1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 5 * 6 * Permission to use, copy, modify, and/or distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/host.h> 23 #include <linux/mmc/sdio_func.h> 24 #include <linux/mmc/sdio_ids.h> 25 #include <linux/mmc/sdio.h> 26 #include <linux/mmc/sd.h> 27 #include <linux/bitfield.h> 28 #include "core.h" 29 #include "bmi.h" 30 #include "debug.h" 31 #include "hif.h" 32 #include "htc.h" 33 #include "mac.h" 34 #include "targaddrs.h" 35 #include "trace.h" 36 #include "sdio.h" 37 38 /* inlined helper functions */ 39 40 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 41 size_t len) 42 { 43 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 44 } 45 46 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 47 { 48 return (enum ath10k_htc_ep_id)pipe_id; 49 } 50 51 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 52 { 53 dev_kfree_skb(pkt->skb); 54 pkt->skb = NULL; 55 pkt->alloc_len = 0; 56 pkt->act_len = 0; 57 pkt->trailer_only = false; 58 } 59 60 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 61 size_t act_len, size_t full_len, 62 bool part_of_bundle, 63 bool last_in_bundle) 64 { 65 pkt->skb = dev_alloc_skb(full_len); 66 if (!pkt->skb) 67 return -ENOMEM; 68 69 pkt->act_len = act_len; 70 pkt->alloc_len = full_len; 71 pkt->part_of_bundle = part_of_bundle; 72 pkt->last_in_bundle = last_in_bundle; 73 pkt->trailer_only = false; 74 75 return 0; 76 } 77 78 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 79 { 80 bool trailer_only = false; 81 struct ath10k_htc_hdr *htc_hdr = 82 (struct ath10k_htc_hdr *)pkt->skb->data; 83 u16 len = __le16_to_cpu(htc_hdr->len); 84 85 if (len == htc_hdr->trailer_len) 86 trailer_only = true; 87 88 return trailer_only; 89 } 90 91 /* sdio/mmc functions */ 92 93 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 94 unsigned int address, 95 unsigned char val) 96 { 97 *arg = FIELD_PREP(BIT(31), write) | 98 FIELD_PREP(BIT(27), raw) | 99 FIELD_PREP(BIT(26), 1) | 100 FIELD_PREP(GENMASK(25, 9), address) | 101 FIELD_PREP(BIT(8), 1) | 102 FIELD_PREP(GENMASK(7, 0), val); 103 } 104 105 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 106 unsigned int address, 107 unsigned char byte) 108 { 109 struct mmc_command io_cmd; 110 111 memset(&io_cmd, 0, sizeof(io_cmd)); 112 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 113 io_cmd.opcode = SD_IO_RW_DIRECT; 114 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 115 116 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 117 } 118 119 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 120 unsigned int address, 121 unsigned char *byte) 122 { 123 struct mmc_command io_cmd; 124 int ret; 125 126 memset(&io_cmd, 0, sizeof(io_cmd)); 127 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 128 io_cmd.opcode = SD_IO_RW_DIRECT; 129 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 130 131 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 132 if (!ret) 133 *byte = io_cmd.resp[0]; 134 135 return ret; 136 } 137 138 static int ath10k_sdio_config(struct ath10k *ar) 139 { 140 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 141 struct sdio_func *func = ar_sdio->func; 142 unsigned char byte, asyncintdelay = 2; 143 int ret; 144 145 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 146 147 sdio_claim_host(func); 148 149 byte = 0; 150 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 151 SDIO_CCCR_DRIVE_STRENGTH, 152 &byte); 153 154 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 155 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 156 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 157 158 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 159 SDIO_CCCR_DRIVE_STRENGTH, 160 byte); 161 162 byte = 0; 163 ret = ath10k_sdio_func0_cmd52_rd_byte( 164 func->card, 165 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 166 &byte); 167 168 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 169 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 170 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 171 172 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 173 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 174 byte); 175 if (ret) { 176 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 177 goto out; 178 } 179 180 byte = 0; 181 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 182 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 183 &byte); 184 185 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 186 187 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 188 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 189 byte); 190 if (ret) { 191 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 192 ret); 193 goto out; 194 } 195 196 byte = 0; 197 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 198 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 199 &byte); 200 201 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 202 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 203 204 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 205 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 206 byte); 207 208 /* give us some time to enable, in ms */ 209 func->enable_timeout = 100; 210 211 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 212 if (ret) { 213 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 214 ar_sdio->mbox_info.block_size, ret); 215 goto out; 216 } 217 218 out: 219 sdio_release_host(func); 220 return ret; 221 } 222 223 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 224 { 225 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 226 struct sdio_func *func = ar_sdio->func; 227 int ret; 228 229 sdio_claim_host(func); 230 231 sdio_writel(func, val, addr, &ret); 232 if (ret) { 233 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 234 val, addr, ret); 235 goto out; 236 } 237 238 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 239 addr, val); 240 241 out: 242 sdio_release_host(func); 243 244 return ret; 245 } 246 247 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 248 { 249 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 250 struct sdio_func *func = ar_sdio->func; 251 __le32 *buf; 252 int ret; 253 254 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 255 if (!buf) 256 return -ENOMEM; 257 258 *buf = cpu_to_le32(val); 259 260 sdio_claim_host(func); 261 262 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 263 if (ret) { 264 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 265 val, addr, ret); 266 goto out; 267 } 268 269 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 270 addr, val); 271 272 out: 273 sdio_release_host(func); 274 275 kfree(buf); 276 277 return ret; 278 } 279 280 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 281 { 282 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 283 struct sdio_func *func = ar_sdio->func; 284 int ret; 285 286 sdio_claim_host(func); 287 *val = sdio_readl(func, addr, &ret); 288 if (ret) { 289 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 290 addr, ret); 291 goto out; 292 } 293 294 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 295 addr, *val); 296 297 out: 298 sdio_release_host(func); 299 300 return ret; 301 } 302 303 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 304 { 305 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 