1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2004-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/mmc/card.h>
10 #include <linux/mmc/mmc.h>
11 #include <linux/mmc/host.h>
12 #include <linux/mmc/sdio_func.h>
13 #include <linux/mmc/sdio_ids.h>
14 #include <linux/mmc/sdio.h>
15 #include <linux/mmc/sd.h>
16 #include <linux/bitfield.h>
17 #include "core.h"
18 #include "bmi.h"
19 #include "debug.h"
20 #include "hif.h"
21 #include "htc.h"
22 #include "mac.h"
23 #include "targaddrs.h"
24 #include "trace.h"
25 #include "sdio.h"
26 
27 #define ATH10K_SDIO_VSG_BUF_SIZE	(64 * 1024)
28 
29 /* inlined helper functions */
30 
31 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
32 						   size_t len)
33 {
34 	return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
35 }
36 
37 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
38 {
39 	return (enum ath10k_htc_ep_id)pipe_id;
40 }
41 
42 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
43 {
44 	dev_kfree_skb(pkt->skb);
45 	pkt->skb = NULL;
46 	pkt->alloc_len = 0;
47 	pkt->act_len = 0;
48 	pkt->trailer_only = false;
49 }
50 
51 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
52 						size_t act_len, size_t full_len,
53 						bool part_of_bundle,
54 						bool last_in_bundle)
55 {
56 	pkt->skb = dev_alloc_skb(full_len);
57 	if (!pkt->skb)
58 		return -ENOMEM;
59 
60 	pkt->act_len = act_len;
61 	pkt->alloc_len = full_len;
62 	pkt->part_of_bundle = part_of_bundle;
63 	pkt->last_in_bundle = last_in_bundle;
64 	pkt->trailer_only = false;
65 
66 	return 0;
67 }
68 
69 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
70 {
71 	bool trailer_only = false;
72 	struct ath10k_htc_hdr *htc_hdr =
73 		(struct ath10k_htc_hdr *)pkt->skb->data;
74 	u16 len = __le16_to_cpu(htc_hdr->len);
75 
76 	if (len == htc_hdr->trailer_len)
77 		trailer_only = true;
78 
79 	return trailer_only;
80 }
81 
82 /* sdio/mmc functions */
83 
84 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
85 					     unsigned int address,
86 					     unsigned char val)
87 {
88 	*arg = FIELD_PREP(BIT(31), write) |
89 	       FIELD_PREP(BIT(27), raw) |
90 	       FIELD_PREP(BIT(26), 1) |
91 	       FIELD_PREP(GENMASK(25, 9), address) |
92 	       FIELD_PREP(BIT(8), 1) |
93 	       FIELD_PREP(GENMASK(7, 0), val);
94 }
95 
96 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
97 					   unsigned int address,
98 					   unsigned char byte)
99 {
100 	struct mmc_command io_cmd;
101 
102 	memset(&io_cmd, 0, sizeof(io_cmd));
103 	ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
104 	io_cmd.opcode = SD_IO_RW_DIRECT;
105 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
106 
107 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
108 }
109 
110 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
111 					   unsigned int address,
112 					   unsigned char *byte)
113 {
114 	struct mmc_command io_cmd;
115 	int ret;
116 
117 	memset(&io_cmd, 0, sizeof(io_cmd));
118 	ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
119 	io_cmd.opcode = SD_IO_RW_DIRECT;
120 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
121 
122 	ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
123 	if (!ret)
124 		*byte = io_cmd.resp[0];
125 
126 	return ret;
127 }
128 
129 static int ath10k_sdio_config(struct ath10k *ar)
130 {
131 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
132 	struct sdio_func *func = ar_sdio->func;
133 	unsigned char byte, asyncintdelay = 2;
134 	int ret;
135 
136 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
137 
138 	sdio_claim_host(func);
139 
140 	byte = 0;
141 	ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
142 					      SDIO_CCCR_DRIVE_STRENGTH,
143 					      &byte);
144 
145 	byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
146 	byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
147 			   ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
148 
149 	ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
150 					      SDIO_CCCR_DRIVE_STRENGTH,
151 					      byte);
152 
153 	byte = 0;
154 	ret = ath10k_sdio_func0_cmd52_rd_byte(
155 		func->card,
156 		CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
157 		&byte);
158 
159 	byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
160 		 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
161 		 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
162 
163 	ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
164 					      CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
165 					      byte);
166 	if (ret) {
167 		ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
168 		goto out;
169 	}
170 
171 	byte = 0;
172 	ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
173 					      CCCR_SDIO_IRQ_MODE_REG_SDIO3,
174 					      &byte);
175 
176 	byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
177 
178 	ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
179 					      CCCR_SDIO_IRQ_MODE_REG_SDIO3,
180 					      byte);
181 	if (ret) {
182 		ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
183 			    ret);
184 		goto out;
185 	}
186 
187 	byte = 0;
188 	ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
189 					      CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
190 					      &byte);
191 
192 	byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
193 	byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
194 
195 	ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
196 					      CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
197 					      byte);
198 
199 	/* give us some time to enable, in ms */
200 	func->enable_timeout = 100;
201 
202 	ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
203 	if (ret) {
204 		ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
205 			    ar_sdio->mbox_info.block_size, ret);
206 		goto out;
207 	}
208 
209 out:
210 	sdio_release_host(func);
211 	return ret;
212 }
213 
214 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
215 {
216 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
217 	struct sdio_func *func = ar_sdio->func;
218 	int ret;
219 
220 	sdio_claim_host(func);
221 
222 	sdio_writel(func, val, addr, &ret);
223 	if (ret) {
224 		ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
225 			    val, addr, ret);
226 		goto out;
227 	}
228 
229 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
230 		   addr, val);
231 
232 out:
233 	sdio_release_host(func);
234 
235 	return ret;
236 }
237 
238 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
239 {
240 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
241 	struct sdio_func *func = ar_sdio->func;
242 	__le32 *buf;
243 	int ret;
244 
245 	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
246 	if (!buf)
247 		return -ENOMEM;
248 
249 	*buf = cpu_to_le32(val);
250 
251 	sdio_claim_host(func);
252 
253 	ret = sdio_writesb(func, addr, buf, sizeof(*buf));
254 	if (ret) {
255 		ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
256 			    val, addr, ret);
257 		goto out;
258 	}
259 
260 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
261 		   addr, val);
262 
263 out:
264 	sdio_release_host(func);
265 
266 	kfree(buf);
267 
268 	return ret;
269 }
270 
271 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
272 {
273 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
274 	struct sdio_func *func = ar_sdio->func;
275 	int ret;
276 
277 	sdio_claim_host(func);
278 	*val = sdio_readl(func, addr, &ret);
279 	if (ret) {
280 		ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
281 			    addr, ret);
282 		goto out;
283 	}
284 
285 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
286 		   addr, *val);
287 
288 out:
289 	sdio_release_host(func);
290 
291 	return ret;
292 }
293 
294 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
295 {
296 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
297 	struct sdio_func *func = ar_sdio->func;
298 	int ret;
299 
300 	sdio_claim_host(func);
301 
302 	ret = sdio_memcpy_fromio(func, buf, addr, len);
303 	if (ret) {
304 		ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
305 			    addr, ret);
306 		goto out;
307 	}
308 
309 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
310 		   addr, buf, len);
311 	ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
312 
313 out:
314 	sdio_release_host(func);
315 
316 	return ret;
317 }
318 
319 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
320 {
321 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
322 	struct sdio_func *func = ar_sdio->func;
323 	int ret;
324 
325 	sdio_claim_host(func);
326 
327 	/* For some reason toio() doesn't have const for the buffer, need
328 	 * an ugly hack to workaround that.
