1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 #include "coredump.h" 27 28 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar); 29 30 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) 31 32 /* inlined helper functions */ 33 34 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 35 size_t len) 36 { 37 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 38 } 39 40 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 41 { 42 return (enum ath10k_htc_ep_id)pipe_id; 43 } 44 45 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 46 { 47 dev_kfree_skb(pkt->skb); 48 pkt->skb = NULL; 49 pkt->alloc_len = 0; 50 pkt->act_len = 0; 51 pkt->trailer_only = false; 52 } 53 54 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 55 size_t act_len, size_t full_len, 56 bool part_of_bundle, 57 bool last_in_bundle) 58 { 59 pkt->skb = dev_alloc_skb(full_len); 60 if (!pkt->skb) 61 return -ENOMEM; 62 63 pkt->act_len = act_len; 64 pkt->alloc_len = full_len; 65 pkt->part_of_bundle = part_of_bundle; 66 pkt->last_in_bundle = last_in_bundle; 67 pkt->trailer_only = false; 68 69 return 0; 70 } 71 72 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 73 { 74 bool trailer_only = false; 75 struct ath10k_htc_hdr *htc_hdr = 76 (struct ath10k_htc_hdr *)pkt->skb->data; 77 u16 len = __le16_to_cpu(htc_hdr->len); 78 79 if (len == htc_hdr->trailer_len) 80 trailer_only = true; 81 82 return trailer_only; 83 } 84 85 /* sdio/mmc functions */ 86 87 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 88 unsigned int address, 89 unsigned char val) 90 { 91 *arg = FIELD_PREP(BIT(31), write) | 92 FIELD_PREP(BIT(27), raw) | 93 FIELD_PREP(BIT(26), 1) | 94 FIELD_PREP(GENMASK(25, 9), address) | 95 FIELD_PREP(BIT(8), 1) | 96 FIELD_PREP(GENMASK(7, 0), val); 97 } 98 99 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 100 unsigned int address, 101 unsigned char byte) 102 { 103 struct mmc_command io_cmd; 104 105 memset(&io_cmd, 0, sizeof(io_cmd)); 106 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 107 io_cmd.opcode = SD_IO_RW_DIRECT; 108 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 109 110 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 111 } 112 113 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 114 unsigned int address, 115 unsigned char *byte) 116 { 117 struct mmc_command io_cmd; 118 int ret; 119 120 memset(&io_cmd, 0, sizeof(io_cmd)); 121 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 122 io_cmd.opcode = SD_IO_RW_DIRECT; 123 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 124 125 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 126 if (!ret) 127 *byte = io_cmd.resp[0]; 128 129 return ret; 130 } 131 132 static int ath10k_sdio_config(struct ath10k *ar) 133 { 134 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 135 struct sdio_func *func = ar_sdio->func; 136 unsigned char byte, asyncintdelay = 2; 137 int ret; 138 139 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 140 141 sdio_claim_host(func); 142 143 byte = 0; 144 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 145 SDIO_CCCR_DRIVE_STRENGTH, 146 &byte); 147 148 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 149 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 150 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 151 152 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 153 SDIO_CCCR_DRIVE_STRENGTH, 154 byte); 155 156 byte = 0; 157 ret = ath10k_sdio_func0_cmd52_rd_byte( 158 func->card, 159 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 160 &byte); 161 162 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 163 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 165 166 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 167 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 168 byte); 169 if (ret) { 170 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 171 goto out; 172 } 173 174 byte = 0; 175 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 176 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 177 &byte); 178 179 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 180 181 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 182 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 183 byte); 184 if (ret) { 185 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 186 ret); 187 goto out; 188 } 189 190 byte = 0; 191 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 192 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 193 &byte); 194 195 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 196 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 197 198 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 199 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 200 byte); 201 202 /* give us some time to enable, in ms */ 203 func->enable_timeout = 100; 204 205 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 206 if (ret) { 207 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 208 ar_sdio->mbox_info.block_size, ret); 209 goto out; 210 } 211 212 out: 213 sdio_release_host(func); 214 return ret; 215 } 216 217 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 218 { 219 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 220 struct sdio_func *func = ar_sdio->func; 221 int ret; 222 223 sdio_claim_host(func); 224 225 sdio_writel(func, val, addr, &ret); 226 if (ret) { 227 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 228 val, addr, ret); 229 goto out; 230 } 231 232 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 233 addr, val); 234 235 out: 236 sdio_release_host(func); 237 238 return ret; 239 } 240 241 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 242 { 243 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 244 struct sdio_func *func = ar_sdio->func; 245 __le32 *buf; 246 int ret; 247 248 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 249 if (!buf) 250 return -ENOMEM; 251 252 *buf = cpu_to_le32(val); 253 254 sdio_claim_host(func); 255 256 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 257 if (ret) { 258 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 259 val, addr, ret); 260 goto out; 261 } 262 263 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 264 addr, val); 265 266 out: 267 sdio_release_host(func); 268 269 kfree(buf); 270 271 return ret; 272 } 273 274 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 275 { 276 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 277 struct sdio_func *func = ar_sdio->func; 278 int ret; 279 280 sdio_claim_host(func); 281 *val = sdio_readl(func, addr, &ret); 282 if (ret) { 283 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 284 addr, ret); 285 goto out; 286 } 287 288 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 289 addr, *val); 290 291 out: 292 sdio_release_host(func); 293 294 return ret; 295 } 296 297 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 298 { 299 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 300 struct sdio_func *func = ar_sdio->func; 301 int ret; 302 303 sdio_claim_host(func); 304 305 ret = sdio_memcpy_fromio(func, buf, addr, len); 306 if (ret) { 307 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 308 addr, ret); 309 goto out; 310 } 311 312 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 313 addr, buf, len); 314 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 315 316 out: 317 sdio_release_host(func); 318 319 return ret; 320 } 321 322 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 323 { 324 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 325 struct sdio_func *func = ar_sdio->func; 326 int ret; 327 328 sdio_claim_host(func); 329 330 /* For some reason toio() doesn't have const for the buffer, need 331 * an ugly hack to workaround that. 332 */ 333 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 334 if (ret) { 335 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 336 addr, ret); 337 goto out; 338 } 339 340 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 341 addr, buf, len); 342 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 343 344 out: 345 sdio_release_host(func); 346 347 return ret; 348 } 349 350 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 351 { 352 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 353 struct sdio_func *func = ar_sdio->func; 354 int ret; 355 356 sdio_claim_host(func); 357 358 len = round_down(len, ar_sdio->mbox_info.block_size); 359 360 ret = sdio_readsb(func, buf, addr, len); 361 if (ret) { 362 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 363 addr, ret); 364 goto out; 365 } 366 367 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 368 addr, buf, len); 369 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 370 371 out: 372 sdio_release_host(func); 373 374 return ret; 375 } 376 377 /* HIF mbox functions */ 378 379 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 380 struct ath10k_sdio_rx_data *pkt, 381 u32 *lookaheads, 382 int *n_lookaheads) 383 { 384 struct ath10k_htc *htc = &ar->htc; 385 struct sk_buff *skb = pkt->skb; 386 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 387 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 388 enum ath10k_htc_ep_id eid; 389 u8 *trailer; 390 int ret; 391 392 if (trailer_present) { 393 trailer = skb->data + skb->len - htc_hdr->trailer_len; 394 395 eid = pipe_id_to_eid(htc_hdr->eid); 396 397 ret = ath10k_htc_process_trailer(htc, 398 trailer, 399 htc_hdr->trailer_len, 400 eid, 401 lookaheads, 402 n_lookaheads); 403 if (ret) 404 return ret; 405 406 if (is_trailer_only_msg(pkt)) 407 pkt->trailer_only = true; 408 409 skb_trim(skb, skb->len - htc_hdr->trailer_len); 410 } 411 412 skb_pull(skb, sizeof(*htc_hdr)); 413 414 return 0; 415 } 416 417 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 418 u32 lookaheads[], 419 int *n_lookahead) 420 { 421 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 422 struct ath10k_htc *htc = &ar->htc; 423 struct ath10k_sdio_rx_data *pkt; 424 struct ath10k_htc_ep *ep; 425 struct ath10k_skb_rxcb *cb; 426 enum ath10k_htc_ep_id id; 427 int ret, i, *n_lookahead_local; 428 u32 *lookaheads_local; 429 int lookahead_idx = 0; 430 431 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 432 lookaheads_local = lookaheads; 433 n_lookahead_local = n_lookahead; 434 435 id = ((struct ath10k_htc_hdr *) 436 &lookaheads[lookahead_idx++])->eid; 437 438 if (id >= ATH10K_HTC_EP_COUNT) { 439 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 440 id); 441 ret = -ENOMEM; 442 goto out; 443 } 444 445 ep = &htc->endpoint[id]; 446 447 if (ep->service_id == 0) { 448 ath10k_warn(ar, "ep %d is not connected\n", id); 449 ret = -ENOMEM; 450 goto out; 451 } 452 453 pkt = &ar_sdio->rx_pkts[i]; 454 455 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 456 /* Only read lookahead's from RX trailers 457 * for the last packet in a bundle. 458 */ 459 lookahead_idx--; 460 lookaheads_local = NULL; 461 n_lookahead_local = NULL; 462 } 463 464 ret = ath10k_sdio_mbox_rx_process_packet(ar, 465 pkt, 466 lookaheads_local, 467 n_lookahead_local); 468 if (ret) 469 goto out; 470 471 if (!pkt->trailer_only) { 472 cb = ATH10K_SKB_RXCB(pkt->skb); 473 cb->eid = id; 474 475 skb_queue_tail(&ar_sdio->rx_head, pkt->skb); 476 queue_work(ar->workqueue_aux, 477 &ar_sdio->async_work_rx); 478 } else { 479 kfree_skb(pkt->skb); 480 } 481 482 /* The RX complete handler now owns the skb...*/ 483 pkt->skb = NULL; 484 pkt->alloc_len = 0; 485 } 486 487 ret = 0; 488 489 out: 490 /* Free all packets that was not passed on to the RX completion 491 * handler... 492 */ 493 for (; i < ar_sdio->n_rx_pkts; i++) 494 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 495 496 return ret; 497 } 498 499 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, 500 struct ath10k_sdio_rx_data *rx_pkts, 501 struct ath10k_htc_hdr *htc_hdr, 502 size_t full_len, size_t act_len, 503 size_t *bndl_cnt) 504 { 505 int ret, i; 506 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; 507 508 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); 509 510 if (*bndl_cnt > max_msgs) { 511 ath10k_warn(ar, 512 "HTC bundle length %u exceeds maximum %u\n", 513 le16_to_cpu(htc_hdr->len), 514 max_msgs); 515 return -ENOMEM; 516 } 517 518 /* Allocate bndl_cnt extra skb's for the bundle. 519 * The package containing the 520 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 521 * in bndl_cnt. The skb for that packet will be 522 * allocated separately. 523 */ 524 for (i = 0; i < *bndl_cnt; i++) { 525 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 526 act_len, 527 full_len, 528 true, 529 false); 530 if (ret) 531 return ret; 532 } 533 534 return 0; 535 } 536 537 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 538 u32 lookaheads[], int n_lookaheads) 539 { 540 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 541 struct ath10k_htc_hdr *htc_hdr; 542 size_t full_len, act_len; 543 bool last_in_bundle; 544 int ret, i; 545 int pkt_cnt = 0; 546 547 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 548 ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n", 549 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); 550 ret = -ENOMEM; 551 goto err; 552 } 553 554 for (i = 0; i < n_lookaheads; i++) { 555 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 556 last_in_bundle = false; 557 558 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 559 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", 560 le16_to_cpu(htc_hdr->len), 561 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 562 ret = -ENOMEM; 563 564 ath10k_core_start_recovery(ar); 565 ath10k_warn(ar, "exceeds length, start recovery\n"); 566 567 goto err; 568 } 569 570 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 571 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 572 573 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 574 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 575 htc_hdr->eid, htc_hdr->flags, 576 le16_to_cpu(htc_hdr->len)); 577 ret = -EINVAL; 578 goto err; 579 } 580 581 if (ath10k_htc_get_bundle_count( 582 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { 583 /* HTC header indicates that every packet to follow 584 * has the same padded length so that it can be 585 * optimally fetched as a full bundle. 586 */ 587 size_t bndl_cnt; 588 589 ret = ath10k_sdio_mbox_alloc_bundle(ar, 590 &ar_sdio->rx_pkts[pkt_cnt], 591 htc_hdr, 592 full_len, 593 act_len, 594 &bndl_cnt); 595 596 if (ret) { 597 ath10k_warn(ar, "failed to allocate a bundle: %d\n", 598 ret); 599 goto err; 600 } 601 602 pkt_cnt += bndl_cnt; 603 604 /* next buffer will be the last in the bundle */ 605 last_in_bundle = true; 606 } 607 608 /* Allocate skb for packet. If the packet had the 609 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 610 * packet skb's have been allocated in the previous step. 611 */ 612 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 613 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 614 615 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], 616 act_len, 617 full_len, 618 last_in_bundle, 619 last_in_bundle); 620 if (ret) { 621 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 622 goto err; 623 } 624 625 pkt_cnt++; 626 } 627 628 ar_sdio->n_rx_pkts = pkt_cnt; 629 630 return 0; 631 632 err: 633 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 634 if (!ar_sdio->rx_pkts[i].alloc_len) 635 break; 636 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 637 } 638 639 return ret; 640 } 641 642 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 643 { 644 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 645 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; 646 struct sk_buff *skb = pkt->skb; 647 struct ath10k_htc_hdr *htc_hdr; 648 int ret; 649 650 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 651 skb->data, pkt->alloc_len); 652 if (ret) 653 goto err; 654 655 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 656 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 657 658 if (pkt->act_len > pkt->alloc_len) { 659 ret = -EINVAL; 660 goto err; 661 } 662 663 skb_put(skb, pkt->act_len); 664 return 0; 665 666 err: 667 ar_sdio->n_rx_pkts = 0; 668 ath10k_sdio_mbox_free_rx_pkt(pkt); 669 670 return ret; 671 } 672 673 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) 674 { 675 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 676 struct ath10k_sdio_rx_data *pkt; 677 struct ath10k_htc_hdr *htc_hdr; 678 int ret, i; 679 u32 pkt_offset, virt_pkt_len; 680 681 virt_pkt_len = 0; 682 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 683 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; 684 685 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { 686 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); 687 ret = -E2BIG; 688 goto err; 689 } 690 691 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 692 ar_sdio->vsg_buffer, virt_pkt_len); 693 if (ret) { 694 ath10k_warn(ar, "failed to read bundle packets: %d", ret); 695 goto err; 696 } 697 698 pkt_offset = 0; 699 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 700 pkt = &ar_sdio->rx_pkts[i]; 701 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); 702 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 703 704 if (pkt->act_len > pkt->alloc_len) { 705 ret = -EINVAL; 706 goto err; 707 } 708 709 skb_put_data(pkt->skb, htc_hdr, pkt->act_len); 710 pkt_offset += pkt->alloc_len; 711 } 712 713 return 0; 714 715 err: 716 /* Free all packets that was not successfully fetched. */ 717 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 718 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 719 720 ar_sdio->n_rx_pkts = 0; 721 722 return ret; 723 } 724 725 /* This is the timeout for mailbox processing done in the sdio irq 726 * handler. The timeout is deliberately set quite high since SDIO dump logs 727 * over serial port can/will add a substantial overhead to the processing 728 * (if enabled). 729 */ 730 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 731 732 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 733 u32 msg_lookahead, bool *done) 734 { 735 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 736 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 737 int n_lookaheads = 1; 738 unsigned long timeout; 739 int ret; 740 741 *done = true; 742 743 /* Copy the lookahead obtained from the HTC register table into our 744 * temp array as a start value. 745 */ 746 lookaheads[0] = msg_lookahead; 747 748 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 749 do { 750 /* Try to allocate as many HTC RX packets indicated by 751 * n_lookaheads. 