xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 			       struct ath10k_ce_pipe *rx_pipe,
106 			       struct bmi_xfer *xfer);
107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
114 
115 static struct ce_attr host_ce_config_wlan[] = {
116 	/* CE0: host->target HTC control and raw streams */
117 	{
118 		.flags = CE_ATTR_FLAGS,
119 		.src_nentries = 16,
120 		.src_sz_max = 256,
121 		.dest_nentries = 0,
122 		.send_cb = ath10k_pci_htc_tx_cb,
123 	},
124 
125 	/* CE1: target->host HTT + HTC control */
126 	{
127 		.flags = CE_ATTR_FLAGS,
128 		.src_nentries = 0,
129 		.src_sz_max = 2048,
130 		.dest_nentries = 512,
131 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
132 	},
133 
134 	/* CE2: target->host WMI */
135 	{
136 		.flags = CE_ATTR_FLAGS,
137 		.src_nentries = 0,
138 		.src_sz_max = 2048,
139 		.dest_nentries = 128,
140 		.recv_cb = ath10k_pci_htc_rx_cb,
141 	},
142 
143 	/* CE3: host->target WMI */
144 	{
145 		.flags = CE_ATTR_FLAGS,
146 		.src_nentries = 32,
147 		.src_sz_max = 2048,
148 		.dest_nentries = 0,
149 		.send_cb = ath10k_pci_htc_tx_cb,
150 	},
151 
152 	/* CE4: host->target HTT */
153 	{
154 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 		.src_sz_max = 256,
157 		.dest_nentries = 0,
158 		.send_cb = ath10k_pci_htt_tx_cb,
159 	},
160 
161 	/* CE5: target->host HTT (HIF->HTT) */
162 	{
163 		.flags = CE_ATTR_FLAGS,
164 		.src_nentries = 0,
165 		.src_sz_max = 512,
166 		.dest_nentries = 512,
167 		.recv_cb = ath10k_pci_htt_rx_cb,
168 	},
169 
170 	/* CE6: target autonomous hif_memcpy */
171 	{
172 		.flags = CE_ATTR_FLAGS,
173 		.src_nentries = 0,
174 		.src_sz_max = 0,
175 		.dest_nentries = 0,
176 	},
177 
178 	/* CE7: ce_diag, the Diagnostic Window */
179 	{
180 		.flags = CE_ATTR_FLAGS,
181 		.src_nentries = 2,
182 		.src_sz_max = DIAG_TRANSFER_LIMIT,
183 		.dest_nentries = 2,
184 	},
185 
186 	/* CE8: target->host pktlog */
187 	{
188 		.flags = CE_ATTR_FLAGS,
189 		.src_nentries = 0,
190 		.src_sz_max = 2048,
191 		.dest_nentries = 128,
192 		.recv_cb = ath10k_pci_pktlog_rx_cb,
193 	},
194 
195 	/* CE9 target autonomous qcache memcpy */
196 	{
197 		.flags = CE_ATTR_FLAGS,
198 		.src_nentries = 0,
199 		.src_sz_max = 0,
200 		.dest_nentries = 0,
201 	},
202 
203 	/* CE10: target autonomous hif memcpy */
204 	{
205 		.flags = CE_ATTR_FLAGS,
206 		.src_nentries = 0,
207 		.src_sz_max = 0,
208 		.dest_nentries = 0,
209 	},
210 
211 	/* CE11: target autonomous hif memcpy */
212 	{
213 		.flags = CE_ATTR_FLAGS,
214 		.src_nentries = 0,
215 		.src_sz_max = 0,
216 		.dest_nentries = 0,
217 	},
218 };
219 
220 /* Target firmware's Copy Engine configuration. */
221 static struct ce_pipe_config target_ce_config_wlan[] = {
222 	/* CE0: host->target HTC control and raw streams */
223 	{
224 		.pipenum = __cpu_to_le32(0),
225 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 		.nentries = __cpu_to_le32(32),
227 		.nbytes_max = __cpu_to_le32(256),
228 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 		.reserved = __cpu_to_le32(0),
230 	},
231 
232 	/* CE1: target->host HTT + HTC control */
233 	{
234 		.pipenum = __cpu_to_le32(1),
235 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
236 		.nentries = __cpu_to_le32(32),
237 		.nbytes_max = __cpu_to_le32(2048),
238 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 		.reserved = __cpu_to_le32(0),
240 	},
241 
242 	/* CE2: target->host WMI */
243 	{
244 		.pipenum = __cpu_to_le32(2),
245 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
246 		.nentries = __cpu_to_le32(64),
247 		.nbytes_max = __cpu_to_le32(2048),
248 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 		.reserved = __cpu_to_le32(0),
250 	},
251 
252 	/* CE3: host->target WMI */
253 	{
254 		.pipenum = __cpu_to_le32(3),
255 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 		.nentries = __cpu_to_le32(32),
257 		.nbytes_max = __cpu_to_le32(2048),
258 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 		.reserved = __cpu_to_le32(0),
260 	},
261 
262 	/* CE4: host->target HTT */
263 	{
264 		.pipenum = __cpu_to_le32(4),
265 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 		.nentries = __cpu_to_le32(256),
267 		.nbytes_max = __cpu_to_le32(256),
268 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 		.reserved = __cpu_to_le32(0),
270 	},
271 
272 	/* NB: 50% of src nentries, since tx has 2 frags */
273 
274 	/* CE5: target->host HTT (HIF->HTT) */
275 	{
276 		.pipenum = __cpu_to_le32(5),
277 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
278 		.nentries = __cpu_to_le32(32),
279 		.nbytes_max = __cpu_to_le32(512),
280 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 		.reserved = __cpu_to_le32(0),
282 	},
283 
284 	/* CE6: Reserved for target autonomous hif_memcpy */
285 	{
286 		.pipenum = __cpu_to_le32(6),
287 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 		.nentries = __cpu_to_le32(32),
289 		.nbytes_max = __cpu_to_le32(4096),
290 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 		.reserved = __cpu_to_le32(0),
292 	},
293 
294 	/* CE7 used only by Host */
295 	{
296 		.pipenum = __cpu_to_le32(7),
297 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 		.nentries = __cpu_to_le32(0),
299 		.nbytes_max = __cpu_to_le32(0),
300 		.flags = __cpu_to_le32(0),
301 		.reserved = __cpu_to_le32(0),
302 	},
303 
304 	/* CE8 target->host packtlog */
305 	{
306 		.pipenum = __cpu_to_le32(8),
307 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
308 		.nentries = __cpu_to_le32(64),
309 		.nbytes_max = __cpu_to_le32(2048),
310 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 		.reserved = __cpu_to_le32(0),
312 	},
313 
314 	/* CE9 target autonomous qcache memcpy */
315 	{
316 		.pipenum = __cpu_to_le32(9),
317 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 		.nentries = __cpu_to_le32(32),
319 		.nbytes_max = __cpu_to_le32(2048),
320 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 		.reserved = __cpu_to_le32(0),
322 	},
323 
324 	/* It not necessary to send target wlan configuration for CE10 & CE11
325 	 * as these CEs are not actively used in target.
326 	 */
327 };
328 
329 /*
330  * Map from service/endpoint to Copy Engine.
331  * This table is derived from the CE_PCI TABLE, above.
332  * It is passed to the Target at startup for use by firmware.
333  */
334 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
335 	{
336 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
338 		__cpu_to_le32(3),
339 	},
340 	{
341 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
343 		__cpu_to_le32(2),
344 	},
345 	{
346 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
348 		__cpu_to_le32(3),
349 	},
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
353 		__cpu_to_le32(2),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
358 		__cpu_to_le32(3),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
363 		__cpu_to_le32(2),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
368 		__cpu_to_le32(3),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
373 		__cpu_to_le32(2),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
378 		__cpu_to_le32(3),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
383 		__cpu_to_le32(2),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
388 		__cpu_to_le32(0),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
393 		__cpu_to_le32(1),
394 	},
395 	{ /* not used */
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
398 		__cpu_to_le32(0),
399 	},
400 	{ /* not used */
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
403 		__cpu_to_le32(1),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
408 		__cpu_to_le32(4),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
413 		__cpu_to_le32(5),
414 	},
415 
416 	/* (Additions here) */
417 
418 	{ /* must be last */
419 		__cpu_to_le32(0),
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 	},
423 };
424 
425 static bool ath10k_pci_is_awake(struct ath10k *ar)
426 {
427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 			   RTC_STATE_ADDRESS);
430 
431 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
432 }
433 
434 static void __ath10k_pci_wake(struct ath10k *ar)
435 {
436 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
437 
438 	lockdep_assert_held(&ar_pci->ps_lock);
439 
440 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
442 
443 	iowrite32(PCIE_SOC_WAKE_V_MASK,
444 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 		  PCIE_SOC_WAKE_ADDRESS);
446 }
447 
448 static void __ath10k_pci_sleep(struct ath10k *ar)
449 {
450 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
451 
452 	lockdep_assert_held(&ar_pci->ps_lock);
453 
454 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
456 
457 	iowrite32(PCIE_SOC_WAKE_RESET,
458 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 		  PCIE_SOC_WAKE_ADDRESS);
460 	ar_pci->ps_awake = false;
461 }
462 
463 static int ath10k_pci_wake_wait(struct ath10k *ar)
464 {
465 	int tot_delay = 0;
466 	int curr_delay = 5;
467 
468 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 		if (ath10k_pci_is_awake(ar)) {
470 			if (tot_delay > PCIE_WAKE_LATE_US)
471 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 					    tot_delay / 1000);
473 			return 0;
474 		}
475 
476 		udelay(curr_delay);
477 		tot_delay += curr_delay;
478 
479 		if (curr_delay < 50)
480 			curr_delay += 5;
481 	}
482 
483 	return -ETIMEDOUT;
484 }
485 
486 static int ath10k_pci_force_wake(struct ath10k *ar)
487 {
488 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 	unsigned long flags;
490 	int ret = 0;
491 
492 	if (ar_pci->pci_ps)
493 		return ret;
494 
495 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
496 
497 	if (!ar_pci->ps_awake) {
498 		iowrite32(PCIE_SOC_WAKE_V_MASK,
499 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 			  PCIE_SOC_WAKE_ADDRESS);
501 
502 		ret = ath10k_pci_wake_wait(ar);
503 		if (ret == 0)
504 			ar_pci->ps_awake = true;
505 	}
506 
507 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
508 
509 	return ret;
510 }
511 
512 static void ath10k_pci_force_sleep(struct ath10k *ar)
513 {
514 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
518 
519 	iowrite32(PCIE_SOC_WAKE_RESET,
520 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 		  PCIE_SOC_WAKE_ADDRESS);
522 	ar_pci->ps_awake = false;
523 
524 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
525 }
526 
527 static int ath10k_pci_wake(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 	int ret = 0;
532 
533 	if (ar_pci->pci_ps == 0)
534 		return ret;
535 
536 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
537 
538 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
540 
541 	/* This function can be called very frequently. To avoid excessive
542 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
543 	 */
544 	if (!ar_pci->ps_awake) {
545 		__ath10k_pci_wake(ar);
546 
547 		ret = ath10k_pci_wake_wait(ar);
548 		if (ret == 0)
549 			ar_pci->ps_awake = true;
550 	}
551 
552 	if (ret == 0) {
553 		ar_pci->ps_wake_refcount++;
554 		WARN_ON(ar_pci->ps_wake_refcount == 0);
555 	}
556 
557 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
558 
559 	return ret;
560 }
561 
562 static void ath10k_pci_sleep(struct ath10k *ar)
563 {
564 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 	unsigned long flags;
566 
567 	if (ar_pci->pci_ps == 0)
568 		return;
569 
570 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
571 
572 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
574 
575 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 		goto skip;
577 
578 	ar_pci->ps_wake_refcount--;
579 
580 	mod_timer(&ar_pci->ps_timer, jiffies +
581 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
582 
583 skip:
584 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
585 }
586 
587 static void ath10k_pci_ps_timer(unsigned long ptr)
588 {
589 	struct ath10k *ar = (void *)ptr;
590 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 	unsigned long flags;
592 
593 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
594 
595 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
597 
598 	if (ar_pci->ps_wake_refcount > 0)
599 		goto skip;
600 
601 	__ath10k_pci_sleep(ar);
602 
603 skip:
604 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
605 }
606 
607 static void ath10k_pci_sleep_sync(struct ath10k *ar)
608 {
609 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 	unsigned long flags;
611 
612 	if (ar_pci->pci_ps == 0) {
613 		ath10k_pci_force_sleep(ar);
614 		return;
615 	}
616 
617 	del_timer_sync(&ar_pci->ps_timer);
618 
619 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 	WARN_ON(ar_pci->ps_wake_refcount > 0);
621 	__ath10k_pci_sleep(ar);
622 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
623 }
624 
625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
626 {
627 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 	int ret;
629 
630 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 			    offset, offset + sizeof(value), ar_pci->mem_len);
633 		return;
634 	}
635 
636 	ret = ath10k_pci_wake(ar);
637 	if (ret) {
638 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 			    value, offset, ret);
640 		return;
641 	}
642 
643 	iowrite32(value, ar_pci->mem + offset);
644 	ath10k_pci_sleep(ar);
645 }
646 
647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
648 {
649 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 	u32 val;
651 	int ret;
652 
653 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 			    offset, offset + sizeof(val), ar_pci->mem_len);
656 		return 0;
657 	}
658 
659 	ret = ath10k_pci_wake(ar);
660 	if (ret) {
661 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 			    offset, ret);
663 		return 0xffffffff;
664 	}
665 
666 	val = ioread32(ar_pci->mem + offset);
667 	ath10k_pci_sleep(ar);
668 
669 	return val;
670 }
671 
672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
673 {
674 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
675 
676 	ar_pci->bus_ops->write32(ar, offset, value);
677 }
678 
679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
680 {
681 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
682 
683 	return ar_pci->bus_ops->read32(ar, offset);
684 }
685 
686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
687 {
688 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
689 }
690 
691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
692 {
693 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
694 }
695 
696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
697 {
698 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
699 }
700 
701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
702 {
703 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
704 }
705 
706 bool ath10k_pci_irq_pending(struct ath10k *ar)
707 {
708 	u32 cause;
709 
710 	/* Check if the shared legacy irq is for us */
711 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 				  PCIE_INTR_CAUSE_ADDRESS);
713 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 		return true;
715 
716 	return false;
717 }
718 
719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
720 {
721 	/* IMPORTANT: INTR_CLR register has to be set after
722 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 	 * really cleared. */
724 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
725 			   0);
726 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
727 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
728 
729 	/* IMPORTANT: this extra read transaction is required to
730 	 * flush the posted write buffer. */
731 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
732 				PCIE_INTR_ENABLE_ADDRESS);
733 }
734 
735 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
736 {
737 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
738 			   PCIE_INTR_ENABLE_ADDRESS,
739 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
740 
741 	/* IMPORTANT: this extra read transaction is required to
742 	 * flush the posted write buffer. */
743 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
744 				PCIE_INTR_ENABLE_ADDRESS);
745 }
746 
747 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
748 {
749 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
750 
751 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
752 		return "msi";
753 
754 	return "legacy";
755 }
756 
757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
758 {
759 	struct ath10k *ar = pipe->hif_ce_state;
760 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 	struct sk_buff *skb;
763 	dma_addr_t paddr;
764 	int ret;
765 
766 	skb = dev_alloc_skb(pipe->buf_sz);
767 	if (!skb)
768 		return -ENOMEM;
769 
770 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
771 
772 	paddr = dma_map_single(ar->dev, skb->data,
773 			       skb->len + skb_tailroom(skb),
774 			       DMA_FROM_DEVICE);
775 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 		dev_kfree_skb_any(skb);
778 		return -EIO;
779 	}
780 
781 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
782 
783 	spin_lock_bh(&ar_pci->ce_lock);
784 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 	spin_unlock_bh(&ar_pci->ce_lock);
786 	if (ret) {
787 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 				 DMA_FROM_DEVICE);
789 		dev_kfree_skb_any(skb);
790 		return ret;
791 	}
792 
793 	return 0;
794 }
795 
796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
797 {
798 	struct ath10k *ar = pipe->hif_ce_state;
799 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 	int ret, num;
802 
803 	if (pipe->buf_sz == 0)
804 		return;
805 
806 	if (!ce_pipe->dest_ring)
807 		return;
808 
809 	spin_lock_bh(&ar_pci->ce_lock);
810 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 	spin_unlock_bh(&ar_pci->ce_lock);
812 
813 	while (num >= 0) {
814 		ret = __ath10k_pci_rx_post_buf(pipe);
815 		if (ret) {
816 			if (ret == -ENOSPC)
817 				break;
818 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
819 			mod_timer(&ar_pci->rx_post_retry, jiffies +
820 				  ATH10K_PCI_RX_POST_RETRY_MS);
821 			break;
822 		}
823 		num--;
824 	}
825 }
826 
827 void ath10k_pci_rx_post(struct ath10k *ar)
828 {
829 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
830 	int i;
831 
832 	for (i = 0; i < CE_COUNT; i++)
833 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
834 }
835 
836 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
837 {
838 	struct ath10k *ar = (void *)ptr;
839 
840 	ath10k_pci_rx_post(ar);
841 }
842 
843 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
844 {
845 	u32 val = 0;
846 
847 	switch (ar->hw_rev) {
848 	case ATH10K_HW_QCA988X:
849 	case ATH10K_HW_QCA9887:
850 	case ATH10K_HW_QCA6174:
851 	case ATH10K_HW_QCA9377:
852 		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
853 					  CORE_CTRL_ADDRESS) &
854 		       0x7ff) << 21;
855 		break;
856 	case ATH10K_HW_QCA9888:
857 	case ATH10K_HW_QCA99X0:
858 	case ATH10K_HW_QCA9984:
859 	case ATH10K_HW_QCA4019:
860 		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
861 		break;
862 	}
863 
864 	val |= 0x100000 | (addr & 0xfffff);
865 	return val;
866 }
867 
868 /*
869  * Diagnostic read/write access is provided for startup/config/debug usage.
870  * Caller must guarantee proper alignment, when applicable, and single user
871  * at any moment.
872  */
873 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
874 				    int nbytes)
875 {
876 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
877 	int ret = 0;
878 	u32 *buf;
879 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
880 	struct ath10k_ce_pipe *ce_diag;
881 	/* Host buffer address in CE space */
882 	u32 ce_data;
883 	dma_addr_t ce_data_base = 0;
884 	void *data_buf = NULL;
885 	int i;
886 
887 	spin_lock_bh(&ar_pci->ce_lock);
888 
889 	ce_diag = ar_pci->ce_diag;
890 
891 	/*
892 	 * Allocate a temporary bounce buffer to hold caller's data
893 	 * to be DMA'ed from Target. This guarantees
894 	 *   1) 4-byte alignment
895 	 *   2) Buffer in DMA-able space
896 	 */
897 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
898 
899 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
900 						       alloc_nbytes,
901 						       &ce_data_base,
902 						       GFP_ATOMIC);
903 
904 	if (!data_buf) {
905 		ret = -ENOMEM;
906 		goto done;
907 	}
908 	memset(data_buf, 0, alloc_nbytes);
909 
910 	remaining_bytes = nbytes;
911 	ce_data = ce_data_base;
912 	while (remaining_bytes) {
913 		nbytes = min_t(unsigned int, remaining_bytes,
914 			       DIAG_TRANSFER_LIMIT);
915 
916 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
917 		if (ret != 0)
918 			goto done;
919 
920 		/* Request CE to send from Target(!) address to Host buffer */
921 		/*
922 		 * The address supplied by the caller is in the
923 		 * Target CPU virtual address space.
924 		 *
925 		 * In order to use this address with the diagnostic CE,
926 		 * convert it from Target CPU virtual address space
927 		 * to CE address space
928 		 */
929 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
930 
931 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
932 					    0);
933 		if (ret)
934 			goto done;
935 
936 		i = 0;
937 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
938 							    NULL) != 0) {
939 			mdelay(1);
940 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
941 				ret = -EBUSY;
942 				goto done;
943 			}
944 		}
945 
946 		i = 0;
947 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
948 							    (void **)&buf,
949 							    &completed_nbytes)
950 								!= 0) {
951 			mdelay(1);
952 
953 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
954 				ret = -EBUSY;
955 				goto done;
956 			}
957 		}
958 
959 		if (nbytes != completed_nbytes) {
960 			ret = -EIO;
961 			goto done;
962 		}
963 
964 		if (*buf != ce_data) {
965 			ret = -EIO;
966 			goto done;
967 		}
968 
969 		remaining_bytes -= nbytes;
970 
971 		if (ret) {
972 			ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
973 				    address, ret);
974 			break;
975 		}
976 		memcpy(data, data_buf, nbytes);
977 
978 		address += nbytes;
979 		data += nbytes;
980 	}
981 
982 done:
983 
984 	if (data_buf)
985 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
986 				  ce_data_base);
987 
988 	spin_unlock_bh(&ar_pci->ce_lock);
989 
990 	return ret;
991 }
992 
993 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
994 {
995 	__le32 val = 0;
996 	int ret;
997 
998 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
999 	*value = __le32_to_cpu(val);
1000 
1001 	return ret;
1002 }
1003 
1004 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1005 				     u32 src, u32 len)
1006 {
1007 	u32 host_addr, addr;
1008 	int ret;
1009 
1010 	host_addr = host_interest_item_address(src);
1011 
1012 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1013 	if (ret != 0) {
1014 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1015 			    src, ret);
1016 		return ret;
1017 	}
1018 
1019 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1020 	if (ret != 0) {
1021 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1022 			    addr, len, ret);
1023 		return ret;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1030 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1031 
1032 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1033 			      const void *data, int nbytes)
1034 {
1035 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1036 	int ret = 0;
1037 	u32 *buf;
1038 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1039 	struct ath10k_ce_pipe *ce_diag;
1040 	void *data_buf = NULL;
1041 	u32 ce_data;	/* Host buffer address in CE space */
1042 	dma_addr_t ce_data_base = 0;
1043 	int i;
1044 
1045 	spin_lock_bh(&ar_pci->ce_lock);
1046 
1047 	ce_diag = ar_pci->ce_diag;
1048 
1049 	/*
1050 	 * Allocate a temporary bounce buffer to hold caller's data
1051 	 * to be DMA'ed to Target. This guarantees
1052 	 *   1) 4-byte alignment
1053 	 *   2) Buffer in DMA-able space
1054 	 */
1055 	orig_nbytes = nbytes;
1056 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1057 						       orig_nbytes,
1058 						       &ce_data_base,
1059 						       GFP_ATOMIC);
1060 	if (!data_buf) {
1061 		ret = -ENOMEM;
1062 		goto done;
1063 	}
1064 
1065 	/* Copy caller's data to allocated DMA buf */
1066 	memcpy(data_buf, data, orig_nbytes);
1067 
1068 	/*
1069 	 * The address supplied by the caller is in the
1070 	 * Target CPU virtual address space.