329 	 */
330 	ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
331 	if (ret) {
332 		ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
333 			    addr, ret);
334 		goto out;
335 	}
336 
337 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
338 		   addr, buf, len);
339 	ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
340 
341 out:
342 	sdio_release_host(func);
343 
344 	return ret;
345 }
346 
347 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
348 {
349 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
350 	struct sdio_func *func = ar_sdio->func;
351 	int ret;
352 
353 	sdio_claim_host(func);
354 
355 	len = round_down(len, ar_sdio->mbox_info.block_size);
356 
357 	ret = sdio_readsb(func, buf, addr, len);
358 	if (ret) {
359 		ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
360 			    addr, ret);
361 		goto out;
362 	}
363 
364 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
365 		   addr, buf, len);
366 	ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
367 
368 out:
369 	sdio_release_host(func);
370 
371 	return ret;
372 }
373 
374 /* HIF mbox functions */
375 
376 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
377 					      struct ath10k_sdio_rx_data *pkt,
378 					      u32 *lookaheads,
379 					      int *n_lookaheads)
380 {
381 	struct ath10k_htc *htc = &ar->htc;
382 	struct sk_buff *skb = pkt->skb;
383 	struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
384 	bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
385 	enum ath10k_htc_ep_id eid;
386 	u8 *trailer;
387 	int ret;
388 
389 	if (trailer_present) {
390 		trailer = skb->data + skb->len - htc_hdr->trailer_len;
391 
392 		eid = pipe_id_to_eid(htc_hdr->eid);
393 
394 		ret = ath10k_htc_process_trailer(htc,
395 						 trailer,
396 						 htc_hdr->trailer_len,
397 						 eid,
398 						 lookaheads,
399 						 n_lookaheads);
400 		if (ret)
401 			return ret;
402 
403 		if (is_trailer_only_msg(pkt))
404 			pkt->trailer_only = true;
405 
406 		skb_trim(skb, skb->len - htc_hdr->trailer_len);
407 	}
408 
409 	skb_pull(skb, sizeof(*htc_hdr));
410 
411 	return 0;
412 }
413 
414 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
415 					       u32 lookaheads[],
416 					       int *n_lookahead)
417 {
418 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
419 	struct ath10k_htc *htc = &ar->htc;
420 	struct ath10k_sdio_rx_data *pkt;
421 	struct ath10k_htc_ep *ep;
422 	struct ath10k_skb_rxcb *cb;
423 	enum ath10k_htc_ep_id id;
424 	int ret, i, *n_lookahead_local;
425 	u32 *lookaheads_local;
426 	int lookahead_idx = 0;
427 
428 	for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
429 		lookaheads_local = lookaheads;
430 		n_lookahead_local = n_lookahead;
431 
432 		id = ((struct ath10k_htc_hdr *)
433 		      &lookaheads[lookahead_idx++])->eid;
434 
435 		if (id >= ATH10K_HTC_EP_COUNT) {
436 			ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
437 				    id);
438 			ret = -ENOMEM;
439 			goto out;
440 		}
441 
442 		ep = &htc->endpoint[id];
443 
444 		if (ep->service_id == 0) {
445 			ath10k_warn(ar, "ep %d is not connected\n", id);
446 			ret = -ENOMEM;
447 			goto out;
448 		}
449 
450 		pkt = &ar_sdio->rx_pkts[i];
451 
452 		if (pkt->part_of_bundle && !pkt->last_in_bundle) {
453 			/* Only read lookahead's from RX trailers
454 			 * for the last packet in a bundle.
455 			 */
456 			lookahead_idx--;
457 			lookaheads_local = NULL;
458 			n_lookahead_local = NULL;
459 		}
460 
461 		ret = ath10k_sdio_mbox_rx_process_packet(ar,
462 							 pkt,
463 							 lookaheads_local,
464 							 n_lookahead_local);
465 		if (ret)
466 			goto out;
467 
468 		if (!pkt->trailer_only) {
469 			cb = ATH10K_SKB_RXCB(pkt->skb);
470 			cb->eid = id;
471 
472 			skb_queue_tail(&ar_sdio->rx_head, pkt->skb);
473 			queue_work(ar->workqueue_aux,
474 				   &ar_sdio->async_work_rx);
475 		} else {
476 			kfree_skb(pkt->skb);
477 		}
478 
479 		/* The RX complete handler now owns the skb...*/
480 		pkt->skb = NULL;
481 		pkt->alloc_len = 0;
482 	}
483 
484 	ret = 0;
485 
486 out:
487 	/* Free all packets that was not passed on to the RX completion
488 	 * handler...
489 	 */
490 	for (; i < ar_sdio->n_rx_pkts; i++)
491 		ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
492 
493 	return ret;
494 }
495 
496 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar,
497 					 struct ath10k_sdio_rx_data *rx_pkts,
498 					 struct ath10k_htc_hdr *htc_hdr,
499 					 size_t full_len, size_t act_len,
500 					 size_t *bndl_cnt)
501 {
502 	int ret, i;
503 	u8 max_msgs = ar->htc.max_msgs_per_htc_bundle;
504 
505 	*bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags);
506 
507 	if (*bndl_cnt > max_msgs) {
508 		ath10k_warn(ar,
509 			    "HTC bundle length %u exceeds maximum %u\n",
510 			    le16_to_cpu(htc_hdr->len),
511 			    max_msgs);
512 		return -ENOMEM;
513 	}
514 
515 	/* Allocate bndl_cnt extra skb's for the bundle.
516 	 * The package containing the
517 	 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
518 	 * in bndl_cnt. The skb for that packet will be
519 	 * allocated separately.
520 	 */
521 	for (i = 0; i < *bndl_cnt; i++) {
522 		ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
523 						    act_len,
524 						    full_len,
525 						    true,
526 						    false);
527 		if (ret)
528 			return ret;
529 	}
530 
531 	return 0;
532 }
533 
534 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
535 				     u32 lookaheads[], int n_lookaheads)
536 {
537 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
538 	struct ath10k_htc_hdr *htc_hdr;
539 	size_t full_len, act_len;
540 	bool last_in_bundle;
541 	int ret, i;
542 	int pkt_cnt = 0;
543 
544 	if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
545 		ath10k_warn(ar, "the total number of pkgs to be fetched (%u) exceeds maximum %u\n",
546 			    n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS);
547 		ret = -ENOMEM;
548 		goto err;
549 	}
550 
551 	for (i = 0; i < n_lookaheads; i++) {
552 		htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
553 		last_in_bundle = false;
554 
555 		if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
556 			ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n",
557 				    le16_to_cpu(htc_hdr->len),
558 				    ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
559 			ret = -ENOMEM;
560 			goto err;
561 		}
562 
563 		act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
564 		full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
565 
566 		if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
567 			ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
568 				    htc_hdr->eid, htc_hdr->flags,
569 				    le16_to_cpu(htc_hdr->len));
570 			ret = -EINVAL;
571 			goto err;
572 		}
573 
574 		if (ath10k_htc_get_bundle_count(
575 			ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) {
576 			/* HTC header indicates that every packet to follow
577 			 * has the same padded length so that it can be
578 			 * optimally fetched as a full bundle.
579 			 */
580 			size_t bndl_cnt;
581 
582 			ret = ath10k_sdio_mbox_alloc_bundle(ar,
583 							    &ar_sdio->rx_pkts[pkt_cnt],
584 							    htc_hdr,
585 							    full_len,
586 							    act_len,
587 							    &bndl_cnt);
588 
589 			if (ret) {
590 				ath10k_warn(ar, "failed to allocate a bundle: %d\n",
591 					    ret);
592 				goto err;
593 			}
594 
595 			pkt_cnt += bndl_cnt;
596 
597 			/* next buffer will be the last in the bundle */
598 			last_in_bundle = true;
599 		}
600 
601 		/* Allocate skb for packet. If the packet had the
602 		 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
603 		 * packet skb's have been allocated in the previous step.
