1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/mmc/card.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/mmc/host.h> 12 #include <linux/mmc/sdio_func.h> 13 #include <linux/mmc/sdio_ids.h> 14 #include <linux/mmc/sdio.h> 15 #include <linux/mmc/sd.h> 16 #include <linux/bitfield.h> 17 #include "core.h" 18 #include "bmi.h" 19 #include "debug.h" 20 #include "hif.h" 21 #include "htc.h" 22 #include "mac.h" 23 #include "targaddrs.h" 24 #include "trace.h" 25 #include "sdio.h" 26 27 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) 28 29 /* inlined helper functions */ 30 31 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 32 size_t len) 33 { 34 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 35 } 36 37 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 38 { 39 return (enum ath10k_htc_ep_id)pipe_id; 40 } 41 42 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 43 { 44 dev_kfree_skb(pkt->skb); 45 pkt->skb = NULL; 46 pkt->alloc_len = 0; 47 pkt->act_len = 0; 48 pkt->trailer_only = false; 49 } 50 51 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 52 size_t act_len, size_t full_len, 53 bool part_of_bundle, 54 bool last_in_bundle) 55 { 56 pkt->skb = dev_alloc_skb(full_len); 57 if (!pkt->skb) 58 return -ENOMEM; 59 60 pkt->act_len = act_len; 61 pkt->alloc_len = full_len; 62 pkt->part_of_bundle = part_of_bundle; 63 pkt->last_in_bundle = last_in_bundle; 64 pkt->trailer_only = false; 65 66 return 0; 67 } 68 69 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 70 { 71 bool trailer_only = false; 72 struct ath10k_htc_hdr *htc_hdr = 73 (struct ath10k_htc_hdr *)pkt->skb->data; 74 u16 len = __le16_to_cpu(htc_hdr->len); 75 76 if (len == htc_hdr->trailer_len) 77 trailer_only = true; 78 79 return trailer_only; 80 } 81 82 /* sdio/mmc functions */ 83 84 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 85 unsigned int address, 86 unsigned char val) 87 { 88 *arg = FIELD_PREP(BIT(31), write) | 89 FIELD_PREP(BIT(27), raw) | 90 FIELD_PREP(BIT(26), 1) | 91 FIELD_PREP(GENMASK(25, 9), address) | 92 FIELD_PREP(BIT(8), 1) | 93 FIELD_PREP(GENMASK(7, 0), val); 94 } 95 96 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 97 unsigned int address, 98 unsigned char byte) 99 { 100 struct mmc_command io_cmd; 101 102 memset(&io_cmd, 0, sizeof(io_cmd)); 103 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 104 io_cmd.opcode = SD_IO_RW_DIRECT; 105 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 106 107 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 108 } 109 110 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 111 unsigned int address, 112 unsigned char *byte) 113 { 114 struct mmc_command io_cmd; 115 int ret; 116 117 memset(&io_cmd, 0, sizeof(io_cmd)); 118 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 119 io_cmd.opcode = SD_IO_RW_DIRECT; 120 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 121 122 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 123 if (!ret) 124 *byte = io_cmd.resp[0]; 125 126 return ret; 127 } 128 129 static int ath10k_sdio_config(struct ath10k *ar) 130 { 131 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 132 struct sdio_func *func = ar_sdio->func; 133 unsigned char byte, asyncintdelay = 2; 134 int ret; 135 136 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 137 138 sdio_claim_host(func); 139 140 byte = 0; 141 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 142 SDIO_CCCR_DRIVE_STRENGTH, 143 &byte); 144 145 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 146 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 147 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 148 149 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 150 SDIO_CCCR_DRIVE_STRENGTH, 151 byte); 152 153 byte = 0; 154 ret = ath10k_sdio_func0_cmd52_rd_byte( 155 func->card, 156 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 157 &byte); 158 159 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 160 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 161 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 162 163 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 165 byte); 166 if (ret) { 167 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 168 goto out; 169 } 170 171 byte = 0; 172 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 173 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 174 &byte); 175 176 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 177 178 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 179 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 180 byte); 181 if (ret) { 182 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 183 ret); 184 goto out; 185 } 186 187 byte = 0; 188 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 189 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 190 &byte); 191 192 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 193 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 194 195 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 196 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 197 byte); 198 199 /* give us some time to enable, in ms */ 200 func->enable_timeout = 100; 201 202 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 203 if (ret) { 204 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 205 ar_sdio->mbox_info.block_size, ret); 206 goto out; 207 } 208 209 out: 210 sdio_release_host(func); 211 return ret; 212 } 213 214 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 215 { 216 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 217 struct sdio_func *func = ar_sdio->func; 218 int ret; 219 220 sdio_claim_host(func); 221 222 sdio_writel(func, val, addr, &ret); 223 if (ret) { 224 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 225 val, addr, ret); 226 goto out; 227 } 228 229 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 230 addr, val); 231 232 out: 233 sdio_release_host(func); 234 235 return ret; 236 } 237 238 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 239 { 240 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 241 struct sdio_func *func = ar_sdio->func; 242 __le32 *buf; 243 int ret; 244 245 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 246 if (!buf) 247 return -ENOMEM; 248 249 *buf = cpu_to_le32(val); 250 251 sdio_claim_host(func); 252 253 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 254 if (ret) { 255 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 256 val, addr, ret); 257 goto out; 258 } 259 260 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 261 addr, val); 262 263 out: 264 sdio_release_host(func); 265 266 kfree(buf); 267 268 return ret; 269 } 270 271 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 272 { 273 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 274 struct sdio_func *func = ar_sdio->func; 275 int ret; 276 277 sdio_claim_host(func); 278 *val = sdio_readl(func, addr, &ret); 279 if (ret) { 280 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 281 addr, ret); 282 goto out; 283 } 284 285 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 286 addr, *val); 287 288 out: 289 sdio_release_host(func); 290 291 return ret; 292 } 293 294 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 295 { 296 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 297 struct sdio_func *func = ar_sdio->func; 298 int ret; 299 300 sdio_claim_host(func); 301 302 ret = sdio_memcpy_fromio(func, buf, addr, len); 303 if (ret) { 304 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 305 addr, ret); 306 goto out; 307 } 308 309 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 310 addr, buf, len); 311 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 312 313 out: 314 sdio_release_host(func); 315 316 return ret; 317 } 318 319 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 320 { 321 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 322 struct sdio_func *func = ar_sdio->func; 323 int ret; 324 325 sdio_claim_host(func); 326 