->func; 275 int ret; 276 277 sdio_claim_host(func); 278 *val = sdio_readl(func, addr, &ret); 279 if (ret) { 280 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 281 addr, ret); 282 goto out; 283 } 284 285 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 286 addr, *val); 287 288 out: 289 sdio_release_host(func); 290 291 return ret; 292 } 293 294 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 295 { 296 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 297 struct sdio_func *func = ar_sdio->func; 298 int ret; 299 300 sdio_claim_host(func); 301 302 ret = sdio_memcpy_fromio(func, buf, addr, len); 303 if (ret) { 304 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 305 addr, ret); 306 goto out; 307 } 308 309 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 310 addr, buf, len); 311 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 312 313 out: 314 sdio_release_host(func); 315 316 return ret; 317 } 318 319 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 320 { 321 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 322 struct sdio_func *func = ar_sdio->func; 323 int ret; 324 325 sdio_claim_host(func); 326 327 /* For some reason toio() doesn't have const for the buffer, need 328 * an ugly hack to workaround that. 329 */ 330 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 331 if (ret) { 332 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 333 addr, ret); 334 goto out; 335 } 336 337 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 338 addr, buf, len); 339 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 340 341 out: 342 sdio_release_host(func); 343 344 return ret; 345 } 346 347 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 348 { 349 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 350 struct sdio_func *func = ar_sdio->func; 351 int ret; 352 353 sdio_claim_host(func); 354 355 len = round_down(len, ar_sdio->mbox_info.block_size); 356 357 ret = sdio_readsb(func, buf, addr, len); 358 if (ret) { 359 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 360 addr, ret); 361 goto out; 362 } 363 364 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 365 addr, buf, len); 366 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 367 368 out: 369 sdio_release_host(func); 370 371 return ret; 372 } 373 374 /* HIF mbox functions */ 375 376 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 377 struct ath10k_sdio_rx_data *pkt, 378 u32 *lookaheads, 379 int *n_lookaheads) 380 { 381 struct ath10k_htc *htc = &ar->htc; 382 struct sk_buff *skb = pkt->skb; 383 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 384 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 385 enum ath10k_htc_ep_id eid; 386 u8 *trailer; 387 int ret; 388 389 if (trailer_present) { 390 trailer = skb->data + skb->len - htc_hdr->trailer_len; 391 392 eid = pipe_id_to_eid(htc_hdr->eid); 393 394 ret = ath10k_htc_process_trailer(htc, 395 trailer, 396 htc_hdr->trailer_len, 397 eid, 398 lookaheads, 399 n_lookaheads); 400 if (ret) 401 return ret; 402 403 if (is_trailer_only_msg(pkt)) 404 pkt->trailer_only = true; 405 406 skb_trim(skb, skb->len - htc_hdr->trailer_len); 407 } 408 409 skb_pull(skb, sizeof(*htc_hdr)); 410 411 return 0; 412 } 413 414 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 415 u32 lookaheads[], 416 int *n_lookahead) 417 { 418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 419 struct ath10k_htc *htc = &ar->htc; 420 struct ath10k_sdio_rx_data *pkt; 421 struct ath10k_htc_ep *ep; 422 struct ath10k_skb_rxcb *cb; 423 enum ath10k_htc_ep_id id; 424 int ret, i, *n_lookahead_local; 425 u32 *lookaheads_local; 426 int lookahead_idx = 0; 427 428 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 429 lookaheads_local = lookaheads; 430 n_lookahead_local = n_lookahead; 431 432 id = ((struct ath10k_htc_hdr *) 433 &lookaheads[lookahead_idx++])->eid; 434 435 if (id >= ATH10K_HTC_EP_COUNT) { 436 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 437 id); 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 ep = &htc->endpoint[id]; 443 444 if (ep->service_id == 0) { 445 ath10k_warn(ar, "ep %d is not connected\n", id); 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 pkt = &ar_sdio->rx_pkts[i]; 451 452 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 453 /* Only read lookahead's from RX trailers 454 * for the last packet in a bundle. 455 */ 456 lookahead_idx--; 457 lookaheads_local = NULL; 458 n_lookahead_local = NULL; 459 } 460 461 ret = ath10k_sdio_mbox_rx_process_packet(ar, 462 pkt, 463 lookaheads_local, 464 n_lookahead_local); 465 if (ret) 466 goto out; 467 468 if (!pkt->trailer_only) { 469 cb = ATH10K_SKB_RXCB(pkt->skb); 470 cb->eid = id; 471 472 skb_queue_tail(&ar_sdio->rx_head, pkt->skb); 473 queue_work(ar->workqueue_aux, 474 &ar_sdio->async_work_rx); 475 } else { 476 kfree_skb(pkt->skb); 477 } 478 479 /* The RX complete handler now owns the skb...*/ 480 pkt->skb = NULL; 481 pkt->alloc_len = 0; 482 } 483 484 ret = 0; 485 486 out: 487 /* Free all packets that was not passed on to the RX completion 488 * handler... 489 */ 490 for (; i < ar_sdio->n_rx_pkts; i++) 491 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 492 493 return ret; 494 } 495 496 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, 497 struct ath10k_sdio_rx_data *rx_pkts, 498 struct ath10k_htc_hdr *htc_hdr, 499 size_t full_len, size_t act_len, 500 size_t *bndl_cnt) 501 { 502 int ret, i; 503 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; 504 505 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); 506 507 if (*bndl_cnt > max_msgs) { 508 ath10k_warn(ar, 509 "HTC bundle length %u exceeds maximum %u\n", 510 le16_to_cpu(htc_hdr->len), 511 max_msgs); 512 return -ENOMEM; 513 } 514 515 /* Allocate bndl_cnt extra skb's for the bundle. 516 * The package containing the 517 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 518 * in bndl_cnt. The skb for that packet will be 519 * allocated separately. 520 */ 521 for (i = 0; i < *bndl_cnt; i++) { 522 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 523 act_len, 524 full_len, 525 true, 526 false); 527 if (ret) 528 return ret; 529 } 530 531 return 0; 532 } 533 534 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 535 u32 lookaheads[], int n_lookaheads) 536 { 537 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 538 struct ath10k_htc_hdr *htc_hdr; 539 size_t full_len, act_len; 540 bool last_in_bundle; 541 int ret, i; 542 int pkt_cnt = 0; 543 544 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 545 ath10k_warn(ar, "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 546 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); 547 ret = -ENOMEM; 548 goto err; 549 } 550 551 for (i = 0; i < n_lookaheads; i++) { 552 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 553 last_in_bundle = false; 554 555 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 556 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", 557 le16_to_cpu(htc_hdr->len), 558 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 559 ret = -ENOMEM; 560 goto err; 561 } 562 563 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 564 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 565 566 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 567 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 568 htc_hdr->eid, htc_hdr->flags, 569 le16_to_cpu(htc_hdr->len)); 570 ret = -EINVAL; 571 goto err; 572 } 573 574 if (ath10k_htc_get_bundle_count( 575 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { 576 /* HTC header indicates that every packet to follow 577 * has the same padded length so that it can be 578 * optimally fetched as a full bundle. 