604 		 */
605 		if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
606 			full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
607 
608 		ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt],
609 						    act_len,
610 						    full_len,
611 						    last_in_bundle,
612 						    last_in_bundle);
613 		if (ret) {
614 			ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret);
615 			goto err;
616 		}
617 
618 		pkt_cnt++;
619 	}
620 
621 	ar_sdio->n_rx_pkts = pkt_cnt;
622 
623 	return 0;
624 
625 err:
626 	for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
627 		if (!ar_sdio->rx_pkts[i].alloc_len)
628 			break;
629 		ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
630 	}
631 
632 	return ret;
633 }
634 
635 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
636 {
637 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
638 	struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0];
639 	struct sk_buff *skb = pkt->skb;
640 	struct ath10k_htc_hdr *htc_hdr;
641 	int ret;
642 
643 	ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
644 				 skb->data, pkt->alloc_len);
645 	if (ret)
646 		goto err;
647 
648 	htc_hdr = (struct ath10k_htc_hdr *)skb->data;
649 	pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
650 
651 	if (pkt->act_len > pkt->alloc_len) {
652 		ret = -EINVAL;
653 		goto err;
654 	}
655 
656 	skb_put(skb, pkt->act_len);
657 	return 0;
658 
659 err:
660 	ar_sdio->n_rx_pkts = 0;
661 	ath10k_sdio_mbox_free_rx_pkt(pkt);
662 
663 	return ret;
664 }
665 
666 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar)
667 {
668 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
669 	struct ath10k_sdio_rx_data *pkt;
670 	struct ath10k_htc_hdr *htc_hdr;
671 	int ret, i;
672 	u32 pkt_offset, virt_pkt_len;
673 
674 	virt_pkt_len = 0;
675 	for (i = 0; i < ar_sdio->n_rx_pkts; i++)
676 		virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len;
677 
678 	if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) {
679 		ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len);
680 		ret = -E2BIG;
681 		goto err;
682 	}
683 
684 	ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
685 				 ar_sdio->vsg_buffer, virt_pkt_len);
686 	if (ret) {
687 		ath10k_warn(ar, "failed to read bundle packets: %d", ret);
688 		goto err;
689 	}
690 
691 	pkt_offset = 0;
692 	for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
693 		pkt = &ar_sdio->rx_pkts[i];
694 		htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset);
695 		pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
696 
697 		if (pkt->act_len > pkt->alloc_len) {
698 			ret = -EINVAL;
699 			goto err;
700 		}
701 
702 		skb_put_data(pkt->skb, htc_hdr, pkt->act_len);
703 		pkt_offset += pkt->alloc_len;
704 	}
705 
706 	return 0;
707 
708 err:
709 	/* Free all packets that was not successfully fetched. */
710 	for (i = 0; i < ar_sdio->n_rx_pkts; i++)
711 		ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
712 
713 	ar_sdio->n_rx_pkts = 0;
714 
715 	return ret;
716 }
717 
718 /* This is the timeout for mailbox processing done in the sdio irq
719  * handler. The timeout is deliberately set quite high since SDIO dump logs
720  * over serial port can/will add a substantial overhead to the processing
721  * (if enabled).
722  */
723 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
724 
725 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
726 						  u32 msg_lookahead, bool *done)
727 {
728 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
729 	u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
730 	int n_lookaheads = 1;
731 	unsigned long timeout;
732 	int ret;
733 
734 	*done = true;
735 
736 	/* Copy the lookahead obtained from the HTC register table into our
737 	 * temp array as a start value.
738 	 */
739 	lookaheads[0] = msg_lookahead;
740 
741 	timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
742 	do {
743 		/* Try to allocate as many HTC RX packets indicated by
744 		 * n_lookaheads.
745 		 */
746 		ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
747 						n_lookaheads);
748 		if (ret)
749 			break;
750 
751 		if (ar_sdio->n_rx_pkts >= 2)
752 			/* A recv bundle was detected, force IRQ status
753 			 * re-check again.
754 			 */
755 			*done = false;
756 
757 		if (ar_sdio->n_rx_pkts > 1)
758 			ret = ath10k_sdio_mbox_rx_fetch_bundle(ar);
759 		else
760 			ret = ath10k_sdio_mbox_rx_fetch(ar);
761 
762 		/* Process fetched packets. This will potentially update
763 		 * n_lookaheads depending on if the packets contain lookahead
764 		 * reports.
765 		 */
766 		n_lookaheads = 0;
767 		ret = ath10k_sdio_mbox_rx_process_packets(ar,
768 							  lookaheads,
769 							  &n_lookaheads);
770 
771 		if (!n_lookaheads || ret)
772 			break;
773 
774 		/* For SYNCH processing, if we get here, we are running
775 		 * through the loop again due to updated lookaheads. Set
776 		 * flag that we should re-check IRQ status registers again
777 		 * before leaving IRQ processing, this can net better
778 		 * performance in high throughput situations.
779 		 */
780 		*done = false;
781 	} while (time_before(jiffies, timeout));
782 
783 	if (ret && (ret != -ECANCELED))
784 		ath10k_warn(ar, "failed to get pending recv messages: %d\n",
785 			    ret);
786 
787 	return ret;
788 }
789 
790 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
791 {
792 	u32 val;
793 	int ret;
794 
795 	/* TODO: Add firmware crash handling */
796 	ath10k_warn(ar, "firmware crashed\n");
797 
798 	/* read counter to clear the interrupt, the debug error interrupt is
799 	 * counter 0.
800 	 */
801 	ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
802 	if (ret)
803 		ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
804 
805 	return ret;
806 }
807 
808 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
809 {
810 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
811 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
812 	u8 counter_int_status;
813 	int ret;
814 
815 	mutex_lock(&irq_data->mtx);
816 	counter_int_status = irq_data->irq_proc_reg->counter_int_status &
817 			     irq_data->irq_en_reg->cntr_int_status_en;
818 
819 	/* NOTE: other modules like GMBOX may use the counter interrupt for
820 	 * credit flow control on other counters, we only need to check for
821 	 * the debug assertion counter interrupt.
822 	 */
823 	if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
824 		ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
825 	else
826 		ret = 0;
827 
828 	mutex_unlock(&irq_data->mtx);
829 
830 	return ret;
831 }
832 
833 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
834 {
835 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
836 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
837 	u8 error_int_status;
838 	int ret;
839 
840 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
841 
842 	error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
843 	if (!error_int_status) {
844 		ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
845 			    error_int_status);
846 		return -EIO;
847 	}
848 
849 	ath10k_dbg(ar, ATH10K_DBG_SDIO,
850 		   "sdio error_int_status 0x%x\n", error_int_status);
851 
852 	if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
853 		      error_int_status))
854 		ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
855 
856 	if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
857 		      error_int_status))
858 		ath10k_warn(ar, "rx underflow interrupt error\n");
859 
860 	if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
861 		      error_int_status))
862 		ath10k_warn(ar, "tx overflow interrupt error\n");
863 
864 	/* Clear the interrupt */
865 	irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
866 
867 	/* set W1C value to clear the interrupt, this hits the register first */
868 	ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
869 				    error_int_status);
870 	if (ret) {
871 		ath10k_warn(ar, "unable to write to error int status address: %d\n",
872 			    ret);
873 		return ret;
874 	}
875 
876 	return 0;
877 }
878 
879 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
880 {
881 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
882 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
883 	u8 cpu_int_status;
884 	int ret;
885 
886 	mutex_lock(&irq_data->mtx);
887 	cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
888 			 irq_data->irq_en_reg->cpu_int_status_en;
889 	if (!cpu_int_status) {
890 		ath10k_warn(ar, "CPU interrupt status is zero\n");
891 		ret = -EIO;
892 		goto out;
893 	}
894 
895 	/* Clear the interrupt */
896 	irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
897 
898 	/* Set up the register transfer buffer to hit the register 4 times,
899 	 * this is done to make the access 4-byte aligned to mitigate issues
900 	 * with host bus interconnects that restrict bus transfer lengths to
901 	 * be a multiple of 4-bytes.
902 	 *
903 	 * Set W1C value to clear the interrupt, this hits the register first.
904 	 */
905 	ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
906 				    cpu_int_status);
907 	if (ret) {
908 		ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
909 			    ret);
910 		goto out;
911 	}
912 
913 out:
914 	mutex_unlock(&irq_data->mtx);
915 	if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) {
916 		ath10k_err(ar, "firmware crashed!\n");
917 		queue_work(ar->workqueue, &ar->restart_work);
918 	}
919 	return ret;
920 }
921 
922 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
923 					    u8 *host_int_status,
924 					    u32 *lookahead)
925 {
926 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
927 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
928 	struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
929 	struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
930 	u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
931 	int ret;
932 
933 	mutex_lock(&irq_data->mtx);
934 
935 	*lookahead = 0;
936 	*host_int_status = 0;
937 
938 	/* int_status_en is supposed to be non zero, otherwise interrupts
939 	 * shouldn't be enabled. There is however a short time frame during
940 	 * initialization between the irq register and int_status_en init
941 	 * where this can happen.
942 	 * We silently ignore this condition.
943 	 */
944 	if (!irq_en_reg->int_status_en) {
945 		ret = 0;
946 		goto out;
947 	}
948 
949 	/* Read the first sizeof(struct ath10k_irq_proc_registers)
950 	 * bytes of the HTC register table. This
951 	 * will yield us the value of different int status
952 	 * registers and the lookahead registers.