327 /* For some reason toio() doesn't have const for the buffer, need 328 * an ugly hack to workaround that. 329 */ 330 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 331 if (ret) { 332 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 333 addr, ret); 334 goto out; 335 } 336 337 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 338 addr, buf, len); 339 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 340 341 out: 342 sdio_release_host(func); 343 344 return ret; 345 } 346 347 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 348 { 349 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 350 struct sdio_func *func = ar_sdio->func; 351 int ret; 352 353 sdio_claim_host(func); 354 355 len = round_down(len, ar_sdio->mbox_info.block_size); 356 357 ret = sdio_readsb(func, buf, addr, len); 358 if (ret) { 359 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 360 addr, ret); 361 goto out; 362 } 363 364 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 365 addr, buf, len); 366 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 367 368 out: 369 sdio_release_host(func); 370 371 return ret; 372 } 373 374 /* HIF mbox functions */ 375 376 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 377 struct ath10k_sdio_rx_data *pkt, 378 u32 *lookaheads, 379 int *n_lookaheads) 380 { 381 struct ath10k_htc *htc = &ar->htc; 382 struct sk_buff *skb = pkt->skb; 383 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 384 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 385 enum ath10k_htc_ep_id eid; 386 u8 *trailer; 387 int ret; 388 389 if (trailer_present) { 390 trailer = skb->data + skb->len - htc_hdr->trailer_len; 391 392 eid = pipe_id_to_eid(htc_hdr->eid); 393 394 ret = ath10k_htc_process_trailer(htc, 395 trailer, 396 htc_hdr->trailer_len, 397 eid, 398 lookaheads, 399 n_lookaheads); 400 if (ret) 401 return ret; 402 403 if (is_trailer_only_msg(pkt)) 404 pkt->trailer_only = true; 405 406 skb_trim(skb, skb->len - htc_hdr->trailer_len); 407 } 408 409 skb_pull(skb, sizeof(*htc_hdr)); 410 411 return 0; 412 } 413 414 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 415 u32 lookaheads[], 416 int *n_lookahead) 417 { 418 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 419 struct ath10k_htc *htc = &ar->htc; 420 struct ath10k_sdio_rx_data *pkt; 421 struct ath10k_htc_ep *ep; 422 struct ath10k_skb_rxcb *cb; 423 enum ath10k_htc_ep_id id; 424 int ret, i, *n_lookahead_local; 425 u32 *lookaheads_local; 426 int lookahead_idx = 0; 427 428 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 429 lookaheads_local = lookaheads; 430 n_lookahead_local = n_lookahead; 431 432 id = ((struct ath10k_htc_hdr *) 433 &lookaheads[lookahead_idx++])->eid; 434 435 if (id >= ATH10K_HTC_EP_COUNT) { 436 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 437 id); 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 ep = &htc->endpoint[id]; 443 444 if (ep->service_id == 0) { 445 ath10k_warn(ar, "ep %d is not connected\n", id); 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 pkt = &ar_sdio->rx_pkts[i]; 451 452 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 453 /* Only read lookahead's from RX trailers 454 * for the last packet in a bundle. 455 */ 456 lookahead_idx--; 457 lookaheads_local = NULL; 458 n_lookahead_local = NULL; 459 } 460 461 ret = ath10k_sdio_mbox_rx_process_packet(ar, 462 pkt, 463 lookaheads_local, 464 n_lookahead_local); 465 if (ret) 466 goto out; 467 468 if (!pkt->trailer_only) { 469 cb = ATH10K_SKB_RXCB(pkt->skb); 470 cb->eid = id; 471 472 skb_queue_tail(&ar_sdio->rx_head, pkt->skb); 473 queue_work(ar->workqueue_aux, 474 &ar_sdio->async_work_rx); 475 } else { 476 kfree_skb(pkt->skb); 477 } 478 479 /* The RX complete handler now owns the skb...*/ 480 pkt->skb = NULL; 481 pkt->alloc_len = 0; 482 } 483 484 ret = 0; 485 486 out: 487 /* Free all packets that was not passed on to the RX completion 488 * handler... 489 */ 490 for (; i < ar_sdio->n_rx_pkts; i++) 491 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 492 493 return ret; 494 } 495 496 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, 497 struct ath10k_sdio_rx_data *rx_pkts, 498 struct ath10k_htc_hdr *htc_hdr, 499 size_t full_len, size_t act_len, 500 size_t *bndl_cnt) 501 { 502 int ret, i; 503 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; 504 505 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); 506 507 if (*bndl_cnt > max_msgs) { 508 ath10k_warn(ar, 509 "HTC bundle length %u exceeds maximum %u\n", 510 le16_to_cpu(htc_hdr->len), 511 max_msgs); 512 return -ENOMEM; 513 } 514 515 /* Allocate bndl_cnt extra skb's for the bundle. 516 * The package containing the 517 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 518 * in bndl_cnt. The skb for that packet will be 519 * allocated separately. 520 */ 521 for (i = 0; i < *bndl_cnt; i++) { 522 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 523 act_len, 524 full_len, 525 true, 526 false); 527 if (ret) 528 return ret; 529 } 530 531 return 0; 532 } 533 534 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 535 u32 lookaheads[], int n_lookaheads) 536 { 537 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 538 struct ath10k_htc_hdr *htc_hdr; 539 size_t full_len, act_len; 540 bool last_in_bundle; 541 int ret, i; 542 int pkt_cnt = 0; 543 544 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 545 ath10k_warn(ar, "the total number of pkgs to be fetched (%u) exceeds maximum %u\n", 546 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); 547 ret = -ENOMEM; 548 goto err; 549 } 550 551 for (i = 0; i < n_lookaheads; i++) { 552 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 553 last_in_bundle = false; 554 555 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 556 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", 557 le16_to_cpu(htc_hdr->len), 558 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 559 ret = -ENOMEM; 560 goto err; 561 } 562 563 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 564 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 565 566 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 567 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 568 htc_hdr->eid, htc_hdr->flags, 569 le16_to_cpu(htc_hdr->len)); 570 ret = -EINVAL; 571 goto err; 572 } 573 574 if (ath10k_htc_get_bundle_count( 575 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { 576 /* HTC header indicates that every packet to follow 577 * has the same padded length so that it can be 578 * optimally fetched as a full bundle. 579 */ 580 size_t bndl_cnt; 581 582 ret = ath10k_sdio_mbox_alloc_bundle(ar, 583 &ar_sdio->rx_pkts[pkt_cnt], 584 htc_hdr, 585 full_len, 586 act_len, 587 &bndl_cnt); 588 589 if (ret) { 590 ath10k_warn(ar, "failed to allocate a bundle: %d\n", 591 ret); 592 goto err; 593 } 594 595 pkt_cnt += bndl_cnt; 596 597 /* next buffer will be the last in the bundle */ 598 last_in_bundle = true; 599 } 600 601 /* Allocate skb for packet. If the packet had the 602 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 603 * packet skb's have been allocated in the previous step. 604 */ 605 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 606 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 607 608 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], 609 act_len, 610 full_len, 611 last_in_bundle, 612 last_in_bundle); 613 if (ret) { 614 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 615 goto err; 616 } 617 618 pkt_cnt++; 619 } 620 621 ar_sdio->n_rx_pkts = pkt_cnt; 622 623 return 0; 624 625 err: 626 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 627 if (!ar_sdio->rx_pkts[i].alloc_len) 628 break; 629 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 630 } 631 632 return ret; 633 } 634 635 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 636 { 637 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 638 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; 639 struct sk_buff *skb = pkt->skb; 640 struct ath10k_htc_hdr *htc_hdr; 641 int ret; 642 643 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 644 skb->data, pkt->alloc_len); 645 if (ret) 646 goto err; 647 648 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 649 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 650 651 if (pkt->act_len > pkt->alloc_len) { 652 ret = -EINVAL; 653 goto err; 654 } 655 656 skb_put(skb, pkt->act_len); 657 return 0; 658 659 err: 660 ar_sdio->n_rx_pkts = 0; 661 ath10k_sdio_mbox_free_rx_pkt(pkt); 662 663 return ret; 664 } 665 666 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) 667 { 668 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 669 struct ath10k_sdio_rx_data *pkt; 670 struct ath10k_htc_hdr *htc_hdr; 671 int ret, i; 672 u32 pkt_offset, virt_pkt_len; 673 674 virt_pkt_len = 0; 675 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 676 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; 677 678 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { 679 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); 680 ret = -E2BIG; 681 goto err; 682 } 683 684 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 685 ar_sdio->vsg_buffer, virt_pkt_len); 686 if (ret) { 687 ath10k_warn(ar, "failed to read bundle packets: %d", ret); 688 goto err; 689 } 690 691 pkt_offset = 0; 692 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 693 pkt = &ar_sdio->rx_pkts[i]; 694 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); 695 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 696 697 if (pkt->act_len > pkt->alloc_len) { 698 ret = -EINVAL; 699 goto err; 700 } 701 702 skb_put_data(pkt->skb, htc_hdr, pkt->act_len); 703 pkt_offset += pkt->alloc_len; 704 } 705 706 return 0; 707 708 err: 709 /* Free all packets that was not successfully fetched. */ 710 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 711 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 712 713 ar_sdio->n_rx_pkts = 0; 714 715 return ret; 716 } 717 718 /* This is the timeout for mailbox processing done in the sdio irq 719 * handler. The timeout is deliberately set quite high since SDIO dump logs 720 * over serial port can/will add a substantial overhead to the processing 721 * (if enabled). 722 */ 723 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 724 725 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 726 u32 msg_lookahead, bool *done) 727 { 728 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 729 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 730 int n_lookaheads = 1; 731 unsigned long timeout; 732 int ret; 733 734 *done = true; 735 736 /* Copy the lookahead obtained from the HTC register table into our 737 * temp array as a start value. 738 */ 739 lookaheads[0] = msg_lookahead; 740 741 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 742 do { 743 /* Try to allocate as many HTC RX packets indicated by 744 * n_lookaheads. 745 */ 746 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 747 n_lookaheads); 748 if (ret) 749 break; 750 751 if (ar_sdio->n_rx_pkts >= 2) 752 /* A recv bundle was detected, force IRQ status 753 * re-check again. 754 */ 755 *done = false; 756 757 if (ar_sdio->n_rx_pkts > 1) 758 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); 759 else 760 ret = ath10k_sdio_mbox_rx_fetch(ar); 761 762 /* Process fetched packets. This will potentially update 763 * n_lookaheads depending on if the packets contain lookahead 764 * reports. 765 */ 766 n_lookaheads = 0; 767 ret = ath10k_sdio_mbox_rx_process_packets(ar, 768 lookaheads, 769 &n_lookaheads); 770 771 if (!n_lookaheads || ret) 772 break; 773 774 /* For SYNCH processing, if we get here, we are running 775 * through the loop again due to updated lookaheads. Set 776 * flag that we should re-check IRQ status registers again 777 * before leaving IRQ processing, this can net better 778 * performance in high throughput situations. 779 */ 780 *done = false; 781 } while (time_before(jiffies, timeout)); 782 783 if (ret && (ret != -ECANCELED)) 784 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 785 ret); 786 787 return ret; 788 } 789 790 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 791 { 792 u32 val; 793 int ret; 794 795 /* TODO: Add firmware crash handling */ 796 ath10k_warn(ar, "firmware crashed\n"); 797 798 /* read counter to clear the interrupt, the debug error interrupt is 799 * counter 0. 800 */ 801 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 802 if (ret) 803 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 804 805 return ret; 806 } 807 808 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 809 { 810 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 811 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 812 u8 counter_int_status; 813 int ret; 814 815 mutex_lock(&irq_data->mtx); 816 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 817 irq_data->irq_en_reg->cntr_int_status_en; 818 819 /* NOTE: other modules like GMBOX may use the counter interrupt for 820 * credit flow control on other counters, we only need to check for 821 * the debug assertion counter interrupt. 822 */ 823 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 824 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 825 else 826 ret = 0; 827 828 mutex_unlock(&irq_data->mtx); 829 830 return ret; 831 } 832 833 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 834 { 835 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 836 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 837 u8 error_int_status; 838 int ret; 839 840 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 841 842 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 843 if (!error_int_status) { 844 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 845 error_int_status); 846 return -EIO; 847 } 848 849 ath10k_dbg(ar, ATH10K_DBG_SDIO, 850 "sdio error_int_status 0x%x\n", error_int_status); 851 852 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 853 error_int_status)) 854 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 855 856 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 857 error_int_status)) 858 ath10k_warn(ar, "rx underflow interrupt error\n"); 859 860 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 861 error_int_status)) 862 ath10k_warn(ar, "tx overflow interrupt error\n"); 863 864 /* Clear the interrupt */ 865 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 866 867 /* set W1C value to clear the interrupt, this hits the register first */ 868 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 869 error_int_status); 870 if (ret) { 871 ath10k_warn(ar, "unable to write to error int status address: %d\n", 872 ret); 873 return ret; 874 } 875 876 return 0; 877 } 878 879 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 880 { 881 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 882 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 883 u8 cpu_int_status; 884 int ret; 885 886 mutex_lock(&irq_data->mtx); 887 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 888 irq_data->irq_en_reg->cpu_int_status_en; 889 if (!cpu_int_status) { 890 ath10k_warn(ar, "CPU interrupt status is zero\n"); 891 ret = -EIO; 892 goto out; 893 } 894 895 /* Clear the interrupt */ 896 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 897 898 /* Set up the register transfer buffer to hit the register 4 times, 899 * this is done to make the access 4-byte aligned to mitigate issues 900 * with host bus interconnects that restrict bus transfer lengths to 901 * be a multiple of 4-bytes. 902 * 903 * Set W1C value to clear the interrupt, this hits the register first. 904 */ 905 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 906 cpu_int_status); 907 if (ret) { 908 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 909 ret); 910 goto out; 911 } 912 913 out: 914 mutex_unlock(&irq_data->mtx); 915 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) { 916 ath10k_err(ar, "firmware crashed!