579 */ 580 size_t bndl_cnt; 581 582 ret = ath10k_sdio_mbox_alloc_bundle(ar, 583 &ar_sdio->rx_pkts[pkt_cnt], 584 htc_hdr, 585 full_len, 586 act_len, 587 &bndl_cnt); 588 589 if (ret) { 590 ath10k_warn(ar, "failed to allocate a bundle: %d\n", 591 ret); 592 goto err; 593 } 594 595 pkt_cnt += bndl_cnt; 596 597 /* next buffer will be the last in the bundle */ 598 last_in_bundle = true; 599 } 600 601 /* Allocate skb for packet. If the packet had the 602 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 603 * packet skb's have been allocated in the previous step. 604 */ 605 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 606 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 607 608 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], 609 act_len, 610 full_len, 611 last_in_bundle, 612 last_in_bundle); 613 if (ret) { 614 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 615 goto err; 616 } 617 618 pkt_cnt++; 619 } 620 621 ar_sdio->n_rx_pkts = pkt_cnt; 622 623 return 0; 624 625 err: 626 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 627 if (!ar_sdio->rx_pkts[i].alloc_len) 628 break; 629 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 630 } 631 632 return ret; 633 } 634 635 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 636 { 637 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 638 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; 639 struct sk_buff *skb = pkt->skb; 640 struct ath10k_htc_hdr *htc_hdr; 641 int ret; 642 643 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 644 skb->data, pkt->alloc_len); 645 if (ret) 646 goto err; 647 648 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 649 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 650 651 if (pkt->act_len > pkt->alloc_len) { 652 ret = -EINVAL; 653 goto err; 654 } 655 656 skb_put(skb, pkt->act_len); 657 return 0; 658 659 err: 660 ar_sdio->n_rx_pkts = 0; 661 ath10k_sdio_mbox_free_rx_pkt(pkt); 662 663 return ret; 664 } 665 666 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) 667 { 668 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 669 struct ath10k_sdio_rx_data *pkt; 670 struct ath10k_htc_hdr *htc_hdr; 671 int ret, i; 672 u32 pkt_offset, virt_pkt_len; 673 674 virt_pkt_len = 0; 675 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 676 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; 677 678 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { 679 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); 680 ret = -E2BIG; 681 goto err; 682 } 683 684 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 685 ar_sdio->vsg_buffer, virt_pkt_len); 686 if (ret) { 687 ath10k_warn(ar, "failed to read bundle packets: %d", ret); 688 goto err; 689 } 690 691 pkt_offset = 0; 692 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 693 pkt = &ar_sdio->rx_pkts[i]; 694 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); 695 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 696 697 if (pkt->act_len > pkt->alloc_len ) { 698 ret = -EINVAL; 699 goto err; 700 } 701 702 skb_put_data(pkt->skb, htc_hdr, pkt->act_len); 703 pkt_offset += pkt->alloc_len; 704 } 705 706 return 0; 707 708 err: 709 /* Free all packets that was not successfully fetched. */ 710 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 711 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 712 713 ar_sdio->n_rx_pkts = 0; 714 715 return ret; 716 } 717 718 /* This is the timeout for mailbox processing done in the sdio irq 719 * handler. The timeout is deliberately set quite high since SDIO dump logs 720 * over serial port can/will add a substantial overhead to the processing 721 * (if enabled). 722 */ 723 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 724 725 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 726 u32 msg_lookahead, bool *done) 727 { 728 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 729 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 730 int n_lookaheads = 1; 731 unsigned long timeout; 732 int ret; 733 734 *done = true; 735 736 /* Copy the lookahead obtained from the HTC register table into our 737 * temp array as a start value. 738 */ 739 lookaheads[0] = msg_lookahead; 740 741 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 742 do { 743 /* Try to allocate as many HTC RX packets indicated by 744 * n_lookaheads. 745 */ 746 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 747 n_lookaheads); 748 if (ret) 749 break; 750 751 if (ar_sdio->n_rx_pkts >= 2) 752 /* A recv bundle was detected, force IRQ status 753 * re-check again. 754 */ 755 *done = false; 756 757 if (ar_sdio->n_rx_pkts > 1) 758 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); 759 else 760 ret = ath10k_sdio_mbox_rx_fetch(ar); 761 762 /* Process fetched packets. This will potentially update 763 * n_lookaheads depending on if the packets contain lookahead 764 * reports. 765 */ 766 n_lookaheads = 0; 767 ret = ath10k_sdio_mbox_rx_process_packets(ar, 768 lookaheads, 769 &n_lookaheads); 770 771 if (!n_lookaheads || ret) 772 break; 773 774 /* For SYNCH processing, if we get here, we are running 775 * through the loop again due to updated lookaheads. Set 776 * flag that we should re-check IRQ status registers again 777 * before leaving IRQ processing, this can net better 778 * performance in high throughput situations. 779 */ 780 *done = false; 781 } while (time_before(jiffies, timeout)); 782 783 if (ret && (ret != -ECANCELED)) 784 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 785 ret); 786 787 return ret; 788 } 789 790 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 791 { 792 u32 val; 793 int ret; 794 795 /* TODO: Add firmware crash handling */ 796 ath10k_warn(ar, "firmware crashed\n"); 797 798 /* read counter to clear the interrupt, the debug error interrupt is 799 * counter 0. 800 */ 801 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 802 if (ret) 803 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 804 805 return ret; 806 } 807 808 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 809 { 810 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 811 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 812 u8 counter_int_status; 813 int ret; 814 815 mutex_lock(&irq_data->mtx); 816 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 817 irq_data->irq_en_reg->cntr_int_status_en; 818 819 /* NOTE: other modules like GMBOX may use the counter interrupt for 820 * credit flow control on other counters, we only need to check for 821 * the debug assertion counter interrupt. 