1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 5 * 6 * Permission to use, copy, modify, and/or distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/host.h> 23 #include <linux/mmc/sdio_func.h> 24 #include <linux/mmc/sdio_ids.h> 25 #include <linux/mmc/sdio.h> 26 #include <linux/mmc/sd.h> 27 #include <linux/bitfield.h> 28 #include "core.h" 29 #include "bmi.h" 30 #include "debug.h" 31 #include "hif.h" 32 #include "htc.h" 33 #include "targaddrs.h" 34 #include "trace.h" 35 #include "sdio.h" 36 37 /* inlined helper functions */ 38 39 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 40 size_t len) 41 { 42 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 43 } 44 45 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 46 { 47 return (enum ath10k_htc_ep_id)pipe_id; 48 } 49 50 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 51 { 52 dev_kfree_skb(pkt->skb); 53 pkt->skb = NULL; 54 pkt->alloc_len = 0; 55 pkt->act_len = 0; 56 pkt->trailer_only = false; 57 } 58 59 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 60 size_t act_len, size_t full_len, 61 bool part_of_bundle, 62 bool last_in_bundle) 63 { 64 pkt->skb = dev_alloc_skb(full_len); 65 if (!pkt->skb) 66 return -ENOMEM; 67 68 pkt->act_len = act_len; 69 pkt->alloc_len = full_len; 70 pkt->part_of_bundle = part_of_bundle; 71 pkt->last_in_bundle = last_in_bundle; 72 pkt->trailer_only = false; 73 74 return 0; 75 } 76 77 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 78 { 79 bool trailer_only = false; 80 struct ath10k_htc_hdr *htc_hdr = 81 (struct ath10k_htc_hdr *)pkt->skb->data; 82 u16 len = __le16_to_cpu(htc_hdr->len); 83 84 if (len == htc_hdr->trailer_len) 85 trailer_only = true; 86 87 return trailer_only; 88 } 89 90 /* sdio/mmc functions */ 91 92 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 93 unsigned int address, 94 unsigned char val) 95 { 96 *arg = FIELD_PREP(BIT(31), write) | 97 FIELD_PREP(BIT(27), raw) | 98 FIELD_PREP(BIT(26), 1) | 99 FIELD_PREP(GENMASK(25, 9), address) | 100 FIELD_PREP(BIT(8), 1) | 101 FIELD_PREP(GENMASK(7, 0), val); 102 } 103 104 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 105 unsigned int address, 106 unsigned char byte) 107 { 108 struct mmc_command io_cmd; 109 110 memset(&io_cmd, 0, sizeof(io_cmd)); 111 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 112 io_cmd.opcode = SD_IO_RW_DIRECT; 113 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 114 115 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 116 } 117 118 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 119 unsigned int address, 120 unsigned char *byte) 121 { 122 struct mmc_command io_cmd; 123 int ret; 124 125 memset(&io_cmd, 0, sizeof(io_cmd)); 126 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 127 io_cmd.opcode = SD_IO_RW_DIRECT; 128 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 129 130 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 131 if (!ret) 132 *byte = io_cmd.resp[0]; 133 134 return ret; 135 } 136 137 static int ath10k_sdio_config(struct ath10k *ar) 138 { 139 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 140 struct sdio_func *func = ar_sdio->func; 141 unsigned char byte, asyncintdelay = 2; 142 int ret; 143 144 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 145 146 sdio_claim_host(func); 147 148 byte = 0; 149 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 150 SDIO_CCCR_DRIVE_STRENGTH, 151 &byte); 152 153 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 154 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 155 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 156 157 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 158 SDIO_CCCR_DRIVE_STRENGTH, 159 byte); 160 161 byte = 0; 162 ret = ath10k_sdio_func0_cmd52_rd_byte( 163 func->card, 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 165 &byte); 166 167 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 168 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 169 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 170 171 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 172 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 173 byte); 174 if (ret) { 175 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 176 goto out; 177 } 178 179 byte = 0; 180 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 181 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 182 &byte); 183 184 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 185 186 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 187 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 188 byte); 189 if (ret) { 190 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 191 ret); 192 goto out; 193 } 194 195 byte = 0; 196 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 197 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 198 &byte); 199 200 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 201 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 202 203 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 204 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 205 byte); 206 207 /* give us some time to enable, in ms */ 208 func->enable_timeout = 100; 209 210 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 211 if (ret) { 212 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 213 ar_sdio->mbox_info.block_size, ret); 214 goto out; 215 } 216 217 out: 218 sdio_release_host(func); 219 return ret; 220 } 221 222 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 223 { 224 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 225 struct sdio_func *func = ar_sdio->func; 226 int ret; 227 228 sdio_claim_host(func); 229 230 sdio_writel(func, val, addr, &ret); 231 if (ret) { 232 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 233 val, addr, ret); 234 goto out; 235 } 236 237 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 238 addr, val); 239 240 out: 241 sdio_release_host(func); 242 243 return ret; 244 } 245 246 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 247 { 248 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 249 struct sdio_func *func = ar_sdio->func; 250 __le32 *buf; 251 int ret; 252 253 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 254 if (!buf) 255 return -ENOMEM; 256 257 *buf = cpu_to_le32(val); 258 259 sdio_claim_host(func); 260 261 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 262 if (ret) { 263 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 264 val, addr, ret); 265 goto out; 266 } 267 268 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 269 addr, val); 270 271 out: 272 sdio_release_host(func); 273 274 kfree(buf); 275 276 return ret; 277 } 278 279 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 280 { 281 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 282 struct sdio_func *func = ar_sdio->func; 283 int ret; 284 285 sdio_claim_host(func); 286 *val = sdio_readl(func, addr, &ret); 287 if (ret) { 288 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 289 addr, ret); 290 goto out; 291 } 292 293 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 294 addr, *val); 295 296 out: 297 sdio_release_host(func); 298 299 return ret; 300 } 301 302 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 303 { 304 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 305 struct sdio_func *func = ar_sdio->func; 306 int ret; 307 308 sdio_claim_host(func); 309 310 ret = sdio_memcpy_fromio(func, buf, addr, len); 311 if (ret) { 312 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 313 addr, ret); 314 goto out; 315 } 316 317 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 318 addr, buf, len); 319 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 320 321 out: 322 sdio_release_host(func); 323 324 return ret; 325 } 326 327 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 328 { 329 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 330 struct sdio_func *func = ar_sdio->func; 331 int ret; 332 333 sdio_claim_host(func); 334 335 /* For some reason toio() doesn't have const for the buffer, need 336 * an ugly hack to workaround that. 337 */ 338 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 339 if (ret) { 340 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 341 addr, ret); 342 goto out; 343 } 344 345 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 346 addr, buf, len); 347 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 348 349 out: 350 sdio_release_host(func); 351 352 return ret; 353 } 354 355 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 356 { 357 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 358 struct sdio_func *func = ar_sdio->func; 359 int ret; 360 361 sdio_claim_host(func); 362 363 len = round_down(len, ar_sdio->mbox_info.block_size); 364 365 ret = sdio_readsb(func, buf, addr, len); 366 if (ret) { 367 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 368 addr, ret); 369 goto out; 370 } 371 372 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 373 addr, buf, len); 374 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 375 376 out: 377 sdio_release_host(func); 378 379 return ret; 380 } 381 382 /* HIF mbox functions */ 383 384 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 385 struct ath10k_sdio_rx_data *pkt, 386 u32 *lookaheads, 387 int *n_lookaheads) 388 { 389 struct ath10k_htc *htc = &ar->htc; 390 struct sk_buff *skb = pkt->skb; 391 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 392 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 393 enum ath10k_htc_ep_id eid; 394 u16 payload_len; 395 u8 *trailer; 396 int ret; 397 398 payload_len = le16_to_cpu(htc_hdr->len); 399 400 if (trailer_present) { 401 trailer = skb->data + sizeof(*htc_hdr) + 402 payload_len - htc_hdr->trailer_len; 403 404 eid = pipe_id_to_eid(htc_hdr->eid); 405 406 ret = ath10k_htc_process_trailer(htc, 407 trailer, 408 htc_hdr->trailer_len, 409 eid, 410 lookaheads, 411 n_lookaheads); 412 if (ret) 413 return ret; 414 415 if (is_trailer_only_msg(pkt)) 416 pkt->trailer_only = true; 417 418 skb_trim(skb, skb->len - htc_hdr->trailer_len); 419 } 420 421 skb_pull(skb, sizeof(*htc_hdr)); 422 423 return 0; 424 } 425 426 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 427 u32 lookaheads[], 428 int *n_lookahead) 429 { 430 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 431 struct ath10k_htc *htc = &ar->htc; 432 struct ath10k_sdio_rx_data *pkt; 433 struct ath10k_htc_ep *ep; 434 enum ath10k_htc_ep_id id; 435 int ret, i, *n_lookahead_local; 436 u32 *lookaheads_local; 437 438 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 439 lookaheads_local = lookaheads; 440 n_lookahead_local = n_lookahead; 441 442 id = ((struct ath10k_htc_hdr *)&lookaheads[i])->eid; 443 444 if (id >= ATH10K_HTC_EP_COUNT) { 445 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 446 id); 447 ret = -ENOMEM; 448 goto out; 449 } 450 451 ep = &htc->endpoint[id]; 452 453 if (ep->service_id == 0) { 454 ath10k_warn(ar, "ep %d is not connected\n", id); 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 pkt = &ar_sdio->rx_pkts[i]; 460 461 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 462 /* Only read lookahead's from RX trailers 463 * for the last packet in a bundle. 464 */ 465 lookaheads_local = NULL; 466 n_lookahead_local = NULL; 467 } 468 469 ret = ath10k_sdio_mbox_rx_process_packet(ar, 470 pkt, 471 lookaheads_local, 472 n_lookahead_local); 473 if (ret) 474 goto out; 475 476 if (!pkt->trailer_only) 477 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb); 478 else 479 kfree_skb(pkt->skb); 480 481 /* The RX complete handler now owns the skb...*/ 482 pkt->skb = NULL; 483 pkt->alloc_len = 0; 484 } 485 486 ret = 0; 487 488 out: 489 /* Free all packets that was not passed on to the RX completion 490 * handler... 491 */ 492 for (; i < ar_sdio->n_rx_pkts; i++) 493 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 494 495 return ret; 496 } 497 498 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar, 499 struct ath10k_sdio_rx_data *rx_pkts, 500 struct ath10k_htc_hdr *htc_hdr, 501 size_t full_len, size_t act_len, 502 size_t *bndl_cnt) 503 { 504 int ret, i; 505 506 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags); 507 508 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_BUNDLE) { 509 ath10k_warn(ar, 510 "HTC bundle length %u exceeds maximum %u\n", 511 le16_to_cpu(htc_hdr->len), 512 HTC_HOST_MAX_MSG_PER_BUNDLE); 513 return -ENOMEM; 514 } 515 516 /* Allocate bndl_cnt extra skb's for the bundle. 517 * The package containing the 518 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 519 * in bndl_cnt. The skb for that packet will be 520 * allocated separately. 521 */ 522 for (i = 0; i < *bndl_cnt; i++) { 523 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 524 act_len, 525 full_len, 526 true, 527 false); 528 if (ret) 529 return ret; 530 } 531 532 return 0; 533 } 534 535 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 536 u32 lookaheads[], int n_lookaheads) 537 { 538 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 539 struct ath10k_htc_hdr *htc_hdr; 540 size_t full_len, act_len; 541 bool last_in_bundle; 542 int ret, i; 543 544 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 545 ath10k_warn(ar, 546 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 547 n_lookaheads, 548 ATH10K_SDIO_MAX_RX_MSGS); 549 ret = -ENOMEM; 550 goto err; 551 } 552 553 for (i = 0; i < n_lookaheads; i++) { 554 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 555 last_in_bundle = false; 556 557 if (le16_to_cpu(htc_hdr->len) > 558 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 559 ath10k_warn(ar, 560 "payload length %d exceeds max htc length: %zu\n", 561 le16_to_cpu(htc_hdr->len), 562 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 563 ret = -ENOMEM; 564 goto err; 565 } 566 567 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 568 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 569 570 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 571 ath10k_warn(ar, 572 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 573 htc_hdr->eid, htc_hdr->flags, 574 le16_to_cpu(htc_hdr->len)); 575 ret = -EINVAL; 576 goto err; 577 } 578 579 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) { 580 /* HTC header indicates that every packet to follow 581 * has the same padded length so that it can be 582 * optimally fetched as a full bundle. 