\n"); 917 queue_work(ar->workqueue, &ar->restart_work); 918 } 919 return ret; 920 } 921 922 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 923 u8 *host_int_status, 924 u32 *lookahead) 925 { 926 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 927 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 928 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 929 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 930 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 931 int ret; 932 933 mutex_lock(&irq_data->mtx); 934 935 *lookahead = 0; 936 *host_int_status = 0; 937 938 /* int_status_en is supposed to be non zero, otherwise interrupts 939 * shouldn't be enabled. There is however a short time frame during 940 * initialization between the irq register and int_status_en init 941 * where this can happen. 942 * We silently ignore this condition. 943 */ 944 if (!irq_en_reg->int_status_en) { 945 ret = 0; 946 goto out; 947 } 948 949 /* Read the first sizeof(struct ath10k_irq_proc_registers) 950 * bytes of the HTC register table. This 951 * will yield us the value of different int status 952 * registers and the lookahead registers. 953 */ 954 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 955 irq_proc_reg, sizeof(*irq_proc_reg)); 956 if (ret) { 957 queue_work(ar->workqueue, &ar->restart_work); 958 ath10k_warn(ar, "read int status fail, start recovery\n"); 959 goto out; 960 } 961 962 /* Update only those registers that are enabled */ 963 *host_int_status = irq_proc_reg->host_int_status & 964 irq_en_reg->int_status_en; 965 966 /* Look at mbox status */ 967 if (!(*host_int_status & htc_mbox)) { 968 *lookahead = 0; 969 ret = 0; 970 goto out; 971 } 972 973 /* Mask out pending mbox value, we use look ahead as 974 * the real flag for mbox processing. 975 */ 976 *host_int_status &= ~htc_mbox; 977 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 978 *lookahead = le32_to_cpu( 979 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 980 if (!*lookahead) 981 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 982 } 983 984 out: 985 mutex_unlock(&irq_data->mtx); 986 return ret; 987 } 988 989 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 990 bool *done) 991 { 992 u8 host_int_status; 993 u32 lookahead; 994 int ret; 995 996 /* NOTE: HIF implementation guarantees that the context of this 997 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 998 * sleep or call any API that can block or switch thread/task 999 * contexts. This is a fully schedulable context. 1000 */ 1001 1002 ret = ath10k_sdio_mbox_read_int_status(ar, 1003 &host_int_status, 1004 &lookahead); 1005 if (ret) { 1006 *done = true; 1007 goto out; 1008 } 1009 1010 if (!host_int_status && !lookahead) { 1011 ret = 0; 1012 *done = true; 1013 goto out; 1014 } 1015 1016 if (lookahead) { 1017 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1018 "sdio pending mailbox msg lookahead 0x%08x\n", 1019 lookahead); 1020 1021 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 1022 lookahead, 1023 done); 1024 if (ret) 1025 goto out; 1026 } 1027 1028 /* now, handle the rest of the interrupts */ 1029 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1030 "sdio host_int_status 0x%x\n", host_int_status); 1031 1032 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 1033 /* CPU Interrupt */ 1034 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 1035 if (ret) 1036 goto out; 1037 } 1038 1039 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 1040 /* Error Interrupt */ 1041 ret = ath10k_sdio_mbox_proc_err_intr(ar); 1042 if (ret) 1043 goto out; 1044 } 1045 1046 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1047 /* Counter Interrupt */ 1048 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1049 1050 ret = 0; 1051 1052 out: 1053 /* An optimization to bypass reading the IRQ status registers 1054 * unecessarily which can re-wake the target, if upper layers 1055 * determine that we are in a low-throughput mode, we can rely on 1056 * taking another interrupt rather than re-checking the status 1057 * registers which can re-wake the target. 1058 * 1059 * NOTE : for host interfaces that makes use of detecting pending 1060 * mbox messages at hif can not use this optimization due to 1061 * possible side effects, SPI requires the host to drain all 1062 * messages from the mailbox before exiting the ISR routine. 1063 */ 1064 1065 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1066 "sdio pending irqs done %d status %d", 1067 *done, ret); 1068 1069 return ret; 1070 } 1071 1072 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1073 { 1074 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1075 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1076 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1077 1078 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1079 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1080 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1081 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1082 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1083 1084 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1085 1086 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device); 1087 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device); 1088 switch (dev_id_base) { 1089 case QCA_MANUFACTURER_ID_AR6005_BASE: 1090 if (dev_id_chiprev < 4) 1091 mbox_info->ext_info[0].htc_ext_sz = 1092 ATH10K_HIF_MBOX0_EXT_WIDTH; 1093 else 1094 /* from QCA6174 2.0(0x504), the width has been extended 1095 * to 56K 1096 */ 1097 mbox_info->ext_info[0].htc_ext_sz = 1098 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1099 break; 1100 case QCA_MANUFACTURER_ID_QCA9377_BASE: 1101 mbox_info->ext_info[0].htc_ext_sz = 1102 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1103 break; 1104 default: 1105 mbox_info->ext_info[0].htc_ext_sz = 1106 ATH10K_HIF_MBOX0_EXT_WIDTH; 1107 } 1108 1109 mbox_info->ext_info[1].htc_ext_addr = 1110 mbox_info->ext_info[0].htc_ext_addr + 1111 mbox_info->ext_info[0].htc_ext_sz + 1112 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1113 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1114 } 1115 1116 /* BMI functions */ 1117 1118 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1119 { 1120 u32 addr, cmd_credits; 1121 unsigned long timeout; 1122 int ret; 1123 1124 /* Read the counter register to get the command credits */ 1125 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1126 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1127 cmd_credits = 0; 1128 1129 while (time_before(jiffies, timeout) && !cmd_credits) { 1130 /* Hit the credit counter with a 4-byte access, the first byte 1131 * read will hit the counter and cause a decrement, while the 1132 * remaining 3 bytes has no effect. The rationale behind this 1133 * is to make all HIF accesses 4-byte aligned. 1134 */ 1135 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1136 if (ret) { 1137 ath10k_warn(ar, 1138 "unable to decrement the command credit count register: %d\n", 1139 ret); 1140 return ret; 1141 } 1142 1143 /* The counter is only 8 bits. 1144 * Ignore anything in the upper 3 bytes 1145 */ 1146 cmd_credits &= 0xFF; 1147 } 1148 1149 if (!cmd_credits) { 1150 ath10k_warn(ar, "bmi communication timeout\n"); 1151 return -ETIMEDOUT; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1158 { 1159 unsigned long timeout; 1160 u32 rx_word; 1161 int ret; 1162 1163 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1164 rx_word = 0; 1165 1166 while ((time_before(jiffies, timeout)) && !rx_word) { 1167 ret = ath10k_sdio_read32(ar, 1168 MBOX_HOST_INT_STATUS_ADDRESS, 1169 &rx_word); 1170 if (ret) { 1171 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1172 return ret; 1173 } 1174 1175 /* all we really want is one bit */ 1176 rx_word &= 1; 1177 } 1178 1179 if (!rx_word) { 1180 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1181 return -EINVAL; 1182 } 1183 1184 return ret; 1185 } 1186 1187 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1188 void *req, u32 req_len, 1189 void *resp, u32 *resp_len) 1190 { 1191 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1192 u32 addr; 1193 int ret; 1194 1195 if (req) { 1196 ret = ath10k_sdio_bmi_credits(ar); 1197 if (ret) 1198 return ret; 1199 1200 addr = ar_sdio->mbox_info.htc_addr; 1201 1202 memcpy(ar_sdio->bmi_buf, req, req_len); 1203 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1204 if (ret) { 1205 ath10k_warn(ar, 1206 "unable to send the bmi data to the device: %d\n", 1207 ret); 1208 return ret; 1209 } 1210 } 1211 1212 if (!resp || !resp_len) 1213 /* No response expected */ 1214 return 0; 1215 1216 /* During normal bootup, small reads may be required. 