752 */ 753 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 754 n_lookaheads); 755 if (ret) 756 break; 757 758 if (ar_sdio->n_rx_pkts >= 2) 759 /* A recv bundle was detected, force IRQ status 760 * re-check again. 761 */ 762 *done = false; 763 764 if (ar_sdio->n_rx_pkts > 1) 765 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); 766 else 767 ret = ath10k_sdio_mbox_rx_fetch(ar); 768 769 /* Process fetched packets. This will potentially update 770 * n_lookaheads depending on if the packets contain lookahead 771 * reports. 772 */ 773 n_lookaheads = 0; 774 ret = ath10k_sdio_mbox_rx_process_packets(ar, 775 lookaheads, 776 &n_lookaheads); 777 778 if (!n_lookaheads || ret) 779 break; 780 781 /* For SYNCH processing, if we get here, we are running 782 * through the loop again due to updated lookaheads. Set 783 * flag that we should re-check IRQ status registers again 784 * before leaving IRQ processing, this can net better 785 * performance in high throughput situations. 786 */ 787 *done = false; 788 } while (time_before(jiffies, timeout)); 789 790 if (ret && (ret != -ECANCELED)) 791 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 792 ret); 793 794 return ret; 795 } 796 797 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 798 { 799 u32 val; 800 int ret; 801 802 /* TODO: Add firmware crash handling */ 803 ath10k_warn(ar, "firmware crashed\n"); 804 805 /* read counter to clear the interrupt, the debug error interrupt is 806 * counter 0. 807 */ 808 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 809 if (ret) 810 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 811 812 return ret; 813 } 814 815 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 816 { 817 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 818 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 819 u8 counter_int_status; 820 int ret; 821 822 mutex_lock(&irq_data->mtx); 823 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 824 irq_data->irq_en_reg->cntr_int_status_en; 825 826 /* NOTE: other modules like GMBOX may use the counter interrupt for 827 * credit flow control on other counters, we only need to check for 828 * the debug assertion counter interrupt. 829 */ 830 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 831 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 832 else 833 ret = 0; 834 835 mutex_unlock(&irq_data->mtx); 836 837 return ret; 838 } 839 840 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 841 { 842 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 843 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 844 u8 error_int_status; 845 int ret; 846 847 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 848 849 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 850 if (!error_int_status) { 851 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 852 error_int_status); 853 return -EIO; 854 } 855 856 ath10k_dbg(ar, ATH10K_DBG_SDIO, 857 "sdio error_int_status 0x%x\n", error_int_status); 858 859 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 860 error_int_status)) 861 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 862 863 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 864 error_int_status)) 865 ath10k_warn(ar, "rx underflow interrupt error\n"); 866 867 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 868 error_int_status)) 869 ath10k_warn(ar, "tx overflow interrupt error\n"); 870 871 /* Clear the interrupt */ 872 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 873 874 /* set W1C value to clear the interrupt, this hits the register first */ 875 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 876 error_int_status); 877 if (ret) { 878 ath10k_warn(ar, "unable to write to error int status address: %d\n", 879 ret); 880 return ret; 881 } 882 883 return 0; 884 } 885 886 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 887 { 888 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 889 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 890 u8 cpu_int_status; 891 int ret; 892 893 mutex_lock(&irq_data->mtx); 894 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 895 irq_data->irq_en_reg->cpu_int_status_en; 896 if (!cpu_int_status) { 897 ath10k_warn(ar, "CPU interrupt status is zero\n"); 898 ret = -EIO; 899 goto out; 900 } 901 902 /* Clear the interrupt */ 903 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 904 905 /* Set up the register transfer buffer to hit the register 4 times, 906 * this is done to make the access 4-byte aligned to mitigate issues 907 * with host bus interconnects that restrict bus transfer lengths to 908 * be a multiple of 4-bytes. 909 * 910 * Set W1C value to clear the interrupt, this hits the register first. 911 */ 912 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 913 cpu_int_status); 914 if (ret) { 915 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 916 ret); 917 goto out; 918 } 919 920 out: 921 mutex_unlock(&irq_data->mtx); 922 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) 923 ath10k_sdio_fw_crashed_dump(ar); 924 925 return ret; 926 } 927 928 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 929 u8 *host_int_status, 930 u32 *lookahead) 931 { 932 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 933 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 934 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 935 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 936 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 937 int ret; 938 939 mutex_lock(&irq_data->mtx); 940 941 *lookahead = 0; 942 *host_int_status = 0; 943 944 /* int_status_en is supposed to be non zero, otherwise interrupts 945 * shouldn't be enabled. There is however a short time frame during 946 * initialization between the irq register and int_status_en init 947 * where this can happen. 948 * We silently ignore this condition. 949 */ 950 if (!irq_en_reg->int_status_en) { 951 ret = 0; 952 goto out; 953 } 954 955 /* Read the first sizeof(struct ath10k_irq_proc_registers) 956 * bytes of the HTC register table. This 957 * will yield us the value of different int status 958 * registers and the lookahead registers. 959 */ 960 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 961 irq_proc_reg, sizeof(*irq_proc_reg)); 962 if (ret) { 963 ath10k_core_start_recovery(ar); 964 ath10k_warn(ar, "read int status fail, start recovery\n"); 965 goto out; 966 } 967 968 /* Update only those registers that are enabled */ 969 *host_int_status = irq_proc_reg->host_int_status & 970 irq_en_reg->int_status_en; 971 972 /* Look at mbox status */ 973 if (!(*host_int_status & htc_mbox)) { 974 *lookahead = 0; 975 ret = 0; 976 goto out; 977 } 978 979 /* Mask out pending mbox value, we use look ahead as 980 * the real flag for mbox processing. 981 */ 982 *host_int_status &= ~htc_mbox; 983 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 984 *lookahead = le32_to_cpu( 985 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 986 if (!*lookahead) 987 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 988 } 989 990 out: 991 mutex_unlock(&irq_data->mtx); 992 return ret; 993 } 994 995 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 996 bool *done) 997 { 998 u8 host_int_status; 999 u32 lookahead; 1000 int ret; 1001 1002 /* NOTE: HIF implementation guarantees that the context of this 1003 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 1004 * sleep or call any API that can block or switch thread/task 1005 * contexts. This is a fully schedulable context. 1006 */ 1007 1008 ret = ath10k_sdio_mbox_read_int_status(ar, 1009 &host_int_status, 1010 &lookahead); 1011 if (ret) { 1012 *done = true; 1013 goto out; 1014 } 1015 1016 if (!host_int_status && !lookahead) { 1017 ret = 0; 1018 *done = true; 1019 goto out; 1020 } 1021 1022 if (lookahead) { 1023 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1024 "sdio pending mailbox msg lookahead 0x%08x\n", 1025 lookahead); 1026 1027 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 1028 lookahead, 1029 done); 1030 if (ret) 1031 goto out; 1032 } 1033 1034 /* now, handle the rest of the interrupts */ 1035 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1036 "sdio host_int_status 0x%x\n", host_int_status); 1037 1038 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 1039 /* CPU Interrupt */ 1040 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 1041 if (ret) 1042 goto out; 1043 } 1044 1045 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 1046 /* Error Interrupt */ 1047 ret = ath10k_sdio_mbox_proc_err_intr(ar); 1048 if (ret) 1049 goto out; 1050 } 1051 1052 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1053 /* Counter Interrupt */ 1054 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1055 1056 ret = 0; 1057 1058 out: 1059 /* An optimization to bypass reading the IRQ status registers 1060 * unecessarily which can re-wake the target, if upper layers 1061 * determine that we are in a low-throughput mode, we can rely on 1062 * taking another interrupt rather than re-checking the status 1063 * registers which can re-wake the target. 