1071 	 *
1072 	 * In order to use this address with the diagnostic CE,
1073 	 * convert it from
1074 	 *    Target CPU virtual address space
1075 	 * to
1076 	 *    CE address space
1077 	 */
1078 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1079 
1080 	remaining_bytes = orig_nbytes;
1081 	ce_data = ce_data_base;
1082 	while (remaining_bytes) {
1083 		/* FIXME: check cast */
1084 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1085 
1086 		/* Set up to receive directly into Target(!) address */
1087 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1088 		if (ret != 0)
1089 			goto done;
1090 
1091 		/*
1092 		 * Request CE to send caller-supplied data that
1093 		 * was copied to bounce buffer to Target(!) address.
1094 		 */
1095 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1096 					    nbytes, 0, 0);
1097 		if (ret != 0)
1098 			goto done;
1099 
1100 		i = 0;
1101 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1102 							    NULL) != 0) {
1103 			mdelay(1);
1104 
1105 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1106 				ret = -EBUSY;
1107 				goto done;
1108 			}
1109 		}
1110 
1111 		i = 0;
1112 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1113 							    (void **)&buf,
1114 							    &completed_nbytes)
1115 								!= 0) {
1116 			mdelay(1);
1117 
1118 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1119 				ret = -EBUSY;
1120 				goto done;
1121 			}
1122 		}
1123 
1124 		if (nbytes != completed_nbytes) {
1125 			ret = -EIO;
1126 			goto done;
1127 		}
1128 
1129 		if (*buf != address) {
1130 			ret = -EIO;
1131 			goto done;
1132 		}
1133 
1134 		remaining_bytes -= nbytes;
1135 		address += nbytes;
1136 		ce_data += nbytes;
1137 	}
1138 
1139 done:
1140 	if (data_buf) {
1141 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1142 				  ce_data_base);
1143 	}
1144 
1145 	if (ret != 0)
1146 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1147 			    address, ret);
1148 
1149 	spin_unlock_bh(&ar_pci->ce_lock);
1150 
1151 	return ret;
1152 }
1153 
1154 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1155 {
1156 	__le32 val = __cpu_to_le32(value);
1157 
1158 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1159 }
1160 
1161 /* Called by lower (CE) layer when a send to Target completes. */
1162 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1163 {
1164 	struct ath10k *ar = ce_state->ar;
1165 	struct sk_buff_head list;
1166 	struct sk_buff *skb;
1167 
1168 	__skb_queue_head_init(&list);
1169 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1170 		/* no need to call tx completion for NULL pointers */
1171 		if (skb == NULL)
1172 			continue;
1173 
1174 		__skb_queue_tail(&list, skb);
1175 	}
1176 
1177 	while ((skb = __skb_dequeue(&list)))
1178 		ath10k_htc_tx_completion_handler(ar, skb);
1179 }
1180 
1181 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1182 				     void (*callback)(struct ath10k *ar,
1183 						      struct sk_buff *skb))
1184 {
1185 	struct ath10k *ar = ce_state->ar;
1186 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1187 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1188 	struct sk_buff *skb;
1189 	struct sk_buff_head list;
1190 	void *transfer_context;
1191 	unsigned int nbytes, max_nbytes;
1192 
1193 	__skb_queue_head_init(&list);
1194 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1195 					     &nbytes) == 0) {
1196 		skb = transfer_context;
1197 		max_nbytes = skb->len + skb_tailroom(skb);
1198 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1199 				 max_nbytes, DMA_FROM_DEVICE);
1200 
1201 		if (unlikely(max_nbytes < nbytes)) {
1202 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1203 				    nbytes, max_nbytes);
1204 			dev_kfree_skb_any(skb);
1205 			continue;
1206 		}
1207 
1208 		skb_put(skb, nbytes);
1209 		__skb_queue_tail(&list, skb);
1210 	}
1211 
1212 	while ((skb = __skb_dequeue(&list))) {
1213 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1214 			   ce_state->id, skb->len);
1215 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1216 				skb->data, skb->len);
1217 
1218 		callback(ar, skb);
1219 	}
1220 
1221 	ath10k_pci_rx_post_pipe(pipe_info);
1222 }
1223 
1224 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1225 					 void (*callback)(struct ath10k *ar,
1226 							  struct sk_buff *skb))
1227 {
1228 	struct ath10k *ar = ce_state->ar;
1229 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1230 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1231 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1232 	struct sk_buff *skb;
1233 	struct sk_buff_head list;
1234 	void *transfer_context;
1235 	unsigned int nbytes, max_nbytes, nentries;
1236 	int orig_len;
1237 
1238 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1239 	 * is processed other than init and deinit. Before releasing CE5
1240 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1241 	 */
1242 	__skb_queue_head_init(&list);
1243 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1244 						    &nbytes) == 0) {
1245 		skb = transfer_context;
1246 		max_nbytes = skb->len + skb_tailroom(skb);
1247 
1248 		if (unlikely(max_nbytes < nbytes)) {
1249 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1250 				    nbytes, max_nbytes);
1251 			continue;
1252 		}
1253 
1254 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1255 					max_nbytes, DMA_FROM_DEVICE);
1256 		skb_put(skb, nbytes);
1257 		__skb_queue_tail(&list, skb);
1258 	}
1259 
1260 	nentries = skb_queue_len(&list);
1261 	while ((skb = __skb_dequeue(&list))) {
1262 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1263 			   ce_state->id, skb->len);
1264 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1265 				skb->data, skb->len);
1266 
1267 		orig_len = skb->len;
1268 		callback(ar, skb);
1269 		skb_push(skb, orig_len - skb->len);
1270 		skb_reset_tail_pointer(skb);
1271 		skb_trim(skb, 0);
1272 
1273 		/*let device gain the buffer again*/
1274 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1275 					   skb->len + skb_tailroom(skb),
1276 					   DMA_FROM_DEVICE);
1277 	}
1278 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1279 }
1280 
1281 /* Called by lower (CE) layer when data is received from the Target. */
1282 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1283 {
1284 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1285 }
1286 
1287 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1288 {
1289 	/* CE4 polling needs to be done whenever CE pipe which transports
1290 	 * HTT Rx (target->host) is processed.
1291 	 */
1292 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1293 
1294 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295 }
1296 
1297 /* Called by lower (CE) layer when data is received from the Target.
1298  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1299  */
1300 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1301 {
1302 	ath10k_pci_process_rx_cb(ce_state,
1303 				 ath10k_htt_rx_pktlog_completion_handler);
1304 }
1305 
1306 /* Called by lower (CE) layer when a send to HTT Target completes. */
1307 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1308 {
1309 	struct ath10k *ar = ce_state->ar;
1310 	struct sk_buff *skb;
1311 
1312 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1313 		/* no need to call tx completion for NULL pointers */
1314 		if (!skb)
1315 			continue;
1316 
1317 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1318 				 skb->len, DMA_TO_DEVICE);
1319 		ath10k_htt_hif_tx_complete(ar, skb);
1320 	}
1321 }
1322 
1323 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1324 {
1325 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1326 	ath10k_htt_t2h_msg_handler(ar, skb);
1327 }
1328 
1329 /* Called by lower (CE) layer when HTT data is received from the Target. */
1330 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1331 {
1332 	/* CE4 polling needs to be done whenever CE pipe which transports
1333 	 * HTT Rx (target->host) is processed.
1334 	 */
1335 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1336 
1337 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1338 }
1339 
1340 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1341 			 struct ath10k_hif_sg_item *items, int n_items)
1342 {
1343 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1344 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1345 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1346 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1347 	unsigned int nentries_mask;
1348 	unsigned int sw_index;
1349 	unsigned int write_index;
1350 	int err, i = 0;
1351 
1352 	spin_lock_bh(&ar_pci->ce_lock);
1353 
1354 	nentries_mask = src_ring->nentries_mask;
1355 	sw_index = src_ring->sw_index;
1356 	write_index = src_ring->write_index;
1357 
1358 	if (unlikely(CE_RING_DELTA(nentries_mask,
1359 				   write_index, sw_index - 1) < n_items)) {
1360 		err = -ENOBUFS;
1361 		goto err;
1362 	}
1363 
1364 	for (i = 0; i < n_items - 1; i++) {
1365 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1366 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1367 			   i, items[i].paddr, items[i].len, n_items);
1368 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1369 				items[i].vaddr, items[i].len);
1370 
1371 		err = ath10k_ce_send_nolock(ce_pipe,
1372 					    items[i].transfer_context,
1373 					    items[i].paddr,
1374 					    items[i].len,
1375 					    items[i].transfer_id,
1376 					    CE_SEND_FLAG_GATHER);
1377 		if (err)
1378 			goto err;
1379 	}
1380 
1381 	/* `i` is equal to `n_items -1` after for() */
1382 
1383 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1384 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1385 		   i, items[i].paddr, items[i].len, n_items);
1386 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1387 			items[i].vaddr, items[i].len);
1388 
1389 	err = ath10k_ce_send_nolock(ce_pipe,
1390 				    items[i].transfer_context,
1391 				    items[i].paddr,
1392 				    items[i].len,
1393 				    items[i].transfer_id,
1394 				    0);
1395 	if (err)
1396 		goto err;
1397 
1398 	spin_unlock_bh(&ar_pci->ce_lock);
1399 	return 0;
1400 
1401 err:
1402 	for (; i > 0; i--)
1403 		__ath10k_ce_send_revert(ce_pipe);
1404 
1405 	spin_unlock_bh(&ar_pci->ce_lock);
1406 	return err;
1407 }
1408 
1409 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1410 			     size_t buf_len)
1411 {
1412 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1413 }
1414 
1415 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1416 {
1417 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1418 
1419 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1420 
1421 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1422 }
1423 
1424 static void ath10k_pci_dump_registers(struct ath10k *ar,
1425 				      struct ath10k_fw_crash_data *crash_data)
1426 {
1427 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1428 	int i, ret;
1429 
1430 	lockdep_assert_held(&ar->data_lock);
1431 
1432 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1433 				      hi_failure_state,
1434 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1435 	if (ret) {
1436 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1437 		return;
1438 	}
1439 
1440 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1441 
1442 	ath10k_err(ar, "firmware register dump:\n");
1443 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1444 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1445 			   i,
1446 			   __le32_to_cpu(reg_dump_values[i]),
1447 			   __le32_to_cpu(reg_dump_values[i + 1]),
1448 			   __le32_to_cpu(reg_dump_values[i + 2]),
1449 			   __le32_to_cpu(reg_dump_values[i + 3]));
1450 
1451 	if (!crash_data)
1452 		return;
1453 
1454 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1455 		crash_data->registers[i] = reg_dump_values[i];
1456 }
1457 
1458 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1459 {
1460 	struct ath10k_fw_crash_data *crash_data;
1461 	char uuid[50];
1462 
1463 	spin_lock_bh(&ar->data_lock);
1464 
1465 	ar->stats.fw_crash_counter++;
1466 
1467 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1468 
1469 	if (crash_data)
1470 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1471 	else
1472 		scnprintf(uuid, sizeof(uuid), "n/a");
1473 
1474 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1475 	ath10k_print_driver_info(ar);
1476 	ath10k_pci_dump_registers(ar, crash_data);
1477 
1478 	spin_unlock_bh(&ar->data_lock);
1479 
1480 	queue_work(ar->workqueue, &ar->restart_work);
1481 }
1482 
1483 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1484 					int force)
1485 {
1486 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1487 
1488 	if (!force) {
1489 		int resources;
1490 		/*
1491 		 * Decide whether to actually poll for completions, or just
1492 		 * wait for a later chance.