583 */ 584 size_t bndl_cnt; 585 586 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar, 587 &ar_sdio->rx_pkts[i], 588 htc_hdr, 589 full_len, 590 act_len, 591 &bndl_cnt); 592 593 n_lookaheads += bndl_cnt; 594 i += bndl_cnt; 595 /*Next buffer will be the last in the bundle */ 596 last_in_bundle = true; 597 } 598 599 /* Allocate skb for packet. If the packet had the 600 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 601 * packet skb's have been allocated in the previous step. 602 */ 603 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i], 604 act_len, 605 full_len, 606 last_in_bundle, 607 last_in_bundle); 608 } 609 610 ar_sdio->n_rx_pkts = i; 611 612 return 0; 613 614 err: 615 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 616 if (!ar_sdio->rx_pkts[i].alloc_len) 617 break; 618 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 619 } 620 621 return ret; 622 } 623 624 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar, 625 struct ath10k_sdio_rx_data *pkt) 626 { 627 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 628 struct sk_buff *skb = pkt->skb; 629 int ret; 630 631 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 632 skb->data, pkt->alloc_len); 633 pkt->status = ret; 634 if (!ret) 635 skb_put(skb, pkt->act_len); 636 637 return ret; 638 } 639 640 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 641 { 642 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 643 int ret, i; 644 645 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 646 ret = ath10k_sdio_mbox_rx_packet(ar, 647 &ar_sdio->rx_pkts[i]); 648 if (ret) 649 goto err; 650 } 651 652 return 0; 653 654 err: 655 /* Free all packets that was not successfully fetched. */ 656 for (; i < ar_sdio->n_rx_pkts; i++) 657 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 658 659 return ret; 660 } 661 662 /* This is the timeout for mailbox processing done in the sdio irq 663 * handler. The timeout is deliberately set quite high since SDIO dump logs 664 * over serial port can/will add a substantial overhead to the processing 665 * (if enabled). 666 */ 667 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 668 669 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 670 u32 msg_lookahead, bool *done) 671 { 672 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 673 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 674 int n_lookaheads = 1; 675 unsigned long timeout; 676 int ret; 677 678 *done = true; 679 680 /* Copy the lookahead obtained from the HTC register table into our 681 * temp array as a start value. 682 */ 683 lookaheads[0] = msg_lookahead; 684 685 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 686 while (time_before(jiffies, timeout)) { 687 /* Try to allocate as many HTC RX packets indicated by 688 * n_lookaheads. 689 */ 690 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 691 n_lookaheads); 692 if (ret) 693 break; 694 695 if (ar_sdio->n_rx_pkts >= 2) 696 /* A recv bundle was detected, force IRQ status 697 * re-check again. 698 */ 699 *done = false; 700 701 ret = ath10k_sdio_mbox_rx_fetch(ar); 702 703 /* Process fetched packets. This will potentially update 704 * n_lookaheads depending on if the packets contain lookahead 705 * reports. 706 */ 707 n_lookaheads = 0; 708 ret = ath10k_sdio_mbox_rx_process_packets(ar, 709 lookaheads, 710 &n_lookaheads); 711 712 if (!n_lookaheads || ret) 713 break; 714 715 /* For SYNCH processing, if we get here, we are running 716 * through the loop again due to updated lookaheads. Set 717 * flag that we should re-check IRQ status registers again 718 * before leaving IRQ processing, this can net better 719 * performance in high throughput situations. 720 */ 721 *done = false; 722 } 723 724 if (ret && (ret != -ECANCELED)) 725 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 726 ret); 727 728 return ret; 729 } 730 731 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 732 { 733 u32 val; 734 int ret; 735 736 /* TODO: Add firmware crash handling */ 737 ath10k_warn(ar, "firmware crashed\n"); 738 739 /* read counter to clear the interrupt, the debug error interrupt is 740 * counter 0. 741 */ 742 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 743 if (ret) 744 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 745 746 return ret; 747 } 748 749 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 750 { 751 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 752 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 753 u8 counter_int_status; 754 int ret; 755 756 mutex_lock(&irq_data->mtx); 757 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 758 irq_data->irq_en_reg->cntr_int_status_en; 759 760 /* NOTE: other modules like GMBOX may use the counter interrupt for 761 * credit flow control on other counters, we only need to check for 762 * the debug assertion counter interrupt. 763 */ 764 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 765 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 766 else 767 ret = 0; 768 769 mutex_unlock(&irq_data->mtx); 770 771 return ret; 772 } 773 774 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 775 { 776 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 777 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 778 u8 error_int_status; 779 int ret; 780 781 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 782 783 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 784 if (!error_int_status) { 785 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 786 error_int_status); 787 return -EIO; 788 } 789 790 ath10k_dbg(ar, ATH10K_DBG_SDIO, 791 "sdio error_int_status 0x%x\n", error_int_status); 792 793 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 794 error_int_status)) 795 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 796 797 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 798 error_int_status)) 799 ath10k_warn(ar, "rx underflow interrupt error\n"); 800 801 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 802 error_int_status)) 803 ath10k_warn(ar, "tx overflow interrupt error\n"); 804 805 /* Clear the interrupt */ 806 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 807 808 /* set W1C value to clear the interrupt, this hits the register first */ 809 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 810 error_int_status); 811 if (ret) { 812 ath10k_warn(ar, "unable to write to error int status address: %d\n", 813 ret); 814 return ret; 815 } 816 817 return 0; 818 } 819 820 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 821 { 822 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 823 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 824 u8 cpu_int_status; 825 int ret; 826 827 mutex_lock(&irq_data->mtx); 828 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 829 irq_data->irq_en_reg->cpu_int_status_en; 830 if (!cpu_int_status) { 831 ath10k_warn(ar, "CPU interrupt status is zero\n"); 832 ret = -EIO; 833 goto out; 834 } 835 836 /* Clear the interrupt */ 837 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 838 839 /* Set up the register transfer buffer to hit the register 4 times, 840 * this is done to make the access 4-byte aligned to mitigate issues 841 * with host bus interconnects that restrict bus transfer lengths to 842 * be a multiple of 4-bytes. 843 * 844 * Set W1C value to clear the interrupt, this hits the register first. 