1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 */ 6 7 #include <linux/pci.h> 8 #include <linux/module.h> 9 #include <linux/interrupt.h> 10 #include <linux/spinlock.h> 11 #include <linux/bitops.h> 12 13 #include "core.h" 14 #include "debug.h" 15 #include "coredump.h" 16 17 #include "targaddrs.h" 18 #include "bmi.h" 19 20 #include "hif.h" 21 #include "htc.h" 22 23 #include "ce.h" 24 #include "pci.h" 25 26 enum ath10k_pci_reset_mode { 27 ATH10K_PCI_RESET_AUTO = 0, 28 ATH10K_PCI_RESET_WARM_ONLY = 1, 29 }; 30 31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; 32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; 33 34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); 35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); 36 37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); 38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); 39 40 /* how long wait to wait for target to initialise, in ms */ 41 #define ATH10K_PCI_TARGET_WAIT 3000 42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 43 44 /* Maximum number of bytes that can be handled atomically by 45 * diag read and write. 46 */ 47 #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000 48 49 #define QCA99X0_PCIE_BAR0_START_REG 0x81030 50 #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c 51 #define QCA99X0_CPU_MEM_DATA_REG 0x4d010 52 53 static const struct pci_device_id ath10k_pci_id_table[] = { 54 /* PCI-E QCA988X V2 (Ubiquiti branded) */ 55 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) }, 56 57 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ 58 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */ 59 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */ 60 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */ 61 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */ 62 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */ 63 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */ 64 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */ 65 {0} 66 }; 67 68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = { 69 /* QCA988X pre 2.0 chips are not supported because they need some nasty 70 * hacks. ath10k doesn't have them and these devices crash horribly 71 * because of that. 72 */ 73 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV }, 74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV }, 75 76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 81 82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 87 88 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV }, 89 90 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV }, 91 92 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV }, 93 94 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV }, 95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV }, 96 97 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV }, 98 }; 99 100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar); 101 static int ath10k_pci_cold_reset(struct ath10k *ar); 102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar); 103 static int ath10k_pci_init_irq(struct ath10k *ar); 104 static int ath10k_pci_deinit_irq(struct ath10k *ar); 105 static int ath10k_pci_request_irq(struct ath10k *ar); 106 static void ath10k_pci_free_irq(struct ath10k *ar); 107 static int ath10k_pci_bmi_wait(struct ath10k *ar, 108 struct ath10k_ce_pipe *tx_pipe, 109 struct ath10k_ce_pipe *rx_pipe, 110 struct bmi_xfer *xfer); 111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar); 112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state); 113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state); 115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state); 116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); 118 119 static struct ce_attr host_ce_config_wlan[] = { 120 /* CE0: host->target HTC control and raw streams */ 121 { 122 .flags = CE_ATTR_FLAGS, 123 .src_nentries = 16, 124 .src_sz_max = 256, 125 .dest_nentries = 0, 126 .send_cb = ath10k_pci_htc_tx_cb, 127 }, 128 129 /* CE1: target->host HTT + HTC control */ 130 { 131 .flags = CE_ATTR_FLAGS, 132 .src_nentries = 0, 133 .src_sz_max = 2048, 134 .dest_nentries = 512, 135 .recv_cb = ath10k_pci_htt_htc_rx_cb, 136 }, 137 138 /* CE2: target->host WMI */ 139 { 140 .flags = CE_ATTR_FLAGS, 141 .src_nentries = 0, 142 .src_sz_max = 2048, 143 .dest_nentries = 128, 144 .recv_cb = ath10k_pci_htc_rx_cb, 145 }, 146 147 /* CE3: host->target WMI */ 148 { 149 .flags = CE_ATTR_FLAGS, 150 .src_nentries = 32, 151 .src_sz_max = 2048, 152 .dest_nentries = 0, 153 .send_cb = ath10k_pci_htc_tx_cb, 154 }, 155 156 /* CE4: host->target HTT */ 157 { 158 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 159 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, 160 .src_sz_max = 256, 161 .dest_nentries = 0, 162 .send_cb = ath10k_pci_htt_tx_cb, 163 }, 164 165 /* CE5: target->host HTT (HIF->HTT) */ 166 { 167 .flags = CE_ATTR_FLAGS, 168 .src_nentries = 0, 169 .src_sz_max = 512, 170 .dest_nentries = 512, 171 .recv_cb = ath10k_pci_htt_rx_cb, 172 }, 173 174 /* CE6: target autonomous hif_memcpy */ 175 { 176 .flags = CE_ATTR_FLAGS, 177 .src_nentries = 0, 178 .src_sz_max = 0, 179 .dest_nentries = 0, 180 }, 181 182 /* CE7: ce_diag, the Diagnostic Window */ 183 { 184 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL, 185 .src_nentries = 2, 186 .src_sz_max = DIAG_TRANSFER_LIMIT, 187 .dest_nentries = 2, 188 }, 189 190 /* CE8: target->host pktlog */ 191 { 192 .flags = CE_ATTR_FLAGS, 193 .src_nentries = 0, 194 .src_sz_max = 2048, 195 .dest_nentries = 128, 196 .recv_cb = ath10k_pci_pktlog_rx_cb, 197 }, 198 199 /* CE9 target autonomous qcache memcpy */ 200 { 201 .flags = CE_ATTR_FLAGS, 202 .src_nentries = 0, 203 .src_sz_max = 0, 204 .dest_nentries = 0, 205 }, 206 207 /* CE10: target autonomous hif memcpy */ 208 { 209 .flags = CE_ATTR_FLAGS, 210 .src_nentries = 0, 211 .src_sz_max = 0, 212 .dest_nentries = 0, 213 }, 214 215 /* CE11: target autonomous hif memcpy */ 216 { 217 .flags = CE_ATTR_FLAGS, 218 .src_nentries = 0, 219 .src_sz_max = 0, 220 .dest_nentries = 0, 221 }, 222 }; 223 224 /* Target firmware's Copy Engine configuration. */ 225 static struct ce_pipe_config target_ce_config_wlan[] = { 226 /* CE0: host->target HTC control and raw streams */ 227 { 228 .pipenum = __cpu_to_le32(0), 229 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 230 .nentries = __cpu_to_le32(32), 231 .nbytes_max = __cpu_to_le32(256), 232 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 233 .reserved = __cpu_to_le32(0), 234 }, 235 236 /* CE1: target->host HTT + HTC control */ 237 { 238 .pipenum = __cpu_to_le32(1), 239 .pipedir = __cpu_to_le32(PIPEDIR_IN), 240 .nentries = __cpu_to_le32(32), 241 .nbytes_max = __cpu_to_le32(2048), 242 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 243 .reserved = __cpu_to_le32(0), 244 }, 245 246 /* CE2: target->host WMI */ 247 { 248 .pipenum = __cpu_to_le32(2), 249 .pipedir = __cpu_to_le32(PIPEDIR_IN), 250 .nentries = __cpu_to_le32(64), 251 .nbytes_max = __cpu_to_le32(2048), 252 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 253 .reserved = __cpu_to_le32(0), 254 }, 255 256 /* CE3: host->target WMI */ 257 { 258 .pipenum = __cpu_to_le32(3), 259 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 260 .nentries = __cpu_to_le32(32), 261 .nbytes_max = __cpu_to_le32(2048), 262 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 263 .reserved = __cpu_to_le32(0), 264 }, 265 266 /* CE4: host->target HTT */ 267 { 268 .pipenum = __cpu_to_le32(4), 269 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 270 .nentries = __cpu_to_le32(256), 271 .nbytes_max = __cpu_to_le32(256), 272 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 273 .reserved = __cpu_to_le32(0), 274 }, 275 276 /* NB: 50% of src nentries, since tx has 2 frags */ 277 278 /* CE5: target->host HTT (HIF->HTT) */ 279 { 280 .pipenum = __cpu_to_le32(5), 281 .pipedir = __cpu_to_le32(PIPEDIR_IN), 282 .nentries = __cpu_to_le32(32), 283 .nbytes_max = __cpu_to_le32(512), 284 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 285 .reserved = __cpu_to_le32(0), 286 }, 287 288 /* CE6: Reserved for target autonomous hif_memcpy */ 289 { 290 .pipenum = __cpu_to_le32(6), 291 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 292 .nentries = __cpu_to_le32(32), 293 .nbytes_max = __cpu_to_le32(4096), 294 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 295 .reserved = __cpu_to_le32(0), 296 }, 297 298 /* CE7 used only by Host */ 299 { 300 .pipenum = __cpu_to_le32(7), 301 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 302 .nentries = __cpu_to_le32(0), 303 .nbytes_max = __cpu_to_le32(0), 304 .flags = __cpu_to_le32(0), 305 .reserved = __cpu_to_le32(0), 306 }, 307 308 /* CE8 target->host packtlog */ 309 { 310 .pipenum = __cpu_to_le32(8), 311 .pipedir = __cpu_to_le32(PIPEDIR_IN), 312 .nentries = __cpu_to_le32(64), 313 .nbytes_max = __cpu_to_le32(2048), 314 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 315 .reserved = __cpu_to_le32(0), 316 }, 317 318 /* CE9 target autonomous qcache memcpy */ 319 { 320 .pipenum = __cpu_to_le32(9), 321 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 322 .nentries = __cpu_to_le32(32), 323 .nbytes_max = __cpu_to_le32(2048), 324 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 325 .reserved = __cpu_to_le32(0), 326 }, 327 328 /* It not necessary to send target wlan configuration for CE10 & CE11 329 * as these CEs are not actively used in target. 330 */ 331 }; 332 333 /* 334 * Map from service/endpoint to Copy Engine. 335 * This table is derived from the CE_PCI TABLE, above. 336 * It is passed to the Target at startup for use by firmware. 337 */ 338 static struct service_to_pipe target_service_to_ce_map_wlan[] = { 339 { 340 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 341 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 342 __cpu_to_le32(3), 343 }, 344 { 345 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 346 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 347 __cpu_to_le32(2), 348 }, 349 { 350 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 351 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 352 __cpu_to_le32(3), 353 }, 354 { 355 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 356 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 357 __cpu_to_le32(2), 358 }, 359 { 360 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 361 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 362 __cpu_to_le32(3), 363 }, 364 { 365 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 366 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 367 __cpu_to_le32(2), 368 }, 369 { 370 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 371 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 372 __cpu_to_le32(3), 373 }, 374 { 375 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 376 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 377 __cpu_to_le32(2), 378 }, 379 { 380 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 381 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 382 __cpu_to_le32(3), 383 }, 384 { 385 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 386 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 387 __cpu_to_le32(2), 388 }, 389 { 390 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 391 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 392 __cpu_to_le32(0), 393 }, 394 { 395 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 396 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 397 __cpu_to_le32(1), 398 }, 399 { /* not used */ 400 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 401 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 402 __cpu_to_le32(0), 403 }, 404 { /* not used */ 405 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 406 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 407 __cpu_to_le32(1), 408 }, 409 { 410 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 411 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 412 __cpu_to_le32(4), 413 }, 414 { 415 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 416 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 417 __cpu_to_le32(5), 418 }, 419 420 /* (Additions here) */ 421 422 { /* must be last */ 423 __cpu_to_le32(0), 424 __cpu_to_le32(0), 425 __cpu_to_le32(0), 426 }, 427 }; 428 429 static bool ath10k_pci_is_awake(struct ath10k *ar) 430 { 431 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 432 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 433 RTC_STATE_ADDRESS); 434 435 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; 436 } 437 438 static void __ath10k_pci_wake(struct ath10k *ar) 439 { 440 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 441 442 lockdep_assert_held(&ar_pci->ps_lock); 443 444 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n", 445 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 446 447 