306 struct sdio_func *func = ar_sdio->func; 307 int ret; 308 309 sdio_claim_host(func); 310 311 ret = sdio_memcpy_fromio(func, buf, addr, len); 312 if (ret) { 313 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 314 addr, ret); 315 goto out; 316 } 317 318 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 319 addr, buf, len); 320 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 321 322 out: 323 sdio_release_host(func); 324 325 return ret; 326 } 327 328 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 329 { 330 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 331 struct sdio_func *func = ar_sdio->func; 332 int ret; 333 334 sdio_claim_host(func); 335 336 /* For some reason toio() doesn't have const for the buffer, need 337 * an ugly hack to workaround that. 338 */ 339 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 340 if (ret) { 341 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 342 addr, ret); 343 goto out; 344 } 345 346 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 347 addr, buf, len); 348 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 349 350 out: 351 sdio_release_host(func); 352 353 return ret; 354 } 355 356 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 357 { 358 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 359 struct sdio_func *func = ar_sdio->func; 360 int ret; 361 362 sdio_claim_host(func); 363 364 len = round_down(len, ar_sdio->mbox_info.block_size); 365 366 ret = sdio_readsb(func, buf, addr, len); 367 if (ret) { 368 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 369 addr, ret); 370 goto out; 371 } 372 373 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 374 addr, buf, len); 375 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 376 377 out: 378 sdio_release_host(func); 379 380 return ret; 381 } 382 383 /* HIF mbox functions */ 384 385 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 386 struct ath10k_sdio_rx_data *pkt, 387 u32 *lookaheads, 388 int *n_lookaheads) 389 { 390 struct ath10k_htc *htc = &ar->htc; 391 struct sk_buff *skb = pkt->skb; 392 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 393 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 394 enum ath10k_htc_ep_id eid; 395 u16 payload_len; 396 u8 *trailer; 397 int ret; 398 399 payload_len = le16_to_cpu(htc_hdr->len); 400 401 if (trailer_present) { 402 trailer = skb->data + sizeof(*htc_hdr) + 403 payload_len - htc_hdr->trailer_len; 404 405 eid = pipe_id_to_eid(htc_hdr->eid); 406 407 ret = ath10k_htc_process_trailer(htc, 408 trailer, 409 htc_hdr->trailer_len, 410 eid, 411 lookaheads, 412 n_lookaheads); 413 if (ret) 414 return ret; 415 416 if (is_trailer_only_msg(pkt)) 417 pkt->trailer_only = true; 418 419 skb_trim(skb, skb->len - htc_hdr->trailer_len); 420 } 421 422 skb_pull(skb, sizeof(*htc_hdr)); 423 424 return 0; 425 } 426 427 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 428 u32 lookaheads[], 429 int *n_lookahead) 430 { 431 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 432 struct ath10k_htc *htc = &ar->htc; 433 struct ath10k_sdio_rx_data *pkt; 434 struct ath10k_htc_ep *ep; 435 enum ath10k_htc_ep_id id; 436 int ret, i, *n_lookahead_local; 437 u32 *lookaheads_local; 438 int lookahead_idx = 0; 439 440 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 441 lookaheads_local = lookaheads; 442 n_lookahead_local = n_lookahead; 443 444 id = ((struct ath10k_htc_hdr *) 445 &lookaheads[lookahead_idx++])->eid; 446 447 if (id >= ATH10K_HTC_EP_COUNT) { 448 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 449 id); 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 ep = &htc->endpoint[id]; 455 456 if (ep->service_id == 0) { 457 ath10k_warn(ar, "ep %d is not connected\n", id); 458 ret = -ENOMEM; 459 goto out; 460 } 461 462 pkt = &ar_sdio->rx_pkts[i]; 463 464 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 465 /* Only read lookahead's from RX trailers 466 * for the last packet in a bundle. 467 */ 468 lookahead_idx--; 469 lookaheads_local = NULL; 470 n_lookahead_local = NULL; 471 } 472 473 ret = ath10k_sdio_mbox_rx_process_packet(ar, 474 pkt, 475 lookaheads_local, 476 n_lookahead_local); 477 if (ret) 478 goto out; 479 480 if (!pkt->trailer_only) 481 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 482 else 483 kfree_skb(pkt->skb); 484 485 /* The RX complete handler now owns the skb...*/ 486 pkt->skb = NULL; 487 pkt->alloc_len = 0; 488 } 489 490 ret = 0; 491 492 out: 493 /* Free all packets that was not passed on to the RX completion 494 * handler... 495 */ 496 for (; i < ar_sdio->n_rx_pkts; i++) 497 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 498 499 return ret; 500 } 501 502 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 503 struct ath10k_sdio_rx_data *rx_pkts, 504 struct ath10k_htc_hdr *htc_hdr, 505 size_t full_len, size_t act_len, 506 size_t *bndl_cnt) 507 { 508 int ret, i; 509 510 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 511 512 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) { 513 ath10k_warn(ar, 514 "HTC bundle length %u exceeds maximum %u\n", 515 le16_to_cpu(htc_hdr->len), 516 HTC_HOST_MAX_MSG_PER_RX_BUNDLE); 517 return -ENOMEM; 518 } 519 520 /* Allocate bndl_cnt extra skb's for the bundle. 521 * The package containing the 522 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 523 * in bndl_cnt. The skb for that packet will be 524 * allocated separately. 525 */ 526 for (i = 0; i < *bndl_cnt; i++) { 527 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 528 act_len, 529 full_len, 530 true, 531 false); 532 if (ret) 533 return ret; 534 } 535 536 return 0; 537 } 538 539 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 540 u32 lookaheads[], int n_lookaheads) 541 { 542 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 543 struct ath10k_htc_hdr *htc_hdr; 544 size_t full_len, act_len; 545 bool last_in_bundle; 546 int ret, i; 547 548 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 549 ath10k_warn(ar, 550 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 551 n_lookaheads, 552 ATH10K_SDIO_MAX_RX_MSGS); 553 ret = -ENOMEM; 554 goto err; 555 } 556 557 for (i = 0; i < n_lookaheads; i++) { 558 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 559 last_in_bundle = false; 560 561 if (le16_to_cpu(htc_hdr->len) > 562 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 563 ath10k_warn(ar, 564 "payload length %d exceeds max htc length: %zu\n", 565 le16_to_cpu(htc_hdr->len), 566 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 567 ret = -ENOMEM; 568 goto err; 569 } 570 571 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 572 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 573 574 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 575 ath10k_warn(ar, 576 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 577 htc_hdr->eid, htc_hdr->flags, 578 le16_to_cpu(htc_hdr->len)); 579 ret = -EINVAL; 580 goto err; 581 } 582 583 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 584 /* HTC header indicates that every packet to follow 585 * has the same padded length so that it can be 586 * optimally fetched as a full bundle. 