845 */ 846 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 847 cpu_int_status); 848 if (ret) { 849 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 850 ret); 851 goto out; 852 } 853 854 out: 855 mutex_unlock(&irq_data->mtx); 856 return ret; 857 } 858 859 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 860 u8 *host_int_status, 861 u32 *lookahead) 862 { 863 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 864 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 865 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 866 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 867 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 868 int ret; 869 870 mutex_lock(&irq_data->mtx); 871 872 *lookahead = 0; 873 *host_int_status = 0; 874 875 /* int_status_en is supposed to be non zero, otherwise interrupts 876 * shouldn't be enabled. There is however a short time frame during 877 * initialization between the irq register and int_status_en init 878 * where this can happen. 879 * We silently ignore this condition. 880 */ 881 if (!irq_en_reg->int_status_en) { 882 ret = 0; 883 goto out; 884 } 885 886 /* Read the first sizeof(struct ath10k_irq_proc_registers) 887 * bytes of the HTC register table. This 888 * will yield us the value of different int status 889 * registers and the lookahead registers. 890 */ 891 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 892 irq_proc_reg, sizeof(*irq_proc_reg)); 893 if (ret) 894 goto out; 895 896 /* Update only those registers that are enabled */ 897 *host_int_status = irq_proc_reg->host_int_status & 898 irq_en_reg->int_status_en; 899 900 /* Look at mbox status */ 901 if (!(*host_int_status & htc_mbox)) { 902 *lookahead = 0; 903 ret = 0; 904 goto out; 905 } 906 907 /* Mask out pending mbox value, we use look ahead as 908 * the real flag for mbox processing. 909 */ 910 *host_int_status &= ~htc_mbox; 911 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 912 *lookahead = le32_to_cpu( 913 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 914 if (!*lookahead) 915 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 916 } 917 918 out: 919 mutex_unlock(&irq_data->mtx); 920 return ret; 921 } 922 923 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 924 bool *done) 925 { 926 u8 host_int_status; 927 u32 lookahead; 928 int ret; 929 930 /* NOTE: HIF implementation guarantees that the context of this 931 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 932 * sleep or call any API that can block or switch thread/task 933 * contexts. This is a fully schedulable context. 934 */ 935 936 ret = ath10k_sdio_mbox_read_int_status(ar, 937 &host_int_status, 938 &lookahead); 939 if (ret) { 940 *done = true; 941 goto out; 942 } 943 944 if (!host_int_status && !lookahead) { 945 ret = 0; 946 *done = true; 947 goto out; 948 } 949 950 if (lookahead) { 951 ath10k_dbg(ar, ATH10K_DBG_SDIO, 952 "sdio pending mailbox msg lookahead 0x%08x\n", 953 lookahead); 954 955 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 956 lookahead, 957 done); 958 if (ret) 959 goto out; 960 } 961 962 /* now, handle the rest of the interrupts */ 963 ath10k_dbg(ar, ATH10K_DBG_SDIO, 964 "sdio host_int_status 0x%x\n", host_int_status); 965 966 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 967 /* CPU Interrupt */ 968 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 969 if (ret) 970 goto out; 971 } 972 973 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 974 /* Error Interrupt */ 975 ret = ath10k_sdio_mbox_proc_err_intr(ar); 976 if (ret) 977 goto out; 978 } 979 980 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 981 /* Counter Interrupt */ 982 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 983 984 ret = 0; 985 986 out: 987 /* An optimization to bypass reading the IRQ status registers 988 * unecessarily which can re-wake the target, if upper layers 989 * determine that we are in a low-throughput mode, we can rely on 990 * taking another interrupt rather than re-checking the status 991 * registers which can re-wake the target. 992 * 993 * NOTE : for host interfaces that makes use of detecting pending 994 * mbox messages at hif can not use this optimization due to 995 * possible side effects, SPI requires the host to drain all 996 * messages from the mailbox before exiting the ISR routine. 997 */ 998 999 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1000 "sdio pending irqs done %d status %d", 1001 *done, ret); 1002 1003 return ret; 1004 } 1005 1006 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1007 { 1008 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1009 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1010 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1011 1012 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1013 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1014 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1015 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1016 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1017 1018 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1019 1020 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1021 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1022 switch (dev_id_base) { 1023 case QCA_MANUFACTURER_ID_AR6005_BASE: 1024 if (dev_id_chiprev < 4) 1025 mbox_info->ext_info[0].htc_ext_sz = 1026 ATH10K_HIF_MBOX0_EXT_WIDTH; 1027 else 1028 /* from QCA6174 2.0(0x504), the width has been extended 1029 * to 56K 1030 */ 1031 mbox_info->ext_info[0].htc_ext_sz = 1032 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1033 break; 1034 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1035 mbox_info->ext_info[0].htc_ext_sz = 1036 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1037 break; 1038 default: 1039 mbox_info->ext_info[0].htc_ext_sz = 1040 ATH10K_HIF_MBOX0_EXT_WIDTH; 1041 } 1042 1043 mbox_info->ext_info[1].htc_ext_addr = 1044 mbox_info->ext_info[0].htc_ext_addr + 1045 mbox_info->ext_info[0].htc_ext_sz + 1046 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1047 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1048 } 1049 1050 /* BMI functions */ 1051 1052 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1053 { 1054 u32 addr, cmd_credits; 1055 unsigned long timeout; 1056 int ret; 1057 1058 /* Read the counter register to get the command credits */ 1059 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1060 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1061 cmd_credits = 0; 1062 1063 while (time_before(jiffies, timeout) && !cmd_credits) { 1064 /* Hit the credit counter with a 4-byte access, the first byte 1065 * read will hit the counter and cause a decrement, while the 1066 * remaining 3 bytes has no effect. The rationale behind this 1067 * is to make all HIF accesses 4-byte aligned. 