iowrite32(PCIE_SOC_WAKE_V_MASK, 448 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 449 PCIE_SOC_WAKE_ADDRESS); 450 } 451 452 static void __ath10k_pci_sleep(struct ath10k *ar) 453 { 454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 455 456 lockdep_assert_held(&ar_pci->ps_lock); 457 458 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n", 459 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 460 461 iowrite32(PCIE_SOC_WAKE_RESET, 462 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 463 PCIE_SOC_WAKE_ADDRESS); 464 ar_pci->ps_awake = false; 465 } 466 467 static int ath10k_pci_wake_wait(struct ath10k *ar) 468 { 469 int tot_delay = 0; 470 int curr_delay = 5; 471 472 while (tot_delay < PCIE_WAKE_TIMEOUT) { 473 if (ath10k_pci_is_awake(ar)) { 474 if (tot_delay > PCIE_WAKE_LATE_US) 475 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n", 476 tot_delay / 1000); 477 return 0; 478 } 479 480 udelay(curr_delay); 481 tot_delay += curr_delay; 482 483 if (curr_delay < 50) 484 curr_delay += 5; 485 } 486 487 return -ETIMEDOUT; 488 } 489 490 static int ath10k_pci_force_wake(struct ath10k *ar) 491 { 492 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 493 unsigned long flags; 494 int ret = 0; 495 496 if (ar_pci->pci_ps) 497 return ret; 498 499 spin_lock_irqsave(&ar_pci->ps_lock, flags); 500 501 if (!ar_pci->ps_awake) { 502 iowrite32(PCIE_SOC_WAKE_V_MASK, 503 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 504 PCIE_SOC_WAKE_ADDRESS); 505 506 ret = ath10k_pci_wake_wait(ar); 507 if (ret == 0) 508 ar_pci->ps_awake = true; 509 } 510 511 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 512 513 return ret; 514 } 515 516 static void ath10k_pci_force_sleep(struct ath10k *ar) 517 { 518 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 519 unsigned long flags; 520 521 spin_lock_irqsave(&ar_pci->ps_lock, flags); 522 523 iowrite32(PCIE_SOC_WAKE_RESET, 524 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 525 PCIE_SOC_WAKE_ADDRESS); 526 ar_pci->ps_awake = false; 527 528 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 529 } 530 531 static int ath10k_pci_wake(struct ath10k *ar) 532 { 533 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 534 unsigned long flags; 535 int ret = 0; 536 537 if (ar_pci->pci_ps == 0) 538 return ret; 539 540 spin_lock_irqsave(&ar_pci->ps_lock, flags); 541 542 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n", 543 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 544 545 /* This function can be called very frequently. To avoid excessive 546 * CPU stalls for MMIO reads use a cache var to hold the device state. 547 */ 548 if (!ar_pci->ps_awake) { 549 __ath10k_pci_wake(ar); 550 551 ret = ath10k_pci_wake_wait(ar); 552 if (ret == 0) 553 ar_pci->ps_awake = true; 554 } 555 556 if (ret == 0) { 557 ar_pci->ps_wake_refcount++; 558 WARN_ON(ar_pci->ps_wake_refcount == 0); 559 } 560 561 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 562 563 return ret; 564 } 565 566 static void ath10k_pci_sleep(struct ath10k *ar) 567 { 568 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 569 unsigned long flags; 570 571 if (ar_pci->pci_ps == 0) 572 return; 573 574 spin_lock_irqsave(&ar_pci->ps_lock, flags); 575 576 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n", 577 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 578 579 if (WARN_ON(ar_pci->ps_wake_refcount == 0)) 580 goto skip; 581 582 ar_pci->ps_wake_refcount--; 583 584 mod_timer(&ar_pci->ps_timer, jiffies + 585 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC)); 586 587 skip: 588 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 589 } 590 591 static void ath10k_pci_ps_timer(struct timer_list *t) 592 { 593 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer); 594 struct ath10k *ar = ar_pci->ar; 595 unsigned long flags; 596 597 spin_lock_irqsave(&ar_pci->ps_lock, flags); 598 599 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n", 600 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 601 602 if (ar_pci->ps_wake_refcount > 0) 603 goto skip; 604 605 __ath10k_pci_sleep(ar); 606 607 skip: 608 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 609 } 610 611 static void ath10k_pci_sleep_sync(struct ath10k *ar) 612 { 613 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 614 unsigned long flags; 