953 	 */
954 	ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
955 			       irq_proc_reg, sizeof(*irq_proc_reg));
956 	if (ret) {
957 		queue_work(ar->workqueue, &ar->restart_work);
958 		ath10k_warn(ar, "read int status fail, start recovery\n");
959 		goto out;
960 	}
961 
962 	/* Update only those registers that are enabled */
963 	*host_int_status = irq_proc_reg->host_int_status &
964 			   irq_en_reg->int_status_en;
965 
966 	/* Look at mbox status */
967 	if (!(*host_int_status & htc_mbox)) {
968 		*lookahead = 0;
969 		ret = 0;
970 		goto out;
971 	}
972 
973 	/* Mask out pending mbox value, we use look ahead as
974 	 * the real flag for mbox processing.
975 	 */
976 	*host_int_status &= ~htc_mbox;
977 	if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
978 		*lookahead = le32_to_cpu(
979 			irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
980 		if (!*lookahead)
981 			ath10k_warn(ar, "sdio mbox lookahead is zero\n");
982 	}
983 
984 out:
985 	mutex_unlock(&irq_data->mtx);
986 	return ret;
987 }
988 
989 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
990 					      bool *done)
991 {
992 	u8 host_int_status;
993 	u32 lookahead;
994 	int ret;
995 
996 	/* NOTE: HIF implementation guarantees that the context of this
997 	 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
998 	 * sleep or call any API that can block or switch thread/task
999 	 * contexts. This is a fully schedulable context.
1000 	 */
1001 
1002 	ret = ath10k_sdio_mbox_read_int_status(ar,
1003 					       &host_int_status,
1004 					       &lookahead);
1005 	if (ret) {
1006 		*done = true;
1007 		goto out;
1008 	}
1009 
1010 	if (!host_int_status && !lookahead) {
1011 		ret = 0;
1012 		*done = true;
1013 		goto out;
1014 	}
1015 
1016 	if (lookahead) {
1017 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1018 			   "sdio pending mailbox msg lookahead 0x%08x\n",
1019 			   lookahead);
1020 
1021 		ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
1022 							     lookahead,
1023 							     done);
1024 		if (ret)
1025 			goto out;
1026 	}
1027 
1028 	/* now, handle the rest of the interrupts */
1029 	ath10k_dbg(ar, ATH10K_DBG_SDIO,
1030 		   "sdio host_int_status 0x%x\n", host_int_status);
1031 
1032 	if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
1033 		/* CPU Interrupt */
1034 		ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
1035 		if (ret)
1036 			goto out;
1037 	}
1038 
1039 	if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
1040 		/* Error Interrupt */
1041 		ret = ath10k_sdio_mbox_proc_err_intr(ar);
1042 		if (ret)
1043 			goto out;
1044 	}
1045 
1046 	if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
1047 		/* Counter Interrupt */
1048 		ret = ath10k_sdio_mbox_proc_counter_intr(ar);
1049 
1050 	ret = 0;
1051 
1052 out:
1053 	/* An optimization to bypass reading the IRQ status registers
1054 	 * unecessarily which can re-wake the target, if upper layers
1055 	 * determine that we are in a low-throughput mode, we can rely on
1056 	 * taking another interrupt rather than re-checking the status
1057 	 * registers which can re-wake the target.
1058 	 *
1059 	 * NOTE : for host interfaces that makes use of detecting pending
1060 	 * mbox messages at hif can not use this optimization due to
1061 	 * possible side effects, SPI requires the host to drain all
1062 	 * messages from the mailbox before exiting the ISR routine.
1063 	 */
1064 
1065 	ath10k_dbg(ar, ATH10K_DBG_SDIO,
1066 		   "sdio pending irqs done %d status %d",
1067 		   *done, ret);
1068 
1069 	return ret;
1070 }
1071 
1072 static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
1073 {
1074 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1075 	struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1076 	u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
1077 
1078 	mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
1079 	mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
1080 	mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
1081 	mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
1082 	mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
1083 
1084 	mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
1085 
1086 	dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device);
1087 	dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device);
1088 	switch (dev_id_base) {
1089 	case QCA_MANUFACTURER_ID_AR6005_BASE:
1090 		if (dev_id_chiprev < 4)
1091 			mbox_info->ext_info[0].htc_ext_sz =
1092 				ATH10K_HIF_MBOX0_EXT_WIDTH;
1093 		else
1094 			/* from QCA6174 2.0(0x504), the width has been extended
1095 			 * to 56K
1096 			 */
1097 			mbox_info->ext_info[0].htc_ext_sz =
1098 				ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1099 		break;
1100 	case QCA_MANUFACTURER_ID_QCA9377_BASE:
1101 		mbox_info->ext_info[0].htc_ext_sz =
1102 			ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1103 		break;
1104 	default:
1105 		mbox_info->ext_info[0].htc_ext_sz =
1106 				ATH10K_HIF_MBOX0_EXT_WIDTH;
1107 	}
1108 
1109 	mbox_info->ext_info[1].htc_ext_addr =
1110 		mbox_info->ext_info[0].htc_ext_addr +
1111 		mbox_info->ext_info[0].htc_ext_sz +
1112 		ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
1113 	mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
1114 }
1115 
1116 /* BMI functions */
1117 
1118 static int ath10k_sdio_bmi_credits(struct ath10k *ar)
1119 {
1120 	u32 addr, cmd_credits;
1121 	unsigned long timeout;
1122 	int ret;
1123 
1124 	/* Read the counter register to get the command credits */
1125 	addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
1126 	timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1127 	cmd_credits = 0;
1128 
1129 	while (time_before(jiffies, timeout) && !cmd_credits) {
1130 		/* Hit the credit counter with a 4-byte access, the first byte
1131 		 * read will hit the counter and cause a decrement, while the
1132 		 * remaining 3 bytes has no effect. The rationale behind this
1133 		 * is to make all HIF accesses 4-byte aligned.
1134 		 */
1135 		ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
1136 		if (ret) {
1137 			ath10k_warn(ar,
1138 				    "unable to decrement the command credit count register: %d\n",
1139 				    ret);
1140 			return ret;
1141 		}
1142 
1143 		/* The counter is only 8 bits.
1144 		 * Ignore anything in the upper 3 bytes
1145 		 */
1146 		cmd_credits &= 0xFF;
1147 	}
1148 
1149 	if (!cmd_credits) {
1150 		ath10k_warn(ar, "bmi communication timeout\n");
1151 		return -ETIMEDOUT;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
1158 {
1159 	unsigned long timeout;
1160 	u32 rx_word;
1161 	int ret;
1162 
1163 	timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1164 	rx_word = 0;
1165 
1166 	while ((time_before(jiffies, timeout)) && !rx_word) {
1167 		ret = ath10k_sdio_read32(ar,
1168 					 MBOX_HOST_INT_STATUS_ADDRESS,
1169 					 &rx_word);
1170 		if (ret) {
1171 			ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
1172 			return ret;
1173 		}
1174 
1175 		 /* all we really want is one bit */
1176 		rx_word &= 1;
1177 	}
1178 
1179 	if (!rx_word) {
1180 		ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
1181 		return -EINVAL;
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
1188 					void *req, u32 req_len,
1189 					void *resp, u32 *resp_len)
1190 {
1191 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1192 	u32 addr;
1193 	int ret;
1194 
1195 	if (req) {
1196 		ret = ath10k_sdio_bmi_credits(ar);
1197 		if (ret)
1198 			return ret;
1199 
1200 		addr = ar_sdio->mbox_info.htc_addr;
1201 
1202 		memcpy(ar_sdio->bmi_buf, req, req_len);
1203 		ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
1204 		if (ret) {
1205 			ath10k_warn(ar,
1206 				    "unable to send the bmi data to the device: %d\n",
1207 				    ret);
1208 			return ret;
1209 		}
1210 	}
1211 
1212 	if (!resp || !resp_len)
1213 		/* No response expected */
1214 		return 0;
1215 
1216 	/* During normal bootup, small reads may be required.
1217 	 * Rather than issue an HIF Read and then wait as the Target
1218 	 * adds successive bytes to the FIFO, we wait here until
1219 	 * we know that response data is available.
1220 	 *
1221 	 * This allows us to cleanly timeout on an unexpected
1222 	 * Target failure rather than risk problems at the HIF level.