1068 */ 1069 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1070 if (ret) { 1071 ath10k_warn(ar, 1072 "unable to decrement the command credit count register: %d\n", 1073 ret); 1074 return ret; 1075 } 1076 1077 /* The counter is only 8 bits. 1078 * Ignore anything in the upper 3 bytes 1079 */ 1080 cmd_credits &= 0xFF; 1081 } 1082 1083 if (!cmd_credits) { 1084 ath10k_warn(ar, "bmi communication timeout\n"); 1085 return -ETIMEDOUT; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1092 { 1093 unsigned long timeout; 1094 u32 rx_word; 1095 int ret; 1096 1097 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1098 rx_word = 0; 1099 1100 while ((time_before(jiffies, timeout)) && !rx_word) { 1101 ret = ath10k_sdio_read32(ar, 1102 MBOX_HOST_INT_STATUS_ADDRESS, 1103 &rx_word); 1104 if (ret) { 1105 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1106 return ret; 1107 } 1108 1109 /* all we really want is one bit */ 1110 rx_word &= 1; 1111 } 1112 1113 if (!rx_word) { 1114 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1115 return -EINVAL; 1116 } 1117 1118 return ret; 1119 } 1120 1121 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1122 void *req, u32 req_len, 1123 void *resp, u32 *resp_len) 1124 { 1125 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1126 u32 addr; 1127 int ret; 1128 1129 if (req) { 1130 ret = ath10k_sdio_bmi_credits(ar); 1131 if (ret) 1132 return ret; 1133 1134 addr = ar_sdio->mbox_info.htc_addr; 1135 1136 memcpy(ar_sdio->bmi_buf, req, req_len); 1137 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1138 if (ret) { 1139 ath10k_warn(ar, 1140 "unable to send the bmi data to the device: %d\n", 1141 ret); 1142 return ret; 1143 } 1144 } 1145 1146 if (!resp || !resp_len) 1147 /* No response expected */ 1148 return 0; 1149 1150 /* During normal bootup, small reads may be required. 1151 * Rather than issue an HIF Read and then wait as the Target 1152 * adds successive bytes to the FIFO, we wait here until 1153 * we know that response data is available. 1154 * 1155 * This allows us to cleanly timeout on an unexpected 1156 * Target failure rather than risk problems at the HIF level. 1157 * In particular, this avoids SDIO timeouts and possibly garbage 1158 * data on some host controllers. And on an interconnect 1159 * such as Compact Flash (as well as some SDIO masters) which 1160 * does not provide any indication on data timeout, it avoids 1161 * a potential hang or garbage response. 1162 * 1163 * Synchronization is more difficult for reads larger than the 1164 * size of the MBOX FIFO (128B), because the Target is unable 1165 * to push the 129th byte of data until AFTER the Host posts an 1166 * HIF Read and removes some FIFO data. So for large reads the 1167 * Host proceeds to post an HIF Read BEFORE all the data is 1168 * actually available to read. Fortunately, large BMI reads do 1169 * not occur in practice -- they're supported for debug/development. 1170 * 1171 * So Host/Target BMI synchronization is divided into these cases: 1172 * CASE 1: length < 4 1173 * Should not happen 1174 * 1175 * CASE 2: 4 <= length <= 128 1176 * Wait for first 4 bytes to be in FIFO 1177 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1178 * a BMI command credit, which indicates that the ENTIRE 1179 * response is available in the the FIFO 1180 * 1181 * CASE 3: length > 128 1182 * Wait for the first 4 bytes to be in FIFO 1183 * 1184 * For most uses, a small timeout should be sufficient and we will 1185 * usually see a response quickly; but there may be some unusual 1186 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1187 * For now, we use an unbounded busy loop while waiting for 1188 * BMI_EXECUTE. 1189 * 1190 * If BMI_EXECUTE ever needs to support longer-latency execution, 1191 * especially in production, this code needs to be enhanced to sleep 1192 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1193 * a function of Host processor speed. 1194 */ 1195 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1196 if (ret) 1197 return ret; 1198 1199 /* We always read from the start of the mbox address */ 1200 addr = ar_sdio->mbox_info.htc_addr; 1201 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1202 if (ret) { 1203 ath10k_warn(ar, 1204 "unable to read the bmi data from the device: %d\n", 1205 ret); 1206 return ret; 1207 } 1208 1209 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1210 1211 return 0; 1212 } 1213 1214 /* sdio async handling functions */ 1215 1216 static struct ath10k_sdio_bus_request 1217 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1218 { 1219 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1220 struct ath10k_sdio_bus_request *bus_req; 1221 1222 spin_lock_bh(&ar_sdio->lock); 1223 1224 if (list_empty(&ar_sdio->bus_req_freeq)) { 1225 bus_req = NULL; 1226 goto out; 1227 } 1228 1229 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1230 struct ath10k_sdio_bus_request, list); 1231 list_del(&bus_req->list); 1232 1233 out: 1234 spin_unlock_bh(&ar_sdio->lock); 1235 return bus_req; 1236 } 1237 1238 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1239 struct ath10k_sdio_bus_request *bus_req) 1240 { 1241 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1242 1243 memset(bus_req, 0, sizeof(*bus_req)); 1244 1245 spin_lock_bh(&ar_sdio->lock); 1246 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1247 spin_unlock_bh(&ar_sdio->lock); 1248 } 1249 1250 static void __ath10k_sdio_write_async(struct ath10k *ar, 1251 struct ath10k_sdio_bus_request *req) 1252 { 1253 struct ath10k_htc_ep *ep; 1254 struct sk_buff *skb; 1255 int ret; 1256 1257 skb = req->skb; 1258 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1259 if (ret) 1260 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1261 req->address, ret); 1262 1263 if (req->htc_msg) { 1264 ep = &ar->htc.endpoint[req->eid]; 1265 ath10k_htc_notify_tx_completion(ep, skb); 1266 } else if (req->comp) { 1267 complete(req->comp); 1268 } 1269 1270 ath10k_sdio_free_bus_req(ar, req); 1271 } 1272 1273 static void ath10k_sdio_write_async_work(struct work_struct *work) 1274 { 1275 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1276 wr_async_work); 1277 struct ath10k *ar = ar_sdio->ar; 1278 struct ath10k_sdio_bus_request *req, *tmp_req; 1279 1280 spin_lock_bh(&ar_sdio->wr_async_lock); 1281 1282 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1283 list_del(&req->list); 1284 spin_unlock_bh(&ar_sdio->wr_async_lock); 1285 __ath10k_sdio_write_async(ar, req); 1286 spin_lock_bh(&ar_sdio->wr_async_lock); 1287 } 1288 1289 spin_unlock_bh(&ar_sdio->wr_async_lock); 1290 } 1291 1292 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1293 struct sk_buff *skb, 1294 struct completion *comp, 1295 bool htc_msg, enum ath10k_htc_ep_id eid) 1296 { 1297 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1298 struct ath10k_sdio_bus_request *bus_req; 1299 1300 /* Allocate a bus request for the message and queue it on the 1301 * SDIO workqueue. 1302 */ 1303 bus_req = ath10k_sdio_alloc_busreq(ar); 1304 if (!bus_req) { 1305 ath10k_warn(ar, 1306 "unable to allocate bus request for async request\n"); 1307 return -ENOMEM; 1308 } 1309 1310 bus_req->skb = skb; 1311 bus_req->eid = eid; 1312 bus_req->address = addr; 1313 bus_req->htc_msg = htc_msg; 1314 bus_req->comp = comp; 1315 1316 spin_lock_bh(&ar_sdio->wr_async_lock); 1317 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1318 spin_unlock_bh(&ar_sdio->wr_async_lock); 1319 1320 return 0; 1321 } 1322 1323 /* IRQ handler */ 1324 1325 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1326 { 1327 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1328 struct ath10k *ar = ar_sdio->ar; 1329 unsigned long timeout; 1330 bool done = false; 1331 int ret; 1332 1333 /* Release the host during interrupts so we can pick it back up when 1334 * we process commands. 