615 616 if (ar_pci->pci_ps == 0) { 617 ath10k_pci_force_sleep(ar); 618 return; 619 } 620 621 del_timer_sync(&ar_pci->ps_timer); 622 623 spin_lock_irqsave(&ar_pci->ps_lock, flags); 624 WARN_ON(ar_pci->ps_wake_refcount > 0); 625 __ath10k_pci_sleep(ar); 626 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 627 } 628 629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value) 630 { 631 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 632 int ret; 633 634 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) { 635 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 636 offset, offset + sizeof(value), ar_pci->mem_len); 637 return; 638 } 639 640 ret = ath10k_pci_wake(ar); 641 if (ret) { 642 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n", 643 value, offset, ret); 644 return; 645 } 646 647 iowrite32(value, ar_pci->mem + offset); 648 ath10k_pci_sleep(ar); 649 } 650 651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset) 652 { 653 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 654 u32 val; 655 int ret; 656 657 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) { 658 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 659 offset, offset + sizeof(val), ar_pci->mem_len); 660 return 0; 661 } 662 663 ret = ath10k_pci_wake(ar); 664 if (ret) { 665 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n", 666 offset, ret); 667 return 0xffffffff; 668 } 669 670 val = ioread32(ar_pci->mem + offset); 671 ath10k_pci_sleep(ar); 672 673 return val; 674 } 675 676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value) 677 { 678 struct ath10k_ce *ce = ath10k_ce_priv(ar); 679 680 ce->bus_ops->write32(ar, offset, value); 681 } 682 683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset) 684 { 685 struct ath10k_ce *ce = ath10k_ce_priv(ar); 686 687 return ce->bus_ops->read32(ar, offset); 688 } 689 690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr) 691 { 692 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr); 693 } 694 695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val) 696 { 697 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val); 698 } 699 700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr) 701 { 702 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr); 703 } 704 705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val) 706 { 707 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val); 708 } 709 710 bool ath10k_pci_irq_pending(struct ath10k *ar) 711 { 712 u32 cause; 713 714 /* Check if the shared legacy irq is for us */ 715 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 716 PCIE_INTR_CAUSE_ADDRESS); 717 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) 718 return true; 719 720 return false; 721 } 722 723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) 724 { 725 /* IMPORTANT: INTR_CLR register has to be set after 726 * INTR_ENABLE is set to 0, otherwise interrupt can not be 727 * really cleared. 728 */ 729 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 730 0); 731 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, 732 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 733 734 /* IMPORTANT: this extra read transaction is required to 735 * flush the posted write buffer. 736 */ 737 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 738 PCIE_INTR_ENABLE_ADDRESS); 739 } 740 741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar) 742 { 743 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 744 PCIE_INTR_ENABLE_ADDRESS, 745 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 746 747 /* IMPORTANT: this extra read transaction is required to 748 * flush the posted write buffer. 749 */ 750 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 751 PCIE_INTR_ENABLE_ADDRESS); 752 } 753 754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) 755 { 756 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 757 758 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI) 759 return "msi"; 760 761 return "legacy"; 762 } 763 764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) 765 { 766 struct ath10k *ar = pipe->hif_ce_state; 767 struct ath10k_ce *ce = ath10k_ce_priv(ar); 768 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 769 struct sk_buff *skb; 770 dma_addr_t paddr; 771 int ret; 772 773 skb = dev_alloc_skb(pipe->buf_sz); 