1223 	 * In particular, this avoids SDIO timeouts and possibly garbage
1224 	 * data on some host controllers.  And on an interconnect
1225 	 * such as Compact Flash (as well as some SDIO masters) which
1226 	 * does not provide any indication on data timeout, it avoids
1227 	 * a potential hang or garbage response.
1228 	 *
1229 	 * Synchronization is more difficult for reads larger than the
1230 	 * size of the MBOX FIFO (128B), because the Target is unable
1231 	 * to push the 129th byte of data until AFTER the Host posts an
1232 	 * HIF Read and removes some FIFO data.  So for large reads the
1233 	 * Host proceeds to post an HIF Read BEFORE all the data is
1234 	 * actually available to read.  Fortunately, large BMI reads do
1235 	 * not occur in practice -- they're supported for debug/development.
1236 	 *
1237 	 * So Host/Target BMI synchronization is divided into these cases:
1238 	 *  CASE 1: length < 4
1239 	 *        Should not happen
1240 	 *
1241 	 *  CASE 2: 4 <= length <= 128
1242 	 *        Wait for first 4 bytes to be in FIFO
1243 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1244 	 *        a BMI command credit, which indicates that the ENTIRE
1245 	 *        response is available in the the FIFO
1246 	 *
1247 	 *  CASE 3: length > 128
1248 	 *        Wait for the first 4 bytes to be in FIFO
1249 	 *
1250 	 * For most uses, a small timeout should be sufficient and we will
1251 	 * usually see a response quickly; but there may be some unusual
1252 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1253 	 * For now, we use an unbounded busy loop while waiting for
1254 	 * BMI_EXECUTE.
1255 	 *
1256 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1257 	 * especially in production, this code needs to be enhanced to sleep
1258 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1259 	 * a function of Host processor speed.
1260 	 */
1261 	ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
1262 	if (ret)
1263 		return ret;
1264 
1265 	/* We always read from the start of the mbox address */
1266 	addr = ar_sdio->mbox_info.htc_addr;
1267 	ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
1268 	if (ret) {
1269 		ath10k_warn(ar,
1270 			    "unable to read the bmi data from the device: %d\n",
1271 			    ret);
1272 		return ret;
1273 	}
1274 
1275 	memcpy(resp, ar_sdio->bmi_buf, *resp_len);
1276 
1277 	return 0;
1278 }
1279 
1280 /* sdio async handling functions */
1281 
1282 static struct ath10k_sdio_bus_request
1283 *ath10k_sdio_alloc_busreq(struct ath10k *ar)
1284 {
1285 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1286 	struct ath10k_sdio_bus_request *bus_req;
1287 
1288 	spin_lock_bh(&ar_sdio->lock);
1289 
1290 	if (list_empty(&ar_sdio->bus_req_freeq)) {
1291 		bus_req = NULL;
1292 		goto out;
1293 	}
1294 
1295 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
1296 				   struct ath10k_sdio_bus_request, list);
1297 	list_del(&bus_req->list);
1298 
1299 out:
1300 	spin_unlock_bh(&ar_sdio->lock);
1301 	return bus_req;
1302 }
1303 
1304 static void ath10k_sdio_free_bus_req(struct ath10k *ar,
1305 				     struct ath10k_sdio_bus_request *bus_req)
1306 {
1307 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1308 
1309 	memset(bus_req, 0, sizeof(*bus_req));
1310 
1311 	spin_lock_bh(&ar_sdio->lock);
1312 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
1313 	spin_unlock_bh(&ar_sdio->lock);
1314 }
1315 
1316 static void __ath10k_sdio_write_async(struct ath10k *ar,
1317 				      struct ath10k_sdio_bus_request *req)
1318 {
1319 	struct ath10k_htc_ep *ep;
1320 	struct sk_buff *skb;
1321 	int ret;
1322 
1323 	skb = req->skb;
1324 	ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
1325 	if (ret)
1326 		ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
1327 			    req->address, ret);
1328 
1329 	if (req->htc_msg) {
1330 		ep = &ar->htc.endpoint[req->eid];
1331 		ath10k_htc_notify_tx_completion(ep, skb);
1332 	} else if (req->comp) {
1333 		complete(req->comp);
1334 	}
1335 
1336 	ath10k_sdio_free_bus_req(ar, req);
1337 }
1338 
1339 /* To improve throughput use workqueue to deliver packets to HTC layer,
1340  * this way SDIO bus is utilised much better.
1341  */
1342 static void ath10k_rx_indication_async_work(struct work_struct *work)
1343 {
1344 	struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1345 						   async_work_rx);
1346 	struct ath10k *ar = ar_sdio->ar;
1347 	struct ath10k_htc_ep *ep;
1348 	struct ath10k_skb_rxcb *cb;
1349 	struct sk_buff *skb;
1350 
1351 	while (true) {
1352 		skb = skb_dequeue(&ar_sdio->rx_head);
1353 		if (!skb)
1354 			break;
1355 		cb = ATH10K_SKB_RXCB(skb);
1356 		ep = &ar->htc.endpoint[cb->eid];
1357 		ep->ep_ops.ep_rx_complete(ar, skb);
1358 	}
1359 
1360 	if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags))
1361 		napi_schedule(&ar->napi);
1362 }
1363 
1364 static void ath10k_sdio_write_async_work(struct work_struct *work)
1365 {
1366 	struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1367 						   wr_async_work);
1368 	struct ath10k *ar = ar_sdio->ar;
1369 	struct ath10k_sdio_bus_request *req, *tmp_req;
1370 
1371 	spin_lock_bh(&ar_sdio->wr_async_lock);
1372 
1373 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1374 		list_del(&req->list);
1375 		spin_unlock_bh(&ar_sdio->wr_async_lock);
1376 		__ath10k_sdio_write_async(ar, req);
1377 		spin_lock_bh(&ar_sdio->wr_async_lock);
1378 	}
1379 
1380 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1381 }
1382 
1383 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
1384 				      struct sk_buff *skb,
1385 				      struct completion *comp,
1386 				      bool htc_msg, enum ath10k_htc_ep_id eid)
1387 {
1388 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1389 	struct ath10k_sdio_bus_request *bus_req;
1390 
1391 	/* Allocate a bus request for the message and queue it on the
1392 	 * SDIO workqueue.
1393 	 */
1394 	bus_req = ath10k_sdio_alloc_busreq(ar);
1395 	if (!bus_req) {
1396 		ath10k_warn(ar,
1397 			    "unable to allocate bus request for async request\n");
1398 		return -ENOMEM;
1399 	}
1400 
1401 	bus_req->skb = skb;
1402 	bus_req->eid = eid;
1403 	bus_req->address = addr;
1404 	bus_req->htc_msg = htc_msg;
1405 	bus_req->comp = comp;
1406 
1407 	spin_lock_bh(&ar_sdio->wr_async_lock);
1408 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
1409 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1410 
1411 	return 0;
1412 }
1413 
1414 /* IRQ handler */
1415 
1416 static void ath10k_sdio_irq_handler(struct sdio_func *func)
1417 {
1418 	struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
1419 	struct ath10k *ar = ar_sdio->ar;
1420 	unsigned long timeout;
1421 	bool done = false;
1422 	int ret;
1423 
1424 	/* Release the host during interrupts so we can pick it back up when
1425 	 * we process commands.
1426 	 */
1427 	sdio_release_host(ar_sdio->func);
1428 
1429 	timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
1430 	do {
1431 		ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
1432 		if (ret)
1433 			break;
1434 	} while (time_before(jiffies, timeout) && !done);
1435 
1436 	ath10k_mac_tx_push_pending(ar);
1437 
1438 	sdio_claim_host(ar_sdio->func);
1439 
1440 	if (ret && ret != -ECANCELED)
1441 		ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
1442 			    ret);
1443 }
1444 
1445 /* sdio HIF functions */
1446 
1447 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar)
1448 {
1449 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1450 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1451 	struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1452 	int ret;
1453 
1454 	mutex_lock(&irq_data->mtx);
1455 
1456 	memset(regs, 0, sizeof(*regs));
1457 	ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1458 				&regs->int_status_en, sizeof(*regs));
1459 	if (ret)
1460 		ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
1461 
1462 	mutex_unlock(&irq_data->mtx);
1463 
1464 	return ret;
1465 }
1466 
1467 static int ath10k_sdio_hif_power_up(struct ath10k *ar,
1468 				    enum ath10k_firmware_mode fw_mode)
1469 {
1470 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1471 	struct sdio_func *func = ar_sdio->func;
1472 	int ret;
1473 
1474 	if (!ar_sdio->is_disabled)
1475 		return 0;
1476 
1477 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
1478 
1479 	ret = ath10k_sdio_config(ar);
1480 	if (ret) {
1481 		ath10k_err(ar, "failed to config sdio: %d\n", ret);
1482 		return ret;
1483 	}
1484 
1485 	sdio_claim_host(func);
1486 
1487 	ret = sdio_enable_func(func);
1488 	if (ret) {
1489 		ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
1490 		sdio_release_host(func);
1491 		return ret;
1492 	}
1493 
1494 	sdio_release_host(func);
1495 
1496 	/* Wait for hardware to initialise. It should take a lot less than
1497 	 * 20 ms but let's be conservative here.