822 */ 823 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 824 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 825 else 826 ret = 0; 827 828 mutex_unlock(&irq_data->mtx); 829 830 return ret; 831 } 832 833 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 834 { 835 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 836 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 837 u8 error_int_status; 838 int ret; 839 840 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 841 842 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 843 if (!error_int_status) { 844 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 845 error_int_status); 846 return -EIO; 847 } 848 849 ath10k_dbg(ar, ATH10K_DBG_SDIO, 850 "sdio error_int_status 0x%x\n", error_int_status); 851 852 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 853 error_int_status)) 854 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 855 856 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 857 error_int_status)) 858 ath10k_warn(ar, "rx underflow interrupt error\n"); 859 860 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 861 error_int_status)) 862 ath10k_warn(ar, "tx overflow interrupt error\n"); 863 864 /* Clear the interrupt */ 865 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 866 867 /* set W1C value to clear the interrupt, this hits the register first */ 868 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 869 error_int_status); 870 if (ret) { 871 ath10k_warn(ar, "unable to write to error int status address: %d\n", 872 ret); 873 return ret; 874 } 875 876 return 0; 877 } 878 879 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 880 { 881 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 882 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 883 u8 cpu_int_status; 884 int ret; 885 886 mutex_lock(&irq_data->mtx); 887 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 888 irq_data->irq_en_reg->cpu_int_status_en; 889 if (!cpu_int_status) { 890 ath10k_warn(ar, "CPU interrupt status is zero\n"); 891 ret = -EIO; 892 goto out; 893 } 894 895 /* Clear the interrupt */ 896 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 897 898 /* Set up the register transfer buffer to hit the register 4 times, 899 * this is done to make the access 4-byte aligned to mitigate issues 900 * with host bus interconnects that restrict bus transfer lengths to 901 * be a multiple of 4-bytes. 902 * 903 * Set W1C value to clear the interrupt, this hits the register first. 904 */ 905 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 906 cpu_int_status); 907 if (ret) { 908 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 909 ret); 910 goto out; 911 } 912 913 out: 914 mutex_unlock(&irq_data->mtx); 915 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) { 916 ath10k_err(ar, "firmware crashed!\n"); 917 queue_work(ar->workqueue, &ar->restart_work); 918 } 919 return ret; 920 } 921 922 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 923 u8 *host_int_status, 924 u32 *lookahead) 925 { 926 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 927 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 928 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 929 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 930 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 931 int ret; 932 933 mutex_lock(&irq_data->mtx); 934 935 *lookahead = 0; 936 *host_int_status = 0; 937 938 /* int_status_en is supposed to be non zero, otherwise interrupts 939 * shouldn't be enabled. There is however a short time frame during 940 * initialization between the irq register and int_status_en init 941 * where this can happen. 942 * We silently ignore this condition. 943 */ 944 if (!irq_en_reg->int_status_en) { 945 ret = 0; 946 goto out; 947 } 948 949 /* Read the first sizeof(struct ath10k_irq_proc_registers) 950 * bytes of the HTC register table. This 951 * will yield us the value of different int status 952 * registers and the lookahead registers. 953 */ 954 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 955 irq_proc_reg, sizeof(*irq_proc_reg)); 956 if (ret) 957 goto out; 958 959 /* Update only those registers that are enabled */ 960 *host_int_status = irq_proc_reg->host_int_status & 961 irq_en_reg->int_status_en; 962 963 /* Look at mbox status */ 964 if (!(*host_int_status & htc_mbox)) { 965 *lookahead = 0; 966 ret = 0; 967 goto out; 968 } 969 970 /* Mask out pending mbox value, we use look ahead as 971 * the real flag for mbox processing. 972 */ 973 *host_int_status &= ~htc_mbox; 974 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 975 *lookahead = le32_to_cpu( 976 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 977 if (!*lookahead) 978 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 979 } 980 981 out: 982 mutex_unlock(&irq_data->mtx); 983 return ret; 984 } 985 986 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 987 bool *done) 988 { 989 u8 host_int_status; 990 u32 lookahead; 991 int ret; 992 993 /* NOTE: HIF implementation guarantees that the context of this 994 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 995 * sleep or call any API that can block or switch thread/task 996 * contexts. This is a fully schedulable context. 997 */ 998 999 ret = ath10k_sdio_mbox_read_int_status(ar, 1000 &host_int_status, 1001 &lookahead); 1002 if (ret) { 1003 *done = true; 1004 goto out; 1005 } 1006 1007 if (!host_int_status && !lookahead) { 1008 ret = 0; 1009 *done = true; 1010 goto out; 1011 } 1012 1013 if (lookahead) { 1014 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1015 "sdio pending mailbox msg lookahead 0x%08x\n", 1016 lookahead); 1017 1018 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 1019 lookahead, 1020 done); 1021 if (ret) 1022 goto out; 1023 } 1024 1025 /* now, handle the rest of the interrupts */ 1026 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1027 "sdio host_int_status 0x%x\n", host_int_status); 1028 1029 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 1030 /* CPU Interrupt */ 1031 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 1032 if (ret) 1033 goto out; 1034 } 1035 1036 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 1037 /* Error Interrupt */ 1038 ret = ath10k_sdio_mbox_proc_err_intr(ar); 1039 if (ret) 1040 goto out; 1041 } 1042 1043 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1044 /* Counter Interrupt */ 1045 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1046 1047 ret = 0; 1048 1049 out: 1050 /* An optimization to bypass reading the IRQ status registers 1051 * unecessarily which can re-wake the target, if upper layers 1052 * determine that we are in a low-throughput mode, we can rely on 1053 * taking another interrupt rather than re-checking the status 1054 * registers which can re-wake the target. 1055 * 1056 * NOTE : for host interfaces that makes use of detecting pending 1057 * mbox messages at hif can not use this optimization due to 1058 * possible side effects, SPI requires the host to drain all 1059 * messages from the mailbox before exiting the ISR routine. 