587 */ 588 size_t bndl_cnt; 589 590 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 591 &ar_sdio->rx_pkts[i], 592 htc_hdr, 593 full_len, 594 act_len, 595 &bndl_cnt); 596 597 n_lookaheads += bndl_cnt; 598 i += bndl_cnt; 599 /*Next buffer will be the last in the bundle */ 600 last_in_bundle = true; 601 } 602 603 /* Allocate skb for packet. If the packet had the 604 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 605 * packet skb's have been allocated in the previous step. 606 */ 607 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 608 act_len, 609 full_len, 610 last_in_bundle, 611 last_in_bundle); 612 } 613 614 ar_sdio->n_rx_pkts = i; 615 616 return 0; 617 618 err: 619 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 620 if (!ar_sdio->rx_pkts[i].alloc_len) 621 break; 622 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 623 } 624 625 return ret; 626 } 627 628 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 629 struct ath10k_sdio_rx_data *pkt) 630 { 631 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 632 struct sk_buff *skb = pkt->skb; 633 int ret; 634 635 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 636 skb->data, pkt->alloc_len); 637 pkt->status = ret; 638 if (!ret) 639 skb_put(skb, pkt->act_len); 640 641 return ret; 642 } 643 644 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 645 { 646 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 647 int ret, i; 648 649 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 650 ret = ath10k_sdio_mbox_rx_packet(ar, 651 &ar_sdio->rx_pkts[i]); 652 if (ret) 653 goto err; 654 } 655 656 return 0; 657 658 err: 659 /* Free all packets that was not successfully fetched. */ 660 for (; i < ar_sdio->n_rx_pkts; i++) 661 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 662 663 return ret; 664 } 665 666 /* This is the timeout for mailbox processing done in the sdio irq 667 * handler. The timeout is deliberately set quite high since SDIO dump logs 668 * over serial port can/will add a substantial overhead to the processing 669 * (if enabled). 670 */ 671 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 672 673 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 674 u32 msg_lookahead, bool *done) 675 { 676 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 677 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 678 int n_lookaheads = 1; 679 unsigned long timeout; 680 int ret; 681 682 *done = true; 683 684 /* Copy the lookahead obtained from the HTC register table into our 685 * temp array as a start value. 686 */ 687 lookaheads[0] = msg_lookahead; 688 689 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 690 do { 691 /* Try to allocate as many HTC RX packets indicated by 692 * n_lookaheads. 693 */ 694 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 695 n_lookaheads); 696 if (ret) 697 break; 698 699 if (ar_sdio->n_rx_pkts >= 2) 700 /* A recv bundle was detected, force IRQ status 701 * re-check again. 702 */ 703 *done = false; 704 705 ret = ath10k_sdio_mbox_rx_fetch(ar); 706 707 /* Process fetched packets. This will potentially update 708 * n_lookaheads depending on if the packets contain lookahead 709 * reports. 710 */ 711 n_lookaheads = 0; 712 ret = ath10k_sdio_mbox_rx_process_packets(ar, 713 lookaheads, 714 &n_lookaheads); 715 716 if (!n_lookaheads || ret) 717 break; 718 719 /* For SYNCH processing, if we get here, we are running 720 * through the loop again due to updated lookaheads. Set 721 * flag that we should re-check IRQ status registers again 722 * before leaving IRQ processing, this can net better 723 * performance in high throughput situations. 724 */ 725 *done = false; 726 } while (time_before(jiffies, timeout)); 727 728 if (ret && (ret != -ECANCELED)) 729 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 730 ret); 731 732 return ret; 733 } 734 735 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 736 { 737 u32 val; 738 int ret; 739 740 /* TODO: Add firmware crash handling */ 741 ath10k_warn(ar, "firmware crashed\n"); 742 743 /* read counter to clear the interrupt, the debug error interrupt is 744 * counter 0. 745 */ 746 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 747 if (ret) 748 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 749 750 return ret; 751 } 752 753 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 754 { 755 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 756 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 757 u8 counter_int_status; 758 int ret; 759 760 mutex_lock(&irq_data->mtx); 761 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 762 irq_data->irq_en_reg->cntr_int_status_en; 763 764 /* NOTE: other modules like GMBOX may use the counter interrupt for 765 * credit flow control on other counters, we only need to check for 766 * the debug assertion counter interrupt. 767 */ 768 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 769 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 770 else 771 ret = 0; 772 773 mutex_unlock(&irq_data->mtx); 774 775 return ret; 776 } 777 778 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 779 { 780 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 781 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 782 u8 error_int_status; 783 int ret; 784 785 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 786 787 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 788 if (!error_int_status) { 789 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 790 error_int_status); 791 return -EIO; 792 } 793 794 ath10k_dbg(ar, ATH10K_DBG_SDIO, 795 "sdio error_int_status 0x%x\n", error_int_status); 796 797 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 798 error_int_status)) 799 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 800 801 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 802 error_int_status)) 803 ath10k_warn(ar, "rx underflow interrupt error\n"); 804 805 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 806 error_int_status)) 807 ath10k_warn(ar, "tx overflow interrupt error\n"); 808 809 /* Clear the interrupt */ 810 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 811 812 /* set W1C value to clear the interrupt, this hits the register first */ 813 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 814 error_int_status); 815 if (ret) { 816 ath10k_warn(ar, "unable to write to error int status address: %d\n", 817 ret); 818 return ret; 819 } 820 821 return 0; 822 } 823 824 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 825 { 826 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 827 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 828 u8 cpu_int_status; 829 int ret; 830 831 mutex_lock(&irq_data->mtx); 832 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 833 irq_data->irq_en_reg->cpu_int_status_en; 834 if (!cpu_int_status) { 835 ath10k_warn(ar, "CPU interrupt status is zero\n"); 836 ret = -EIO; 837 goto out; 838 } 839 840 /* Clear the interrupt */ 841 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 842 843 /* Set up the register transfer buffer to hit the register 4 times, 844 * this is done to make the access 4-byte aligned to mitigate issues 845 * with host bus interconnects that restrict bus transfer lengths to 846 * be a multiple of 4-bytes. 847 * 848 * Set W1C value to clear the interrupt, this hits the register first. 