1498 	 */
1499 	msleep(20);
1500 
1501 	ar_sdio->is_disabled = false;
1502 
1503 	ret = ath10k_sdio_hif_disable_intrs(ar);
1504 	if (ret)
1505 		return ret;
1506 
1507 	return 0;
1508 }
1509 
1510 static void ath10k_sdio_hif_power_down(struct ath10k *ar)
1511 {
1512 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1513 	int ret;
1514 
1515 	if (ar_sdio->is_disabled)
1516 		return;
1517 
1518 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
1519 
1520 	/* Disable the card */
1521 	sdio_claim_host(ar_sdio->func);
1522 
1523 	ret = sdio_disable_func(ar_sdio->func);
1524 	if (ret) {
1525 		ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
1526 		sdio_release_host(ar_sdio->func);
1527 		return;
1528 	}
1529 
1530 	ret = mmc_hw_reset(ar_sdio->func->card->host);
1531 	if (ret)
1532 		ath10k_warn(ar, "unable to reset sdio: %d\n", ret);
1533 
1534 	sdio_release_host(ar_sdio->func);
1535 
1536 	ar_sdio->is_disabled = true;
1537 }
1538 
1539 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1540 				 struct ath10k_hif_sg_item *items, int n_items)
1541 {
1542 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1543 	enum ath10k_htc_ep_id eid;
1544 	struct sk_buff *skb;
1545 	int ret, i;
1546 
1547 	eid = pipe_id_to_eid(pipe_id);
1548 
1549 	for (i = 0; i < n_items; i++) {
1550 		size_t padded_len;
1551 		u32 address;
1552 
1553 		skb = items[i].transfer_context;
1554 		padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
1555 							      skb->len);
1556 		skb_trim(skb, padded_len);
1557 
1558 		/* Write TX data to the end of the mbox address space */
1559 		address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
1560 			  skb->len;
1561 		ret = ath10k_sdio_prep_async_req(ar, address, skb,
1562 						 NULL, true, eid);
1563 		if (ret)
1564 			return ret;
1565 	}
1566 
1567 	queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1568 
1569 	return 0;
1570 }
1571 
1572 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar)
1573 {
1574 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1575 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1576 	struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1577 	int ret;
1578 
1579 	mutex_lock(&irq_data->mtx);
1580 
1581 	/* Enable all but CPU interrupts */
1582 	regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
1583 			      FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
1584 			      FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
1585 
1586 	/* NOTE: There are some cases where HIF can do detection of
1587 	 * pending mbox messages which is disabled now.
1588 	 */
1589 	regs->int_status_en |=
1590 		FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
1591 
1592 	/* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0
1593 	 * #0 is used for report assertion from target
1594 	 */
1595 	regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1);
1596 
1597 	/* Set up the Error Interrupt status Register */
1598 	regs->err_int_status_en =
1599 		FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
1600 		FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
1601 
1602 	/* Enable Counter interrupt status register to get fatal errors for
1603 	 * debugging.
1604 	 */
1605 	regs->cntr_int_status_en =
1606 		FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
1607 			   ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
1608 
1609 	ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1610 				&regs->int_status_en, sizeof(*regs));
1611 	if (ret)
1612 		ath10k_warn(ar,
1613 			    "failed to update mbox interrupt status register : %d\n",
1614 			    ret);
1615 
1616 	mutex_unlock(&irq_data->mtx);
1617 	return ret;
1618 }
1619 
1620 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
1621 {
1622 	u32 val;
1623 	int ret;
1624 
1625 	ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
1626 	if (ret) {
1627 		ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
1628 			    ret);
1629 		return ret;
1630 	}
1631 
1632 	if (enable_sleep)
1633 		val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
1634 	else
1635 		val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
1636 
1637 	ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
1638 	if (ret) {
1639 		ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
1640 			    ret);
1641 		return ret;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 /* HIF diagnostics */
1648 
1649 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1650 				     size_t buf_len)
1651 {
1652 	int ret;
1653 	void *mem;
1654 
1655 	mem = kzalloc(buf_len, GFP_KERNEL);
1656 	if (!mem)
1657 		return -ENOMEM;
1658 
1659 	/* set window register to start read cycle */
1660 	ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
1661 	if (ret) {
1662 		ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
1663 		goto out;
1664 	}
1665 
1666 	/* read the data */
1667 	ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len);
1668 	if (ret) {
1669 		ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
1670 			    ret);
1671 		goto out;
1672 	}
1673 
1674 	memcpy(buf, mem, buf_len);
1675 
1676 out:
1677 	kfree(mem);
1678 
1679 	return ret;
1680 }
1681 
1682 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address,
1683 				       u32 *value)
1684 {
1685 	__le32 *val;
1686 	int ret;
1687 
1688 	val = kzalloc(sizeof(*val), GFP_KERNEL);
1689 	if (!val)
1690 		return -ENOMEM;
1691 
1692 	ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
1693 	if (ret)
1694 		goto out;
1695 
1696 	*value = __le32_to_cpu(*val);
1697 
1698 out:
1699 	kfree(val);
1700 
1701 	return ret;
1702 }
1703 
1704 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
1705 					  const void *data, int nbytes)
1706 {
1707 	int ret;
1708 
1709 	/* set write data */
1710 	ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
1711 	if (ret) {
1712 		ath10k_warn(ar,
1713 			    "failed to write 0x%p to mbox window data address: %d\n",
1714 			    data, ret);
1715 		return ret;
1716 	}
1717 
1718 	/* set window register, which starts the write cycle */
1719 	ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
1720 	if (ret) {
1721 		ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
1722 		return ret;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar)
1729 {
1730 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1731 	u32 addr, val;
1732 	int ret = 0;
1733 
1734 	addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1735 
1736 	ret = ath10k_sdio_hif_diag_read32(ar, addr, &val);
1737 	if (ret) {
1738 		ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret);
1739 		return ret;
1740 	}
1741 
1742 	if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
1743 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1744 			   "sdio mailbox swap service enabled\n");
1745 		ar_sdio->swap_mbox = true;
1746 	} else {
1747 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1748 			   "sdio mailbox swap service disabled\n");
1749 		ar_sdio->swap_mbox = false;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 /* HIF start/stop */
1756 
1757 static int ath10k_sdio_hif_start(struct ath10k *ar)
1758 {
1759 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1760 	int ret;
1761 
1762 	napi_enable(&ar->napi);
1763 
1764 	/* Sleep 20 ms before HIF interrupts are disabled.
1765 	 * This will give target plenty of time to process the BMI done
1766 	 * request before interrupts are disabled.
1767 	 */
1768 	msleep(20);
1769 	ret = ath10k_sdio_hif_disable_intrs(ar);
1770 	if (ret)
1771 		return ret;
1772 
1773 	/* eid 0 always uses the lower part of the extended mailbox address
1774 	 * space (ext_info[0].htc_ext_addr).