774 if (!skb) 775 return -ENOMEM; 776 777 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); 778 779 paddr = dma_map_single(ar->dev, skb->data, 780 skb->len + skb_tailroom(skb), 781 DMA_FROM_DEVICE); 782 if (unlikely(dma_mapping_error(ar->dev, paddr))) { 783 ath10k_warn(ar, "failed to dma map pci rx buf\n"); 784 dev_kfree_skb_any(skb); 785 return -EIO; 786 } 787 788 ATH10K_SKB_RXCB(skb)->paddr = paddr; 789 790 spin_lock_bh(&ce->ce_lock); 791 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr); 792 spin_unlock_bh(&ce->ce_lock); 793 if (ret) { 794 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), 795 DMA_FROM_DEVICE); 796 dev_kfree_skb_any(skb); 797 return ret; 798 } 799 800 return 0; 801 } 802 803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) 804 { 805 struct ath10k *ar = pipe->hif_ce_state; 806 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 807 struct ath10k_ce *ce = ath10k_ce_priv(ar); 808 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 809 int ret, num; 810 811 if (pipe->buf_sz == 0) 812 return; 813 814 if (!ce_pipe->dest_ring) 815 return; 816 817 spin_lock_bh(&ce->ce_lock); 818 num = __ath10k_ce_rx_num_free_bufs(ce_pipe); 819 spin_unlock_bh(&ce->ce_lock); 820 821 while (num >= 0) { 822 ret = __ath10k_pci_rx_post_buf(pipe); 823 if (ret) { 824 if (ret == -ENOSPC) 825 break; 826 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); 827 mod_timer(&ar_pci->rx_post_retry, jiffies + 828 ATH10K_PCI_RX_POST_RETRY_MS); 829 break; 830 } 831 num--; 832 } 833 } 834 835 void ath10k_pci_rx_post(struct ath10k *ar) 836 { 837 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 838 int i; 839 840 for (i = 0; i < CE_COUNT; i++) 841 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); 842 } 843 844 void ath10k_pci_rx_replenish_retry(struct timer_list *t) 845 { 846 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry); 847 struct ath10k *ar = ar_pci->ar; 848 849 ath10k_pci_rx_post(ar); 850 } 851 852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 853 { 854 u32 val = 0, region = addr & 0xfffff; 855 856 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) 857 & 0x7ff) << 21; 858 val |= 0x100000 | region; 859 return val; 860 } 861 862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr. 863 * Support to access target space below 1M for qca6174 and qca9377. 864 * If target space is below 1M, the bit[20] of converted CE addr is 0. 865 * Otherwise bit[20] of converted CE addr is 1. 866 */ 867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 868 { 869 u32 val = 0, region = addr & 0xfffff; 870 871 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) 872 & 0x7ff) << 21; 873 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region; 874 return val; 875 } 876 877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 878 { 879 u32 val = 0, region = addr & 0xfffff; 880 881 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS); 882 val |= 0x100000 | region; 883 return val; 884 } 885 886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 887 { 888 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 889 890 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr)) 891 return -ENOTSUPP; 892 893 return ar_pci->targ_cpu_to_ce_addr(ar, addr); 894 } 895 896 /* 897 * Diagnostic read/write access is provided for startup/config/debug usage. 898 * Caller must guarantee proper alignment, when applicable, and single user 899 * at any moment. 900 */ 901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, 902 int nbytes) 903 { 904 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 905 int ret = 0; 906 u32 *buf; 907 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; 908 struct ath10k_ce_pipe *ce_diag; 909 /* Host buffer address in CE space */ 910 u32 ce_data; 911 dma_addr_t ce_data_base = 0; 912 void *data_buf; 913 int i; 914 915 mutex_lock(&ar_pci->ce_diag_mutex); 916 ce_diag = ar_pci->ce_diag; 917 918 /* 919 * Allocate a temporary bounce buffer to hold caller's data 920 * to be DMA'ed from Target. This guarantees 921 * 1) 4-byte alignment 922 * 2) Buffer in DMA-able space 923 */ 924 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); 925 926 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, 927 GFP_ATOMIC); 928 if (!data_buf) { 929 ret = -ENOMEM; 930 goto done; 931 } 932 933 /* The address supplied by the caller is in the 934 * Target CPU virtual address space. 