1493 		 * If there seem to be plenty of resources left, then just wait
1494 		 * since checking involves reading a CE register, which is a
1495 		 * relatively expensive operation.
1496 		 */
1497 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1498 
1499 		/*
1500 		 * If at least 50% of the total resources are still available,
1501 		 * don't bother checking again yet.
1502 		 */
1503 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1504 			return;
1505 	}
1506 	ath10k_ce_per_engine_service(ar, pipe);
1507 }
1508 
1509 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1510 {
1511 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1512 
1513 	del_timer_sync(&ar_pci->rx_post_retry);
1514 }
1515 
1516 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1517 				       u8 *ul_pipe, u8 *dl_pipe)
1518 {
1519 	const struct service_to_pipe *entry;
1520 	bool ul_set = false, dl_set = false;
1521 	int i;
1522 
1523 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1524 
1525 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1526 		entry = &target_service_to_ce_map_wlan[i];
1527 
1528 		if (__le32_to_cpu(entry->service_id) != service_id)
1529 			continue;
1530 
1531 		switch (__le32_to_cpu(entry->pipedir)) {
1532 		case PIPEDIR_NONE:
1533 			break;
1534 		case PIPEDIR_IN:
1535 			WARN_ON(dl_set);
1536 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1537 			dl_set = true;
1538 			break;
1539 		case PIPEDIR_OUT:
1540 			WARN_ON(ul_set);
1541 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1542 			ul_set = true;
1543 			break;
1544 		case PIPEDIR_INOUT:
1545 			WARN_ON(dl_set);
1546 			WARN_ON(ul_set);
1547 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1548 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1549 			dl_set = true;
1550 			ul_set = true;
1551 			break;
1552 		}
1553 	}
1554 
1555 	if (WARN_ON(!ul_set || !dl_set))
1556 		return -ENOENT;
1557 
1558 	return 0;
1559 }
1560 
1561 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1562 				     u8 *ul_pipe, u8 *dl_pipe)
1563 {
1564 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1565 
1566 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1567 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1568 						 ul_pipe, dl_pipe);
1569 }
1570 
1571 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1572 {
1573 	u32 val;
1574 
1575 	switch (ar->hw_rev) {
1576 	case ATH10K_HW_QCA988X:
1577 	case ATH10K_HW_QCA9887:
1578 	case ATH10K_HW_QCA6174:
1579 	case ATH10K_HW_QCA9377:
1580 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1581 					CORE_CTRL_ADDRESS);
1582 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1583 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1584 				   CORE_CTRL_ADDRESS, val);
1585 		break;
1586 	case ATH10K_HW_QCA99X0:
1587 	case ATH10K_HW_QCA9984:
1588 	case ATH10K_HW_QCA9888:
1589 	case ATH10K_HW_QCA4019:
1590 		/* TODO: Find appropriate register configuration for QCA99X0
1591 		 *  to mask irq/MSI.
1592 		 */
1593 		 break;
1594 	}
1595 }
1596 
1597 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1598 {
1599 	u32 val;
1600 
1601 	switch (ar->hw_rev) {
1602 	case ATH10K_HW_QCA988X:
1603 	case ATH10K_HW_QCA9887:
1604 	case ATH10K_HW_QCA6174:
1605 	case ATH10K_HW_QCA9377:
1606 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1607 					CORE_CTRL_ADDRESS);
1608 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1609 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1610 				   CORE_CTRL_ADDRESS, val);
1611 		break;
1612 	case ATH10K_HW_QCA99X0:
1613 	case ATH10K_HW_QCA9984:
1614 	case ATH10K_HW_QCA9888:
1615 	case ATH10K_HW_QCA4019:
1616 		/* TODO: Find appropriate register configuration for QCA99X0
1617 		 *  to unmask irq/MSI.
1618 		 */
1619 		break;
1620 	}
1621 }
1622 
1623 static void ath10k_pci_irq_disable(struct ath10k *ar)
1624 {
1625 	ath10k_ce_disable_interrupts(ar);
1626 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1627 	ath10k_pci_irq_msi_fw_mask(ar);
1628 }
1629 
1630 static void ath10k_pci_irq_sync(struct ath10k *ar)
1631 {
1632 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1633 
1634 	synchronize_irq(ar_pci->pdev->irq);
1635 }
1636 
1637 static void ath10k_pci_irq_enable(struct ath10k *ar)
1638 {
1639 	ath10k_ce_enable_interrupts(ar);
1640 	ath10k_pci_enable_legacy_irq(ar);
1641 	ath10k_pci_irq_msi_fw_unmask(ar);
1642 }
1643 
1644 static int ath10k_pci_hif_start(struct ath10k *ar)
1645 {
1646 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1647 
1648 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1649 
1650 	ath10k_pci_irq_enable(ar);
1651 	ath10k_pci_rx_post(ar);
1652 
1653 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1654 				   ar_pci->link_ctl);
1655 
1656 	return 0;
1657 }
1658 
1659 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1660 {
1661 	struct ath10k *ar;
1662 	struct ath10k_ce_pipe *ce_pipe;
1663 	struct ath10k_ce_ring *ce_ring;
1664 	struct sk_buff *skb;
1665 	int i;
1666 
1667 	ar = pci_pipe->hif_ce_state;
1668 	ce_pipe = pci_pipe->ce_hdl;
1669 	ce_ring = ce_pipe->dest_ring;
1670 
1671 	if (!ce_ring)
1672 		return;
1673 
1674 	if (!pci_pipe->buf_sz)
1675 		return;
1676 
1677 	for (i = 0; i < ce_ring->nentries; i++) {
1678 		skb = ce_ring->per_transfer_context[i];
1679 		if (!skb)
1680 			continue;
1681 
1682 		ce_ring->per_transfer_context[i] = NULL;
1683 
1684 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1685 				 skb->len + skb_tailroom(skb),
1686 				 DMA_FROM_DEVICE);
1687 		dev_kfree_skb_any(skb);
1688 	}
1689 }
1690 
1691 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1692 {
1693 	struct ath10k *ar;
1694 	struct ath10k_ce_pipe *ce_pipe;
1695 	struct ath10k_ce_ring *ce_ring;
1696 	struct sk_buff *skb;
1697 	int i;
1698 
1699 	ar = pci_pipe->hif_ce_state;
1700 	ce_pipe = pci_pipe->ce_hdl;
1701 	ce_ring = ce_pipe->src_ring;
1702 
1703 	if (!ce_ring)
1704 		return;
1705 
1706 	if (!pci_pipe->buf_sz)
1707 		return;
1708 
1709 	for (i = 0; i < ce_ring->nentries; i++) {
1710 		skb = ce_ring->per_transfer_context[i];
1711 		if (!skb)
1712 			continue;
1713 
1714 		ce_ring->per_transfer_context[i] = NULL;
1715 
1716 		ath10k_htc_tx_completion_handler(ar, skb);
1717 	}
1718 }
1719 
1720 /*
1721  * Cleanup residual buffers for device shutdown:
1722  *    buffers that were enqueued for receive
1723  *    buffers that were to be sent
1724  * Note: Buffers that had completed but which were
1725  * not yet processed are on a completion queue. They
1726  * are handled when the completion thread shuts down.
1727  */
1728 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1729 {
1730 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1731 	int pipe_num;
1732 
1733 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1734 		struct ath10k_pci_pipe *pipe_info;
1735 
1736 		pipe_info = &ar_pci->pipe_info[pipe_num];
1737 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1738 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1739 	}
1740 }
1741 
1742 void ath10k_pci_ce_deinit(struct ath10k *ar)
1743 {
1744 	int i;
1745 
1746 	for (i = 0; i < CE_COUNT; i++)
1747 		ath10k_ce_deinit_pipe(ar, i);
1748 }
1749 
1750 void ath10k_pci_flush(struct ath10k *ar)
1751 {
1752 	ath10k_pci_rx_retry_sync(ar);
1753 	ath10k_pci_buffer_cleanup(ar);
1754 }
1755 
1756 static void ath10k_pci_hif_stop(struct ath10k *ar)
1757 {
1758 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1759 	unsigned long flags;
1760 
1761 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1762 
1763 	/* Most likely the device has HTT Rx ring configured. The only way to
1764 	 * prevent the device from accessing (and possible corrupting) host
1765 	 * memory is to reset the chip now.
1766 	 *
1767 	 * There's also no known way of masking MSI interrupts on the device.
1768 	 * For ranged MSI the CE-related interrupts can be masked. However
1769 	 * regardless how many MSI interrupts are assigned the first one
1770 	 * is always used for firmware indications (crashes) and cannot be
1771 	 * masked. To prevent the device from asserting the interrupt reset it
1772 	 * before proceeding with cleanup.