1064 * 1065 * NOTE : for host interfaces that makes use of detecting pending 1066 * mbox messages at hif can not use this optimization due to 1067 * possible side effects, SPI requires the host to drain all 1068 * messages from the mailbox before exiting the ISR routine. 1069 */ 1070 1071 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1072 "sdio pending irqs done %d status %d", 1073 *done, ret); 1074 1075 return ret; 1076 } 1077 1078 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1079 { 1080 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1081 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1082 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1083 1084 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1085 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1086 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1087 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1088 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1089 1090 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1091 1092 dev_id_base = (device & 0x0F00); 1093 dev_id_chiprev = (device & 0x00FF); 1094 switch (dev_id_base) { 1095 case (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00): 1096 if (dev_id_chiprev < 4) 1097 mbox_info->ext_info[0].htc_ext_sz = 1098 ATH10K_HIF_MBOX0_EXT_WIDTH; 1099 else 1100 /* from QCA6174 2.0(0x504), the width has been extended 1101 * to 56K 1102 */ 1103 mbox_info->ext_info[0].htc_ext_sz = 1104 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1105 break; 1106 case (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00): 1107 mbox_info->ext_info[0].htc_ext_sz = 1108 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1109 break; 1110 default: 1111 mbox_info->ext_info[0].htc_ext_sz = 1112 ATH10K_HIF_MBOX0_EXT_WIDTH; 1113 } 1114 1115 mbox_info->ext_info[1].htc_ext_addr = 1116 mbox_info->ext_info[0].htc_ext_addr + 1117 mbox_info->ext_info[0].htc_ext_sz + 1118 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1119 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1120 } 1121 1122 /* BMI functions */ 1123 1124 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1125 { 1126 u32 addr, cmd_credits; 1127 unsigned long timeout; 1128 int ret; 1129 1130 /* Read the counter register to get the command credits */ 1131 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1132 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1133 cmd_credits = 0; 1134 1135 while (time_before(jiffies, timeout) && !cmd_credits) { 1136 /* Hit the credit counter with a 4-byte access, the first byte 1137 * read will hit the counter and cause a decrement, while the 1138 * remaining 3 bytes has no effect. The rationale behind this 1139 * is to make all HIF accesses 4-byte aligned. 1140 */ 1141 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1142 if (ret) { 1143 ath10k_warn(ar, 1144 "unable to decrement the command credit count register: %d\n", 1145 ret); 1146 return ret; 1147 } 1148 1149 /* The counter is only 8 bits. 1150 * Ignore anything in the upper 3 bytes 1151 */ 1152 cmd_credits &= 0xFF; 1153 } 1154 1155 if (!cmd_credits) { 1156 ath10k_warn(ar, "bmi communication timeout\n"); 1157 return -ETIMEDOUT; 1158 } 1159 1160 return 0; 1161 } 1162 1163 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1164 { 1165 unsigned long timeout; 1166 u32 rx_word; 1167 int ret; 1168 1169 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1170 rx_word = 0; 1171 1172 while ((time_before(jiffies, timeout)) && !rx_word) { 1173 ret = ath10k_sdio_read32(ar, 1174 MBOX_HOST_INT_STATUS_ADDRESS, 1175 &rx_word); 1176 if (ret) { 1177 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1178 return ret; 1179 } 1180 1181 /* all we really want is one bit */ 1182 rx_word &= 1; 1183 } 1184 1185 if (!rx_word) { 1186 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1187 return -EINVAL; 1188 } 1189 1190 return ret; 1191 } 1192 1193 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1194 void *req, u32 req_len, 1195 void *resp, u32 *resp_len) 1196 { 1197 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1198 u32 addr; 1199 int ret; 1200 1201 if (req) { 1202 ret = ath10k_sdio_bmi_credits(ar); 1203 if (ret) 1204 return ret; 1205 1206 addr = ar_sdio->mbox_info.htc_addr; 1207 1208 memcpy(ar_sdio->bmi_buf, req, req_len); 1209 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1210 if (ret) { 1211 ath10k_warn(ar, 1212 "unable to send the bmi data to the device: %d\n", 1213 ret); 1214 return ret; 1215 } 1216 } 1217 1218 if (!resp || !resp_len) 1219 /* No response expected */ 1220 return 0; 1221 1222 /* During normal bootup, small reads may be required. 1223 * Rather than issue an HIF Read and then wait as the Target 1224 * adds successive bytes to the FIFO, we wait here until 1225 * we know that response data is available. 1226 * 1227 * This allows us to cleanly timeout on an unexpected 1228 * Target failure rather than risk problems at the HIF level. 1229 * In particular, this avoids SDIO timeouts and possibly garbage 1230 * data on some host controllers. And on an interconnect 1231 * such as Compact Flash (as well as some SDIO masters) which 1232 * does not provide any indication on data timeout, it avoids 1233 * a potential hang or garbage response. 1234 * 1235 * Synchronization is more difficult for reads larger than the 1236 * size of the MBOX FIFO (128B), because the Target is unable 1237 * to push the 129th byte of data until AFTER the Host posts an 1238 * HIF Read and removes some FIFO data. So for large reads the 1239 * Host proceeds to post an HIF Read BEFORE all the data is 1240 * actually available to read. Fortunately, large BMI reads do 1241 * not occur in practice -- they're supported for debug/development. 1242 * 1243 * So Host/Target BMI synchronization is divided into these cases: 1244 * CASE 1: length < 4 1245 * Should not happen 1246 * 1247 * CASE 2: 4 <= length <= 128 1248 * Wait for first 4 bytes to be in FIFO 1249 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1250 * a BMI command credit, which indicates that the ENTIRE 1251 * response is available in the FIFO 1252 * 1253 * CASE 3: length > 128 1254 * Wait for the first 4 bytes to be in FIFO 1255 * 1256 * For most uses, a small timeout should be sufficient and we will 1257 * usually see a response quickly; but there may be some unusual 1258 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1259 * For now, we use an unbounded busy loop while waiting for 1260 * BMI_EXECUTE. 1261 * 1262 * If BMI_EXECUTE ever needs to support longer-latency execution, 1263 * especially in production, this code needs to be enhanced to sleep 1264 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1265 * a function of Host processor speed. 1266 */ 1267 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1268 if (ret) 1269 return ret; 1270 1271 /* We always read from the start of the mbox address */ 1272 addr = ar_sdio->mbox_info.htc_addr; 1273 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1274 if (ret) { 1275 ath10k_warn(ar, 1276 "unable to read the bmi data from the device: %d\n", 1277 ret); 1278 return ret; 1279 } 1280 1281 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1282 1283 return 0; 1284 } 1285 1286 /* sdio async handling functions */ 1287 1288 static struct ath10k_sdio_bus_request 1289 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1290 { 1291 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1292 struct ath10k_sdio_bus_request *bus_req; 1293 1294 spin_lock_bh(&ar_sdio->lock); 1295 1296 if (list_empty(&ar_sdio->bus_req_freeq)) { 1297 bus_req = NULL; 1298 goto out; 1299 } 1300 1301 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1302 struct ath10k_sdio_bus_request, list); 1303 list_del(&bus_req->list); 1304 1305 out: 1306 spin_unlock_bh(&ar_sdio->lock); 1307 return bus_req; 1308 } 1309 1310 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1311 struct ath10k_sdio_bus_request *bus_req) 1312 { 1313 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1314 1315 memset(bus_req, 0, sizeof(*bus_req)); 1316 1317 spin_lock_bh(&ar_sdio->lock); 1318 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1319 spin_unlock_bh(&ar_sdio->lock); 1320 } 1321 1322 static void __ath10k_sdio_write_async(struct ath10k *ar, 1323 struct ath10k_sdio_bus_request *req) 1324 { 1325 struct ath10k_htc_ep *ep; 1326 struct sk_buff *skb; 1327 int ret; 1328 1329 skb = req->skb; 1330 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1331 if (ret) 1332 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1333 req->address, ret); 1334 1335 if (req->htc_msg) { 1336 ep = &ar->htc.endpoint[req->eid]; 1337 ath10k_htc_notify_tx_completion(ep, skb); 1338 } else if (req->comp) { 1339 complete(req->comp); 1340 } 1341 1342 ath10k_sdio_free_bus_req(ar, req); 1343 } 1344 1345 /* To improve throughput use workqueue to deliver packets to HTC layer, 1346 * this way SDIO bus is utilised much better. 