935 * 936 * In order to use this address with the diagnostic CE, 937 * convert it from Target CPU virtual address space 938 * to CE address space 939 */ 940 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 941 942 remaining_bytes = nbytes; 943 ce_data = ce_data_base; 944 while (remaining_bytes) { 945 nbytes = min_t(unsigned int, remaining_bytes, 946 DIAG_TRANSFER_LIMIT); 947 948 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data); 949 if (ret != 0) 950 goto done; 951 952 /* Request CE to send from Target(!) address to Host buffer */ 953 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0); 954 if (ret) 955 goto done; 956 957 i = 0; 958 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { 959 udelay(DIAG_ACCESS_CE_WAIT_US); 960 i += DIAG_ACCESS_CE_WAIT_US; 961 962 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 963 ret = -EBUSY; 964 goto done; 965 } 966 } 967 968 i = 0; 969 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, 970 &completed_nbytes) != 0) { 971 udelay(DIAG_ACCESS_CE_WAIT_US); 972 i += DIAG_ACCESS_CE_WAIT_US; 973 974 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 975 ret = -EBUSY; 976 goto done; 977 } 978 } 979 980 if (nbytes != completed_nbytes) { 981 ret = -EIO; 982 goto done; 983 } 984 985 if (*buf != ce_data) { 986 ret = -EIO; 987 goto done; 988 } 989 990 remaining_bytes -= nbytes; 991 memcpy(data, data_buf, nbytes); 992 993 address += nbytes; 994 data += nbytes; 995 } 996 997 done: 998 999 if (data_buf) 1000 dma_free_coherent(ar->dev, alloc_nbytes, data_buf, 1001 ce_data_base); 1002 1003 mutex_unlock(&ar_pci->ce_diag_mutex); 1004 1005 return ret; 1006 } 1007 1008 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) 1009 { 1010 __le32 val = 0; 1011 int ret; 1012 1013 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); 1014 *value = __le32_to_cpu(val); 1015 1016 return ret; 1017 } 1018 1019 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, 1020 u32 src, u32 len) 1021 { 1022 u32 host_addr, addr; 1023 int ret; 1024 1025 host_addr = host_interest_item_address(src); 1026 1027 ret = ath10k_pci_diag_read32(ar, host_addr, &addr); 1028 if (ret != 0) { 1029 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", 1030 src, ret); 1031 return ret; 1032 } 1033 1034 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); 1035 if (ret != 0) { 1036 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", 1037 addr, len, ret); 1038 return ret; 1039 } 1040 1041 return 0; 1042 } 1043 1044 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ 1045 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len) 1046 1047 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, 1048 const void *data, int nbytes) 1049 { 1050 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1051 int ret = 0; 1052 u32 *buf; 1053 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; 1054 struct ath10k_ce_pipe *ce_diag; 1055 void *data_buf; 1056 dma_addr_t ce_data_base = 0; 1057 int i; 1058 1059 mutex_lock(&ar_pci->ce_diag_mutex); 1060 ce_diag = ar_pci->ce_diag; 1061 1062 /* 1063 * Allocate a temporary bounce buffer to hold caller's data 1064 * to be DMA'ed to Target. This guarantees 1065 * 1) 4-byte alignment 1066 * 2) Buffer in DMA-able space 1067 */ 1068 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); 1069 1070 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, 1071 GFP_ATOMIC); 1072 if (!data_buf) { 1073 ret = -ENOMEM; 1074 goto done; 1075 } 1076 1077 /* 1078 * The address supplied by the caller is in the 1079 * Target CPU virtual address space. 1080 * 1081 * In order to use this address with the diagnostic CE, 1082 * convert it from 1083 * Target CPU virtual address space 1084 * to 1085 * CE address space 1086 */ 1087 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 1088 1089 remaining_bytes = nbytes; 1090 while (remaining_bytes) { 1091 /* FIXME: check cast */ 1092 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); 1093 1094 /* Copy caller's data to allocated DMA buf */ 1095 memcpy(data_buf, data, nbytes); 1096 1097 /* Set up to receive directly into Target(!) address */ 1098 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address); 1099 if (ret != 0) 1100 goto done; 1101 1102 /* 1103 * Request CE to send caller-supplied data that 1104 * was copied to bounce buffer to Target(!) address. 