1060 */ 1061 1062 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1063 "sdio pending irqs done %d status %d", 1064 *done, ret); 1065 1066 return ret; 1067 } 1068 1069 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1070 { 1071 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1072 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1073 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1074 1075 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1076 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1077 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1078 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1079 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1080 1081 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1082 1083 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1084 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1085 switch (dev_id_base) { 1086 case QCA_MANUFACTURER_ID_AR6005_BASE: 1087 if (dev_id_chiprev < 4) 1088 mbox_info->ext_info[0].htc_ext_sz = 1089 ATH10K_HIF_MBOX0_EXT_WIDTH; 1090 else 1091 /* from QCA6174 2.0(0x504), the width has been extended 1092 * to 56K 1093 */ 1094 mbox_info->ext_info[0].htc_ext_sz = 1095 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1096 break; 1097 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1098 mbox_info->ext_info[0].htc_ext_sz = 1099 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1100 break; 1101 default: 1102 mbox_info->ext_info[0].htc_ext_sz = 1103 ATH10K_HIF_MBOX0_EXT_WIDTH; 1104 } 1105 1106 mbox_info->ext_info[1].htc_ext_addr = 1107 mbox_info->ext_info[0].htc_ext_addr + 1108 mbox_info->ext_info[0].htc_ext_sz + 1109 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1110 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1111 } 1112 1113 /* BMI functions */ 1114 1115 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1116 { 1117 u32 addr, cmd_credits; 1118 unsigned long timeout; 1119 int ret; 1120 1121 /* Read the counter register to get the command credits */ 1122 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1123 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1124 cmd_credits = 0; 1125 1126 while (time_before(jiffies, timeout) && !cmd_credits) { 1127 /* Hit the credit counter with a 4-byte access, the first byte 1128 * read will hit the counter and cause a decrement, while the 1129 * remaining 3 bytes has no effect. The rationale behind this 1130 * is to make all HIF accesses 4-byte aligned. 1131 */ 1132 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1133 if (ret) { 1134 ath10k_warn(ar, 1135 "unable to decrement the command credit count register: %d\n", 1136 ret); 1137 return ret; 1138 } 1139 1140 /* The counter is only 8 bits. 1141 * Ignore anything in the upper 3 bytes 1142 */ 1143 cmd_credits &= 0xFF; 1144 } 1145 1146 if (!cmd_credits) { 1147 ath10k_warn(ar, "bmi communication timeout\n"); 1148 return -ETIMEDOUT; 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1155 { 1156 unsigned long timeout; 1157 u32 rx_word; 1158 int ret; 1159 1160 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1161 rx_word = 0; 1162 1163 while ((time_before(jiffies, timeout)) && !rx_word) { 1164 ret = ath10k_sdio_read32(ar, 1165 MBOX_HOST_INT_STATUS_ADDRESS, 1166 &rx_word); 1167 if (ret) { 1168 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1169 return ret; 1170 } 1171 1172 /* all we really want is one bit */ 1173 rx_word &= 1; 1174 } 1175 1176 if (!rx_word) { 1177 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1178 return -EINVAL; 1179 } 1180 1181 return ret; 1182 } 1183 1184 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1185 void *req, u32 req_len, 1186 void *resp, u32 *resp_len) 1187 { 1188 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1189 u32 addr; 1190 int ret; 1191 1192 if (req) { 1193 ret = ath10k_sdio_bmi_credits(ar); 1194 if (ret) 1195 return ret; 1196 1197 addr = ar_sdio->mbox_info.htc_addr; 1198 1199 memcpy(ar_sdio->bmi_buf, req, req_len); 1200 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1201 if (ret) { 1202 ath10k_warn(ar, 1203 "unable to send the bmi data to the device: %d\n", 1204 ret); 1205 return ret; 1206 } 1207 } 1208 1209 if (!resp || !resp_len) 1210 /* No response expected */ 1211 return 0; 1212 1213 /* During normal bootup, small reads may be required. 1214 * Rather than issue an HIF Read and then wait as the Target 1215 * adds successive bytes to the FIFO, we wait here until 1216 * we know that response data is available. 1217 * 1218 * This allows us to cleanly timeout on an unexpected 1219 * Target failure rather than risk problems at the HIF level. 1220 * In particular, this avoids SDIO timeouts and possibly garbage 1221 * data on some host controllers. And on an interconnect 1222 * such as Compact Flash (as well as some SDIO masters) which 1223 * does not provide any indication on data timeout, it avoids 1224 * a potential hang or garbage response. 1225 * 1226 * Synchronization is more difficult for reads larger than the 1227 * size of the MBOX FIFO (128B), because the Target is unable 1228 * to push the 129th byte of data until AFTER the Host posts an 1229 * HIF Read and removes some FIFO data. So for large reads the 1230 * Host proceeds to post an HIF Read BEFORE all the data is 1231 * actually available to read. Fortunately, large BMI reads do 1232 * not occur in practice -- they're supported for debug/development. 1233 * 1234 * So Host/Target BMI synchronization is divided into these cases: 1235 * CASE 1: length < 4 1236 * Should not happen 1237 * 1238 * CASE 2: 4 <= length <= 128 1239 * Wait for first 4 bytes to be in FIFO 1240 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1241 * a BMI command credit, which indicates that the ENTIRE 1242 * response is available in the the FIFO 1243 * 1244 * CASE 3: length > 128 1245 * Wait for the first 4 bytes to be in FIFO 1246 * 1247 * For most uses, a small timeout should be sufficient and we will 1248 * usually see a response quickly; but there may be some unusual 1249 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1250 * For now, we use an unbounded busy loop while waiting for 1251 * BMI_EXECUTE. 1252 * 1253 * If BMI_EXECUTE ever needs to support longer-latency execution, 1254 * especially in production, this code needs to be enhanced to sleep 1255 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1256 * a function of Host processor speed. 