1773 	 */
1774 	ath10k_pci_safe_chip_reset(ar);
1775 
1776 	ath10k_pci_irq_disable(ar);
1777 	ath10k_pci_irq_sync(ar);
1778 	ath10k_pci_flush(ar);
1779 	napi_synchronize(&ar->napi);
1780 	napi_disable(&ar->napi);
1781 
1782 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1783 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1784 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1785 }
1786 
1787 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1788 				    void *req, u32 req_len,
1789 				    void *resp, u32 *resp_len)
1790 {
1791 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1793 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1794 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1795 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1796 	dma_addr_t req_paddr = 0;
1797 	dma_addr_t resp_paddr = 0;
1798 	struct bmi_xfer xfer = {};
1799 	void *treq, *tresp = NULL;
1800 	int ret = 0;
1801 
1802 	might_sleep();
1803 
1804 	if (resp && !resp_len)
1805 		return -EINVAL;
1806 
1807 	if (resp && resp_len && *resp_len == 0)
1808 		return -EINVAL;
1809 
1810 	treq = kmemdup(req, req_len, GFP_KERNEL);
1811 	if (!treq)
1812 		return -ENOMEM;
1813 
1814 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1815 	ret = dma_mapping_error(ar->dev, req_paddr);
1816 	if (ret) {
1817 		ret = -EIO;
1818 		goto err_dma;
1819 	}
1820 
1821 	if (resp && resp_len) {
1822 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1823 		if (!tresp) {
1824 			ret = -ENOMEM;
1825 			goto err_req;
1826 		}
1827 
1828 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1829 					    DMA_FROM_DEVICE);
1830 		ret = dma_mapping_error(ar->dev, resp_paddr);
1831 		if (ret) {
1832 			ret = -EIO;
1833 			goto err_req;
1834 		}
1835 
1836 		xfer.wait_for_resp = true;
1837 		xfer.resp_len = 0;
1838 
1839 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1840 	}
1841 
1842 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1843 	if (ret)
1844 		goto err_resp;
1845 
1846 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1847 	if (ret) {
1848 		u32 unused_buffer;
1849 		unsigned int unused_nbytes;
1850 		unsigned int unused_id;
1851 
1852 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1853 					   &unused_nbytes, &unused_id);
1854 	} else {
1855 		/* non-zero means we did not time out */
1856 		ret = 0;
1857 	}
1858 
1859 err_resp:
1860 	if (resp) {
1861 		u32 unused_buffer;
1862 
1863 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1864 		dma_unmap_single(ar->dev, resp_paddr,
1865 				 *resp_len, DMA_FROM_DEVICE);
1866 	}
1867 err_req:
1868 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1869 
1870 	if (ret == 0 && resp_len) {
1871 		*resp_len = min(*resp_len, xfer.resp_len);
1872 		memcpy(resp, tresp, xfer.resp_len);
1873 	}
1874 err_dma:
1875 	kfree(treq);
1876 	kfree(tresp);
1877 
1878 	return ret;
1879 }
1880 
1881 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1882 {
1883 	struct bmi_xfer *xfer;
1884 
1885 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1886 		return;
1887 
1888 	xfer->tx_done = true;
1889 }
1890 
1891 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1892 {
1893 	struct ath10k *ar = ce_state->ar;
1894 	struct bmi_xfer *xfer;
1895 	unsigned int nbytes;
1896 
1897 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1898 					  &nbytes))
1899 		return;
1900 
1901 	if (WARN_ON_ONCE(!xfer))
1902 		return;
1903 
1904 	if (!xfer->wait_for_resp) {
1905 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1906 		return;
1907 	}
1908 
1909 	xfer->resp_len = nbytes;
1910 	xfer->rx_done = true;
1911 }
1912 
1913 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1914 			       struct ath10k_ce_pipe *rx_pipe,
1915 			       struct bmi_xfer *xfer)
1916 {
1917 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1918 
1919 	while (time_before_eq(jiffies, timeout)) {
1920 		ath10k_pci_bmi_send_done(tx_pipe);
1921 		ath10k_pci_bmi_recv_data(rx_pipe);
1922 
1923 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1924 			return 0;
1925 
1926 		schedule();
1927 	}
1928 
1929 	return -ETIMEDOUT;
1930 }
1931 
1932 /*
1933  * Send an interrupt to the device to wake up the Target CPU
1934  * so it has an opportunity to notice any changed state.
1935  */
1936 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1937 {
1938 	u32 addr, val;
1939 
1940 	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1941 	val = ath10k_pci_read32(ar, addr);
1942 	val |= CORE_CTRL_CPU_INTR_MASK;
1943 	ath10k_pci_write32(ar, addr, val);
1944 
1945 	return 0;
1946 }
1947 
1948 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1949 {
1950 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1951 
1952 	switch (ar_pci->pdev->device) {
1953 	case QCA988X_2_0_DEVICE_ID:
1954 	case QCA99X0_2_0_DEVICE_ID:
1955 	case QCA9888_2_0_DEVICE_ID:
1956 	case QCA9984_1_0_DEVICE_ID:
1957 	case QCA9887_1_0_DEVICE_ID:
1958 		return 1;
1959 	case QCA6164_2_1_DEVICE_ID:
1960 	case QCA6174_2_1_DEVICE_ID:
1961 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1962 		case QCA6174_HW_1_0_CHIP_ID_REV:
1963 		case QCA6174_HW_1_1_CHIP_ID_REV:
1964 		case QCA6174_HW_2_1_CHIP_ID_REV:
1965 		case QCA6174_HW_2_2_CHIP_ID_REV:
1966 			return 3;
1967 		case QCA6174_HW_1_3_CHIP_ID_REV:
1968 			return 2;
1969 		case QCA6174_HW_3_0_CHIP_ID_REV:
1970 		case QCA6174_HW_3_1_CHIP_ID_REV:
1971 		case QCA6174_HW_3_2_CHIP_ID_REV:
1972 			return 9;
1973 		}
1974 		break;
1975 	case QCA9377_1_0_DEVICE_ID:
1976 		return 2;
1977 	}
1978 
1979 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1980 	return 1;
1981 }
1982 
1983 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1984 {
1985 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1986 
1987 	return ar_pci->bus_ops->get_num_banks(ar);
1988 }
1989 
1990 int ath10k_pci_init_config(struct ath10k *ar)
1991 {
1992 	u32 interconnect_targ_addr;
1993 	u32 pcie_state_targ_addr = 0;
1994 	u32 pipe_cfg_targ_addr = 0;
1995 	u32 svc_to_pipe_map = 0;
1996 	u32 pcie_config_flags = 0;
1997 	u32 ealloc_value;
1998 	u32 ealloc_targ_addr;
1999 	u32 flag2_value;
2000 	u32 flag2_targ_addr;
2001 	int ret = 0;
2002 
2003 	/* Download to Target the CE Config and the service-to-CE map */
2004 	interconnect_targ_addr =
2005 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2006 
2007 	/* Supply Target-side CE configuration */
2008 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2009 				     &pcie_state_targ_addr);
2010 	if (ret != 0) {
2011 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2012 		return ret;
2013 	}
2014 
2015 	if (pcie_state_targ_addr == 0) {
2016 		ret = -EIO;
2017 		ath10k_err(ar, "Invalid pcie state addr\n");
2018 		return ret;
2019 	}
2020 
2021 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2022 					  offsetof(struct pcie_state,
2023 						   pipe_cfg_addr)),
2024 				     &pipe_cfg_targ_addr);
2025 	if (ret != 0) {
2026 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2027 		return ret;
2028 	}
2029 
2030 	if (pipe_cfg_targ_addr == 0) {
2031 		ret = -EIO;
2032 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2033 		return ret;
2034 	}
2035 
2036 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2037 					target_ce_config_wlan,
2038 					sizeof(struct ce_pipe_config) *
2039 					NUM_TARGET_CE_CONFIG_WLAN);
2040 
2041 	if (ret != 0) {
2042 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2043 		return ret;
2044 	}
2045 
2046 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2047 					  offsetof(struct pcie_state,
2048 						   svc_to_pipe_map)),
2049 				     &svc_to_pipe_map);
2050 	if (ret != 0) {
2051 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2052 		return ret;
2053 	}
2054 
2055 	if (svc_to_pipe_map == 0) {
2056 		ret = -EIO;
2057 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2058 		return ret;
2059 	}
2060 
2061 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2062 					target_service_to_ce_map_wlan,
2063 					sizeof(target_service_to_ce_map_wlan));
2064 	if (ret != 0) {
2065 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2066 		return ret;
2067 	}
2068 
2069 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2070 					  offsetof(struct pcie_state,
2071 						   config_flags)),
2072 				     &pcie_config_flags);
2073 	if (ret != 0) {
2074 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2075 		return ret;
2076 	}
2077 
2078 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2079 
2080 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2081 					   offsetof(struct pcie_state,
2082 						    config_flags)),
2083 				      pcie_config_flags);
2084 	if (ret != 0) {
2085 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2086 		return ret;
2087 	}
2088 
2089 	/* configure early allocation */
2090 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2091 
2092 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2093 	if (ret != 0) {
2094 		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2095 		return ret;
2096 	}
2097 
2098 	/* first bank is switched to IRAM */
2099 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2100 			 HI_EARLY_ALLOC_MAGIC_MASK);
2101 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2102 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2103 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2104 
2105 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2106 	if (ret != 0) {
2107 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2108 		return ret;
2109 	}
2110 
2111 	/* Tell Target to proceed with initialization */
2112 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2113 
2114 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2115 	if (ret != 0) {
2116 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2117 		return ret;
2118 	}
2119 
2120 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2121 
2122 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2123 	if (ret != 0) {
2124 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2125 		return ret;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2132 {
2133 	struct ce_attr *attr;
2134 	struct ce_pipe_config *config;
2135 
2136 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2137 	 * since it is currently used for other feature.
2138 	 */
2139 
2140 	/* Override Host's Copy Engine 5 configuration */
2141 	attr = &host_ce_config_wlan[5];
2142 	attr->src_sz_max = 0;
2143 	attr->dest_nentries = 0;
2144 
2145 	/* Override Target firmware's Copy Engine configuration */
2146 	config = &target_ce_config_wlan[5];
2147 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2148 	config->nbytes_max = __cpu_to_le32(2048);
2149 
2150 	/* Map from service/endpoint to Copy Engine */
2151 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2152 }
2153 
2154 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2155 {
2156 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2157 	struct ath10k_pci_pipe *pipe;
2158 	int i, ret;
2159 
2160 	for (i = 0; i < CE_COUNT; i++) {
2161 		pipe = &ar_pci->pipe_info[i];
2162 		pipe->ce_hdl = &ar_pci->ce_states[i];
2163 		pipe->pipe_num = i;
2164 		pipe->hif_ce_state = ar;
2165 
2166 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2167 		if (ret) {
2168 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2169 				   i, ret);
2170 			return ret;
2171 		}
2172 
2173 		/* Last CE is Diagnostic Window */
2174 		if (i == CE_DIAG_PIPE) {
2175 			ar_pci->ce_diag = pipe->ce_hdl;
2176 			continue;
2177 		}
2178 
2179 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 void ath10k_pci_free_pipes(struct ath10k *ar)
2186 {
2187 	int i;
2188 
2189 	for (i = 0; i < CE_COUNT; i++)
2190 		ath10k_ce_free_pipe(ar, i);
2191 }
2192 
2193 int ath10k_pci_init_pipes(struct ath10k *ar)
2194 {
2195 	int i, ret;
2196 
2197 	for (i = 0; i < CE_COUNT; i++) {
2198 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2199 		if (ret) {
2200 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2201 				   i, ret);
2202 			return ret;
2203 		}
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2210 {
2211 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2212 	       FW_IND_EVENT_PENDING;
2213 }
2214 
2215 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2216 {
2217 	u32 val;
2218 
2219 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2220 	val &= ~FW_IND_EVENT_PENDING;
2221 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2222 }
2223 
2224 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2225 {
2226 	u32 val;
2227 
2228 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2229 	return (val == 0xffffffff);
2230 }
2231 
2232 /* this function effectively clears target memory controller assert line */
2233 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2234 {
2235 	u32 val;
2236 
2237 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2238 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2239 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2240 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2241 
2242 	msleep(10);
2243 
2244 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2245 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2246 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2247 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2248 
2249 	msleep(10);
2250 }
2251 
2252 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2253 {
2254 	u32 val;
2255 
2256 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2257 
2258 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2259 				SOC_RESET_CONTROL_ADDRESS);
2260 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2261 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2262 }
2263 
2264 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2265 {
2266 	u32 val;
2267 
2268 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2269 				SOC_RESET_CONTROL_ADDRESS);
2270 
2271 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2272 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2273 	msleep(10);
2274 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2275 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2276 }
2277 
2278 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2279 {
2280 	u32 val;
2281 
2282 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2283 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2284 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2285 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2286 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2287 }
2288 
2289 static int ath10k_pci_warm_reset(struct ath10k *ar)
2290 {
2291 	int ret;
2292 
2293 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2294 
2295 	spin_lock_bh(&ar->data_lock);
2296 	ar->stats.fw_warm_reset_counter++;
2297 	spin_unlock_bh(&ar->data_lock);
2298 
2299 	ath10k_pci_irq_disable(ar);
2300 
2301 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2302 	 * were to access copy engine while host performs copy engine reset
2303 	 * then it is possible for the device to confuse pci-e controller to
2304 	 * the point of bringing host system to a complete stop (i.e. hang).