849 */ 850 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 851 cpu_int_status); 852 if (ret) { 853 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 854 ret); 855 goto out; 856 } 857 858 out: 859 mutex_unlock(&irq_data->mtx); 860 return ret; 861 } 862 863 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 864 u8 *host_int_status, 865 u32 *lookahead) 866 { 867 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 868 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 869 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 870 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 871 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 872 int ret; 873 874 mutex_lock(&irq_data->mtx); 875 876 *lookahead = 0; 877 *host_int_status = 0; 878 879 /* int_status_en is supposed to be non zero, otherwise interrupts 880 * shouldn't be enabled. There is however a short time frame during 881 * initialization between the irq register and int_status_en init 882 * where this can happen. 883 * We silently ignore this condition. 884 */ 885 if (!irq_en_reg->int_status_en) { 886 ret = 0; 887 goto out; 888 } 889 890 /* Read the first sizeof(struct ath10k_irq_proc_registers) 891 * bytes of the HTC register table. This 892 * will yield us the value of different int status 893 * registers and the lookahead registers. 894 */ 895 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 896 irq_proc_reg, sizeof(*irq_proc_reg)); 897 if (ret) 898 goto out; 899 900 /* Update only those registers that are enabled */ 901 *host_int_status = irq_proc_reg->host_int_status & 902 irq_en_reg->int_status_en; 903 904 /* Look at mbox status */ 905 if (!(*host_int_status & htc_mbox)) { 906 *lookahead = 0; 907 ret = 0; 908 goto out; 909 } 910 911 /* Mask out pending mbox value, we use look ahead as 912 * the real flag for mbox processing. 913 */ 914 *host_int_status &= ~htc_mbox; 915 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 916 *lookahead = le32_to_cpu( 917 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 918 if (!*lookahead) 919 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 920 } 921 922 out: 923 mutex_unlock(&irq_data->mtx); 924 return ret; 925 } 926 927 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 928 bool *done) 929 { 930 u8 host_int_status; 931 u32 lookahead; 932 int ret; 933 934 /* NOTE: HIF implementation guarantees that the context of this 935 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 936 * sleep or call any API that can block or switch thread/task 937 * contexts. This is a fully schedulable context. 938 */ 939 940 ret = ath10k_sdio_mbox_read_int_status(ar, 941 &host_int_status, 942 &lookahead); 943 if (ret) { 944 *done = true; 945 goto out; 946 } 947 948 if (!host_int_status && !lookahead) { 949 ret = 0; 950 *done = true; 951 goto out; 952 } 953 954 if (lookahead) { 955 ath10k_dbg(ar, ATH10K_DBG_SDIO, 956 "sdio pending mailbox msg lookahead 0x%08x\n", 957 lookahead); 958 959 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 960 lookahead, 961 done); 962 if (ret) 963 goto out; 964 } 965 966 /* now, handle the rest of the interrupts */ 967 ath10k_dbg(ar, ATH10K_DBG_SDIO, 968 "sdio host_int_status 0x%x\n", host_int_status); 969 970 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 971 /* CPU Interrupt */ 972 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 973 if (ret) 974 goto out; 975 } 976 977 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 978 /* Error Interrupt */ 979 ret = ath10k_sdio_mbox_proc_err_intr(ar); 980 if (ret) 981 goto out; 982 } 983 984 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 985 /* Counter Interrupt */ 986 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 987 988 ret = 0; 989 990 out: 991 /* An optimization to bypass reading the IRQ status registers 992 * unecessarily which can re-wake the target, if upper layers 993 * determine that we are in a low-throughput mode, we can rely on 994 * taking another interrupt rather than re-checking the status 995 * registers which can re-wake the target. 996 * 997 * NOTE : for host interfaces that makes use of detecting pending 998 * mbox messages at hif can not use this optimization due to 999 * possible side effects, SPI requires the host to drain all 1000 * messages from the mailbox before exiting the ISR routine. 1001 */ 1002 1003 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1004 "sdio pending irqs done %d status %d", 1005 *done, ret); 1006 1007 return ret; 1008 } 1009 1010 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1011 { 1012 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1013 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1014 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1015 1016 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1017 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1018 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1019 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1020 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1021 1022 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1023 1024 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1025 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1026 switch (dev_id_base) { 1027 case QCA_MANUFACTURER_ID_AR6005_BASE: 1028 if (dev_id_chiprev < 4) 1029 mbox_info->ext_info[0].htc_ext_sz = 1030 ATH10K_HIF_MBOX0_EXT_WIDTH; 1031 else 1032 /* from QCA6174 2.0(0x504), the width has been extended 1033 * to 56K 1034 */ 1035 mbox_info->ext_info[0].htc_ext_sz = 1036 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1037 break; 1038 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1039 mbox_info->ext_info[0].htc_ext_sz = 1040 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1041 break; 1042 default: 1043 mbox_info->ext_info[0].htc_ext_sz = 1044 ATH10K_HIF_MBOX0_EXT_WIDTH; 1045 } 1046 1047 mbox_info->ext_info[1].htc_ext_addr = 1048 mbox_info->ext_info[0].htc_ext_addr + 1049 mbox_info->ext_info[0].htc_ext_sz + 1050 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1051 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1052 } 1053 1054 /* BMI functions */ 1055 1056 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1057 { 1058 u32 addr, cmd_credits; 1059 unsigned long timeout; 1060 int ret; 1061 1062 /* Read the counter register to get the command credits */ 1063 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1064 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1065 cmd_credits = 0; 1066 1067 while (time_before(jiffies, timeout) && !cmd_credits) { 1068 /* Hit the credit counter with a 4-byte access, the first byte 1069 * read will hit the counter and cause a decrement, while the 1070 * remaining 3 bytes has no effect. The rationale behind this 1071 * is to make all HIF accesses 4-byte aligned. 