1257 */ 1258 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1259 if (ret) 1260 return ret; 1261 1262 /* We always read from the start of the mbox address */ 1263 addr = ar_sdio->mbox_info.htc_addr; 1264 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1265 if (ret) { 1266 ath10k_warn(ar, 1267 "unable to read the bmi data from the device: %d\n", 1268 ret); 1269 return ret; 1270 } 1271 1272 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1273 1274 return 0; 1275 } 1276 1277 /* sdio async handling functions */ 1278 1279 static struct ath10k_sdio_bus_request 1280 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1281 { 1282 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1283 struct ath10k_sdio_bus_request *bus_req; 1284 1285 spin_lock_bh(&ar_sdio->lock); 1286 1287 if (list_empty(&ar_sdio->bus_req_freeq)) { 1288 bus_req = NULL; 1289 goto out; 1290 } 1291 1292 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1293 struct ath10k_sdio_bus_request, list); 1294 list_del(&bus_req->list); 1295 1296 out: 1297 spin_unlock_bh(&ar_sdio->lock); 1298 return bus_req; 1299 } 1300 1301 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1302 struct ath10k_sdio_bus_request *bus_req) 1303 { 1304 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1305 1306 memset(bus_req, 0, sizeof(*bus_req)); 1307 1308 spin_lock_bh(&ar_sdio->lock); 1309 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1310 spin_unlock_bh(&ar_sdio->lock); 1311 } 1312 1313 static void __ath10k_sdio_write_async(struct ath10k *ar, 1314 struct ath10k_sdio_bus_request *req) 1315 { 1316 struct ath10k_htc_ep *ep; 1317 struct sk_buff *skb; 1318 int ret; 1319 1320 skb = req->skb; 1321 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1322 if (ret) 1323 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1324 req->address, ret); 1325 1326 if (req->htc_msg) { 1327 ep = &ar->htc.endpoint[req->eid]; 1328 ath10k_htc_notify_tx_completion(ep, skb); 1329 } else if (req->comp) { 1330 complete(req->comp); 1331 } 1332 1333 ath10k_sdio_free_bus_req(ar, req); 1334 } 1335 1336 /* To improve throughput use workqueue to deliver packets to HTC layer, 1337 * this way SDIO bus is utilised much better. 1338 */ 1339 static void ath10k_rx_indication_async_work(struct work_struct *work) 1340 { 1341 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1342 async_work_rx); 1343 struct ath10k *ar = ar_sdio->ar; 1344 struct ath10k_htc_ep *ep; 1345 struct ath10k_skb_rxcb *cb; 1346 struct sk_buff *skb; 1347 1348 while (true) { 1349 skb = skb_dequeue(&ar_sdio->rx_head); 1350 if (!skb) 1351 break; 1352 cb = ATH10K_SKB_RXCB(skb); 1353 ep = &ar->htc.endpoint[cb->eid]; 1354 ep->ep_ops.ep_rx_complete(ar, skb); 1355 } 1356 1357 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) 1358 napi_schedule(&ar->napi); 1359 } 1360 1361 static void ath10k_sdio_write_async_work(struct work_struct *work) 1362 { 1363 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1364 wr_async_work); 1365 struct ath10k *ar = ar_sdio->ar; 1366 struct ath10k_sdio_bus_request *req, *tmp_req; 1367 1368 spin_lock_bh(&ar_sdio->wr_async_lock); 1369 1370 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1371 list_del(&req->list); 1372 spin_unlock_bh(&ar_sdio->wr_async_lock); 1373 __ath10k_sdio_write_async(ar, req); 1374 spin_lock_bh(&ar_sdio->wr_async_lock); 1375 } 1376 1377 spin_unlock_bh(&ar_sdio->wr_async_lock); 1378 } 1379 1380 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1381 struct sk_buff *skb, 1382 struct completion *comp, 1383 bool htc_msg, enum ath10k_htc_ep_id eid) 1384 { 1385 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1386 struct ath10k_sdio_bus_request *bus_req; 1387 1388 /* Allocate a bus request for the message and queue it on the 1389 * SDIO workqueue. 1390 */ 1391 bus_req = ath10k_sdio_alloc_busreq(ar); 1392 if (!bus_req) { 1393 ath10k_warn(ar, 1394 "unable to allocate bus request for async request\n"); 1395 return -ENOMEM; 1396 } 1397 1398 bus_req->skb = skb; 1399 bus_req->eid = eid; 1400 bus_req->address = addr; 1401 bus_req->htc_msg = htc_msg; 1402 bus_req->comp = comp; 1403 1404 spin_lock_bh(&ar_sdio->wr_async_lock); 1405 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1406 spin_unlock_bh(&ar_sdio->wr_async_lock); 1407 1408 return 0; 1409 } 1410 1411 /* IRQ handler */ 1412 1413 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1414 { 1415 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1416 struct ath10k *ar = ar_sdio->ar; 1417 unsigned long timeout; 1418 bool done = false; 1419 int ret; 1420 1421 /* Release the host during interrupts so we can pick it back up when 1422 * we process commands. 1423 */ 1424 sdio_release_host(ar_sdio->func); 1425 1426 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1427 do { 1428 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1429 if (ret) 1430 break; 1431 } while (time_before(jiffies, timeout) && !done); 1432 1433 ath10k_mac_tx_push_pending(ar); 1434 1435 sdio_claim_host(ar_sdio->func); 1436 1437 if (ret && ret != -ECANCELED) 1438 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1439 ret); 1440 } 1441 1442 /* sdio HIF functions */ 1443 1444 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1445 { 1446 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1447 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1448 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1449 int ret; 1450 1451 mutex_lock(&irq_data->mtx); 1452 1453 memset(regs, 0, sizeof(*regs)); 1454 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1455 ®s->int_status_en, sizeof(*regs)); 1456 if (ret) 1457 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1458 1459 mutex_unlock(&irq_data->mtx); 1460 1461 return ret; 1462 } 1463 1464 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1465 enum ath10k_firmware_mode fw_mode) 1466 { 1467 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1468 struct sdio_func *func = ar_sdio->func; 1469 int ret; 1470 1471 if (!ar_sdio->is_disabled) 1472 return 0; 1473 1474 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1475 1476 ret = ath10k_sdio_config(ar); 1477 if (ret) { 1478 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1479 return ret; 1480 } 1481 1482 sdio_claim_host(func); 1483 1484 ret = sdio_enable_func(func); 1485 if (ret) { 1486 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1487 sdio_release_host(func); 1488 return ret; 1489 } 1490 1491 sdio_release_host(func); 1492 1493 /* Wait for hardware to initialise. It should take a lot less than 1494 * 20 ms but let's be conservative here. 1495 */ 1496 msleep(20); 1497 1498 ar_sdio->is_disabled = false; 1499 1500 ret = ath10k_sdio_hif_disable_intrs(ar); 1501 if (ret) 1502 return ret; 1503 1504 return 0; 1505 } 1506 1507 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1508 { 1509 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1510 int ret; 1511 1512 if (ar_sdio->is_disabled) 1513 return; 1514 1515 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1516 1517 /* Disable the card */ 1518 sdio_claim_host(ar_sdio->func); 1519 1520 ret = sdio_disable_func(ar_sdio->func); 1521 if (ret) { 1522 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1523 sdio_release_host(ar_sdio->func); 1524 return; 1525 } 1526 1527 ret = mmc_hw_reset(ar_sdio->func->card->host); 1528 if (ret) 1529 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1530 1531 sdio_release_host(ar_sdio->func); 1532 1533 ar_sdio->is_disabled = true; 1534 } 1535 1536 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1537 struct ath10k_hif_sg_item *items, int n_items) 