1775 	 */
1776 	ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1777 	ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1778 
1779 	sdio_claim_host(ar_sdio->func);
1780 
1781 	/* Register the isr */
1782 	ret =  sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
1783 	if (ret) {
1784 		ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
1785 		sdio_release_host(ar_sdio->func);
1786 		return ret;
1787 	}
1788 
1789 	sdio_release_host(ar_sdio->func);
1790 
1791 	ret = ath10k_sdio_hif_enable_intrs(ar);
1792 	if (ret)
1793 		ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
1794 
1795 	/* Enable sleep and then disable it again */
1796 	ret = ath10k_sdio_hif_set_mbox_sleep(ar, true);
1797 	if (ret)
1798 		return ret;
1799 
1800 	/* Wait for 20ms for the written value to take effect */
1801 	msleep(20);
1802 
1803 	ret = ath10k_sdio_hif_set_mbox_sleep(ar, false);
1804 	if (ret)
1805 		return ret;
1806 
1807 	return 0;
1808 }
1809 
1810 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
1811 
1812 static void ath10k_sdio_irq_disable(struct ath10k *ar)
1813 {
1814 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1815 	struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1816 	struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1817 	struct sk_buff *skb;
1818 	struct completion irqs_disabled_comp;
1819 	int ret;
1820 
1821 	skb = dev_alloc_skb(sizeof(*regs));
1822 	if (!skb)
1823 		return;
1824 
1825 	mutex_lock(&irq_data->mtx);
1826 
1827 	memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
1828 	memcpy(skb->data, regs, sizeof(*regs));
1829 	skb_put(skb, sizeof(*regs));
1830 
1831 	mutex_unlock(&irq_data->mtx);
1832 
1833 	init_completion(&irqs_disabled_comp);
1834 	ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1835 					 skb, &irqs_disabled_comp, false, 0);
1836 	if (ret)
1837 		goto out;
1838 
1839 	queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1840 
1841 	/* Wait for the completion of the IRQ disable request.
1842 	 * If there is a timeout we will try to disable irq's anyway.
1843 	 */
1844 	ret = wait_for_completion_timeout(&irqs_disabled_comp,
1845 					  SDIO_IRQ_DISABLE_TIMEOUT_HZ);
1846 	if (!ret)
1847 		ath10k_warn(ar, "sdio irq disable request timed out\n");
1848 
1849 	sdio_claim_host(ar_sdio->func);
1850 
1851 	ret = sdio_release_irq(ar_sdio->func);
1852 	if (ret)
1853 		ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
1854 
1855 	sdio_release_host(ar_sdio->func);
1856 
1857 out:
1858 	kfree_skb(skb);
1859 }
1860 
1861 static void ath10k_sdio_hif_stop(struct ath10k *ar)
1862 {
1863 	struct ath10k_sdio_bus_request *req, *tmp_req;
1864 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1865 
1866 	ath10k_sdio_irq_disable(ar);
1867 
1868 	cancel_work_sync(&ar_sdio->wr_async_work);
1869 
1870 	spin_lock_bh(&ar_sdio->wr_async_lock);
1871 
1872 	/* Free all bus requests that have not been handled */
1873 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1874 		struct ath10k_htc_ep *ep;
1875 
1876 		list_del(&req->list);
1877 
1878 		if (req->htc_msg) {
1879 			ep = &ar->htc.endpoint[req->eid];
1880 			ath10k_htc_notify_tx_completion(ep, req->skb);
1881 		} else if (req->skb) {
1882 			kfree_skb(req->skb);
1883 		}
1884 		ath10k_sdio_free_bus_req(ar, req);
1885 	}
1886 
1887 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1888 
1889 	napi_synchronize(&ar->napi);
1890 	napi_disable(&ar->napi);
1891 }
1892 
1893 #ifdef CONFIG_PM
1894 
1895 static int ath10k_sdio_hif_suspend(struct ath10k *ar)
1896 {
1897 	return 0;
1898 }
1899 
1900 static int ath10k_sdio_hif_resume(struct ath10k *ar)
1901 {
1902 	switch (ar->state) {
1903 	case ATH10K_STATE_OFF:
1904 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1905 			   "sdio resume configuring sdio\n");
1906 
1907 		/* need to set sdio settings after power is cut from sdio */
1908 		ath10k_sdio_config(ar);
1909 		break;
1910 
1911 	case ATH10K_STATE_ON:
1912 	default:
1913 		break;
1914 	}
1915 
1916 	return 0;
1917 }
1918 #endif
1919 
1920 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
1921 					       u16 service_id,
1922 					       u8 *ul_pipe, u8 *dl_pipe)
1923 {
1924 	struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1925 	struct ath10k_htc *htc = &ar->htc;
1926 	u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
1927 	enum ath10k_htc_ep_id eid;
1928 	bool ep_found = false;
1929 	int i;
1930 
1931 	/* For sdio, we are interested in the mapping between eid
1932 	 * and pipeid rather than service_id to pipe_id.
1933 	 * First we find out which eid has been allocated to the
1934 	 * service...
1935 	 */
1936 	for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
1937 		if (htc->endpoint[i].service_id == service_id) {
1938 			eid = htc->endpoint[i].eid;
1939 			ep_found = true;
1940 			break;
1941 		}
1942 	}
1943 
1944 	if (!ep_found)
1945 		return -EINVAL;
1946 
1947 	/* Then we create the simplest mapping possible between pipeid
1948 	 * and eid
1949 	 */
1950 	*ul_pipe = *dl_pipe = (u8)eid;
1951 
1952 	/* Normally, HTT will use the upper part of the extended
1953 	 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
1954 	 * the lower part (ext_info[0].htc_ext_addr).
1955 	 * If fw wants swapping of mailbox addresses, the opposite is true.
1956 	 */
1957 	if (ar_sdio->swap_mbox) {
1958 		htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1959 		wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1960 		htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1961 		wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1962 	} else {
1963 		htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1964 		wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1965 		htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1966 		wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1967 	}
1968 
1969 	switch (service_id) {
1970 	case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1971 		/* HTC ctrl ep mbox address has already been setup in
1972 		 * ath10k_sdio_hif_start
1973 		 */
1974 		break;
1975 	case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1976 		ar_sdio->mbox_addr[eid] = wmi_addr;
1977 		ar_sdio->mbox_size[eid] = wmi_mbox_size;
1978 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1979 			   "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
1980 			   ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1981 		break;
1982 	case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1983 		ar_sdio->mbox_addr[eid] = htt_addr;
1984 		ar_sdio->mbox_size[eid] = htt_mbox_size;
1985 		ath10k_dbg(ar, ATH10K_DBG_SDIO,
1986 			   "sdio htt data mbox_addr 0x%x mbox_size %d\n",
1987 			   ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1988 		break;
1989 	default:
1990 		ath10k_warn(ar, "unsupported HTC service id: %d\n",
1991 			    service_id);
1992 		return -EINVAL;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
1999 					     u8 *ul_pipe, u8 *dl_pipe)
2000 {
2001 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
2002 
2003 	/* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
2004 	 * case) == 0
2005 	 */
2006 	*ul_pipe = 0;
2007 	*dl_pipe = 0;
2008 }
2009 
2010 /* This op is currently only used by htc_wait_target if the HTC ready
2011  * message times out. It is not applicable for SDIO since there is nothing
2012  * we can do if the HTC ready message does not arrive in time.
2013  * TODO: Make this op non mandatory by introducing a NULL check in the
2014  * hif op wrapper.
2015  */
2016 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar,
2017 						u8 pipe, int force)
2018 {
2019 }
2020 
2021 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
2022 	.tx_sg			= ath10k_sdio_hif_tx_sg,
2023 	.diag_read		= ath10k_sdio_hif_diag_read,
2024 	.diag_write		= ath10k_sdio_hif_diag_write_mem,
2025 	.exchange_bmi_msg	= ath10k_sdio_bmi_exchange_msg,
2026 	.start			= ath10k_sdio_hif_start,
2027 	.stop			= ath10k_sdio_hif_stop,
2028 	.swap_mailbox		= ath10k_sdio_hif_swap_mailbox,
2029 	.map_service_to_pipe	= ath10k_sdio_hif_map_service_to_pipe,
2030 	.get_default_pipe	= ath10k_sdio_hif_get_default_pipe,
2031 	.send_complete_check	= ath10k_sdio_hif_send_complete_check,
2032 	.power_up		= ath10k_sdio_hif_power_up,
2033 	.power_down		= ath10k_sdio_hif_power_down,
2034 #ifdef CONFIG_PM
2035 	.suspend		= ath10k_sdio_hif_suspend,
2036 	.resume			= ath10k_sdio_hif_resume,
2037 #endif
2038 };
2039 
2040 #ifdef CONFIG_PM_SLEEP
2041 
2042 /* Empty handlers so that mmc subsystem doesn't remove us entirely during
2043  * suspend. We instead follow cfg80211 suspend/resume handlers.