2305 	 */
2306 	ath10k_pci_warm_reset_si0(ar);
2307 	ath10k_pci_warm_reset_cpu(ar);
2308 	ath10k_pci_init_pipes(ar);
2309 	ath10k_pci_wait_for_target_init(ar);
2310 
2311 	ath10k_pci_warm_reset_clear_lf(ar);
2312 	ath10k_pci_warm_reset_ce(ar);
2313 	ath10k_pci_warm_reset_cpu(ar);
2314 	ath10k_pci_init_pipes(ar);
2315 
2316 	ret = ath10k_pci_wait_for_target_init(ar);
2317 	if (ret) {
2318 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2319 		return ret;
2320 	}
2321 
2322 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2323 
2324 	return 0;
2325 }
2326 
2327 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2328 {
2329 	ath10k_pci_irq_disable(ar);
2330 	return ath10k_pci_qca99x0_chip_reset(ar);
2331 }
2332 
2333 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2334 {
2335 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2336 
2337 	if (!ar_pci->pci_soft_reset)
2338 		return -ENOTSUPP;
2339 
2340 	return ar_pci->pci_soft_reset(ar);
2341 }
2342 
2343 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2344 {
2345 	int i, ret;
2346 	u32 val;
2347 
2348 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2349 
2350 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2351 	 * It is thus preferred to use warm reset which is safer but may not be
2352 	 * able to recover the device from all possible fail scenarios.
2353 	 *
2354 	 * Warm reset doesn't always work on first try so attempt it a few
2355 	 * times before giving up.
2356 	 */
2357 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2358 		ret = ath10k_pci_warm_reset(ar);
2359 		if (ret) {
2360 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2361 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2362 				    ret);
2363 			continue;
2364 		}
2365 
2366 		/* FIXME: Sometimes copy engine doesn't recover after warm
2367 		 * reset. In most cases this needs cold reset. In some of these
2368 		 * cases the device is in such a state that a cold reset may
2369 		 * lock up the host.
2370 		 *
2371 		 * Reading any host interest register via copy engine is
2372 		 * sufficient to verify if device is capable of booting
2373 		 * firmware blob.
2374 		 */
2375 		ret = ath10k_pci_init_pipes(ar);
2376 		if (ret) {
2377 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2378 				    ret);
2379 			continue;
2380 		}
2381 
2382 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2383 					     &val);
2384 		if (ret) {
2385 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2386 				    ret);
2387 			continue;
2388 		}
2389 
2390 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2391 		return 0;
2392 	}
2393 
2394 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2395 		ath10k_warn(ar, "refusing cold reset as requested\n");
2396 		return -EPERM;
2397 	}
2398 
2399 	ret = ath10k_pci_cold_reset(ar);
2400 	if (ret) {
2401 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2402 		return ret;
2403 	}
2404 
2405 	ret = ath10k_pci_wait_for_target_init(ar);
2406 	if (ret) {
2407 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2408 			    ret);
2409 		return ret;
2410 	}
2411 
2412 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2413 
2414 	return 0;
2415 }
2416 
2417 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2418 {
2419 	int ret;
2420 
2421 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2422 
2423 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2424 
2425 	ret = ath10k_pci_cold_reset(ar);
2426 	if (ret) {
2427 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2428 		return ret;
2429 	}
2430 
2431 	ret = ath10k_pci_wait_for_target_init(ar);
2432 	if (ret) {
2433 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2434 			    ret);
2435 		return ret;
2436 	}
2437 
2438 	ret = ath10k_pci_warm_reset(ar);
2439 	if (ret) {
2440 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2441 		return ret;
2442 	}
2443 
2444 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2445 
2446 	return 0;
2447 }
2448 
2449 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2450 {
2451 	int ret;
2452 
2453 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2454 
2455 	ret = ath10k_pci_cold_reset(ar);
2456 	if (ret) {
2457 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2458 		return ret;
2459 	}
2460 
2461 	ret = ath10k_pci_wait_for_target_init(ar);
2462 	if (ret) {
2463 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2464 			    ret);
2465 		return ret;
2466 	}
2467 
2468 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2469 
2470 	return 0;
2471 }
2472 
2473 static int ath10k_pci_chip_reset(struct ath10k *ar)
2474 {
2475 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2476 
2477 	if (WARN_ON(!ar_pci->pci_hard_reset))
2478 		return -ENOTSUPP;
2479 
2480 	return ar_pci->pci_hard_reset(ar);
2481 }
2482 
2483 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2484 {
2485 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2486 	int ret;
2487 
2488 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2489 
2490 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2491 				  &ar_pci->link_ctl);
2492 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2493 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2494 
2495 	/*
2496 	 * Bring the target up cleanly.
2497 	 *
2498 	 * The target may be in an undefined state with an AUX-powered Target
2499 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2500 	 * restarted (without unloading the driver) then the Target is left
2501 	 * (aux) powered and running. On a subsequent driver load, the Target
2502 	 * is in an unexpected state. We try to catch that here in order to
2503 	 * reset the Target and retry the probe.
2504 	 */
2505 	ret = ath10k_pci_chip_reset(ar);
2506 	if (ret) {
2507 		if (ath10k_pci_has_fw_crashed(ar)) {
2508 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2509 			ath10k_pci_fw_crashed_clear(ar);
2510 			ath10k_pci_fw_crashed_dump(ar);
2511 		}
2512 
2513 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2514 		goto err_sleep;
2515 	}
2516 
2517 	ret = ath10k_pci_init_pipes(ar);
2518 	if (ret) {
2519 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2520 		goto err_sleep;
2521 	}
2522 
2523 	ret = ath10k_pci_init_config(ar);
2524 	if (ret) {
2525 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2526 		goto err_ce;
2527 	}
2528 
2529 	ret = ath10k_pci_wake_target_cpu(ar);
2530 	if (ret) {
2531 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2532 		goto err_ce;
2533 	}
2534 	napi_enable(&ar->napi);
2535 
2536 	return 0;
2537 
2538 err_ce:
2539 	ath10k_pci_ce_deinit(ar);
2540 
2541 err_sleep:
2542 	return ret;
2543 }
2544 
2545 void ath10k_pci_hif_power_down(struct ath10k *ar)
2546 {
2547 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2548 
2549 	/* Currently hif_power_up performs effectively a reset and hif_stop
2550 	 * resets the chip as well so there's no point in resetting here.
2551 	 */
2552 }
2553 
2554 #ifdef CONFIG_PM
2555 
2556 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2557 {
2558 	/* The grace timer can still be counting down and ar->ps_awake be true.
2559 	 * It is known that the device may be asleep after resuming regardless
2560 	 * of the SoC powersave state before suspending. Hence make sure the
2561 	 * device is asleep before proceeding.
2562 	 */
2563 	ath10k_pci_sleep_sync(ar);
2564 
2565 	return 0;
2566 }
2567 
2568 static int ath10k_pci_hif_resume(struct ath10k *ar)
2569 {
2570 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2571 	struct pci_dev *pdev = ar_pci->pdev;
2572 	u32 val;
2573 	int ret = 0;
2574 
2575 	ret = ath10k_pci_force_wake(ar);
2576 	if (ret) {
2577 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2578 		return ret;
2579 	}
2580 
2581 	/* Suspend/Resume resets the PCI configuration space, so we have to
2582 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2583 	 * from interfering with C3 CPU state. pci_restore_state won't help
2584 	 * here since it only restores the first 64 bytes pci config header.