1072 */ 1073 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1074 if (ret) { 1075 ath10k_warn(ar, 1076 "unable to decrement the command credit count register: %d\n", 1077 ret); 1078 return ret; 1079 } 1080 1081 /* The counter is only 8 bits. 1082 * Ignore anything in the upper 3 bytes 1083 */ 1084 cmd_credits &= 0xFF; 1085 } 1086 1087 if (!cmd_credits) { 1088 ath10k_warn(ar, "bmi communication timeout\n"); 1089 return -ETIMEDOUT; 1090 } 1091 1092 return 0; 1093 } 1094 1095 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1096 { 1097 unsigned long timeout; 1098 u32 rx_word; 1099 int ret; 1100 1101 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1102 rx_word = 0; 1103 1104 while ((time_before(jiffies, timeout)) && !rx_word) { 1105 ret = ath10k_sdio_read32(ar, 1106 MBOX_HOST_INT_STATUS_ADDRESS, 1107 &rx_word); 1108 if (ret) { 1109 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1110 return ret; 1111 } 1112 1113 /* all we really want is one bit */ 1114 rx_word &= 1; 1115 } 1116 1117 if (!rx_word) { 1118 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1119 return -EINVAL; 1120 } 1121 1122 return ret; 1123 } 1124 1125 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1126 void *req, u32 req_len, 1127 void *resp, u32 *resp_len) 1128 { 1129 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1130 u32 addr; 1131 int ret; 1132 1133 if (req) { 1134 ret = ath10k_sdio_bmi_credits(ar); 1135 if (ret) 1136 return ret; 1137 1138 addr = ar_sdio->mbox_info.htc_addr; 1139 1140 memcpy(ar_sdio->bmi_buf, req, req_len); 1141 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1142 if (ret) { 1143 ath10k_warn(ar, 1144 "unable to send the bmi data to the device: %d\n", 1145 ret); 1146 return ret; 1147 } 1148 } 1149 1150 if (!resp || !resp_len) 1151 /* No response expected */ 1152 return 0; 1153 1154 /* During normal bootup, small reads may be required. 1155 * Rather than issue an HIF Read and then wait as the Target 1156 * adds successive bytes to the FIFO, we wait here until 1157 * we know that response data is available. 1158 * 1159 * This allows us to cleanly timeout on an unexpected 1160 * Target failure rather than risk problems at the HIF level. 1161 * In particular, this avoids SDIO timeouts and possibly garbage 1162 * data on some host controllers. And on an interconnect 1163 * such as Compact Flash (as well as some SDIO masters) which 1164 * does not provide any indication on data timeout, it avoids 1165 * a potential hang or garbage response. 1166 * 1167 * Synchronization is more difficult for reads larger than the 1168 * size of the MBOX FIFO (128B), because the Target is unable 1169 * to push the 129th byte of data until AFTER the Host posts an 1170 * HIF Read and removes some FIFO data. So for large reads the 1171 * Host proceeds to post an HIF Read BEFORE all the data is 1172 * actually available to read. Fortunately, large BMI reads do 1173 * not occur in practice -- they're supported for debug/development. 1174 * 1175 * So Host/Target BMI synchronization is divided into these cases: 1176 * CASE 1: length < 4 1177 * Should not happen 1178 * 1179 * CASE 2: 4 <= length <= 128 1180 * Wait for first 4 bytes to be in FIFO 1181 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1182 * a BMI command credit, which indicates that the ENTIRE 1183 * response is available in the the FIFO 1184 * 1185 * CASE 3: length > 128 1186 * Wait for the first 4 bytes to be in FIFO 1187 * 1188 * For most uses, a small timeout should be sufficient and we will 1189 * usually see a response quickly; but there may be some unusual 1190 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1191 * For now, we use an unbounded busy loop while waiting for 1192 * BMI_EXECUTE. 1193 * 1194 * If BMI_EXECUTE ever needs to support longer-latency execution, 1195 * especially in production, this code needs to be enhanced to sleep 1196 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1197 * a function of Host processor speed. 1198 */ 1199 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1200 if (ret) 1201 return ret; 1202 1203 /* We always read from the start of the mbox address */ 1204 addr = ar_sdio->mbox_info.htc_addr; 1205 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1206 if (ret) { 1207 ath10k_warn(ar, 1208 "unable to read the bmi data from the device: %d\n", 1209 ret); 1210 return ret; 1211 } 1212 1213 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1214 1215 return 0; 1216 } 1217 1218 /* sdio async handling functions */ 1219 1220 static struct ath10k_sdio_bus_request 1221 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1222 { 1223 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1224 struct ath10k_sdio_bus_request *bus_req; 1225 1226 spin_lock_bh(&ar_sdio->lock); 1227 1228 if (list_empty(&ar_sdio->bus_req_freeq)) { 1229 bus_req = NULL; 1230 goto out; 1231 } 1232 1233 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1234 struct ath10k_sdio_bus_request, list); 1235 list_del(&bus_req->list); 1236 1237 out: 1238 spin_unlock_bh(&ar_sdio->lock); 1239 return bus_req; 1240 } 1241 1242 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1243 struct ath10k_sdio_bus_request *bus_req) 1244 { 1245 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1246 1247 memset(bus_req, 0, sizeof(*bus_req)); 1248 1249 spin_lock_bh(&ar_sdio->lock); 1250 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1251 spin_unlock_bh(&ar_sdio->lock); 1252 } 1253 1254 static void __ath10k_sdio_write_async(struct ath10k *ar, 1255 struct ath10k_sdio_bus_request *req) 1256 { 1257 struct ath10k_htc_ep *ep; 1258 struct sk_buff *skb; 1259 int ret; 1260 1261 skb = req->skb; 1262 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1263 if (ret) 1264 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1265 req->address, ret); 1266 1267 if (req->htc_msg) { 1268 ep = &ar->htc.endpoint[req->eid]; 1269 ath10k_htc_notify_tx_completion(ep, skb); 1270 } else if (req->comp) { 1271 complete(req->comp); 1272 } 1273 1274 ath10k_sdio_free_bus_req(ar, req); 1275 } 1276 1277 static void ath10k_sdio_write_async_work(struct work_struct *work) 1278 { 1279 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1280 wr_async_work); 1281 struct ath10k *ar = ar_sdio->ar; 1282 struct ath10k_sdio_bus_request *req, *tmp_req; 1283 1284 spin_lock_bh(&ar_sdio->wr_async_lock); 1285 1286 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1287 list_del(&req->list); 1288 spin_unlock_bh(&ar_sdio->wr_async_lock); 1289 __ath10k_sdio_write_async(ar, req); 1290 spin_lock_bh(&ar_sdio->wr_async_lock); 1291 } 1292 1293 spin_unlock_bh(&ar_sdio->wr_async_lock); 1294 } 1295 1296 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1297 struct sk_buff *skb, 1298 struct completion *comp, 1299 bool htc_msg, enum ath10k_htc_ep_id eid) 1300 { 1301 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1302 struct ath10k_sdio_bus_request *bus_req; 1303 1304 /* Allocate a bus request for the message and queue it on the 1305 * SDIO workqueue. 1306 */ 1307 bus_req = ath10k_sdio_alloc_busreq(ar); 1308 if (!bus_req) { 1309 ath10k_warn(ar, 1310 "unable to allocate bus request for async request\n"); 1311 return -ENOMEM; 1312 } 1313 1314 bus_req->skb = skb; 1315 bus_req->eid = eid; 1316 bus_req->address = addr; 1317 bus_req->htc_msg = htc_msg; 1318 bus_req->comp = comp; 1319 1320 spin_lock_bh(&ar_sdio->wr_async_lock); 1321 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1322 spin_unlock_bh(&ar_sdio->wr_async_lock); 1323 1324 return 0; 1325 } 1326 1327 /* IRQ handler */ 1328 1329 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1330 { 1331 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1332 struct ath10k *ar = ar_sdio->ar; 1333 unsigned long timeout; 1334 bool done = false; 1335 int ret; 1336 1337 /* Release the host during interrupts so we can pick it back up when 1338 * we process commands. 