1217 * Rather than issue an HIF Read and then wait as the Target 1218 * adds successive bytes to the FIFO, we wait here until 1219 * we know that response data is available. 1220 * 1221 * This allows us to cleanly timeout on an unexpected 1222 * Target failure rather than risk problems at the HIF level. 1223 * In particular, this avoids SDIO timeouts and possibly garbage 1224 * data on some host controllers. And on an interconnect 1225 * such as Compact Flash (as well as some SDIO masters) which 1226 * does not provide any indication on data timeout, it avoids 1227 * a potential hang or garbage response. 1228 * 1229 * Synchronization is more difficult for reads larger than the 1230 * size of the MBOX FIFO (128B), because the Target is unable 1231 * to push the 129th byte of data until AFTER the Host posts an 1232 * HIF Read and removes some FIFO data. So for large reads the 1233 * Host proceeds to post an HIF Read BEFORE all the data is 1234 * actually available to read. Fortunately, large BMI reads do 1235 * not occur in practice -- they're supported for debug/development. 1236 * 1237 * So Host/Target BMI synchronization is divided into these cases: 1238 * CASE 1: length < 4 1239 * Should not happen 1240 * 1241 * CASE 2: 4 <= length <= 128 1242 * Wait for first 4 bytes to be in FIFO 1243 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1244 * a BMI command credit, which indicates that the ENTIRE 1245 * response is available in the the FIFO 1246 * 1247 * CASE 3: length > 128 1248 * Wait for the first 4 bytes to be in FIFO 1249 * 1250 * For most uses, a small timeout should be sufficient and we will 1251 * usually see a response quickly; but there may be some unusual 1252 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1253 * For now, we use an unbounded busy loop while waiting for 1254 * BMI_EXECUTE. 1255 * 1256 * If BMI_EXECUTE ever needs to support longer-latency execution, 1257 * especially in production, this code needs to be enhanced to sleep 1258 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1259 * a function of Host processor speed. 1260 */ 1261 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1262 if (ret) 1263 return ret; 1264 1265 /* We always read from the start of the mbox address */ 1266 addr = ar_sdio->mbox_info.htc_addr; 1267 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1268 if (ret) { 1269 ath10k_warn(ar, 1270 "unable to read the bmi data from the device: %d\n", 1271 ret); 1272 return ret; 1273 } 1274 1275 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1276 1277 return 0; 1278 } 1279 1280 /* sdio async handling functions */ 1281 1282 static struct ath10k_sdio_bus_request 1283 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1284 { 1285 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1286 struct ath10k_sdio_bus_request *bus_req; 1287 1288 spin_lock_bh(&ar_sdio->lock); 1289 1290 if (list_empty(&ar_sdio->bus_req_freeq)) { 1291 bus_req = NULL; 1292 goto out; 1293 } 1294 1295 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1296 struct ath10k_sdio_bus_request, list); 1297 list_del(&bus_req->list); 1298 1299 out: 1300 spin_unlock_bh(&ar_sdio->lock); 1301 return bus_req; 1302 } 1303 1304 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1305 struct ath10k_sdio_bus_request *bus_req) 1306 { 1307 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1308 1309 memset(bus_req, 0, sizeof(*bus_req)); 1310 1311 spin_lock_bh(&ar_sdio->lock); 1312 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1313 spin_unlock_bh(&ar_sdio->lock); 1314 } 1315 1316 static void __ath10k_sdio_write_async(struct ath10k *ar, 1317 struct ath10k_sdio_bus_request *req) 1318 { 1319 struct ath10k_htc_ep *ep; 1320 struct sk_buff *skb; 1321 int ret; 1322 1323 skb = req->skb; 1324 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1325 if (ret) 1326 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1327 req->address, ret); 1328 1329 if (req->htc_msg) { 1330 ep = &ar->htc.endpoint[req->eid]; 1331 ath10k_htc_notify_tx_completion(ep, skb); 1332 } else if (req->comp) { 1333 complete(req->comp); 1334 } 1335 1336 ath10k_sdio_free_bus_req(ar, req); 1337 } 1338 1339 /* To improve throughput use workqueue to deliver packets to HTC layer, 1340 * this way SDIO bus is utilised much better. 1341 */ 1342 static void ath10k_rx_indication_async_work(struct work_struct *work) 1343 { 1344 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1345 async_work_rx); 1346 struct ath10k *ar = ar_sdio->ar; 1347 struct ath10k_htc_ep *ep; 1348 struct ath10k_skb_rxcb *cb; 1349 struct sk_buff *skb; 1350 1351 while (true) { 1352 skb = skb_dequeue(&ar_sdio->rx_head); 1353 if (!skb) 1354 break; 1355 cb = ATH10K_SKB_RXCB(skb); 1356 ep = &ar->htc.endpoint[cb->eid]; 1357 ep->ep_ops.ep_rx_complete(ar, skb); 1358 } 1359 1360 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) 1361 napi_schedule(&ar->napi); 1362 } 1363 1364 static void ath10k_sdio_write_async_work(struct work_struct *work) 1365 { 1366 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1367 wr_async_work); 1368 struct ath10k *ar = ar_sdio->ar; 1369 struct ath10k_sdio_bus_request *req, *tmp_req; 1370 1371 spin_lock_bh(&ar_sdio->wr_async_lock); 1372 1373 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1374 list_del(&req->list); 1375 spin_unlock_bh(&ar_sdio->wr_async_lock); 1376 __ath10k_sdio_write_async(ar, req); 1377 spin_lock_bh(&ar_sdio->wr_async_lock); 1378 } 1379 1380 spin_unlock_bh(&ar_sdio->wr_async_lock); 1381 } 1382 1383 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1384 struct sk_buff *skb, 1385 struct completion *comp, 1386 bool htc_msg, enum ath10k_htc_ep_id eid) 1387 { 1388 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1389 struct ath10k_sdio_bus_request *bus_req; 1390 1391 /* Allocate a bus request for the message and queue it on the 1392 * SDIO workqueue. 1393 */ 1394 bus_req = ath10k_sdio_alloc_busreq(ar); 1395 if (!bus_req) { 1396 ath10k_warn(ar, 1397 "unable to allocate bus request for async request\n"); 1398 return -ENOMEM; 1399 } 1400 1401 bus_req->skb = skb; 1402 bus_req->eid = eid; 1403 bus_req->address = addr; 1404 bus_req->htc_msg = htc_msg; 1405 bus_req->comp = comp; 1406 1407 spin_lock_bh(&ar_sdio->wr_async_lock); 1408 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1409 spin_unlock_bh(&ar_sdio->wr_async_lock); 1410 1411 return 0; 1412 } 1413 1414 /* IRQ handler */ 1415 1416 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1417 { 1418 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1419 struct ath10k *ar = ar_sdio->ar; 1420 unsigned long timeout; 1421 bool done = false; 1422 int ret; 1423 1424 /* Release the host during interrupts so we can pick it back up when 1425 * we process commands. 