1335 */ 1336 sdio_release_host(ar_sdio->func); 1337 1338 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1339 while (time_before(jiffies, timeout) && !done) { 1340 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1341 if (ret) 1342 break; 1343 } 1344 1345 sdio_claim_host(ar_sdio->func); 1346 1347 wake_up(&ar_sdio->irq_wq); 1348 1349 if (ret && ret != -ECANCELED) 1350 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1351 ret); 1352 } 1353 1354 /* sdio HIF functions */ 1355 1356 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1357 { 1358 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1359 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1360 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1361 int ret; 1362 1363 mutex_lock(&irq_data->mtx); 1364 1365 memset(regs, 0, sizeof(*regs)); 1366 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1367 ®s->int_status_en, sizeof(*regs)); 1368 if (ret) 1369 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1370 1371 mutex_unlock(&irq_data->mtx); 1372 1373 return ret; 1374 } 1375 1376 static int ath10k_sdio_hif_power_up(struct ath10k *ar) 1377 { 1378 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1379 struct sdio_func *func = ar_sdio->func; 1380 int ret; 1381 1382 if (!ar_sdio->is_disabled) 1383 return 0; 1384 1385 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1386 1387 sdio_claim_host(func); 1388 1389 ret = sdio_enable_func(func); 1390 if (ret) { 1391 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1392 sdio_release_host(func); 1393 return ret; 1394 } 1395 1396 sdio_release_host(func); 1397 1398 /* Wait for hardware to initialise. It should take a lot less than 1399 * 20 ms but let's be conservative here. 1400 */ 1401 msleep(20); 1402 1403 ar_sdio->is_disabled = false; 1404 1405 ret = ath10k_sdio_hif_disable_intrs(ar); 1406 if (ret) 1407 return ret; 1408 1409 return 0; 1410 } 1411 1412 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1413 { 1414 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1415 int ret; 1416 1417 if (ar_sdio->is_disabled) 1418 return; 1419 1420 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1421 1422 /* Disable the card */ 1423 sdio_claim_host(ar_sdio->func); 1424 ret = sdio_disable_func(ar_sdio->func); 1425 sdio_release_host(ar_sdio->func); 1426 1427 if (ret) 1428 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1429 1430 ar_sdio->is_disabled = true; 1431 } 1432 1433 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1434 struct ath10k_hif_sg_item *items, int n_items) 1435 { 1436 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1437 enum ath10k_htc_ep_id eid; 1438 struct sk_buff *skb; 1439 int ret, i; 1440 1441 eid = pipe_id_to_eid(pipe_id); 1442 1443 for (i = 0; i < n_items; i++) { 1444 size_t padded_len; 1445 u32 address; 1446 1447 skb = items[i].transfer_context; 1448 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1449 skb->len); 1450 skb_trim(skb, padded_len); 1451 1452 /* Write TX data to the end of the mbox address space */ 1453 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1454 skb->len; 1455 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1456 NULL, true, eid); 1457 if (ret) 1458 return ret; 1459 } 1460 1461 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1462 1463 return 0; 1464 } 1465 1466 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1467 { 1468 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1469 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1470 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1471 int ret; 1472 1473 mutex_lock(&irq_data->mtx); 1474 1475 /* Enable all but CPU interrupts */ 1476 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1477 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1478 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1479 1480 /* NOTE: There are some cases where HIF can do detection of 1481 * pending mbox messages which is disabled now. 1482 */ 1483 regs->int_status_en |= 1484 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1485 1486 /* Set up the CPU Interrupt status Register */ 1487 regs->cpu_int_status_en = 0; 1488 1489 /* Set up the Error Interrupt status Register */ 1490 regs->err_int_status_en = 1491 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1492 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1493 1494 /* Enable Counter interrupt status register to get fatal errors for 1495 * debugging. 1496 */ 1497 regs->cntr_int_status_en = 1498 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1499 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1500 1501 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1502 ®s->int_status_en, sizeof(*regs)); 1503 if (ret) 1504 ath10k_warn(ar, 1505 "failed to update mbox interrupt status register : %d\n", 1506 ret); 1507 1508 mutex_unlock(&irq_data->mtx); 1509 return ret; 1510 } 1511 1512 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1513 { 1514 u32 val; 1515 int ret; 1516 1517 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1518 if (ret) { 1519 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1520 ret); 1521 return ret; 1522 } 1523 1524 if (enable_sleep) 1525 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1526 else 1527 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1528 1529 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1530 if (ret) { 1531 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1532 ret); 1533 return ret; 1534 } 1535 1536 return 0; 1537 } 1538 1539 /* HIF diagnostics */ 1540 1541 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1542 size_t buf_len) 1543 { 1544 int ret; 1545 1546 /* set window register to start read cycle */ 1547 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1548 if (ret) { 1549 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1550 return ret; 1551 } 1552 1553 /* read the data */ 1554 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len); 1555 if (ret) { 1556 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1557 ret); 1558 return ret; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1565 u32 *value) 1566 { 1567 __le32 *val; 1568 int ret; 1569 1570 val = kzalloc(sizeof(*val), GFP_KERNEL); 1571 if (!val) 1572 return -ENOMEM; 1573 1574 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1575 if (ret) 1576 goto out; 1577 1578 *value = __le32_to_cpu(*val); 1579 1580 out: 1581 kfree(val); 1582 1583 return ret; 1584 } 1585 1586 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1587 const void *data, int nbytes) 1588 { 1589 int ret; 1590 1591 /* set write data */ 1592 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1593 if (ret) { 1594 ath10k_warn(ar, 1595 "failed to write 0x%p to mbox window data address: %d\n", 1596 data, ret); 1597 return ret; 1598 } 1599 1600 /* set window register, which starts the write cycle */ 1601 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1602 if (ret) { 1603 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1604 return ret; 1605 } 1606 1607 return 0; 1608 } 1609 1610 /* HIF start/stop */ 1611 1612 static int ath10k_sdio_hif_start(struct ath10k *ar) 1613 { 1614 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1615 u32 addr, val; 1616 int ret; 1617 1618 /* Sleep 20 ms before HIF interrupts are disabled. 1619 * This will give target plenty of time to process the BMI done 1620 * request before interrupts are disabled. 