1347 */ 1348 static void ath10k_rx_indication_async_work(struct work_struct *work) 1349 { 1350 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1351 async_work_rx); 1352 struct ath10k *ar = ar_sdio->ar; 1353 struct ath10k_htc_ep *ep; 1354 struct ath10k_skb_rxcb *cb; 1355 struct sk_buff *skb; 1356 1357 while (true) { 1358 skb = skb_dequeue(&ar_sdio->rx_head); 1359 if (!skb) 1360 break; 1361 cb = ATH10K_SKB_RXCB(skb); 1362 ep = &ar->htc.endpoint[cb->eid]; 1363 ep->ep_ops.ep_rx_complete(ar, skb); 1364 } 1365 1366 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) 1367 napi_schedule(&ar->napi); 1368 } 1369 1370 static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state) 1371 { 1372 struct ath10k *ar = ar_sdio->ar; 1373 unsigned char rtc_state = 0; 1374 int ret = 0; 1375 1376 rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret); 1377 if (ret) { 1378 ath10k_warn(ar, "failed to read rtc state: %d\n", ret); 1379 return ret; 1380 } 1381 1382 *state = rtc_state & 0x3; 1383 1384 return ret; 1385 } 1386 1387 static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1388 { 1389 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1390 u32 val; 1391 int retry = ATH10K_CIS_READ_RETRY, ret = 0; 1392 unsigned char rtc_state = 0; 1393 1394 sdio_claim_host(ar_sdio->func); 1395 1396 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1397 if (ret) { 1398 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1399 ret); 1400 goto release; 1401 } 1402 1403 if (enable_sleep) { 1404 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1405 ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE; 1406 } else { 1407 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1408 ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE; 1409 } 1410 1411 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1412 if (ret) { 1413 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1414 ret); 1415 } 1416 1417 if (!enable_sleep) { 1418 do { 1419 udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US); 1420 ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state); 1421 1422 if (ret) { 1423 ath10k_warn(ar, "failed to disable mbox sleep: %d", ret); 1424 break; 1425 } 1426 1427 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n", 1428 rtc_state); 1429 1430 if (rtc_state == ATH10K_CIS_RTC_STATE_ON) 1431 break; 1432 1433 udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US); 1434 retry--; 1435 } while (retry > 0); 1436 } 1437 1438 release: 1439 sdio_release_host(ar_sdio->func); 1440 1441 return ret; 1442 } 1443 1444 static void ath10k_sdio_sleep_timer_handler(struct timer_list *t) 1445 { 1446 struct ath10k_sdio *ar_sdio = from_timer(ar_sdio, t, sleep_timer); 1447 1448 ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE; 1449 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1450 } 1451 1452 static void ath10k_sdio_write_async_work(struct work_struct *work) 1453 { 1454 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1455 wr_async_work); 1456 struct ath10k *ar = ar_sdio->ar; 1457 struct ath10k_sdio_bus_request *req, *tmp_req; 1458 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1459 1460 spin_lock_bh(&ar_sdio->wr_async_lock); 1461 1462 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1463 list_del(&req->list); 1464 spin_unlock_bh(&ar_sdio->wr_async_lock); 1465 1466 if (req->address >= mbox_info->htc_addr && 1467 ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) { 1468 ath10k_sdio_set_mbox_sleep(ar, false); 1469 mod_timer(&ar_sdio->sleep_timer, jiffies + 1470 msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS)); 1471 } 1472 1473 __ath10k_sdio_write_async(ar, req); 1474 spin_lock_bh(&ar_sdio->wr_async_lock); 1475 } 1476 1477 spin_unlock_bh(&ar_sdio->wr_async_lock); 1478 1479 if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE) 1480 ath10k_sdio_set_mbox_sleep(ar, true); 1481 } 1482 1483 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1484 struct sk_buff *skb, 1485 struct completion *comp, 1486 bool htc_msg, enum ath10k_htc_ep_id eid) 1487 { 1488 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1489 struct ath10k_sdio_bus_request *bus_req; 1490 1491 /* Allocate a bus request for the message and queue it on the 1492 * SDIO workqueue. 1493 */ 1494 bus_req = ath10k_sdio_alloc_busreq(ar); 1495 if (!bus_req) { 1496 ath10k_warn(ar, 1497 "unable to allocate bus request for async request\n"); 1498 return -ENOMEM; 1499 } 1500 1501 bus_req->skb = skb; 1502 bus_req->eid = eid; 1503 bus_req->address = addr; 1504 bus_req->htc_msg = htc_msg; 1505 bus_req->comp = comp; 1506 1507 spin_lock_bh(&ar_sdio->wr_async_lock); 1508 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1509 spin_unlock_bh(&ar_sdio->wr_async_lock); 1510 1511 return 0; 1512 } 1513 1514 /* IRQ handler */ 1515 1516 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1517 { 1518 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1519 struct ath10k *ar = ar_sdio->ar; 1520 unsigned long timeout; 1521 bool done = false; 1522 int ret; 1523 1524 /* Release the host during interrupts so we can pick it back up when 1525 * we process commands. 1526 */ 1527 sdio_release_host(ar_sdio->func); 1528 1529 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1530 do { 1531 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1532 if (ret) 1533 break; 1534 } while (time_before(jiffies, timeout) && !done); 1535 1536 ath10k_mac_tx_push_pending(ar); 1537 1538 sdio_claim_host(ar_sdio->func); 1539 1540 if (ret && ret != -ECANCELED) 1541 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1542 ret); 1543 } 1544 1545 /* sdio HIF functions */ 1546 1547 static int ath10k_sdio_disable_intrs(struct ath10k *ar) 1548 { 1549 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1550 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1551 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1552 int ret; 1553 1554 mutex_lock(&irq_data->mtx); 1555 1556 memset(regs, 0, sizeof(*regs)); 1557 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1558 ®s->int_status_en, sizeof(*regs)); 1559 if (ret) 1560 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1561 1562 mutex_unlock(&irq_data->mtx); 1563 1564 return ret; 1565 } 1566 1567 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1568 enum ath10k_firmware_mode fw_mode) 1569 { 1570 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1571 struct sdio_func *func = ar_sdio->func; 1572 int ret; 1573 1574 if (!ar_sdio->is_disabled) 1575 return 0; 1576 1577 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1578 1579 ret = ath10k_sdio_config(ar); 1580 if (ret) { 1581 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1582 return ret; 1583 } 1584 1585 sdio_claim_host(func); 1586 1587 ret = sdio_enable_func(func); 1588 if (ret) { 1589 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1590 sdio_release_host(func); 1591 return ret; 1592 } 1593 1594 sdio_release_host(func); 1595 1596 /* Wait for hardware to initialise. It should take a lot less than 1597 * 20 ms but let's be conservative here. 1598 */ 1599 msleep(20); 1600 1601 ar_sdio->is_disabled = false; 1602 1603 ret = ath10k_sdio_disable_intrs(ar); 1604 if (ret) 1605 return ret; 1606 1607 return 0; 1608 } 1609 1610 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1611 { 1612 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1613 int ret; 1614 1615 if (ar_sdio->is_disabled) 1616 return; 1617 1618 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1619 1620 del_timer_sync(&ar_sdio->sleep_timer); 1621 ath10k_sdio_set_mbox_sleep(ar, true); 1622 1623 /* Disable the card */ 1624 sdio_claim_host(ar_sdio->func); 1625 1626 ret = sdio_disable_func(ar_sdio->func); 1627 if (ret) { 1628 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1629 sdio_release_host(ar_sdio->func); 1630 return; 1631 } 1632 1633 ret = mmc_hw_reset(ar_sdio->func->card->host); 1634 if (ret) 1635 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1636 1637 sdio_release_host(ar_sdio->func); 1638 1639 ar_sdio->is_disabled = true; 1640 } 1641 1642 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1643 struct ath10k_hif_sg_item *items, int n_items) 1644 { 1645 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1646 enum ath10k_htc_ep_id eid; 1647 struct sk_buff *skb; 1648 int ret, i; 1649 1650 eid = pipe_id_to_eid(pipe_id); 1651 1652 for (i = 0; i < n_items; i++) { 1653 size_t padded_len; 1654 u32 address; 1655 1656 skb = items[i].transfer_context; 1657 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1658 skb->len); 1659 skb_trim(skb, padded_len); 1660 1661 /* Write TX data to the end of the mbox address space */ 1662 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1663 skb->len; 1664 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1665 NULL, true, eid); 1666 if (ret) 1667 return ret; 1668 } 1669 1670 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1671 1672 return 0; 1673 } 1674 1675 static int ath10k_sdio_enable_intrs(struct ath10k *ar) 1676 { 1677 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1678 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1679 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1680 int ret; 1681 1682 mutex_lock(&irq_data->mtx); 1683 1684 /* Enable all but CPU interrupts */ 1685 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1686 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1687 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1688 1689 /* NOTE: There are some cases where HIF can do detection of 1690 * pending mbox messages which is disabled now. 1691 */ 1692 regs->int_status_en |= 1693 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1694 1695 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1696 * #0 is used for report assertion from target 1697 */ 1698 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1699 1700 /* Set up the Error Interrupt status Register */ 1701 regs->err_int_status_en = 1702 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1703 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1704 1705 /* Enable Counter interrupt status register to get fatal errors for 1706 * debugging. 