1426 */ 1427 sdio_release_host(ar_sdio->func); 1428 1429 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1430 do { 1431 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1432 if (ret) 1433 break; 1434 } while (time_before(jiffies, timeout) && !done); 1435 1436 ath10k_mac_tx_push_pending(ar); 1437 1438 sdio_claim_host(ar_sdio->func); 1439 1440 if (ret && ret != -ECANCELED) 1441 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1442 ret); 1443 } 1444 1445 /* sdio HIF functions */ 1446 1447 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar) 1448 { 1449 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1450 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1451 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1452 int ret; 1453 1454 mutex_lock(&irq_data->mtx); 1455 1456 memset(regs, 0, sizeof(*regs)); 1457 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1458 ®s->int_status_en, sizeof(*regs)); 1459 if (ret) 1460 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1461 1462 mutex_unlock(&irq_data->mtx); 1463 1464 return ret; 1465 } 1466 1467 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1468 enum ath10k_firmware_mode fw_mode) 1469 { 1470 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1471 struct sdio_func *func = ar_sdio->func; 1472 int ret; 1473 1474 if (!ar_sdio->is_disabled) 1475 return 0; 1476 1477 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1478 1479 ret = ath10k_sdio_config(ar); 1480 if (ret) { 1481 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1482 return ret; 1483 } 1484 1485 sdio_claim_host(func); 1486 1487 ret = sdio_enable_func(func); 1488 if (ret) { 1489 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1490 sdio_release_host(func); 1491 return ret; 1492 } 1493 1494 sdio_release_host(func); 1495 1496 /* Wait for hardware to initialise. It should take a lot less than 1497 * 20 ms but let's be conservative here. 1498 */ 1499 msleep(20); 1500 1501 ar_sdio->is_disabled = false; 1502 1503 ret = ath10k_sdio_hif_disable_intrs(ar); 1504 if (ret) 1505 return ret; 1506 1507 return 0; 1508 } 1509 1510 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1511 { 1512 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1513 int ret; 1514 1515 if (ar_sdio->is_disabled) 1516 return; 1517 1518 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1519 1520 /* Disable the card */ 1521 sdio_claim_host(ar_sdio->func); 1522 1523 ret = sdio_disable_func(ar_sdio->func); 1524 if (ret) { 1525 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1526 sdio_release_host(ar_sdio->func); 1527 return; 1528 } 1529 1530 ret = mmc_hw_reset(ar_sdio->func->card->host); 1531 if (ret) 1532 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1533 1534 sdio_release_host(ar_sdio->func); 1535 1536 ar_sdio->is_disabled = true; 1537 } 1538 1539 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1540 struct ath10k_hif_sg_item *items, int n_items) 1541 { 1542 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1543 enum ath10k_htc_ep_id eid; 1544 struct sk_buff *skb; 1545 int ret, i; 1546 1547 eid = pipe_id_to_eid(pipe_id); 1548 1549 for (i = 0; i < n_items; i++) { 1550 size_t padded_len; 1551 u32 address; 1552 1553 skb = items[i].transfer_context; 1554 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1555 skb->len); 1556 skb_trim(skb, padded_len); 1557 1558 /* Write TX data to the end of the mbox address space */ 1559 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1560 skb->len; 1561 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1562 NULL, true, eid); 1563 if (ret) 1564 return ret; 1565 } 1566 1567 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1568 1569 return 0; 1570 } 1571 1572 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar) 1573 { 1574 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1575 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1576 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1577 int ret; 1578 1579 mutex_lock(&irq_data->mtx); 1580 1581 /* Enable all but CPU interrupts */ 1582 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1583 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1584 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1585 1586 /* NOTE: There are some cases where HIF can do detection of 1587 * pending mbox messages which is disabled now. 1588 */ 1589 regs->int_status_en |= 1590 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1591 1592 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1593 * #0 is used for report assertion from target 1594 */ 1595 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1596 1597 /* Set up the Error Interrupt status Register */ 1598 regs->err_int_status_en = 1599 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1600 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1601 1602 /* Enable Counter interrupt status register to get fatal errors for 1603 * debugging. 1604 */ 1605 regs->cntr_int_status_en = 1606 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1607 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1608 1609 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1610 ®s->int_status_en, sizeof(*regs)); 1611 if (ret) 1612 ath10k_warn(ar, 1613 "failed to update mbox interrupt status register : %d\n", 1614 ret); 1615 1616 mutex_unlock(&irq_data->mtx); 1617 return ret; 1618 } 1619 1620 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1621 { 1622 u32 val; 1623 int ret; 1624 1625 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1626 if (ret) { 1627 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1628 ret); 1629 return ret; 1630 } 1631 1632 if (enable_sleep) 1633 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1634 else 1635 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1636 1637 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1638 if (ret) { 1639 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1640 ret); 1641 return ret; 1642 } 1643 1644 return 0; 1645 } 1646 1647 /* HIF diagnostics */ 1648 1649 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1650 size_t buf_len) 1651 { 1652 int ret; 1653 void *mem; 1654 1655 mem = kzalloc(buf_len, GFP_KERNEL); 1656 if (!mem) 1657 return -ENOMEM; 1658 1659 /* set window register to start read cycle */ 1660 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1661 if (ret) { 1662 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1663 goto out; 1664 } 1665 1666 /* read the data */ 1667 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len); 1668 if (ret) { 1669 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1670 ret); 1671 goto out; 1672 } 1673 1674 memcpy(buf, mem, buf_len); 1675 1676 out: 1677 kfree(mem); 1678 1679 return ret; 1680 } 1681 1682 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address, 1683 u32 *value) 1684 { 1685 __le32 *val; 1686 int ret; 1687 1688 val = kzalloc(sizeof(*val), GFP_KERNEL); 1689 if (!val) 1690 return -ENOMEM; 1691 1692 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1693 if (ret) 1694 goto out; 1695 1696 *value = __le32_to_cpu(*val); 1697 1698 out: 1699 kfree(val); 1700 1701 return ret; 1702 } 1703 1704 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1705 const void *data, int nbytes) 1706 { 1707 int ret; 1708 1709 /* set write data */ 1710 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1711 if (ret) { 1712 ath10k_warn(ar, 1713 "failed to write 0x%p to mbox window data address: %d\n", 1714 data, ret); 1715 return ret; 1716 } 1717 1718 /* set window register, which starts the write cycle */ 1719 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1720 if (ret) { 1721 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1722 return ret; 1723 } 1724 1725 return 0; 1726 } 1727 1728 static int ath10k_sdio_hif_swap_mailbox(struct ath10k *ar) 1729 { 1730 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1731 u32 addr, val; 1732 int ret = 0; 1733 1734 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1735 1736 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val); 1737 if (ret) { 1738 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1739 return ret; 1740 } 1741 1742 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1743 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1744 "sdio mailbox swap service enabled\n"); 1745 ar_sdio->swap_mbox = true; 1746 } else { 1747 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1748 "sdio mailbox swap service disabled\n"); 1749 ar_sdio->swap_mbox = false; 1750 } 1751 1752 return 0; 1753 } 1754 1755 /* HIF start/stop */ 1756 1757 static int ath10k_sdio_hif_start(struct ath10k *ar) 1758 { 1759 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1760 int ret; 1761 1762 napi_enable(&ar->napi); 1763 1764 /* Sleep 20 ms before HIF interrupts are disabled. 