1538 { 1539 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1540 enum ath10k_htc_ep_id eid; 1541 struct sk_buff *skb; 1542 int ret, i; 1543 1544 eid = pipe_id_to_eid(pipe_id); 1545 1546 for (i = 0; i < n_items; i++) { 1547 size_t padded_len; 1548 u32 address; 1549 1550 skb = items[i].transfer_context; 1551 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1552 skb->len); 1553 skb_trim(skb, padded_len); 1554 1555 /* Write TX data to the end of the mbox address space */ 1556 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1557 skb->len; 1558 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1559 NULL, true, eid); 1560 if (ret) 1561 return ret; 1562 } 1563 1564 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1565 1566 return 0; 1567 } 1568 1569 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1570 { 1571 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1572 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1573 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1574 int ret; 1575 1576 mutex_lock(&irq_data->mtx); 1577 1578 /* Enable all but CPU interrupts */ 1579 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1580 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1581 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1582 1583 /* NOTE: There are some cases where HIF can do detection of 1584 * pending mbox messages which is disabled now. 1585 */ 1586 regs->int_status_en |= 1587 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1588 1589 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1590 * #0 is used for report assertion from target 1591 */ 1592 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1593 1594 /* Set up the Error Interrupt status Register */ 1595 regs->err_int_status_en = 1596 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1597 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1598 1599 /* Enable Counter interrupt status register to get fatal errors for 1600 * debugging. 1601 */ 1602 regs->cntr_int_status_en = 1603 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1604 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1605 1606 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1607 ®s->int_status_en, sizeof(*regs)); 1608 if (ret) 1609 ath10k_warn(ar, 1610 "failed to update mbox interrupt status register : %d\n", 1611 ret); 1612 1613 mutex_unlock(&irq_data->mtx); 1614 return ret; 1615 } 1616 1617 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1618 { 1619 u32 val; 1620 int ret; 1621 1622 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1623 if (ret) { 1624 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1625 ret); 1626 return ret; 1627 } 1628 1629 if (enable_sleep) 1630 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1631 else 1632 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1633 1634 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1635 if (ret) { 1636 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1637 ret); 1638 return ret; 1639 } 1640 1641 return 0; 1642 } 1643 1644 /* HIF diagnostics */ 1645 1646 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1647 size_t buf_len) 1648 { 1649 int ret; 1650 1651 /* set window register to start read cycle */ 1652 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1653 if (ret) { 1654 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1655 return ret; 1656 } 1657 1658 /* read the data */ 1659 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1660 if (ret) { 1661 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1662 ret); 1663 return ret; 1664 } 1665 1666 return 0; 1667 } 1668 1669 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1670 u32 *value) 1671 { 1672 __le32 *val; 1673 int ret; 1674 1675 val = kzalloc(sizeof(*val), GFP_KERNEL); 1676 if (!val) 1677 return -ENOMEM; 1678 1679 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1680 if (ret) 1681 goto out; 1682 1683 *value = __le32_to_cpu(*val); 1684 1685 out: 1686 kfree(val); 1687 1688 return ret; 1689 } 1690 1691 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1692 const void *data, int nbytes) 1693 { 1694 int ret; 1695 1696 /* set write data */ 1697 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1698 if (ret) { 1699 ath10k_warn(ar, 1700 "failed to write 0x%p to mbox window data address: %d\n", 1701 data, ret); 1702 return ret; 1703 } 1704 1705 /* set window register, which starts the write cycle */ 1706 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1707 if (ret) { 1708 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1709 return ret; 1710 } 1711 1712 return 0; 1713 } 1714 1715 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar) 1716 { 1717 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1718 u32 addr, val; 1719 int ret = 0; 1720 1721 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1722 1723 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1724 if (ret) { 1725 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1726 return ret; 1727 } 1728 1729 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1730 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1731 "sdio mailbox swap service enabled\n"); 1732 ar_sdio->swap_mbox = true; 1733 } else { 1734 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1735 "sdio mailbox swap service disabled\n"); 1736 ar_sdio->swap_mbox = false; 1737 } 1738 1739 return 0; 1740 } 1741 1742 /* HIF start/stop */ 1743 1744 static int ath10k_sdio_hif_start(struct ath10k *ar) 1745 { 1746 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1747 int ret; 1748 1749 napi_enable(&ar->napi); 1750 1751 /* Sleep 20 ms before HIF interrupts are disabled. 1752 * This will give target plenty of time to process the BMI done 1753 * request before interrupts are disabled. 1754 */ 1755 msleep(20); 1756 ret = ath10k_sdio_hif_disable_intrs(ar); 1757 if (ret) 1758 return ret; 1759 1760 /* eid 0 always uses the lower part of the extended mailbox address 1761 * space (ext_info[0].htc_ext_addr). 1762 */ 1763 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1764 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1765 1766 sdio_claim_host(ar_sdio->func); 1767 1768 /* Register the isr */ 1769 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1770 if (ret) { 1771 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1772 sdio_release_host(ar_sdio->func); 1773 return ret; 1774 } 1775 1776 sdio_release_host(ar_sdio->func); 1777 1778 ret = ath10k_sdio_hif_enable_intrs(ar); 1779 if (ret) 1780 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1781 1782 /* Enable sleep and then disable it again */ 1783 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1784 if (ret) 1785 return ret; 1786 1787 /* Wait for 20ms for the written value to take effect */ 1788 msleep(20); 1789 1790 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1791 if (ret) 1792 return ret; 1793 1794 return 0; 1795 } 1796 1797 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1798 1799 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1800 { 1801 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1802 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1803 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1804 struct sk_buff *skb; 1805 struct completion irqs_disabled_comp; 1806 int ret; 1807 1808 skb = dev_alloc_skb(sizeof(*regs)); 1809 if (!skb) 1810 return; 1811 1812 mutex_lock(&irq_data->mtx); 1813 1814 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1815 memcpy(skb->data, regs, sizeof(*regs)); 1816 skb_put(skb, sizeof(*regs)); 1817 1818 mutex_unlock(&irq_data->mtx); 1819 1820 init_completion(&irqs_disabled_comp); 1821 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1822 skb, &irqs_disabled_comp, false, 0); 1823 if (ret) 1824 goto out; 1825 1826 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1827 1828 /* Wait for the completion of the IRQ disable request. 