1707 */ 1708 regs->cntr_int_status_en = 1709 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1710 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1711 1712 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1713 ®s->int_status_en, sizeof(*regs)); 1714 if (ret) 1715 ath10k_warn(ar, 1716 "failed to update mbox interrupt status register : %d\n", 1717 ret); 1718 1719 mutex_unlock(&irq_data->mtx); 1720 return ret; 1721 } 1722 1723 /* HIF diagnostics */ 1724 1725 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1726 size_t buf_len) 1727 { 1728 int ret; 1729 void *mem; 1730 1731 mem = kzalloc(buf_len, GFP_KERNEL); 1732 if (!mem) 1733 return -ENOMEM; 1734 1735 /* set window register to start read cycle */ 1736 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1737 if (ret) { 1738 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1739 goto out; 1740 } 1741 1742 /* read the data */ 1743 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len); 1744 if (ret) { 1745 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1746 ret); 1747 goto out; 1748 } 1749 1750 memcpy(buf, mem, buf_len); 1751 1752 out: 1753 kfree(mem); 1754 1755 return ret; 1756 } 1757 1758 static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address, 1759 u32 *value) 1760 { 1761 __le32 *val; 1762 int ret; 1763 1764 val = kzalloc(sizeof(*val), GFP_KERNEL); 1765 if (!val) 1766 return -ENOMEM; 1767 1768 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1769 if (ret) 1770 goto out; 1771 1772 *value = __le32_to_cpu(*val); 1773 1774 out: 1775 kfree(val); 1776 1777 return ret; 1778 } 1779 1780 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1781 const void *data, int nbytes) 1782 { 1783 int ret; 1784 1785 /* set write data */ 1786 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1787 if (ret) { 1788 ath10k_warn(ar, 1789 "failed to write 0x%p to mbox window data address: %d\n", 1790 data, ret); 1791 return ret; 1792 } 1793 1794 /* set window register, which starts the write cycle */ 1795 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1796 if (ret) { 1797 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1798 return ret; 1799 } 1800 1801 return 0; 1802 } 1803 1804 static int ath10k_sdio_hif_start_post(struct ath10k *ar) 1805 { 1806 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1807 u32 addr, val; 1808 int ret = 0; 1809 1810 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1811 1812 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1813 if (ret) { 1814 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1815 return ret; 1816 } 1817 1818 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1819 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1820 "sdio mailbox swap service enabled\n"); 1821 ar_sdio->swap_mbox = true; 1822 } else { 1823 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1824 "sdio mailbox swap service disabled\n"); 1825 ar_sdio->swap_mbox = false; 1826 } 1827 1828 ath10k_sdio_set_mbox_sleep(ar, true); 1829 1830 return 0; 1831 } 1832 1833 static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar) 1834 { 1835 u32 addr, val; 1836 int ret; 1837 1838 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1839 1840 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1841 if (ret) { 1842 ath10k_warn(ar, 1843 "unable to read hi_acs_flags for htt tx comple : %d\n", ret); 1844 return ret; 1845 } 1846 1847 ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK); 1848 1849 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n", 1850 ret ? " " : " not "); 1851 1852 return ret; 1853 } 1854 1855 /* HIF start/stop */ 1856 1857 static int ath10k_sdio_hif_start(struct ath10k *ar) 1858 { 1859 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1860 int ret; 1861 1862 ath10k_core_napi_enable(ar); 1863 1864 /* Sleep 20 ms before HIF interrupts are disabled. 1865 * This will give target plenty of time to process the BMI done 1866 * request before interrupts are disabled. 1867 */ 1868 msleep(20); 1869 ret = ath10k_sdio_disable_intrs(ar); 1870 if (ret) 1871 return ret; 1872 1873 /* eid 0 always uses the lower part of the extended mailbox address 1874 * space (ext_info[0].htc_ext_addr). 1875 */ 1876 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1877 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1878 1879 sdio_claim_host(ar_sdio->func); 1880 1881 /* Register the isr */ 1882 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1883 if (ret) { 1884 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1885 sdio_release_host(ar_sdio->func); 1886 return ret; 1887 } 1888 1889 sdio_release_host(ar_sdio->func); 1890 1891 ret = ath10k_sdio_enable_intrs(ar); 1892 if (ret) 1893 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1894 1895 /* Enable sleep and then disable it again */ 1896 ret = ath10k_sdio_set_mbox_sleep(ar, true); 1897 if (ret) 1898 return ret; 1899 1900 /* Wait for 20ms for the written value to take effect */ 1901 msleep(20); 1902 1903 ret = ath10k_sdio_set_mbox_sleep(ar, false); 1904 if (ret) 1905 return ret; 1906 1907 return 0; 1908 } 1909 1910 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1911 1912 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1913 { 1914 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1915 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1916 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1917 struct sk_buff *skb; 1918 struct completion irqs_disabled_comp; 1919 int ret; 1920 1921 skb = dev_alloc_skb(sizeof(*regs)); 1922 if (!skb) 1923 return; 1924 1925 mutex_lock(&irq_data->mtx); 1926 1927 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1928 memcpy(skb->data, regs, sizeof(*regs)); 1929 skb_put(skb, sizeof(*regs)); 1930 1931 mutex_unlock(&irq_data->mtx); 1932 1933 init_completion(&irqs_disabled_comp); 1934 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1935 skb, &irqs_disabled_comp, false, 0); 1936 if (ret) 1937 goto out; 1938 1939 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1940 1941 /* Wait for the completion of the IRQ disable request. 1942 * If there is a timeout we will try to disable irq's anyway. 1943 */ 1944 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1945 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1946 if (!ret) 1947 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1948 1949 sdio_claim_host(ar_sdio->func); 1950 1951 ret = sdio_release_irq(ar_sdio->func); 1952 if (ret) 1953 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1954 1955 sdio_release_host(ar_sdio->func); 1956 1957 out: 1958 kfree_skb(skb); 1959 } 1960 1961 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1962 { 1963 struct ath10k_sdio_bus_request *req, *tmp_req; 1964 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1965 struct sk_buff *skb; 1966 1967 ath10k_sdio_irq_disable(ar); 1968 1969 cancel_work_sync(&ar_sdio->async_work_rx); 1970 1971 while ((skb = skb_dequeue(&ar_sdio->rx_head))) 1972 dev_kfree_skb_any(skb); 1973 1974 cancel_work_sync(&ar_sdio->wr_async_work); 1975 1976 spin_lock_bh(&ar_sdio->wr_async_lock); 1977 1978 /* Free all bus requests that have not been handled */ 1979 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1980 struct ath10k_htc_ep *ep; 1981 1982 list_del(&req->list); 1983 1984 if (req->htc_msg) { 1985 ep = &ar->htc.endpoint[req->eid]; 1986 ath10k_htc_notify_tx_completion(ep, req->skb); 1987 } else if (req->skb) { 1988 kfree_skb(req->skb); 1989 } 1990 ath10k_sdio_free_bus_req(ar, req); 1991 } 1992 1993 spin_unlock_bh(&ar_sdio->wr_async_lock); 1994 1995 ath10k_core_napi_sync_disable(ar); 1996 } 1997 1998 #ifdef CONFIG_PM 1999 2000 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 2001 { 2002 return 0; 2003 } 2004 2005 static int ath10k_sdio_hif_resume(struct ath10k *ar) 2006 { 2007 switch (ar->state) { 2008 case ATH10K_STATE_OFF: 2009 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2010 "sdio resume configuring sdio\n"); 2011 2012 /* need to set sdio settings after power is cut from sdio */ 2013 ath10k_sdio_config(ar); 2014 break; 2015 2016 case ATH10K_STATE_ON: 2017 default: 2018 break; 2019 } 2020 2021 return 0; 2022 } 2023 #endif 2024 2025 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 2026 u16 service_id, 2027 u8 *ul_pipe, u8 *dl_pipe) 2028 { 2029 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 2030 struct ath10k_htc *htc = &ar->htc; 2031 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 2032 enum ath10k_htc_ep_id eid; 2033 bool ep_found = false; 2034 int i; 2035 2036 /* For sdio, we are interested in the mapping between eid 2037 * and pipeid rather than service_id to pipe_id. 2038 * First we find out which eid has been allocated to the 2039 * service... 