1339 */ 1340 sdio_release_host(ar_sdio->func); 1341 1342 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1343 do { 1344 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1345 if (ret) 1346 break; 1347 } while (time_before(jiffies, timeout) && !done); 1348 1349 ath10k_mac_tx_push_pending(ar); 1350 1351 sdio_claim_host(ar_sdio->func); 1352 1353 if (ret && ret != -ECANCELED) 1354 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1355 ret); 1356 } 1357 1358 /* sdio HIF functions */ 1359 1360 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1361 { 1362 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1363 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1364 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1365 int ret; 1366 1367 mutex_lock(&irq_data->mtx); 1368 1369 memset(regs, 0, sizeof(*regs)); 1370 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1371 ®s->int_status_en, sizeof(*regs)); 1372 if (ret) 1373 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1374 1375 mutex_unlock(&irq_data->mtx); 1376 1377 return ret; 1378 } 1379 1380 static int ath10k_sdio_hif_power_up(struct ath10k *ar) 1381 { 1382 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1383 struct sdio_func *func = ar_sdio->func; 1384 int ret; 1385 1386 if (!ar_sdio->is_disabled) 1387 return 0; 1388 1389 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1390 1391 sdio_claim_host(func); 1392 1393 ret = sdio_enable_func(func); 1394 if (ret) { 1395 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1396 sdio_release_host(func); 1397 return ret; 1398 } 1399 1400 sdio_release_host(func); 1401 1402 /* Wait for hardware to initialise. It should take a lot less than 1403 * 20 ms but let's be conservative here. 1404 */ 1405 msleep(20); 1406 1407 ar_sdio->is_disabled = false; 1408 1409 ret = ath10k_sdio_hif_disable_intrs(ar); 1410 if (ret) 1411 return ret; 1412 1413 return 0; 1414 } 1415 1416 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1417 { 1418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1419 int ret; 1420 1421 if (ar_sdio->is_disabled) 1422 return; 1423 1424 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1425 1426 /* Disable the card */ 1427 sdio_claim_host(ar_sdio->func); 1428 ret = sdio_disable_func(ar_sdio->func); 1429 sdio_release_host(ar_sdio->func); 1430 1431 if (ret) 1432 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1433 1434 ar_sdio->is_disabled = true; 1435 } 1436 1437 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1438 struct ath10k_hif_sg_item *items, int n_items) 1439 { 1440 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1441 enum ath10k_htc_ep_id eid; 1442 struct sk_buff *skb; 1443 int ret, i; 1444 1445 eid = pipe_id_to_eid(pipe_id); 1446 1447 for (i = 0; i < n_items; i++) { 1448 size_t padded_len; 1449 u32 address; 1450 1451 skb = items[i].transfer_context; 1452 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1453 skb->len); 1454 skb_trim(skb, padded_len); 1455 1456 /* Write TX data to the end of the mbox address space */ 1457 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1458 skb->len; 1459 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1460 NULL, true, eid); 1461 if (ret) 1462 return ret; 1463 } 1464 1465 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1466 1467 return 0; 1468 } 1469 1470 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1471 { 1472 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1473 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1474 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1475 int ret; 1476 1477 mutex_lock(&irq_data->mtx); 1478 1479 /* Enable all but CPU interrupts */ 1480 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1481 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1482 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1483 1484 /* NOTE: There are some cases where HIF can do detection of 1485 * pending mbox messages which is disabled now. 1486 */ 1487 regs->int_status_en |= 1488 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1489 1490 /* Set up the CPU Interrupt status Register */ 1491 regs->cpu_int_status_en = 0; 1492 1493 /* Set up the Error Interrupt status Register */ 1494 regs->err_int_status_en = 1495 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1496 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1497 1498 /* Enable Counter interrupt status register to get fatal errors for 1499 * debugging. 1500 */ 1501 regs->cntr_int_status_en = 1502 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1503 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1504 1505 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1506 ®s->int_status_en, sizeof(*regs)); 1507 if (ret) 1508 ath10k_warn(ar, 1509 "failed to update mbox interrupt status register : %d\n", 1510 ret); 1511 1512 mutex_unlock(&irq_data->mtx); 1513 return ret; 1514 } 1515 1516 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1517 { 1518 u32 val; 1519 int ret; 1520 1521 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1522 if (ret) { 1523 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1524 ret); 1525 return ret; 1526 } 1527 1528 if (enable_sleep) 1529 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1530 else 1531 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1532 1533 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1534 if (ret) { 1535 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1536 ret); 1537 return ret; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* HIF diagnostics */ 1544 1545 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1546 size_t buf_len) 1547 { 1548 int ret; 1549 1550 /* set window register to start read cycle */ 1551 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1552 if (ret) { 1553 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1554 return ret; 1555 } 1556 1557 /* read the data */ 1558 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1559 if (ret) { 1560 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1561 ret); 1562 return ret; 1563 } 1564 1565 return 0; 1566 } 1567 1568 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1569 u32 *value) 1570 { 1571 __le32 *val; 1572 int ret; 1573 1574 val = kzalloc(sizeof(*val), GFP_KERNEL); 1575 if (!val) 1576 return -ENOMEM; 1577 1578 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1579 if (ret) 1580 goto out; 1581 1582 *value = __le32_to_cpu(*val); 1583 1584 out: 1585 kfree(val); 1586 1587 return ret; 1588 } 1589 1590 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1591 const void *data, int nbytes) 1592 { 1593 int ret; 1594 1595 /* set write data */ 1596 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1597 if (ret) { 1598 ath10k_warn(ar, 1599 "failed to write 0x%p to mbox window data address: %d\n", 1600 data, ret); 1601 return ret; 1602 } 1603 1604 /* set window register, which starts the write cycle */ 1605 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1606 if (ret) { 1607 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1608 return ret; 1609 } 1610 1611 return 0; 1612 } 1613 1614 /* HIF start/stop */ 1615 1616 static int ath10k_sdio_hif_start(struct ath10k *ar) 1617 { 1618 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1619 u32 addr, val; 1620 int ret; 1621 1622 /* Sleep 20 ms before HIF interrupts are disabled. 