1765 * This will give target plenty of time to process the BMI done 1766 * request before interrupts are disabled. 1767 */ 1768 msleep(20); 1769 ret = ath10k_sdio_hif_disable_intrs(ar); 1770 if (ret) 1771 return ret; 1772 1773 /* eid 0 always uses the lower part of the extended mailbox address 1774 * space (ext_info[0].htc_ext_addr). 1775 */ 1776 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1777 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1778 1779 sdio_claim_host(ar_sdio->func); 1780 1781 /* Register the isr */ 1782 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1783 if (ret) { 1784 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1785 sdio_release_host(ar_sdio->func); 1786 return ret; 1787 } 1788 1789 sdio_release_host(ar_sdio->func); 1790 1791 ret = ath10k_sdio_hif_enable_intrs(ar); 1792 if (ret) 1793 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1794 1795 /* Enable sleep and then disable it again */ 1796 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true); 1797 if (ret) 1798 return ret; 1799 1800 /* Wait for 20ms for the written value to take effect */ 1801 msleep(20); 1802 1803 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false); 1804 if (ret) 1805 return ret; 1806 1807 return 0; 1808 } 1809 1810 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1811 1812 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1813 { 1814 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1815 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1816 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1817 struct sk_buff *skb; 1818 struct completion irqs_disabled_comp; 1819 int ret; 1820 1821 skb = dev_alloc_skb(sizeof(*regs)); 1822 if (!skb) 1823 return; 1824 1825 mutex_lock(&irq_data->mtx); 1826 1827 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1828 memcpy(skb->data, regs, sizeof(*regs)); 1829 skb_put(skb, sizeof(*regs)); 1830 1831 mutex_unlock(&irq_data->mtx); 1832 1833 init_completion(&irqs_disabled_comp); 1834 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1835 skb, &irqs_disabled_comp, false, 0); 1836 if (ret) 1837 goto out; 1838 1839 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1840 1841 /* Wait for the completion of the IRQ disable request. 1842 * If there is a timeout we will try to disable irq's anyway. 1843 */ 1844 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1845 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1846 if (!ret) 1847 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1848 1849 sdio_claim_host(ar_sdio->func); 1850 1851 ret = sdio_release_irq(ar_sdio->func); 1852 if (ret) 1853 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1854 1855 sdio_release_host(ar_sdio->func); 1856 1857 out: 1858 kfree_skb(skb); 1859 } 1860 1861 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1862 { 1863 struct ath10k_sdio_bus_request *req, *tmp_req; 1864 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1865 1866 ath10k_sdio_irq_disable(ar); 1867 1868 cancel_work_sync(&ar_sdio->wr_async_work); 1869 1870 spin_lock_bh(&ar_sdio->wr_async_lock); 1871 1872 /* Free all bus requests that have not been handled */ 1873 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1874 struct ath10k_htc_ep *ep; 1875 1876 list_del(&req->list); 1877 1878 if (req->htc_msg) { 1879 ep = &ar->htc.endpoint[req->eid]; 1880 ath10k_htc_notify_tx_completion(ep, req->skb); 1881 } else if (req->skb) { 1882 kfree_skb(req->skb); 1883 } 1884 ath10k_sdio_free_bus_req(ar, req); 1885 } 1886 1887 spin_unlock_bh(&ar_sdio->wr_async_lock); 1888 1889 napi_synchronize(&ar->napi); 1890 napi_disable(&ar->napi); 1891 } 1892 1893 #ifdef CONFIG_PM 1894 1895 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 1896 { 1897 return 0; 1898 } 1899 1900 static int ath10k_sdio_hif_resume(struct ath10k *ar) 1901 { 1902 switch (ar->state) { 1903 case ATH10K_STATE_OFF: 1904 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1905 "sdio resume configuring sdio\n"); 1906 1907 /* need to set sdio settings after power is cut from sdio */ 1908 ath10k_sdio_config(ar); 1909 break; 1910 1911 case ATH10K_STATE_ON: 1912 default: 1913 break; 1914 } 1915 1916 return 0; 1917 } 1918 #endif 1919 1920 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 1921 u16 service_id, 1922 u8 *ul_pipe, u8 *dl_pipe) 1923 { 1924 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1925 struct ath10k_htc *htc = &ar->htc; 1926 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 1927 enum ath10k_htc_ep_id eid; 1928 bool ep_found = false; 1929 int i; 1930 1931 /* For sdio, we are interested in the mapping between eid 1932 * and pipeid rather than service_id to pipe_id. 1933 * First we find out which eid has been allocated to the 1934 * service... 1935 */ 1936 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 1937 if (htc->endpoint[i].service_id == service_id) { 1938 eid = htc->endpoint[i].eid; 1939 ep_found = true; 1940 break; 1941 } 1942 } 1943 1944 if (!ep_found) 1945 return -EINVAL; 1946 1947 /* Then we create the simplest mapping possible between pipeid 1948 * and eid 1949 */ 1950 *ul_pipe = *dl_pipe = (u8)eid; 1951 1952 /* Normally, HTT will use the upper part of the extended 1953 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 1954 * the lower part (ext_info[0].htc_ext_addr). 1955 * If fw wants swapping of mailbox addresses, the opposite is true. 1956 */ 1957 if (ar_sdio->swap_mbox) { 1958 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1959 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1960 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1961 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1962 } else { 1963 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 1964 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1965 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 1966 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1967 } 1968 1969 switch (service_id) { 1970 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 1971 /* HTC ctrl ep mbox address has already been setup in 1972 * ath10k_sdio_hif_start 1973 */ 1974 break; 1975 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 1976 ar_sdio->mbox_addr[eid] = wmi_addr; 1977 ar_sdio->mbox_size[eid] = wmi_mbox_size; 1978 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1979 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 1980 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1981 break; 1982 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 1983 ar_sdio->mbox_addr[eid] = htt_addr; 1984 ar_sdio->mbox_size[eid] = htt_mbox_size; 1985 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1986 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 1987 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 1988 break; 1989 default: 1990 ath10k_warn(ar, "unsupported HTC service id: %d\n", 1991 service_id); 1992 return -EINVAL; 1993 } 1994 1995 return 0; 1996 } 1997 1998 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 1999 u8 *ul_pipe, u8 *dl_pipe) 2000 { 2001 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 2002 2003 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 2004 * case) == 0 2005 */ 2006 *ul_pipe = 0; 2007 *dl_pipe = 0; 2008 } 2009 2010 /* This op is currently only used by htc_wait_target if the HTC ready 2011 * message times out. It is not applicable for SDIO since there is nothing 2012 * we can do if the HTC ready message does not arrive in time. 2013 * TODO: Make this op non mandatory by introducing a NULL check in the 2014 * hif op wrapper. 