2040 */ 2041 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 2042 if (htc->endpoint[i].service_id == service_id) { 2043 eid = htc->endpoint[i].eid; 2044 ep_found = true; 2045 break; 2046 } 2047 } 2048 2049 if (!ep_found) 2050 return -EINVAL; 2051 2052 /* Then we create the simplest mapping possible between pipeid 2053 * and eid 2054 */ 2055 *ul_pipe = *dl_pipe = (u8)eid; 2056 2057 /* Normally, HTT will use the upper part of the extended 2058 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 2059 * the lower part (ext_info[0].htc_ext_addr). 2060 * If fw wants swapping of mailbox addresses, the opposite is true. 2061 */ 2062 if (ar_sdio->swap_mbox) { 2063 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2064 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2065 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2066 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2067 } else { 2068 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2069 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2070 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2071 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2072 } 2073 2074 switch (service_id) { 2075 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 2076 /* HTC ctrl ep mbox address has already been setup in 2077 * ath10k_sdio_hif_start 2078 */ 2079 break; 2080 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 2081 ar_sdio->mbox_addr[eid] = wmi_addr; 2082 ar_sdio->mbox_size[eid] = wmi_mbox_size; 2083 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2084 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 2085 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2086 break; 2087 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 2088 ar_sdio->mbox_addr[eid] = htt_addr; 2089 ar_sdio->mbox_size[eid] = htt_mbox_size; 2090 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2091 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 2092 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2093 break; 2094 default: 2095 ath10k_warn(ar, "unsupported HTC service id: %d\n", 2096 service_id); 2097 return -EINVAL; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 2104 u8 *ul_pipe, u8 *dl_pipe) 2105 { 2106 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 2107 2108 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 2109 * case) == 0 2110 */ 2111 *ul_pipe = 0; 2112 *dl_pipe = 0; 2113 } 2114 2115 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 2116 .tx_sg = ath10k_sdio_hif_tx_sg, 2117 .diag_read = ath10k_sdio_hif_diag_read, 2118 .diag_write = ath10k_sdio_hif_diag_write_mem, 2119 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 2120 .start = ath10k_sdio_hif_start, 2121 .stop = ath10k_sdio_hif_stop, 2122 .start_post = ath10k_sdio_hif_start_post, 2123 .get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete, 2124 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 2125 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 2126 .power_up = ath10k_sdio_hif_power_up, 2127 .power_down = ath10k_sdio_hif_power_down, 2128 #ifdef CONFIG_PM 2129 .suspend = ath10k_sdio_hif_suspend, 2130 .resume = ath10k_sdio_hif_resume, 2131 #endif 2132 }; 2133 2134 #ifdef CONFIG_PM_SLEEP 2135 2136 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 2137 * suspend. We instead follow cfg80211 suspend/resume handlers. 2138 */ 2139 static int ath10k_sdio_pm_suspend(struct device *device) 2140 { 2141 struct sdio_func *func = dev_to_sdio_func(device); 2142 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2143 struct ath10k *ar = ar_sdio->ar; 2144 mmc_pm_flag_t pm_flag, pm_caps; 2145 int ret; 2146 2147 if (!device_may_wakeup(ar->dev)) 2148 return 0; 2149 2150 ath10k_sdio_set_mbox_sleep(ar, true); 2151 2152 pm_flag = MMC_PM_KEEP_POWER; 2153 2154 ret = sdio_set_host_pm_flags(func, pm_flag); 2155 if (ret) { 2156 pm_caps = sdio_get_host_pm_caps(func); 2157 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", 2158 pm_flag, pm_caps, ret); 2159 return ret; 2160 } 2161 2162 return ret; 2163 } 2164 2165 static int ath10k_sdio_pm_resume(struct device *device) 2166 { 2167 return 0; 2168 } 2169 2170 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 2171 ath10k_sdio_pm_resume); 2172 2173 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 2174 2175 #else 2176 2177 #define ATH10K_SDIO_PM_OPS NULL 2178 2179 #endif /* CONFIG_PM_SLEEP */ 2180 2181 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) 2182 { 2183 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2184 int done; 2185 2186 done = ath10k_htt_rx_hl_indication(ar, budget); 2187 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); 2188 2189 if (done < budget) 2190 napi_complete_done(ctx, done); 2191 2192 return done; 2193 } 2194 2195 static int ath10k_sdio_read_host_interest_value(struct ath10k *ar, 2196 u32 item_offset, 2197 u32 *val) 2198 { 2199 u32 addr; 2200 int ret; 2201 2202 addr = host_interest_item_address(item_offset); 2203 2204 ret = ath10k_sdio_diag_read32(ar, addr, val); 2205 2206 if (ret) 2207 ath10k_warn(ar, "unable to read host interest offset %d value\n", 2208 item_offset); 2209 2210 return ret; 2211 } 2212 2213 static int ath10k_sdio_read_mem(struct ath10k *ar, u32 address, void *buf, 2214 u32 buf_len) 2215 { 2216 u32 val; 2217 int i, ret; 2218 2219 for (i = 0; i < buf_len; i += 4) { 2220 ret = ath10k_sdio_diag_read32(ar, address + i, &val); 2221 if (ret) { 2222 ath10k_warn(ar, "unable to read mem %d value\n", address + i); 2223 break; 2224 } 2225 memcpy(buf + i, &val, 4); 2226 } 2227 2228 return ret; 2229 } 2230 2231 static bool ath10k_sdio_is_fast_dump_supported(struct ath10k *ar) 2232 { 2233 u32 param; 2234 2235 ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_option_flag2), ¶m); 2236 2237 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hi_option_flag2 %x\n", param); 2238 2239 return !!(param & HI_OPTION_SDIO_CRASH_DUMP_ENHANCEMENT_FW); 2240 } 2241 2242 static void ath10k_sdio_dump_registers(struct ath10k *ar, 2243 struct ath10k_fw_crash_data *crash_data, 2244 bool fast_dump) 2245 { 2246 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; 2247 int i, ret; 2248 u32 reg_dump_area; 2249 2250 ret = ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_failure_state), 2251 ®_dump_area); 2252 if (ret) { 2253 ath10k_warn(ar, "failed to read firmware dump area: %d\n", ret); 2254 return; 2255 } 2256 2257 if (fast_dump) 2258 ret = ath10k_bmi_read_memory(ar, reg_dump_area, reg_dump_values, 2259 sizeof(reg_dump_values)); 2260 else 2261 ret = ath10k_sdio_read_mem(ar, reg_dump_area, reg_dump_values, 2262 sizeof(reg_dump_values)); 2263 2264 if (ret) { 2265 ath10k_warn(ar, "failed to read firmware dump value: %d\n", ret); 2266 return; 2267 } 2268 2269 ath10k_err(ar, "firmware register dump:\n"); 2270 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i += 4) 2271 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", 2272 i, 2273 reg_dump_values[i], 2274 reg_dump_values[i + 1], 2275 reg_dump_values[i + 2], 2276 reg_dump_values[i + 3]); 2277 2278 if (!crash_data) 2279 return; 2280 2281 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i++) 2282 crash_data->registers[i] = __cpu_to_le32(reg_dump_values[i]); 2283 } 2284 2285 static int ath10k_sdio_dump_memory_section(struct ath10k *ar, 2286 const struct ath10k_mem_region *mem_region, 2287 u8 *buf, size_t buf_len) 2288 { 2289 const struct ath10k_mem_section *cur_section, *next_section; 2290 unsigned int count, section_size, skip_size; 2291 int ret, i, j; 2292 2293 if (!mem_region || !buf) 2294 return 0; 2295 2296 cur_section = &mem_region->section_table.sections[0]; 2297 2298 if (mem_region->start > cur_section->start) { 2299 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", 2300 mem_region->start, cur_section->start); 2301 return 0; 2302 } 2303 2304 skip_size = cur_section->start - mem_region->start; 2305 2306 /* fill the gap between the first register section and register 2307 * start address 2308 */ 2309 for (i = 0; i < skip_size; i++) { 2310 *buf = ATH10K_MAGIC_NOT_COPIED; 2311 buf++; 2312 } 2313 2314 count = 0; 2315 i = 0; 2316 for (; cur_section; cur_section = next_section) { 2317 section_size = cur_section->end - cur_section->start; 2318 2319 if (section_size <= 0) { 2320 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", 2321 cur_section->start, 2322 cur_section->end); 2323 break; 2324 } 2325 2326 if (++i == mem_region->section_table.size) { 2327 /* last section */ 2328 next_section = NULL; 2329 skip_size = 0; 2330 } else { 2331 next_section = cur_section + 1; 2332 2333 if (cur_section->end > next_section->start) { 2334 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", 2335 next_section->start, 2336 cur_section->end); 2337 break; 2338 } 2339 2340 skip_size = next_section->start - cur_section->end; 2341 } 2342 2343 if (buf_len < (skip_size + section_size)) { 2344 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); 2345 break; 2346 } 2347 2348 buf_len -= skip_size + section_size; 2349 2350 /* read section to dest memory */ 2351 ret = ath10k_sdio_read_mem(ar, cur_section->start, 2352 buf, section_size); 2353 if (ret) { 2354 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", 2355 cur_section->start, ret); 2356 break; 2357 } 2358 2359 buf += section_size; 2360 count += section_size; 2361 2362 /* fill in the gap between this section and the next */ 2363 for (j = 0; j < skip_size; j++) { 2364 *buf = ATH10K_MAGIC_NOT_COPIED; 2365 buf++; 2366 } 2367 2368 count += skip_size; 2369 } 2370 2371 return count; 2372 } 2373 2374 /* if an error happened returns < 0, otherwise the length */ 2375 static int ath10k_sdio_dump_memory_generic(struct ath10k *ar, 2376 const struct ath10k_mem_region *current_region, 2377 u8 *buf, 2378 bool fast_dump) 2379 { 2380 int ret; 2381 2382 if (current_region->section_table.size > 0) 2383 /* Copy each section individually. */ 2384 return ath10k_sdio_dump_memory_section(ar, 2385 current_region, 2386 buf, 2387 current_region->len); 2388 2389 /* No individiual memory sections defined so we can 2390 * copy the entire memory region. 