2044  */
2045 static int ath10k_sdio_pm_suspend(struct device *device)
2046 {
2047 	struct sdio_func *func = dev_to_sdio_func(device);
2048 	struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2049 	struct ath10k *ar = ar_sdio->ar;
2050 	mmc_pm_flag_t pm_flag, pm_caps;
2051 	int ret;
2052 
2053 	if (!device_may_wakeup(ar->dev))
2054 		return 0;
2055 
2056 	pm_flag = MMC_PM_KEEP_POWER;
2057 
2058 	ret = sdio_set_host_pm_flags(func, pm_flag);
2059 	if (ret) {
2060 		pm_caps = sdio_get_host_pm_caps(func);
2061 		ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n",
2062 			    pm_flag, pm_caps, ret);
2063 		return ret;
2064 	}
2065 
2066 	return ret;
2067 }
2068 
2069 static int ath10k_sdio_pm_resume(struct device *device)
2070 {
2071 	return 0;
2072 }
2073 
2074 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
2075 			 ath10k_sdio_pm_resume);
2076 
2077 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
2078 
2079 #else
2080 
2081 #define ATH10K_SDIO_PM_OPS NULL
2082 
2083 #endif /* CONFIG_PM_SLEEP */
2084 
2085 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget)
2086 {
2087 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2088 	int done;
2089 
2090 	done = ath10k_htt_rx_hl_indication(ar, budget);
2091 	ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget);
2092 
2093 	if (done < budget)
2094 		napi_complete_done(ctx, done);
2095 
2096 	return done;
2097 }
2098 
2099 static int ath10k_sdio_probe(struct sdio_func *func,
2100 			     const struct sdio_device_id *id)
2101 {
2102 	struct ath10k_sdio *ar_sdio;
2103 	struct ath10k *ar;
2104 	enum ath10k_hw_rev hw_rev;
2105 	u32 dev_id_base;
2106 	struct ath10k_bus_params bus_params = {};
2107 	int ret, i;
2108 
2109 	/* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
2110 	 * If there will be newer chipsets that does not use the hw reg
2111 	 * setup as defined in qca6174_regs and qca6174_values, this
2112 	 * assumption is no longer valid and hw_rev must be setup differently
2113 	 * depending on chipset.
2114 	 */
2115 	hw_rev = ATH10K_HW_QCA6174;
2116 
2117 	ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
2118 				hw_rev, &ath10k_sdio_hif_ops);
2119 	if (!ar) {
2120 		dev_err(&func->dev, "failed to allocate core\n");
2121 		return -ENOMEM;
2122 	}
2123 
2124 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll,
2125 		       ATH10K_NAPI_BUDGET);
2126 
2127 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
2128 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
2129 		   func->num, func->vendor, func->device,
2130 		   func->max_blksize, func->cur_blksize);
2131 
2132 	ar_sdio = ath10k_sdio_priv(ar);
2133 
2134 	ar_sdio->irq_data.irq_proc_reg =
2135 		devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
2136 			     GFP_KERNEL);
2137 	if (!ar_sdio->irq_data.irq_proc_reg) {
2138 		ret = -ENOMEM;
2139 		goto err_core_destroy;
2140 	}
2141 
2142 	ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL);
2143 	if (!ar_sdio->vsg_buffer) {
2144 		ret = -ENOMEM;
2145 		goto err_core_destroy;
2146 	}
2147 
2148 	ar_sdio->irq_data.irq_en_reg =
2149 		devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
2150 			     GFP_KERNEL);
2151 	if (!ar_sdio->irq_data.irq_en_reg) {
2152 		ret = -ENOMEM;
2153 		goto err_core_destroy;
2154 	}
2155 
2156 	ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL);
2157 	if (!ar_sdio->bmi_buf) {
2158 		ret = -ENOMEM;
2159 		goto err_core_destroy;
2160 	}
2161 
2162 	ar_sdio->func = func;
2163 	sdio_set_drvdata(func, ar_sdio);
2164 
2165 	ar_sdio->is_disabled = true;
2166 	ar_sdio->ar = ar;
2167 
2168 	spin_lock_init(&ar_sdio->lock);
2169 	spin_lock_init(&ar_sdio->wr_async_lock);
2170 	mutex_init(&ar_sdio->irq_data.mtx);
2171 
2172 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
2173 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
2174 
2175 	INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
2176 	ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
2177 	if (!ar_sdio->workqueue) {
2178 		ret = -ENOMEM;
2179 		goto err_core_destroy;
2180 	}
2181 
2182 	for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
2183 		ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
2184 
2185 	skb_queue_head_init(&ar_sdio->rx_head);
2186 	INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work);
2187 
2188 	dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device);
2189 	switch (dev_id_base) {
2190 	case QCA_MANUFACTURER_ID_AR6005_BASE:
2191 	case QCA_MANUFACTURER_ID_QCA9377_BASE:
2192 		ar->dev_id = QCA9377_1_0_DEVICE_ID;
2193 		break;
2194 	default:
2195 		ret = -ENODEV;
2196 		ath10k_err(ar, "unsupported device id %u (0x%x)\n",
2197 			   dev_id_base, id->device);
2198 		goto err_free_wq;
2199 	}
2200 
2201 	ar->id.vendor = id->vendor;
2202 	ar->id.device = id->device;
2203 
2204 	ath10k_sdio_set_mbox_info(ar);
2205 
2206 	bus_params.dev_type = ATH10K_DEV_TYPE_HL;
2207 	/* TODO: don't know yet how to get chip_id with SDIO */
2208 	bus_params.chip_id = 0;
2209 	bus_params.hl_msdu_ids = true;
2210 
2211 	ar->hw->max_mtu = ETH_DATA_LEN;
2212 
2213 	ret = ath10k_core_register(ar, &bus_params);
2214 	if (ret) {
2215 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
2216 		goto err_free_wq;
2217 	}
2218 
2219 	return 0;
2220 
2221 err_free_wq:
2222 	destroy_workqueue(ar_sdio->workqueue);
2223 err_core_destroy:
2224 	ath10k_core_destroy(ar);
2225 
2226 	return ret;
2227 }
2228 
2229 static void ath10k_sdio_remove(struct sdio_func *func)
2230 {
2231 	struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2232 	struct ath10k *ar = ar_sdio->ar;
2233 
2234 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
2235 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
2236 		   func->num, func->vendor, func->device);
2237 
2238 	ath10k_core_unregister(ar);
2239 
2240 	netif_napi_del(&ar->napi);
2241 
2242 	ath10k_core_destroy(ar);
2243 
2244 	flush_workqueue(ar_sdio->workqueue);
2245 	destroy_workqueue(ar_sdio->workqueue);
2246 }
2247 
2248 static const struct sdio_device_id ath10k_sdio_devices[] = {
2249 	{SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2250 		     (QCA_SDIO_ID_AR6005_BASE | 0xA))},
2251 	{SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2252 		     (QCA_SDIO_ID_QCA9377_BASE | 0x1))},
2253 	{},
2254 };
2255 
2256 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
2257 
2258 static struct sdio_driver ath10k_sdio_driver = {
2259 	.name = "ath10k_sdio",
2260 	.id_table = ath10k_sdio_devices,
2261 	.probe = ath10k_sdio_probe,
2262 	.remove = ath10k_sdio_remove,
2263 	.drv = {
2264 		.owner = THIS_MODULE,
2265 		.pm = ATH10K_SDIO_PM_OPS,
2266 	},
2267 };
2268 
2269 static int __init ath10k_sdio_init(void)
2270 {
2271 	int ret;
2272 
2273 	ret = sdio_register_driver(&ath10k_sdio_driver);
2274 	if (ret)
2275 		pr_err("sdio driver registration failed: %d\n", ret);
2276 
2277 	return ret;
2278 }
2279 
2280 static void __exit ath10k_sdio_exit(void)
2281 {
2282 	sdio_unregister_driver(&ath10k_sdio_driver);
2283 }
2284 
2285 module_init(ath10k_sdio_init);
2286 module_exit(ath10k_sdio_exit);
2287 
2288 MODULE_AUTHOR("Qualcomm Atheros");
2289 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
2290 MODULE_LICENSE("Dual BSD/GPL");
2291