2015 */ 2016 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar, 2017 u8 pipe, int force) 2018 { 2019 } 2020 2021 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 2022 .tx_sg = ath10k_sdio_hif_tx_sg, 2023 .diag_read = ath10k_sdio_hif_diag_read, 2024 .diag_write = ath10k_sdio_hif_diag_write_mem, 2025 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 2026 .start = ath10k_sdio_hif_start, 2027 .stop = ath10k_sdio_hif_stop, 2028 .swap_mailbox = ath10k_sdio_hif_swap_mailbox, 2029 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 2030 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 2031 .send_complete_check = ath10k_sdio_hif_send_complete_check, 2032 .power_up = ath10k_sdio_hif_power_up, 2033 .power_down = ath10k_sdio_hif_power_down, 2034 #ifdef CONFIG_PM 2035 .suspend = ath10k_sdio_hif_suspend, 2036 .resume = ath10k_sdio_hif_resume, 2037 #endif 2038 }; 2039 2040 #ifdef CONFIG_PM_SLEEP 2041 2042 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 2043 * suspend. We instead follow cfg80211 suspend/resume handlers. 2044 */ 2045 static int ath10k_sdio_pm_suspend(struct device *device) 2046 { 2047 struct sdio_func *func = dev_to_sdio_func(device); 2048 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2049 struct ath10k *ar = ar_sdio->ar; 2050 mmc_pm_flag_t pm_flag, pm_caps; 2051 int ret; 2052 2053 if (!device_may_wakeup(ar->dev)) 2054 return 0; 2055 2056 pm_flag = MMC_PM_KEEP_POWER; 2057 2058 ret = sdio_set_host_pm_flags(func, pm_flag); 2059 if (ret) { 2060 pm_caps = sdio_get_host_pm_caps(func); 2061 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", 2062 pm_flag, pm_caps, ret); 2063 return ret; 2064 } 2065 2066 return ret; 2067 } 2068 2069 static int ath10k_sdio_pm_resume(struct device *device) 2070 { 2071 return 0; 2072 } 2073 2074 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 2075 ath10k_sdio_pm_resume); 2076 2077 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 2078 2079 #else 2080 2081 #define ATH10K_SDIO_PM_OPS NULL 2082 2083 #endif /* CONFIG_PM_SLEEP */ 2084 2085 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) 2086 { 2087 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2088 int done; 2089 2090 done = ath10k_htt_rx_hl_indication(ar, budget); 2091 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); 2092 2093 if (done < budget) 2094 napi_complete_done(ctx, done); 2095 2096 return done; 2097 } 2098 2099 static int ath10k_sdio_probe(struct sdio_func *func, 2100 const struct sdio_device_id *id) 2101 { 2102 struct ath10k_sdio *ar_sdio; 2103 struct ath10k *ar; 2104 enum ath10k_hw_rev hw_rev; 2105 u32 dev_id_base; 2106 struct ath10k_bus_params bus_params = {}; 2107 int ret, i; 2108 2109 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 2110 * If there will be newer chipsets that does not use the hw reg 2111 * setup as defined in qca6174_regs and qca6174_values, this 2112 * assumption is no longer valid and hw_rev must be setup differently 2113 * depending on chipset. 2114 */ 2115 hw_rev = ATH10K_HW_QCA6174; 2116 2117 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2118 hw_rev, &ath10k_sdio_hif_ops); 2119 if (!ar) { 2120 dev_err(&func->dev, "failed to allocate core\n"); 2121 return -ENOMEM; 2122 } 2123 2124 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll, 2125 ATH10K_NAPI_BUDGET); 2126 2127 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2128 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2129 func->num, func->vendor, func->device, 2130 func->max_blksize, func->cur_blksize); 2131 2132 ar_sdio = ath10k_sdio_priv(ar); 2133 2134 ar_sdio->irq_data.irq_proc_reg = 2135 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2136 GFP_KERNEL); 2137 if (!ar_sdio->irq_data.irq_proc_reg) { 2138 ret = -ENOMEM; 2139 goto err_core_destroy; 2140 } 2141 2142 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); 2143 if (!ar_sdio->vsg_buffer) { 2144 ret = -ENOMEM; 2145 goto err_core_destroy; 2146 } 2147 2148 ar_sdio->irq_data.irq_en_reg = 2149 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2150 GFP_KERNEL); 2151 if (!ar_sdio->irq_data.irq_en_reg) { 2152 ret = -ENOMEM; 2153 goto err_core_destroy; 2154 } 2155 2156 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); 2157 if (!ar_sdio->bmi_buf) { 2158 ret = -ENOMEM; 2159 goto err_core_destroy; 2160 } 2161 2162 ar_sdio->func = func; 2163 sdio_set_drvdata(func, ar_sdio); 2164 2165 ar_sdio->is_disabled = true; 2166 ar_sdio->ar = ar; 2167 2168 spin_lock_init(&ar_sdio->lock); 2169 spin_lock_init(&ar_sdio->wr_async_lock); 2170 mutex_init(&ar_sdio->irq_data.mtx); 2171 2172 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2173 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2174 2175 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2176 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2177 if (!ar_sdio->workqueue) { 2178 ret = -ENOMEM; 2179 goto err_core_destroy; 2180 } 2181 2182 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2183 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2184 2185 skb_queue_head_init(&ar_sdio->rx_head); 2186 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); 2187 2188 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device); 2189 switch (dev_id_base) { 2190 case QCA_MANUFACTURER_ID_AR6005_BASE: 2191 case QCA_MANUFACTURER_ID_QCA9377_BASE: 2192 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2193 break; 2194 default: 2195 ret = -ENODEV; 2196 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2197 dev_id_base, id->device); 2198 goto err_free_wq; 2199 } 2200 2201 ar->id.vendor = id->vendor; 2202 ar->id.device = id->device; 2203 2204 ath10k_sdio_set_mbox_info(ar); 2205 2206 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2207 /* TODO: don't know yet how to get chip_id with SDIO */ 2208 bus_params.chip_id = 0; 2209 bus_params.hl_msdu_ids = true; 2210 2211 ar->hw->max_mtu = ETH_DATA_LEN; 2212 2213 ret = ath10k_core_register(ar, &bus_params); 2214 if (ret) { 2215 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2216 goto err_free_wq; 2217 } 2218 2219 return 0; 2220 2221 err_free_wq: 2222 destroy_workqueue(ar_sdio->workqueue); 2223 err_core_destroy: 2224 ath10k_core_destroy(ar); 2225 2226 return ret; 2227 } 2228 2229 static void ath10k_sdio_remove(struct sdio_func *func) 2230 { 2231 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2232 struct ath10k *ar = ar_sdio->ar; 2233 2234 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2235 "sdio removed func %d vendor 0x%x device 0x%x\n", 2236 func->num, func->vendor, func->device); 2237 2238 ath10k_core_unregister(ar); 2239 2240 netif_napi_del(&ar->napi); 2241 2242 ath10k_core_destroy(ar); 2243 2244 flush_workqueue(ar_sdio->workqueue); 2245 destroy_workqueue(ar_sdio->workqueue); 2246 } 2247 2248 static const struct sdio_device_id ath10k_sdio_devices[] = { 2249 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2250 (QCA_SDIO_ID_AR6005_BASE | 0xA))}, 2251 {SDIO_DEVICE(QCA_MANUFACTURER_CODE, 2252 (QCA_SDIO_ID_QCA9377_BASE | 0x1))}, 2253 {}, 2254 }; 2255 2256 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2257 2258 static struct sdio_driver ath10k_sdio_driver = { 2259 .name = "ath10k_sdio", 2260 .id_table = ath10k_sdio_devices, 2261 .probe = ath10k_sdio_probe, 2262 .remove = ath10k_sdio_remove, 2263 .drv = { 2264 .owner = THIS_MODULE, 2265 .pm = ATH10K_SDIO_PM_OPS, 2266 }, 2267 }; 2268 2269 static int __init ath10k_sdio_init(void) 2270 { 2271 int ret; 2272 2273 ret = sdio_register_driver(&ath10k_sdio_driver); 2274 if (ret) 2275 pr_err("sdio driver registration failed: %d\n", ret); 2276 2277 return ret; 2278 } 2279 2280 static void __exit ath10k_sdio_exit(void) 2281 { 2282 sdio_unregister_driver(&ath10k_sdio_driver); 2283 } 2284 2285 module_init(ath10k_sdio_init); 2286 module_exit(ath10k_sdio_exit); 2287 2288 MODULE_AUTHOR("Qualcomm Atheros"); 2289 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2290 MODULE_LICENSE("Dual BSD/GPL"); 2291