1829 * If there is a timeout we will try to disable irq's anyway. 1830 */ 1831 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1832 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1833 if (!ret) 1834 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1835 1836 sdio_claim_host(ar_sdio->func); 1837 1838 ret = sdio_release_irq(ar_sdio->func); 1839 if (ret) 1840 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1841 1842 sdio_release_host(ar_sdio->func); 1843 1844 out: 1845 kfree_skb(skb); 1846 } 1847 1848 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1849 { 1850 struct ath10k_sdio_bus_request *req, *tmp_req; 1851 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1852 1853 ath10k_sdio_irq_disable(ar); 1854 1855 cancel_work_sync(&ar_sdio->wr_async_work); 1856 1857 spin_lock_bh(&ar_sdio->wr_async_lock); 1858 1859 /* Free all bus requests that have not been handled */ 1860 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1861 struct ath10k_htc_ep *ep; 1862 1863 list_del(&req->list); 1864 1865 if (req->htc_msg) { 1866 ep = &ar->htc.endpoint[req->eid]; 1867 ath10k_htc_notify_tx_completion(ep, req->skb); 1868 } else if (req->skb) { 1869 kfree_skb(req->skb); 1870 } 1871 ath10k_sdio_free_bus_req(ar, req); 1872 } 1873 1874 spin_unlock_bh(&ar_sdio->wr_async_lock); 1875 1876 napi_synchronize(&ar->napi); 1877 napi_disable(&ar->napi); 1878 } 1879 1880 #ifdef CONFIG_PM 1881 1882 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1883 { 1884 return 0; 1885 } 1886 1887 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1888 { 1889 switch (ar->state) { 1890 case ATH10K_STATE_OFF: 1891 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1892 "sdio resume configuring sdio\n"); 1893 1894 /* need to set sdio settings after power is cut from sdio */ 1895 ath10k_sdio_config(ar); 1896 break; 1897 1898 case ATH10K_STATE_ON: 1899 default: 1900 break; 1901 } 1902 1903 return 0; 1904 } 1905 #endif 1906 1907 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1908 u16 service_id, 1909 u8 *ul_pipe, u8 *dl_pipe) 1910 { 1911 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1912 struct ath10k_htc *htc = &ar->htc; 1913 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1914 enum ath10k_htc_ep_id eid; 1915 bool ep_found = false; 1916 int i; 1917 1918 /* For sdio, we are interested in the mapping between eid 1919 * and pipeid rather than service_id to pipe_id. 1920 * First we find out which eid has been allocated to the 1921 * service... 1922 */ 1923 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1924 if (htc->endpoint[i].service_id == service_id) { 1925 eid = htc->endpoint[i].eid; 1926 ep_found = true; 1927 break; 1928 } 1929 } 1930 1931 if (!ep_found) 1932 return -EINVAL; 1933 1934 /* Then we create the simplest mapping possible between pipeid 1935 * and eid 1936 */ 1937 *ul_pipe = *dl_pipe = (u8)eid; 1938 1939 /* Normally, HTT will use the upper part of the extended 1940 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1941 * the lower part (ext_info[0].htc_ext_addr). 1942 * If fw wants swapping of mailbox addresses, the opposite is true. 1943 */ 1944 if (ar_sdio->swap_mbox) { 1945 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1946 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1947 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1948 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1949 } else { 1950 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1951 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1952 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1953 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1954 } 1955 1956 switch (service_id) { 1957 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1958 /* HTC ctrl ep mbox address has already been setup in 1959 * ath10k_sdio_hif_start 1960 */ 1961 break; 1962 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1963 ar_sdio->mbox_addr[eid] = wmi_addr; 1964 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1965 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1966 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1967 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1968 break; 1969 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1970 ar_sdio->mbox_addr[eid] = htt_addr; 1971 ar_sdio->mbox_size[eid] = htt_mbox_size; 1972 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1973 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1974 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1975 break; 1976 default: 1977 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1978 service_id); 1979 return -EINVAL; 1980 } 1981 1982 return 0; 1983 } 1984 1985 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1986 u8 *ul_pipe, u8 *dl_pipe) 1987 { 1988 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1989 1990 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1991 * case) == 0 1992 */ 1993 *ul_pipe = 0; 1994 *dl_pipe = 0; 1995 } 1996 1997 /* This op is currently only used by htc_wait_target if the HTC ready 1998 * message times out. It is not applicable for SDIO since there is nothing 1999 * we can do if the HTC ready message does not arrive in time. 2000 * TODO: Make this op non mandatory by introducing a NULL check in the 2001 * hif op wrapper. 2002 */ 2003 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 2004 u8 pipe, int force) 2005 { 2006 } 2007 2008 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 2009 .tx_sg = ath10k_sdio_hif_tx_sg, 2010 .diag_read = ath10k_sdio_hif_diag_read, 2011 .diag_write = ath10k_sdio_hif_diag_write_mem, 2012 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 2013 .start = ath10k_sdio_hif_start, 2014 .stop = ath10k_sdio_hif_stop, 2015 .swap_mailbox = ath10k_sdio_hif_swap_mailbox, 2016 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 2017 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 2018 .send_complete_check = ath10k_sdio_hif_send_complete_check, 2019 .power_up = ath10k_sdio_hif_power_up, 2020 .power_down = ath10k_sdio_hif_power_down, 2021 #ifdef CONFIG_PM 2022 .suspend = ath10k_sdio_hif_suspend, 2023 .resume = ath10k_sdio_hif_resume, 2024 #endif 2025 }; 2026 2027 #ifdef CONFIG_PM_SLEEP 2028 2029 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 2030 * suspend. We instead follow cfg80211 suspend/resume handlers. 