2585 	 */
2586 	pci_read_config_dword(pdev, 0x40, &val);
2587 	if ((val & 0x0000ff00) != 0)
2588 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2589 
2590 	return ret;
2591 }
2592 #endif
2593 
2594 static bool ath10k_pci_validate_cal(void *data, size_t size)
2595 {
2596 	__le16 *cal_words = data;
2597 	u16 checksum = 0;
2598 	size_t i;
2599 
2600 	if (size % 2 != 0)
2601 		return false;
2602 
2603 	for (i = 0; i < size / 2; i++)
2604 		checksum ^= le16_to_cpu(cal_words[i]);
2605 
2606 	return checksum == 0xffff;
2607 }
2608 
2609 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2610 {
2611 	/* Enable SI clock */
2612 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2613 
2614 	/* Configure GPIOs for I2C operation */
2615 	ath10k_pci_write32(ar,
2616 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2617 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2618 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2619 			      GPIO_PIN0_CONFIG) |
2620 			   SM(1, GPIO_PIN0_PAD_PULL));
2621 
2622 	ath10k_pci_write32(ar,
2623 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2624 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2625 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2626 			   SM(1, GPIO_PIN0_PAD_PULL));
2627 
2628 	ath10k_pci_write32(ar,
2629 			   GPIO_BASE_ADDRESS +
2630 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2631 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2632 
2633 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2634 	ath10k_pci_write32(ar,
2635 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2636 			   SM(1, SI_CONFIG_ERR_INT) |
2637 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2638 			   SM(1, SI_CONFIG_I2C) |
2639 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2640 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2641 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2642 			   SM(8, SI_CONFIG_DIVIDER));
2643 }
2644 
2645 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2646 {
2647 	u32 reg;
2648 	int wait_limit;
2649 
2650 	/* set device select byte and for the read operation */
2651 	reg = QCA9887_EEPROM_SELECT_READ |
2652 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2653 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2654 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2655 
2656 	/* write transmit data, transfer length, and START bit */
2657 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2658 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2659 			   SM(4, SI_CS_TX_CNT));
2660 
2661 	/* wait max 1 sec */
2662 	wait_limit = 100000;
2663 
2664 	/* wait for SI_CS_DONE_INT */
2665 	do {
2666 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2667 		if (MS(reg, SI_CS_DONE_INT))
2668 			break;
2669 
2670 		wait_limit--;
2671 		udelay(10);
2672 	} while (wait_limit > 0);
2673 
2674 	if (!MS(reg, SI_CS_DONE_INT)) {
2675 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2676 			   addr);
2677 		return -ETIMEDOUT;
2678 	}
2679 
2680 	/* clear SI_CS_DONE_INT */
2681 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2682 
2683 	if (MS(reg, SI_CS_DONE_ERR)) {
2684 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2685 		return -EIO;
2686 	}
2687 
2688 	/* extract receive data */
2689 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2690 	*out = reg;
2691 
2692 	return 0;
2693 }
2694 
2695 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2696 					   size_t *data_len)
2697 {
2698 	u8 *caldata = NULL;
2699 	size_t calsize, i;
2700 	int ret;
2701 
2702 	if (!QCA_REV_9887(ar))
2703 		return -EOPNOTSUPP;
2704 
2705 	calsize = ar->hw_params.cal_data_len;
2706 	caldata = kmalloc(calsize, GFP_KERNEL);
2707 	if (!caldata)
2708 		return -ENOMEM;
2709 
2710 	ath10k_pci_enable_eeprom(ar);
2711 
2712 	for (i = 0; i < calsize; i++) {
2713 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2714 		if (ret)
2715 			goto err_free;
2716 	}
2717 
2718 	if (!ath10k_pci_validate_cal(caldata, calsize))
2719 		goto err_free;
2720 
2721 	*data = caldata;
2722 	*data_len = calsize;
2723 
2724 	return 0;
2725 
2726 err_free:
2727 	kfree(caldata);
2728 
2729 	return -EINVAL;
2730 }
2731 
2732 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2733 	.tx_sg			= ath10k_pci_hif_tx_sg,
2734 	.diag_read		= ath10k_pci_hif_diag_read,
2735 	.diag_write		= ath10k_pci_diag_write_mem,
2736 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2737 	.start			= ath10k_pci_hif_start,
2738 	.stop			= ath10k_pci_hif_stop,
2739 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2740 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2741 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2742 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2743 	.power_up		= ath10k_pci_hif_power_up,
2744 	.power_down		= ath10k_pci_hif_power_down,
2745 	.read32			= ath10k_pci_read32,
2746 	.write32		= ath10k_pci_write32,
2747 #ifdef CONFIG_PM
2748 	.suspend		= ath10k_pci_hif_suspend,
2749 	.resume			= ath10k_pci_hif_resume,
2750 #endif
2751 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2752 };
2753 
2754 /*
2755  * Top-level interrupt handler for all PCI interrupts from a Target.
2756  * When a block of MSI interrupts is allocated, this top-level handler
2757  * is not used; instead, we directly call the correct sub-handler.
2758  */
2759 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2760 {
2761 	struct ath10k *ar = arg;
2762 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2763 	int ret;
2764 
2765 	if (ath10k_pci_has_device_gone(ar))
2766 		return IRQ_NONE;
2767 
2768 	ret = ath10k_pci_force_wake(ar);
2769 	if (ret) {
2770 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2771 		return IRQ_NONE;
2772 	}
2773 
2774 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2775 	    !ath10k_pci_irq_pending(ar))
2776 		return IRQ_NONE;
2777 
2778 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2779 	ath10k_pci_irq_msi_fw_mask(ar);
2780 	napi_schedule(&ar->napi);
2781 
2782 	return IRQ_HANDLED;
2783 }
2784 
2785 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2786 {
2787 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2788 	int done = 0;
2789 
2790 	if (ath10k_pci_has_fw_crashed(ar)) {
2791 		ath10k_pci_fw_crashed_clear(ar);
2792 		ath10k_pci_fw_crashed_dump(ar);
2793 		napi_complete(ctx);
2794 		return done;
2795 	}
2796 
2797 	ath10k_ce_per_engine_service_any(ar);
2798 
2799 	done = ath10k_htt_txrx_compl_task(ar, budget);
2800 
2801 	if (done < budget) {
2802 		napi_complete(ctx);
2803 		/* In case of MSI, it is possible that interrupts are received
2804 		 * while NAPI poll is inprogress. So pending interrupts that are
2805 		 * received after processing all copy engine pipes by NAPI poll
2806 		 * will not be handled again. This is causing failure to
2807 		 * complete boot sequence in x86 platform. So before enabling
2808 		 * interrupts safer to check for pending interrupts for
2809 		 * immediate servicing.
2810 		 */
2811 		if (CE_INTERRUPT_SUMMARY(ar)) {
2812 			napi_reschedule(ctx);
2813 			goto out;
2814 		}
2815 		ath10k_pci_enable_legacy_irq(ar);
2816 		ath10k_pci_irq_msi_fw_unmask(ar);
2817 	}
2818 
2819 out:
2820 	return done;
2821 }
2822 
2823 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2824 {
2825 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2826 	int ret;
2827 
2828 	ret = request_irq(ar_pci->pdev->irq,
2829 			  ath10k_pci_interrupt_handler,
2830 			  IRQF_SHARED, "ath10k_pci", ar);
2831 	if (ret) {
2832 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2833 			    ar_pci->pdev->irq, ret);
2834 		return ret;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2841 {
2842 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2843 	int ret;
2844 
2845 	ret = request_irq(ar_pci->pdev->irq,
2846 			  ath10k_pci_interrupt_handler,
2847 			  IRQF_SHARED, "ath10k_pci", ar);
2848 	if (ret) {
2849 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2850 			    ar_pci->pdev->irq, ret);
2851 		return ret;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 static int ath10k_pci_request_irq(struct ath10k *ar)
2858 {
2859 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2860 
2861 	switch (ar_pci->oper_irq_mode) {
2862 	case ATH10K_PCI_IRQ_LEGACY:
2863 		return ath10k_pci_request_irq_legacy(ar);
2864 	case ATH10K_PCI_IRQ_MSI:
2865 		return ath10k_pci_request_irq_msi(ar);
2866 	default:
2867 		return -EINVAL;
2868 	}
2869 }
2870 
2871 static void ath10k_pci_free_irq(struct ath10k *ar)
2872 {
2873 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2874 
2875 	free_irq(ar_pci->pdev->irq, ar);
2876 }
2877 
2878 void ath10k_pci_init_napi(struct ath10k *ar)
2879 {
2880 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2881 		       ATH10K_NAPI_BUDGET);
2882 }
2883 
2884 static int ath10k_pci_init_irq(struct ath10k *ar)
2885 {
2886 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2887 	int ret;
2888 
2889 	ath10k_pci_init_napi(ar);
2890 
2891 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2892 		ath10k_info(ar, "limiting irq mode to: %d\n",
2893 			    ath10k_pci_irq_mode);
2894 
2895 	/* Try MSI */
2896 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2897 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2898 		ret = pci_enable_msi(ar_pci->pdev);
2899 		if (ret == 0)
2900 			return 0;
2901 
2902 		/* fall-through */
2903 	}
2904 
2905 	/* Try legacy irq
2906 	 *
2907 	 * A potential race occurs here: The CORE_BASE write
2908 	 * depends on target correctly decoding AXI address but
2909 	 * host won't know when target writes BAR to CORE_CTRL.
2910 	 * This write might get lost if target has NOT written BAR.
2911 	 * For now, fix the race by repeating the write in below
2912 	 * synchronization checking. */
2913 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2914 
2915 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2916 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2917 
2918 	return 0;
2919 }
2920 
2921 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2922 {
2923 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2924 			   0);
2925 }
2926 
2927 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2928 {
2929 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2930 
2931 	switch (ar_pci->oper_irq_mode) {
2932 	case ATH10K_PCI_IRQ_LEGACY:
2933 		ath10k_pci_deinit_irq_legacy(ar);
2934 		break;
2935 	default:
2936 		pci_disable_msi(ar_pci->pdev);
2937 		break;
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2944 {
2945 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2946 	unsigned long timeout;
2947 	u32 val;
2948 
2949 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2950 
2951 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2952 
2953 	do {
2954 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2955 
2956 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2957 			   val);
2958 
2959 		/* target should never return this */
2960 		if (val == 0xffffffff)
2961 			continue;
2962 
2963 		/* the device has crashed so don't bother trying anymore */
2964 		if (val & FW_IND_EVENT_PENDING)
2965 			break;
2966 
2967 		if (val & FW_IND_INITIALIZED)
2968 			break;
2969 
2970 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2971 			/* Fix potential race by repeating CORE_BASE writes */
2972 			ath10k_pci_enable_legacy_irq(ar);
2973 
2974 		mdelay(10);
2975 	} while (time_before(jiffies, timeout));
2976 
2977 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2978 	ath10k_pci_irq_msi_fw_mask(ar);
2979 
2980 	if (val == 0xffffffff) {
2981 		ath10k_err(ar, "failed to read device register, device is gone\n");
2982 		return -EIO;
2983 	}
2984 
2985 	if (val & FW_IND_EVENT_PENDING) {
2986 		ath10k_warn(ar, "device has crashed during init\n");
2987 		return -ECOMM;
2988 	}
2989 
2990 	if (!(val & FW_IND_INITIALIZED)) {
2991 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2992 			   val);
2993 		return -ETIMEDOUT;
2994 	}
2995 
2996 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2997 	return 0;
2998 }
2999 
3000 static int ath10k_pci_cold_reset(struct ath10k *ar)
3001 {
3002 	u32 val;
3003 
3004 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3005 
3006 	spin_lock_bh(&ar->data_lock);
3007 
3008 	ar->stats.fw_cold_reset_counter++;
3009 
3010 	spin_unlock_bh(&ar->data_lock);
3011 
3012 	/* Put Target, including PCIe, into RESET. */
3013 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3014 	val |= 1;
3015 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3016 
3017 	/* After writing into SOC_GLOBAL_RESET to put device into
3018 	 * reset and pulling out of reset pcie may not be stable
3019 	 * for any immediate pcie register access and cause bus error,
3020 	 * add delay before any pcie access request to fix this issue.