1621 */ 1622 msleep(20); 1623 ret = ath10k_sdio_hif_disable_intrs(ar); 1624 if (ret) 1625 return ret; 1626 1627 /* eid 0 always uses the lower part of the extended mailbox address 1628 * space (ext_info[0].htc_ext_addr). 1629 */ 1630 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1631 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1632 1633 sdio_claim_host(ar_sdio->func); 1634 1635 /* Register the isr */ 1636 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1637 if (ret) { 1638 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1639 sdio_release_host(ar_sdio->func); 1640 return ret; 1641 } 1642 1643 sdio_release_host(ar_sdio->func); 1644 1645 ret = ath10k_sdio_hif_enable_intrs(ar); 1646 if (ret) 1647 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1648 1649 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1650 1651 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1652 if (ret) { 1653 ath10k_warn(ar, "unable to read hi_acs_flags address: %d\n", ret); 1654 return ret; 1655 } 1656 1657 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1658 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1659 "sdio mailbox swap service enabled\n"); 1660 ar_sdio->swap_mbox = true; 1661 } 1662 1663 /* Enable sleep and then disable it again */ 1664 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1665 if (ret) 1666 return ret; 1667 1668 /* Wait for 20ms for the written value to take effect */ 1669 msleep(20); 1670 1671 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1672 if (ret) 1673 return ret; 1674 1675 return 0; 1676 } 1677 1678 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1679 1680 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1681 { 1682 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1683 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1684 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1685 struct sk_buff *skb; 1686 struct completion irqs_disabled_comp; 1687 int ret; 1688 1689 skb = dev_alloc_skb(sizeof(*regs)); 1690 if (!skb) 1691 return; 1692 1693 mutex_lock(&irq_data->mtx); 1694 1695 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1696 memcpy(skb->data, regs, sizeof(*regs)); 1697 skb_put(skb, sizeof(*regs)); 1698 1699 mutex_unlock(&irq_data->mtx); 1700 1701 init_completion(&irqs_disabled_comp); 1702 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1703 skb, &irqs_disabled_comp, false, 0); 1704 if (ret) 1705 goto out; 1706 1707 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1708 1709 /* Wait for the completion of the IRQ disable request. 1710 * If there is a timeout we will try to disable irq's anyway. 1711 */ 1712 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1713 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1714 if (!ret) 1715 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1716 1717 sdio_claim_host(ar_sdio->func); 1718 1719 ret = sdio_release_irq(ar_sdio->func); 1720 if (ret) 1721 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1722 1723 sdio_release_host(ar_sdio->func); 1724 1725 out: 1726 kfree_skb(skb); 1727 } 1728 1729 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1730 { 1731 struct ath10k_sdio_bus_request *req, *tmp_req; 1732 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1733 1734 ath10k_sdio_irq_disable(ar); 1735 1736 cancel_work_sync(&ar_sdio->wr_async_work); 1737 1738 spin_lock_bh(&ar_sdio->wr_async_lock); 1739 1740 /* Free all bus requests that have not been handled */ 1741 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1742 struct ath10k_htc_ep *ep; 1743 1744 list_del(&req->list); 1745 1746 if (req->htc_msg) { 1747 ep = &ar->htc.endpoint[req->eid]; 1748 ath10k_htc_notify_tx_completion(ep, req->skb); 1749 } else if (req->skb) { 1750 kfree_skb(req->skb); 1751 } 1752 ath10k_sdio_free_bus_req(ar, req); 1753 } 1754 1755 spin_unlock_bh(&ar_sdio->wr_async_lock); 1756 } 1757 1758 #ifdef CONFIG_PM 1759 1760 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1761 { 1762 return -EOPNOTSUPP; 1763 } 1764 1765 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1766 { 1767 switch (ar->state) { 1768 case ATH10K_STATE_OFF: 1769 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1770 "sdio resume configuring sdio\n"); 1771 1772 /* need to set sdio settings after power is cut from sdio */ 1773 ath10k_sdio_config(ar); 1774 break; 1775 1776 case ATH10K_STATE_ON: 1777 default: 1778 break; 1779 } 1780 1781 return 0; 1782 } 1783 #endif 1784 1785 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1786 u16 service_id, 1787 u8 *ul_pipe, u8 *dl_pipe) 1788 { 1789 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1790 struct ath10k_htc *htc = &ar->htc; 1791 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1792 enum ath10k_htc_ep_id eid; 1793 bool ep_found = false; 1794 int i; 1795 1796 /* For sdio, we are interested in the mapping between eid 1797 * and pipeid rather than service_id to pipe_id. 1798 * First we find out which eid has been allocated to the 1799 * service... 1800 */ 1801 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1802 if (htc->endpoint[i].service_id == service_id) { 1803 eid = htc->endpoint[i].eid; 1804 ep_found = true; 1805 break; 1806 } 1807 } 1808 1809 if (!ep_found) 1810 return -EINVAL; 1811 1812 /* Then we create the simplest mapping possible between pipeid 1813 * and eid 1814 */ 1815 *ul_pipe = *dl_pipe = (u8)eid; 1816 1817 /* Normally, HTT will use the upper part of the extended 1818 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1819 * the lower part (ext_info[0].htc_ext_addr). 1820 * If fw wants swapping of mailbox addresses, the opposite is true. 1821 */ 1822 if (ar_sdio->swap_mbox) { 1823 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1824 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1825 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1826 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1827 } else { 1828 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1829 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1830 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1831 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1832 } 1833 1834 switch (service_id) { 1835 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1836 /* HTC ctrl ep mbox address has already been setup in 1837 * ath10k_sdio_hif_start 1838 */ 1839 break; 1840 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1841 ar_sdio->mbox_addr[eid] = wmi_addr; 1842 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1843 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1844 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1845 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1846 break; 1847 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1848 ar_sdio->mbox_addr[eid] = htt_addr; 1849 ar_sdio->mbox_size[eid] = htt_mbox_size; 1850 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1851 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1852 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1853 break; 1854 default: 1855 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1856 service_id); 1857 return -EINVAL; 1858 } 1859 1860 return 0; 1861 } 1862 1863 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1864 u8 *ul_pipe, u8 *dl_pipe) 1865 { 1866 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 1867 1868 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 1869 * case) == 0 1870 */ 1871 *ul_pipe = 0; 1872 *dl_pipe = 0; 1873 } 1874 1875 /* This op is currently only used by htc_wait_target if the HTC ready 1876 * message times out. It is not applicable for SDIO since there is nothing 1877 * we can do if the HTC ready message does not arrive in time. 1878 * TODO: Make this op non mandatory by introducing a NULL check in the 1879 * hif op wrapper. 