2031 */ 2032 static int ath10k_sdio_pm_suspend(struct device *device) 2033 { 2034 struct sdio_func *func = dev_to_sdio_func(device); 2035 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2036 struct ath10k *ar = ar_sdio->ar; 2037 mmc_pm_flag_t pm_flag, pm_caps; 2038 int ret; 2039 2040 if (!device_may_wakeup(ar->dev)) 2041 return 0; 2042 2043 pm_flag = MMC_PM_KEEP_POWER; 2044 2045 ret = sdio_set_host_pm_flags(func, pm_flag); 2046 if (ret) { 2047 pm_caps = sdio_get_host_pm_caps(func); 2048 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", 2049 pm_flag, pm_caps, ret); 2050 return ret; 2051 } 2052 2053 return ret; 2054 } 2055 2056 static int ath10k_sdio_pm_resume(struct device *device) 2057 { 2058 return 0; 2059 } 2060 2061 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 2062 ath10k_sdio_pm_resume); 2063 2064 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 2065 2066 #else 2067 2068 #define ATH10K_SDIO_PM_OPS NULL 2069 2070 #endif /* CONFIG_PM_SLEEP */ 2071 2072 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) 2073 { 2074 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2075 int done; 2076 2077 done = ath10k_htt_rx_hl_indication(ar, budget); 2078 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); 2079 2080 if (done < budget) 2081 napi_complete_done(ctx, done); 2082 2083 return done; 2084 } 2085 2086 static int ath10k_sdio_probe(struct sdio_func *func, 2087 const struct sdio_device_id *id) 2088 { 2089 struct ath10k_sdio *ar_sdio; 2090 struct ath10k *ar; 2091 enum ath10k_hw_rev hw_rev; 2092 u32 dev_id_base; 2093 struct ath10k_bus_params bus_params = {}; 2094 int ret, i; 2095 2096 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 2097 * If there will be newer chipsets that does not use the hw reg 2098 * setup as defined in qca6174_regs and qca6174_values, this 2099 * assumption is no longer valid and hw_rev must be setup differently 2100 * depending on chipset. 2101 */ 2102 hw_rev = ATH10K_HW_QCA6174; 2103 2104 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2105 hw_rev, &ath10k_sdio_hif_ops); 2106 if (!ar) { 2107 dev_err(&func->dev, "failed to allocate core\n"); 2108 return -ENOMEM; 2109 } 2110 2111 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll, 2112 ATH10K_NAPI_BUDGET); 2113 2114 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2115 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2116 func->num, func->vendor, func->device, 2117 func->max_blksize, func->cur_blksize); 2118 2119 ar_sdio = ath10k_sdio_priv(ar); 2120 2121 ar_sdio->irq_data.irq_proc_reg = 2122 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2123 GFP_KERNEL); 2124 if (!ar_sdio->irq_data.irq_proc_reg) { 2125 ret = -ENOMEM; 2126 goto err_core_destroy; 2127 } 2128 2129 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); 2130 if (!ar_sdio->vsg_buffer) { 2131 ret = -ENOMEM; 2132 goto err_core_destroy; 2133 } 2134 2135 ar_sdio->irq_data.irq_en_reg = 2136 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2137 GFP_KERNEL); 2138 if (!ar_sdio->irq_data.irq_en_reg) { 2139 ret = -ENOMEM; 2140 goto err_core_destroy; 2141 } 2142 2143 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); 2144 if (!ar_sdio->bmi_buf) { 2145 ret = -ENOMEM; 2146 goto err_core_destroy; 2147 } 2148 2149 ar_sdio->func = func; 2150 sdio_set_drvdata(func, ar_sdio); 2151 2152 ar_sdio->is_disabled = true; 2153 ar_sdio->ar = ar; 2154 2155 spin_lock_init(&ar_sdio->lock); 2156 spin_lock_init(&ar_sdio->wr_async_lock); 2157 mutex_init(&ar_sdio->irq_data.mtx); 2158 2159 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2160 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2161 2162 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2163 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2164 if (!ar_sdio->workqueue) { 2165 ret = -ENOMEM; 2166 goto err_core_destroy; 2167 } 2168 2169 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2170 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2171 2172 skb_queue_head_init(&ar_sdio->rx_head); 2173 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); 2174 2175 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2176 switch (dev_id_base) { 2177 case QCA_MANUFACTURER_ID_AR6005_BASE: 2178 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2179 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2180 break; 2181 default: 2182 ret = -ENODEV; 2183 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2184 dev_id_base, id->device); 2185 goto err_free_wq; 2186 } 2187 2188 ar->id.vendor = id->vendor; 2189 ar->id.device = id->device; 2190 2191 ath10k_sdio_set_mbox_info(ar); 2192 2193 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2194 /* TODO: don't know yet how to get chip_id with SDIO */ 2195 bus_params.chip_id = 0; 2196 bus_params.hl_msdu_ids = true; 2197 2198 ar->hw->max_mtu = ETH_DATA_LEN; 2199 2200 ret = ath10k_core_register(ar, &bus_params); 2201 if (ret) { 2202 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2203 goto err_free_wq; 2204 } 2205 2206 return 0; 2207 2208 err_free_wq: 2209 destroy_workqueue(ar_sdio->workqueue); 2210 err_core_destroy: 2211 ath10k_core_destroy(ar); 2212 2213 return ret; 2214 } 2215 2216 static void ath10k_sdio_remove(struct sdio_func *func) 2217 { 2218 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2219 struct ath10k *ar = ar_sdio->ar; 2220 2221 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2222 "sdio removed func %d vendor 0x%x device 0x%x\n", 2223 func->num, func->vendor, func->device); 2224 2225 ath10k_core_unregister(ar); 2226 2227 netif_napi_del(&ar->napi); 2228 2229 ath10k_core_destroy(ar); 2230 2231 flush_workqueue(ar_sdio->workqueue); 2232 destroy_workqueue(ar_sdio->workqueue); 2233 } 2234 2235 static const struct sdio_device_id ath10k_sdio_devices[] = { 2236 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2237 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2238 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2239 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2240 {}, 2241 }; 2242 2243 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2244 2245 static struct sdio_driver ath10k_sdio_driver = { 2246 .name = "ath10k_sdio", 2247 .id_table = ath10k_sdio_devices, 2248 .probe = ath10k_sdio_probe, 2249 .remove = ath10k_sdio_remove, 2250 .drv = { 2251 .owner = THIS_MODULE, 2252 .pm = ATH10K_SDIO_PM_OPS, 2253 }, 2254 }; 2255 2256 static int __init ath10k_sdio_init(void) 2257 { 2258 int ret; 2259 2260 ret = sdio_register_driver(&ath10k_sdio_driver); 2261 if (ret) 2262 pr_err("sdio driver registration failed: %d\n", ret); 2263 2264 return ret; 2265 } 2266 2267 static void __exit ath10k_sdio_exit(void) 2268 { 2269 sdio_unregister_driver(&ath10k_sdio_driver); 2270 } 2271 2272 module_init(ath10k_sdio_init); 2273 module_exit(ath10k_sdio_exit); 2274 2275 MODULE_AUTHOR("Qualcomm Atheros"); 2276 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2277 MODULE_LICENSE("Dual BSD/GPL"); 2278