2391 */ 2392 if (fast_dump) 2393 ret = ath10k_bmi_read_memory(ar, 2394 current_region->start, 2395 buf, 2396 current_region->len); 2397 else 2398 ret = ath10k_sdio_read_mem(ar, 2399 current_region->start, 2400 buf, 2401 current_region->len); 2402 2403 if (ret) { 2404 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", 2405 current_region->name, ret); 2406 return ret; 2407 } 2408 2409 return current_region->len; 2410 } 2411 2412 static void ath10k_sdio_dump_memory(struct ath10k *ar, 2413 struct ath10k_fw_crash_data *crash_data, 2414 bool fast_dump) 2415 { 2416 const struct ath10k_hw_mem_layout *mem_layout; 2417 const struct ath10k_mem_region *current_region; 2418 struct ath10k_dump_ram_data_hdr *hdr; 2419 u32 count; 2420 size_t buf_len; 2421 int ret, i; 2422 u8 *buf; 2423 2424 if (!crash_data) 2425 return; 2426 2427 mem_layout = ath10k_coredump_get_mem_layout(ar); 2428 if (!mem_layout) 2429 return; 2430 2431 current_region = &mem_layout->region_table.regions[0]; 2432 2433 buf = crash_data->ramdump_buf; 2434 buf_len = crash_data->ramdump_buf_len; 2435 2436 memset(buf, 0, buf_len); 2437 2438 for (i = 0; i < mem_layout->region_table.size; i++) { 2439 count = 0; 2440 2441 if (current_region->len > buf_len) { 2442 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", 2443 current_region->name, 2444 current_region->len, 2445 buf_len); 2446 break; 2447 } 2448 2449 /* Reserve space for the header. */ 2450 hdr = (void *)buf; 2451 buf += sizeof(*hdr); 2452 buf_len -= sizeof(*hdr); 2453 2454 ret = ath10k_sdio_dump_memory_generic(ar, current_region, buf, 2455 fast_dump); 2456 if (ret >= 0) 2457 count = ret; 2458 2459 hdr->region_type = cpu_to_le32(current_region->type); 2460 hdr->start = cpu_to_le32(current_region->start); 2461 hdr->length = cpu_to_le32(count); 2462 2463 if (count == 0) 2464 /* Note: the header remains, just with zero length. */ 2465 break; 2466 2467 buf += count; 2468 buf_len -= count; 2469 2470 current_region++; 2471 } 2472 } 2473 2474 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar) 2475 { 2476 struct ath10k_fw_crash_data *crash_data; 2477 char guid[UUID_STRING_LEN + 1]; 2478 bool fast_dump; 2479 2480 fast_dump = ath10k_sdio_is_fast_dump_supported(ar); 2481 2482 if (fast_dump) 2483 ath10k_bmi_start(ar); 2484 2485 ar->stats.fw_crash_counter++; 2486 2487 ath10k_sdio_disable_intrs(ar); 2488 2489 crash_data = ath10k_coredump_new(ar); 2490 2491 if (crash_data) 2492 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); 2493 else 2494 scnprintf(guid, sizeof(guid), "n/a"); 2495 2496 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); 2497 ath10k_print_driver_info(ar); 2498 ath10k_sdio_dump_registers(ar, crash_data, fast_dump); 2499 ath10k_sdio_dump_memory(ar, crash_data, fast_dump); 2500 2501 ath10k_sdio_enable_intrs(ar); 2502 2503 ath10k_core_start_recovery(ar); 2504 } 2505 2506 static int ath10k_sdio_probe(struct sdio_func *func, 2507 const struct sdio_device_id *id) 2508 { 2509 struct ath10k_sdio *ar_sdio; 2510 struct ath10k *ar; 2511 enum ath10k_hw_rev hw_rev; 2512 u32 dev_id_base; 2513 struct ath10k_bus_params bus_params = {}; 2514 int ret, i; 2515 2516 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 2517 * If there will be newer chipsets that does not use the hw reg 2518 * setup as defined in qca6174_regs and qca6174_values, this 2519 * assumption is no longer valid and hw_rev must be setup differently 2520 * depending on chipset. 2521 */ 2522 hw_rev = ATH10K_HW_QCA6174; 2523 2524 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2525 hw_rev, &ath10k_sdio_hif_ops); 2526 if (!ar) { 2527 dev_err(&func->dev, "failed to allocate core\n"); 2528 return -ENOMEM; 2529 } 2530 2531 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll, 2532 ATH10K_NAPI_BUDGET); 2533 2534 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2535 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2536 func->num, func->vendor, func->device, 2537 func->max_blksize, func->cur_blksize); 2538 2539 ar_sdio = ath10k_sdio_priv(ar); 2540 2541 ar_sdio->irq_data.irq_proc_reg = 2542 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2543 GFP_KERNEL); 2544 if (!ar_sdio->irq_data.irq_proc_reg) { 2545 ret = -ENOMEM; 2546 goto err_core_destroy; 2547 } 2548 2549 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); 2550 if (!ar_sdio->vsg_buffer) { 2551 ret = -ENOMEM; 2552 goto err_core_destroy; 2553 } 2554 2555 ar_sdio->irq_data.irq_en_reg = 2556 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2557 GFP_KERNEL); 2558 if (!ar_sdio->irq_data.irq_en_reg) { 2559 ret = -ENOMEM; 2560 goto err_core_destroy; 2561 } 2562 2563 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); 2564 if (!ar_sdio->bmi_buf) { 2565 ret = -ENOMEM; 2566 goto err_core_destroy; 2567 } 2568 2569 ar_sdio->func = func; 2570 sdio_set_drvdata(func, ar_sdio); 2571 2572 ar_sdio->is_disabled = true; 2573 ar_sdio->ar = ar; 2574 2575 spin_lock_init(&ar_sdio->lock); 2576 spin_lock_init(&ar_sdio->wr_async_lock); 2577 mutex_init(&ar_sdio->irq_data.mtx); 2578 2579 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2580 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2581 2582 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2583 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2584 if (!ar_sdio->workqueue) { 2585 ret = -ENOMEM; 2586 goto err_core_destroy; 2587 } 2588 2589 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2590 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2591 2592 skb_queue_head_init(&ar_sdio->rx_head); 2593 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); 2594 2595 dev_id_base = (id->device & 0x0F00); 2596 if (dev_id_base != (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00) && 2597 dev_id_base != (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00)) { 2598 ret = -ENODEV; 2599 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2600 dev_id_base, id->device); 2601 goto err_free_wq; 2602 } 2603 2604 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2605 ar->id.vendor = id->vendor; 2606 ar->id.device = id->device; 2607 2608 ath10k_sdio_set_mbox_info(ar); 2609 2610 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2611 /* TODO: don't know yet how to get chip_id with SDIO */ 2612 bus_params.chip_id = 0; 2613 bus_params.hl_msdu_ids = true; 2614 2615 ar->hw->max_mtu = ETH_DATA_LEN; 2616 2617 ret = ath10k_core_register(ar, &bus_params); 2618 if (ret) { 2619 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2620 goto err_free_wq; 2621 } 2622 2623 timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0); 2624 2625 return 0; 2626 2627 err_free_wq: 2628 destroy_workqueue(ar_sdio->workqueue); 2629 err_core_destroy: 2630 ath10k_core_destroy(ar); 2631 2632 return ret; 2633 } 2634 2635 static void ath10k_sdio_remove(struct sdio_func *func) 2636 { 2637 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2638 struct ath10k *ar = ar_sdio->ar; 2639 2640 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2641 "sdio removed func %d vendor 0x%x device 0x%x\n", 2642 func->num, func->vendor, func->device); 2643 2644 ath10k_core_unregister(ar); 2645 2646 netif_napi_del(&ar->napi); 2647 2648 ath10k_core_destroy(ar); 2649 2650 flush_workqueue(ar_sdio->workqueue); 2651 destroy_workqueue(ar_sdio->workqueue); 2652 } 2653 2654 static const struct sdio_device_id ath10k_sdio_devices[] = { 2655 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6005)}, 2656 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_QCA9377)}, 2657 {}, 2658 }; 2659 2660 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2661 2662 static struct sdio_driver ath10k_sdio_driver = { 2663 .name = "ath10k_sdio", 2664 .id_table = ath10k_sdio_devices, 2665 .probe = ath10k_sdio_probe, 2666 .remove = ath10k_sdio_remove, 2667 .drv = { 2668 .owner = THIS_MODULE, 2669 .pm = ATH10K_SDIO_PM_OPS, 2670 }, 2671 }; 2672 2673 static int __init ath10k_sdio_init(void) 2674 { 2675 int ret; 2676 2677 ret = sdio_register_driver(&ath10k_sdio_driver); 2678 if (ret) 2679 pr_err("sdio driver registration failed: %d\n", ret); 2680 2681 return ret; 2682 } 2683 2684 static void __exit ath10k_sdio_exit(void) 2685 { 2686 sdio_unregister_driver(&ath10k_sdio_driver); 2687 } 2688 2689 module_init(ath10k_sdio_init); 2690 module_exit(ath10k_sdio_exit); 2691 2692 MODULE_AUTHOR("Qualcomm Atheros"); 2693 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2694 MODULE_LICENSE("Dual BSD/GPL"); 2695