1623 * This will give target plenty of time to process the BMI done 1624 * request before interrupts are disabled. 1625 */ 1626 msleep(20); 1627 ret = ath10k_sdio_hif_disable_intrs(ar); 1628 if (ret) 1629 return ret; 1630 1631 /* eid 0 always uses the lower part of the extended mailbox address 1632 * space (ext_info[0].htc_ext_addr). 1633 */ 1634 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1635 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1636 1637 sdio_claim_host(ar_sdio->func); 1638 1639 /* Register the isr */ 1640 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1641 if (ret) { 1642 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1643 sdio_release_host(ar_sdio->func); 1644 return ret; 1645 } 1646 1647 sdio_release_host(ar_sdio->func); 1648 1649 ret = ath10k_sdio_hif_enable_intrs(ar); 1650 if (ret) 1651 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1652 1653 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1654 1655 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1656 if (ret) { 1657 ath10k_warn(ar, "unable to read hi_acs_flags address: %d\n", ret); 1658 return ret; 1659 } 1660 1661 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1662 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1663 "sdio mailbox swap service enabled\n"); 1664 ar_sdio->swap_mbox = true; 1665 } 1666 1667 /* Enable sleep and then disable it again */ 1668 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1669 if (ret) 1670 return ret; 1671 1672 /* Wait for 20ms for the written value to take effect */ 1673 msleep(20); 1674 1675 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1676 if (ret) 1677 return ret; 1678 1679 return 0; 1680 } 1681 1682 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1683 1684 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1685 { 1686 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1687 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1688 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1689 struct sk_buff *skb; 1690 struct completion irqs_disabled_comp; 1691 int ret; 1692 1693 skb = dev_alloc_skb(sizeof(*regs)); 1694 if (!skb) 1695 return; 1696 1697 mutex_lock(&irq_data->mtx); 1698 1699 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1700 memcpy(skb->data, regs, sizeof(*regs)); 1701 skb_put(skb, sizeof(*regs)); 1702 1703 mutex_unlock(&irq_data->mtx); 1704 1705 init_completion(&irqs_disabled_comp); 1706 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1707 skb, &irqs_disabled_comp, false, 0); 1708 if (ret) 1709 goto out; 1710 1711 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1712 1713 /* Wait for the completion of the IRQ disable request. 1714 * If there is a timeout we will try to disable irq's anyway. 1715 */ 1716 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1717 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1718 if (!ret) 1719 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1720 1721 sdio_claim_host(ar_sdio->func); 1722 1723 ret = sdio_release_irq(ar_sdio->func); 1724 if (ret) 1725 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1726 1727 sdio_release_host(ar_sdio->func); 1728 1729 out: 1730 kfree_skb(skb); 1731 } 1732 1733 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1734 { 1735 struct ath10k_sdio_bus_request *req, *tmp_req; 1736 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1737 1738 ath10k_sdio_irq_disable(ar); 1739 1740 cancel_work_sync(&ar_sdio->wr_async_work); 1741 1742 spin_lock_bh(&ar_sdio->wr_async_lock); 1743 1744 /* Free all bus requests that have not been handled */ 1745 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1746 struct ath10k_htc_ep *ep; 1747 1748 list_del(&req->list); 1749 1750 if (req->htc_msg) { 1751 ep = &ar->htc.endpoint[req->eid]; 1752 ath10k_htc_notify_tx_completion(ep, req->skb); 1753 } else if (req->skb) { 1754 kfree_skb(req->skb); 1755 } 1756 ath10k_sdio_free_bus_req(ar, req); 1757 } 1758 1759 spin_unlock_bh(&ar_sdio->wr_async_lock); 1760 } 1761 1762 #ifdef CONFIG_PM 1763 1764 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1765 { 1766 return -EOPNOTSUPP; 1767 } 1768 1769 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1770 { 1771 switch (ar->state) { 1772 case ATH10K_STATE_OFF: 1773 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1774 "sdio resume configuring sdio\n"); 1775 1776 /* need to set sdio settings after power is cut from sdio */ 1777 ath10k_sdio_config(ar); 1778 break; 1779 1780 case ATH10K_STATE_ON: 1781 default: 1782 break; 1783 } 1784 1785 return 0; 1786 } 1787 #endif 1788 1789 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1790 u16 service_id, 1791 u8 *ul_pipe, u8 *dl_pipe) 1792 { 1793 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1794 struct ath10k_htc *htc = &ar->htc; 1795 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1796 enum ath10k_htc_ep_id eid; 1797 bool ep_found = false; 1798 int i; 1799 1800 /* For sdio, we are interested in the mapping between eid 1801 * and pipeid rather than service_id to pipe_id. 1802 * First we find out which eid has been allocated to the 1803 * service... 1804 */ 1805 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1806 if (htc->endpoint[i].service_id == service_id) { 1807 eid = htc->endpoint[i].eid; 1808 ep_found = true; 1809 break; 1810 } 1811 } 1812 1813 if (!ep_found) 1814 return -EINVAL; 1815 1816 /* Then we create the simplest mapping possible between pipeid 1817 * and eid 1818 */ 1819 *ul_pipe = *dl_pipe = (u8)eid; 1820 1821 /* Normally, HTT will use the upper part of the extended 1822 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1823 * the lower part (ext_info[0].htc_ext_addr). 1824 * If fw wants swapping of mailbox addresses, the opposite is true. 1825 */ 1826 if (ar_sdio->swap_mbox) { 1827 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1828 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1829 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1830 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1831 } else { 1832 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1833 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1834 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1835 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1836 } 1837 1838 switch (service_id) { 1839 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1840 /* HTC ctrl ep mbox address has already been setup in 1841 * ath10k_sdio_hif_start 1842 */ 1843 break; 1844 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1845 ar_sdio->mbox_addr[eid] = wmi_addr; 1846 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1847 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1848 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1849 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1850 break; 1851 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1852 ar_sdio->mbox_addr[eid] = htt_addr; 1853 ar_sdio->mbox_size[eid] = htt_mbox_size; 1854 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1855 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1856 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1857 break; 1858 default: 1859 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1860 service_id); 1861 return -EINVAL; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1868 u8 *ul_pipe, u8 *dl_pipe) 1869 { 1870 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1871 1872 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1873 * case) == 0 1874 */ 1875 *ul_pipe = 0; 1876 *dl_pipe = 0; 1877 } 1878 1879 /* This op is currently only used by htc_wait_target if the HTC ready 1880 * message times out. It is not applicable for SDIO since there is nothing 1881 * we can do if the HTC ready message does not arrive in time. 1882 * TODO: Make this op non mandatory by introducing a NULL check in the 1883 * hif op wrapper. 