3021 	 */
3022 	msleep(20);
3023 
3024 	/* Pull Target, including PCIe, out of RESET. */
3025 	val &= ~1;
3026 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3027 
3028 	msleep(20);
3029 
3030 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3031 
3032 	return 0;
3033 }
3034 
3035 static int ath10k_pci_claim(struct ath10k *ar)
3036 {
3037 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3038 	struct pci_dev *pdev = ar_pci->pdev;
3039 	int ret;
3040 
3041 	pci_set_drvdata(pdev, ar);
3042 
3043 	ret = pci_enable_device(pdev);
3044 	if (ret) {
3045 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3046 		return ret;
3047 	}
3048 
3049 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3050 	if (ret) {
3051 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3052 			   ret);
3053 		goto err_device;
3054 	}
3055 
3056 	/* Target expects 32 bit DMA. Enforce it. */
3057 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3058 	if (ret) {
3059 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3060 		goto err_region;
3061 	}
3062 
3063 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3064 	if (ret) {
3065 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3066 			   ret);
3067 		goto err_region;
3068 	}
3069 
3070 	pci_set_master(pdev);
3071 
3072 	/* Arrange for access to Target SoC registers. */
3073 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3074 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3075 	if (!ar_pci->mem) {
3076 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3077 		ret = -EIO;
3078 		goto err_master;
3079 	}
3080 
3081 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3082 	return 0;
3083 
3084 err_master:
3085 	pci_clear_master(pdev);
3086 
3087 err_region:
3088 	pci_release_region(pdev, BAR_NUM);
3089 
3090 err_device:
3091 	pci_disable_device(pdev);
3092 
3093 	return ret;
3094 }
3095 
3096 static void ath10k_pci_release(struct ath10k *ar)
3097 {
3098 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3099 	struct pci_dev *pdev = ar_pci->pdev;
3100 
3101 	pci_iounmap(pdev, ar_pci->mem);
3102 	pci_release_region(pdev, BAR_NUM);
3103 	pci_clear_master(pdev);
3104 	pci_disable_device(pdev);
3105 }
3106 
3107 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3108 {
3109 	const struct ath10k_pci_supp_chip *supp_chip;
3110 	int i;
3111 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3112 
3113 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3114 		supp_chip = &ath10k_pci_supp_chips[i];
3115 
3116 		if (supp_chip->dev_id == dev_id &&
3117 		    supp_chip->rev_id == rev_id)
3118 			return true;
3119 	}
3120 
3121 	return false;
3122 }
3123 
3124 int ath10k_pci_setup_resource(struct ath10k *ar)
3125 {
3126 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3127 	int ret;
3128 
3129 	spin_lock_init(&ar_pci->ce_lock);
3130 	spin_lock_init(&ar_pci->ps_lock);
3131 
3132 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3133 		    (unsigned long)ar);
3134 
3135 	if (QCA_REV_6174(ar))
3136 		ath10k_pci_override_ce_config(ar);
3137 
3138 	ret = ath10k_pci_alloc_pipes(ar);
3139 	if (ret) {
3140 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3141 			   ret);
3142 		return ret;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 void ath10k_pci_release_resource(struct ath10k *ar)
3149 {
3150 	ath10k_pci_rx_retry_sync(ar);
3151 	netif_napi_del(&ar->napi);
3152 	ath10k_pci_ce_deinit(ar);
3153 	ath10k_pci_free_pipes(ar);
3154 }
3155 
3156 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3157 	.read32		= ath10k_bus_pci_read32,
3158 	.write32	= ath10k_bus_pci_write32,
3159 	.get_num_banks	= ath10k_pci_get_num_banks,
3160 };
3161 
3162 static int ath10k_pci_probe(struct pci_dev *pdev,
3163 			    const struct pci_device_id *pci_dev)
3164 {
3165 	int ret = 0;
3166 	struct ath10k *ar;
3167 	struct ath10k_pci *ar_pci;
3168 	enum ath10k_hw_rev hw_rev;
3169 	u32 chip_id;
3170 	bool pci_ps;
3171 	int (*pci_soft_reset)(struct ath10k *ar);
3172 	int (*pci_hard_reset)(struct ath10k *ar);
3173 
3174 	switch (pci_dev->device) {
3175 	case QCA988X_2_0_DEVICE_ID:
3176 		hw_rev = ATH10K_HW_QCA988X;
3177 		pci_ps = false;
3178 		pci_soft_reset = ath10k_pci_warm_reset;
3179 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3180 		break;
3181 	case QCA9887_1_0_DEVICE_ID:
3182 		hw_rev = ATH10K_HW_QCA9887;
3183 		pci_ps = false;
3184 		pci_soft_reset = ath10k_pci_warm_reset;
3185 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3186 		break;
3187 	case QCA6164_2_1_DEVICE_ID:
3188 	case QCA6174_2_1_DEVICE_ID:
3189 		hw_rev = ATH10K_HW_QCA6174;
3190 		pci_ps = true;
3191 		pci_soft_reset = ath10k_pci_warm_reset;
3192 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3193 		break;
3194 	case QCA99X0_2_0_DEVICE_ID:
3195 		hw_rev = ATH10K_HW_QCA99X0;
3196 		pci_ps = false;
3197 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3198 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3199 		break;
3200 	case QCA9984_1_0_DEVICE_ID:
3201 		hw_rev = ATH10K_HW_QCA9984;
3202 		pci_ps = false;
3203 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3204 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3205 		break;
3206 	case QCA9888_2_0_DEVICE_ID:
3207 		hw_rev = ATH10K_HW_QCA9888;
3208 		pci_ps = false;
3209 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3210 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3211 		break;
3212 	case QCA9377_1_0_DEVICE_ID:
3213 		hw_rev = ATH10K_HW_QCA9377;
3214 		pci_ps = true;
3215 		pci_soft_reset = NULL;
3216 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3217 		break;
3218 	default:
3219 		WARN_ON(1);
3220 		return -ENOTSUPP;
3221 	}
3222 
3223 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3224 				hw_rev, &ath10k_pci_hif_ops);
3225 	if (!ar) {
3226 		dev_err(&pdev->dev, "failed to allocate core\n");
3227 		return -ENOMEM;
3228 	}
3229 
3230 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3231 		   pdev->vendor, pdev->device,
3232 		   pdev->subsystem_vendor, pdev->subsystem_device);
3233 
3234 	ar_pci = ath10k_pci_priv(ar);
3235 	ar_pci->pdev = pdev;
3236 	ar_pci->dev = &pdev->dev;
3237 	ar_pci->ar = ar;
3238 	ar->dev_id = pci_dev->device;
3239 	ar_pci->pci_ps = pci_ps;
3240 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3241 	ar_pci->pci_soft_reset = pci_soft_reset;
3242 	ar_pci->pci_hard_reset = pci_hard_reset;
3243 
3244 	ar->id.vendor = pdev->vendor;
3245 	ar->id.device = pdev->device;
3246 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3247 	ar->id.subsystem_device = pdev->subsystem_device;
3248 
3249 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3250 		    (unsigned long)ar);
3251 
3252 	ret = ath10k_pci_setup_resource(ar);
3253 	if (ret) {
3254 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3255 		goto err_core_destroy;
3256 	}
3257 
3258 	ret = ath10k_pci_claim(ar);
3259 	if (ret) {
3260 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3261 		goto err_free_pipes;
3262 	}
3263 
3264 	ret = ath10k_pci_force_wake(ar);
3265 	if (ret) {
3266 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3267 		goto err_sleep;
3268 	}
3269 
3270 	ath10k_pci_ce_deinit(ar);
3271 	ath10k_pci_irq_disable(ar);
3272 
3273 	ret = ath10k_pci_init_irq(ar);
3274 	if (ret) {
3275 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3276 		goto err_sleep;
3277 	}
3278 
3279 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3280 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3281 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3282 
3283 	ret = ath10k_pci_request_irq(ar);
3284 	if (ret) {
3285 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3286 		goto err_deinit_irq;
3287 	}
3288 
3289 	ret = ath10k_pci_chip_reset(ar);
3290 	if (ret) {
3291 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3292 		goto err_free_irq;
3293 	}
3294 
3295 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3296 	if (chip_id == 0xffffffff) {
3297 		ath10k_err(ar, "failed to get chip id\n");
3298 		goto err_free_irq;
3299 	}
3300 
3301 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3302 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3303 			   pdev->device, chip_id);
3304 		goto err_free_irq;
3305 	}
3306 
3307 	ret = ath10k_core_register(ar, chip_id);
3308 	if (ret) {
3309 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3310 		goto err_free_irq;
3311 	}
3312 
3313 	return 0;
3314 
3315 err_free_irq:
3316 	ath10k_pci_free_irq(ar);
3317 	ath10k_pci_rx_retry_sync(ar);
3318 
3319 err_deinit_irq:
3320 	ath10k_pci_deinit_irq(ar);
3321 
3322 err_sleep:
3323 	ath10k_pci_sleep_sync(ar);
3324 	ath10k_pci_release(ar);
3325 
3326 err_free_pipes:
3327 	ath10k_pci_free_pipes(ar);
3328 
3329 err_core_destroy:
3330 	ath10k_core_destroy(ar);
3331 
3332 	return ret;
3333 }
3334 
3335 static void ath10k_pci_remove(struct pci_dev *pdev)
3336 {
3337 	struct ath10k *ar = pci_get_drvdata(pdev);
3338 	struct ath10k_pci *ar_pci;
3339 
3340 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3341 
3342 	if (!ar)
3343 		return;
3344 
3345 	ar_pci = ath10k_pci_priv(ar);
3346 
3347 	if (!ar_pci)
3348 		return;
3349 
3350 	ath10k_core_unregister(ar);
3351 	ath10k_pci_free_irq(ar);
3352 	ath10k_pci_deinit_irq(ar);
3353 	ath10k_pci_release_resource(ar);
3354 	ath10k_pci_sleep_sync(ar);
3355 	ath10k_pci_release(ar);
3356 	ath10k_core_destroy(ar);
3357 }
3358 
3359 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3360 
3361 static struct pci_driver ath10k_pci_driver = {
3362 	.name = "ath10k_pci",
3363 	.id_table = ath10k_pci_id_table,
3364 	.probe = ath10k_pci_probe,
3365 	.remove = ath10k_pci_remove,
3366 };
3367 
3368 static int __init ath10k_pci_init(void)
3369 {
3370 	int ret;
3371 
3372 	ret = pci_register_driver(&ath10k_pci_driver);
3373 	if (ret)
3374 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3375 		       ret);
3376 
3377 	ret = ath10k_ahb_init();
3378 	if (ret)
3379 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3380 
3381 	return ret;
3382 }
3383 module_init(ath10k_pci_init);
3384 
3385 static void __exit ath10k_pci_exit(void)
3386 {
3387 	pci_unregister_driver(&ath10k_pci_driver);
3388 	ath10k_ahb_exit();
3389 }
3390 
3391 module_exit(ath10k_pci_exit);
3392 
3393 MODULE_AUTHOR("Qualcomm Atheros");
3394 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3395 MODULE_LICENSE("Dual BSD/GPL");
3396 
3397 /* QCA988x 2.0 firmware files */
3398 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3399 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3400 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3401 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3402 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3403 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3404 
3405 /* QCA9887 1.0 firmware files */
3406 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3407 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3408 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3409 
3410 /* QCA6174 2.1 firmware files */
3411 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3412 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3413 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3414 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3415 
3416 /* QCA6174 3.1 firmware files */
3417 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3418 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3419 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3420 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3421 
3422 /* QCA9377 1.0 firmware files */
3423 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3424 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3425