1880 */ 1881 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 1882 u8 pipe, int force) 1883 { 1884 } 1885 1886 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 1887 .tx_sg = ath10k_sdio_hif_tx_sg, 1888 .diag_read = ath10k_sdio_hif_diag_read, 1889 .diag_write = ath10k_sdio_hif_diag_write_mem, 1890 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 1891 .start = ath10k_sdio_hif_start, 1892 .stop = ath10k_sdio_hif_stop, 1893 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 1894 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 1895 .send_complete_check = ath10k_sdio_hif_send_complete_check, 1896 .power_up = ath10k_sdio_hif_power_up, 1897 .power_down = ath10k_sdio_hif_power_down, 1898 #ifdef CONFIG_PM 1899 .suspend = ath10k_sdio_hif_suspend, 1900 .resume = ath10k_sdio_hif_resume, 1901 #endif 1902 }; 1903 1904 #ifdef CONFIG_PM_SLEEP 1905 1906 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 1907 * suspend. We instead follow cfg80211 suspend/resume handlers. 1908 */ 1909 static int ath10k_sdio_pm_suspend(struct device *device) 1910 { 1911 return 0; 1912 } 1913 1914 static int ath10k_sdio_pm_resume(struct device *device) 1915 { 1916 return 0; 1917 } 1918 1919 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 1920 ath10k_sdio_pm_resume); 1921 1922 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 1923 1924 #else 1925 1926 #define ATH10K_SDIO_PM_OPS NULL 1927 1928 #endif /* CONFIG_PM_SLEEP */ 1929 1930 static int ath10k_sdio_probe(struct sdio_func *func, 1931 const struct sdio_device_id *id) 1932 { 1933 struct ath10k_sdio *ar_sdio; 1934 struct ath10k *ar; 1935 enum ath10k_hw_rev hw_rev; 1936 u32 chip_id, dev_id_base; 1937 int ret, i; 1938 1939 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 1940 * If there will be newer chipsets that does not use the hw reg 1941 * setup as defined in qca6174_regs and qca6174_values, this 1942 * assumption is no longer valid and hw_rev must be setup differently 1943 * depending on chipset. 1944 */ 1945 hw_rev = ATH10K_HW_QCA6174; 1946 1947 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 1948 hw_rev, &ath10k_sdio_hif_ops); 1949 if (!ar) { 1950 dev_err(&func->dev, "failed to allocate core\n"); 1951 return -ENOMEM; 1952 } 1953 1954 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1955 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1956 func->num, func->vendor, func->device, 1957 func->max_blksize, func->cur_blksize); 1958 1959 ar_sdio = ath10k_sdio_priv(ar); 1960 1961 ar_sdio->irq_data.irq_proc_reg = 1962 kzalloc(sizeof(struct ath10k_sdio_irq_proc_regs), 1963 GFP_KERNEL); 1964 if (!ar_sdio->irq_data.irq_proc_reg) { 1965 ret = -ENOMEM; 1966 goto err_core_destroy; 1967 } 1968 1969 ar_sdio->irq_data.irq_en_reg = 1970 kzalloc(sizeof(struct ath10k_sdio_irq_enable_regs), 1971 GFP_KERNEL); 1972 if (!ar_sdio->irq_data.irq_en_reg) { 1973 ret = -ENOMEM; 1974 goto err_free_proc_reg; 1975 } 1976 1977 ar_sdio->bmi_buf = kzalloc(BMI_MAX_CMDBUF_SIZE, GFP_KERNEL); 1978 if (!ar_sdio->bmi_buf) { 1979 ret = -ENOMEM; 1980 goto err_free_en_reg; 1981 } 1982 1983 ar_sdio->func = func; 1984 sdio_set_drvdata(func, ar_sdio); 1985 1986 ar_sdio->is_disabled = true; 1987 ar_sdio->ar = ar; 1988 1989 spin_lock_init(&ar_sdio->lock); 1990 spin_lock_init(&ar_sdio->wr_async_lock); 1991 mutex_init(&ar_sdio->irq_data.mtx); 1992 1993 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 1994 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 1995 1996 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 1997 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 1998 if (!ar_sdio->workqueue) { 1999 ret = -ENOMEM; 2000 goto err_free_bmi_buf; 2001 } 2002 2003 init_waitqueue_head(&ar_sdio->irq_wq); 2004 2005 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2006 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2007 2008 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2009 switch (dev_id_base) { 2010 case QCA_MANUFACTURER_ID_AR6005_BASE: 2011 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2012 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2013 break; 2014 default: 2015 ret = -ENODEV; 2016 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2017 dev_id_base, id->device); 2018 goto err_free_bmi_buf; 2019 } 2020 2021 ar->id.vendor = id->vendor; 2022 ar->id.device = id->device; 2023 2024 ath10k_sdio_set_mbox_info(ar); 2025 2026 ret = ath10k_sdio_config(ar); 2027 if (ret) { 2028 ath10k_err(ar, "failed to config sdio: %d\n", ret); 2029 goto err_free_wq; 2030 } 2031 2032 /* TODO: don't know yet how to get chip_id with SDIO */ 2033 chip_id = 0; 2034 ret = ath10k_core_register(ar, chip_id); 2035 if (ret) { 2036 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2037 goto err_free_wq; 2038 } 2039 2040 /* TODO: remove this once SDIO support is fully implemented */ 2041 ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n"); 2042 2043 return 0; 2044 2045 err_free_wq: 2046 destroy_workqueue(ar_sdio->workqueue); 2047 err_free_bmi_buf: 2048 kfree(ar_sdio->bmi_buf); 2049 err_free_en_reg: 2050 kfree(ar_sdio->irq_data.irq_en_reg); 2051 err_free_proc_reg: 2052 kfree(ar_sdio->irq_data.irq_proc_reg); 2053 err_core_destroy: 2054 ath10k_core_destroy(ar); 2055 2056 return ret; 2057 } 2058 2059 static void ath10k_sdio_remove(struct sdio_func *func) 2060 { 2061 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2062 struct ath10k *ar = ar_sdio->ar; 2063 2064 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2065 "sdio removed func %d vendor 0x%x device 0x%x\n", 2066 func->num, func->vendor, func->device); 2067 2068 (void)ath10k_sdio_hif_disable_intrs(ar); 2069 cancel_work_sync(&ar_sdio->wr_async_work); 2070 ath10k_core_unregister(ar); 2071 ath10k_core_destroy(ar); 2072 } 2073 2074 static const struct sdio_device_id ath10k_sdio_devices[] = { 2075 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2076 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2077 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2078 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2079 {}, 2080 }; 2081 2082 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2083 2084 static struct sdio_driver ath10k_sdio_driver = { 2085 .name = "ath10k_sdio", 2086 .id_table = ath10k_sdio_devices, 2087 .probe = ath10k_sdio_probe, 2088 .remove = ath10k_sdio_remove, 2089 .drv.pm = ATH10K_SDIO_PM_OPS, 2090 }; 2091 2092 static int __init ath10k_sdio_init(void) 2093 { 2094 int ret; 2095 2096 ret = sdio_register_driver(&ath10k_sdio_driver); 2097 if (ret) 2098 pr_err("sdio driver registration failed: %d\n", ret); 2099 2100 return ret; 2101 } 2102 2103 static void __exit ath10k_sdio_exit(void) 2104 { 2105 sdio_unregister_driver(&ath10k_sdio_driver); 2106 } 2107 2108 module_init(ath10k_sdio_init); 2109 module_exit(ath10k_sdio_exit); 2110 2111 MODULE_AUTHOR("Qualcomm Atheros"); 2112 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2113 MODULE_LICENSE("Dual BSD/GPL"); 2114