1884 */ 1885 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1886 u8 pipe, int force) 1887 { 1888 } 1889 1890 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1891 .tx_sg = ath10k_sdio_hif_tx_sg, 1892 .diag_read = ath10k_sdio_hif_diag_read, 1893 .diag_write = ath10k_sdio_hif_diag_write_mem, 1894 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1895 .start = ath10k_sdio_hif_start, 1896 .stop = ath10k_sdio_hif_stop, 1897 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1898 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1899 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1900 .power_up = ath10k_sdio_hif_power_up, 1901 .power_down = ath10k_sdio_hif_power_down, 1902 #ifdef CONFIG_PM 1903 .suspend = ath10k_sdio_hif_suspend, 1904 .resume = ath10k_sdio_hif_resume, 1905 #endif 1906 }; 1907 1908 #ifdef CONFIG_PM_SLEEP 1909 1910 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1911 * suspend. We instead follow cfg80211 suspend/resume handlers. 1912 */ 1913 static int ath10k_sdio_pm_suspend(struct device *device) 1914 { 1915 return 0; 1916 } 1917 1918 static int ath10k_sdio_pm_resume(struct device *device) 1919 { 1920 return 0; 1921 } 1922 1923 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1924 ath10k_sdio_pm_resume); 1925 1926 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1927 1928 #else 1929 1930 #define ATH10K_SDIO_PM_OPS NULL 1931 1932 #endif /* CONFIG_PM_SLEEP */ 1933 1934 static int ath10k_sdio_probe(struct sdio_func *func, 1935 const struct sdio_device_id *id) 1936 { 1937 struct ath10k_sdio *ar_sdio; 1938 struct ath10k *ar; 1939 enum ath10k_hw_rev hw_rev; 1940 u32 chip_id, dev_id_base; 1941 int ret, i; 1942 1943 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1944 * If there will be newer chipsets that does not use the hw reg 1945 * setup as defined in qca6174_regs and qca6174_values, this 1946 * assumption is no longer valid and hw_rev must be setup differently 1947 * depending on chipset. 1948 */ 1949 hw_rev = ATH10K_HW_QCA6174; 1950 1951 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 1952 hw_rev, &ath10k_sdio_hif_ops); 1953 if (!ar) { 1954 dev_err(&func->dev, "failed to allocate core\n"); 1955 return -ENOMEM; 1956 } 1957 1958 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1959 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1960 func->num, func->vendor, func->device, 1961 func->max_blksize, func->cur_blksize); 1962 1963 ar_sdio = ath10k_sdio_priv(ar); 1964 1965 ar_sdio->irq_data.irq_proc_reg = 1966 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 1967 GFP_KERNEL); 1968 if (!ar_sdio->irq_data.irq_proc_reg) { 1969 ret = -ENOMEM; 1970 goto err_core_destroy; 1971 } 1972 1973 ar_sdio->irq_data.irq_en_reg = 1974 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 1975 GFP_KERNEL); 1976 if (!ar_sdio->irq_data.irq_en_reg) { 1977 ret = -ENOMEM; 1978 goto err_core_destroy; 1979 } 1980 1981 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 1982 if (!ar_sdio->bmi_buf) { 1983 ret = -ENOMEM; 1984 goto err_core_destroy; 1985 } 1986 1987 ar_sdio->func = func; 1988 sdio_set_drvdata(func, ar_sdio); 1989 1990 ar_sdio->is_disabled = true; 1991 ar_sdio->ar = ar; 1992 1993 spin_lock_init(&ar_sdio->lock); 1994 spin_lock_init(&ar_sdio->wr_async_lock); 1995 mutex_init(&ar_sdio->irq_data.mtx); 1996 1997 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 1998 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 1999 2000 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2001 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2002 if (!ar_sdio->workqueue) { 2003 ret = -ENOMEM; 2004 goto err_core_destroy; 2005 } 2006 2007 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2008 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2009 2010 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2011 switch (dev_id_base) { 2012 case QCA_MANUFACTURER_ID_AR6005_BASE: 2013 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2014 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2015 break; 2016 default: 2017 ret = -ENODEV; 2018 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2019 dev_id_base, id->device); 2020 goto err_free_wq; 2021 } 2022 2023 ar->id.vendor = id->vendor; 2024 ar->id.device = id->device; 2025 2026 ath10k_sdio_set_mbox_info(ar); 2027 2028 ret = ath10k_sdio_config(ar); 2029 if (ret) { 2030 ath10k_err(ar, "failed to config sdio: %d\n", ret); 2031 goto err_free_wq; 2032 } 2033 2034 /* TODO: don't know yet how to get chip_id with SDIO */ 2035 chip_id = 0; 2036 ret = ath10k_core_register(ar, chip_id); 2037 if (ret) { 2038 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2039 goto err_free_wq; 2040 } 2041 2042 /* TODO: remove this once SDIO support is fully implemented */ 2043 ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n"); 2044 2045 return 0; 2046 2047 err_free_wq: 2048 destroy_workqueue(ar_sdio->workqueue); 2049 err_core_destroy: 2050 ath10k_core_destroy(ar); 2051 2052 return ret; 2053 } 2054 2055 static void ath10k_sdio_remove(struct sdio_func *func) 2056 { 2057 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2058 struct ath10k *ar = ar_sdio->ar; 2059 2060 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2061 "sdio removed func %d vendor 0x%x device 0x%x\n", 2062 func->num, func->vendor, func->device); 2063 2064 (void)ath10k_sdio_hif_disable_intrs(ar); 2065 cancel_work_sync(&ar_sdio->wr_async_work); 2066 ath10k_core_unregister(ar); 2067 ath10k_core_destroy(ar); 2068 } 2069 2070 static const struct sdio_device_id ath10k_sdio_devices[] = { 2071 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2072 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2073 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2074 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2075 {}, 2076 }; 2077 2078 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2079 2080 static struct sdio_driver ath10k_sdio_driver = { 2081 .name = "ath10k_sdio", 2082 .id_table = ath10k_sdio_devices, 2083 .probe = ath10k_sdio_probe, 2084 .remove = ath10k_sdio_remove, 2085 .drv.pm = ATH10K_SDIO_PM_OPS, 2086 }; 2087 2088 static int __init ath10k_sdio_init(void) 2089 { 2090 int ret; 2091 2092 ret = sdio_register_driver(&ath10k_sdio_driver); 2093 if (ret) 2094 pr_err("sdio driver registration failed: %d\n", ret); 2095 2096 return ret; 2097 } 2098 2099 static void __exit ath10k_sdio_exit(void) 2100 { 2101 sdio_unregister_driver(&ath10k_sdio_driver); 2102 } 2103 2104 module_init(ath10k_sdio_init); 2105 module_exit(ath10k_sdio_exit); 2106 2107 MODULE_AUTHOR("Qualcomm Atheros"); 2108 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2109 MODULE_LICENSE("Dual BSD/GPL"); 2110