1105 */ 1106 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0); 1107 if (ret != 0) 1108 goto done; 1109 1110 i = 0; 1111 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { 1112 udelay(DIAG_ACCESS_CE_WAIT_US); 1113 i += DIAG_ACCESS_CE_WAIT_US; 1114 1115 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 1116 ret = -EBUSY; 1117 goto done; 1118 } 1119 } 1120 1121 i = 0; 1122 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, 1123 &completed_nbytes) != 0) { 1124 udelay(DIAG_ACCESS_CE_WAIT_US); 1125 i += DIAG_ACCESS_CE_WAIT_US; 1126 1127 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 1128 ret = -EBUSY; 1129 goto done; 1130 } 1131 } 1132 1133 if (nbytes != completed_nbytes) { 1134 ret = -EIO; 1135 goto done; 1136 } 1137 1138 if (*buf != address) { 1139 ret = -EIO; 1140 goto done; 1141 } 1142 1143 remaining_bytes -= nbytes; 1144 address += nbytes; 1145 data += nbytes; 1146 } 1147 1148 done: 1149 if (data_buf) { 1150 dma_free_coherent(ar->dev, alloc_nbytes, data_buf, 1151 ce_data_base); 1152 } 1153 1154 if (ret != 0) 1155 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", 1156 address, ret); 1157 1158 mutex_unlock(&ar_pci->ce_diag_mutex); 1159 1160 return ret; 1161 } 1162 1163 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) 1164 { 1165 __le32 val = __cpu_to_le32(value); 1166 1167 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); 1168 } 1169 1170 /* Called by lower (CE) layer when a send to Target completes. */ 1171 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state) 1172 { 1173 struct ath10k *ar = ce_state->ar; 1174 struct sk_buff_head list; 1175 struct sk_buff *skb; 1176 1177 __skb_queue_head_init(&list); 1178 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1179 /* no need to call tx completion for NULL pointers */ 1180 if (skb == NULL) 1181 continue; 1182 1183 __skb_queue_tail(&list, skb); 1184 } 1185 1186 while ((skb = __skb_dequeue(&list))) 1187 ath10k_htc_tx_completion_handler(ar, skb); 1188 } 1189 1190 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state, 1191 void (*callback)(struct ath10k *ar, 1192 struct sk_buff *skb)) 1193 { 1194 struct ath10k *ar = ce_state->ar; 1195 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1196 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1197 struct sk_buff *skb; 1198 struct sk_buff_head list; 1199 void *transfer_context; 1200 unsigned int nbytes, max_nbytes; 1201 1202 __skb_queue_head_init(&list); 1203 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, 1204 &nbytes) == 0) { 1205 skb = transfer_context; 1206 max_nbytes = skb->len + skb_tailroom(skb); 1207 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1208 max_nbytes, DMA_FROM_DEVICE); 1209 1210 if (unlikely(max_nbytes < nbytes)) { 1211 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1212 nbytes, max_nbytes); 1213 dev_kfree_skb_any(skb); 1214 continue; 1215 } 1216 1217 skb_put(skb, nbytes); 1218 __skb_queue_tail(&list, skb); 1219 } 1220 1221 while ((skb = __skb_dequeue(&list))) { 1222 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1223 ce_state->id, skb->len); 1224 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1225 skb->data, skb->len); 1226 1227 callback(ar, skb); 1228 } 1229 1230 ath10k_pci_rx_post_pipe(pipe_info); 1231 } 1232 1233 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state, 1234 void (*callback)(struct ath10k *ar, 1235 struct sk_buff *skb)) 1236 { 1237 struct ath10k *ar = ce_state->ar; 1238 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1239 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1240 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl; 1241 struct sk_buff *skb; 1242 struct sk_buff_head list; 1243 void *transfer_context; 1244 unsigned int nbytes, max_nbytes, nentries; 1245 int orig_len; 1246 1247 /* No need to aquire ce_lock for CE5, since this is the only place CE5 1248 * is processed other than init and deinit. Before releasing CE5 1249 * buffers, interrupts are disabled. Thus CE5 access is serialized. 1250 */ 1251 __skb_queue_head_init(&list); 1252 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, 1253 &nbytes) == 0) { 1254 skb = transfer_context; 1255 max_nbytes = skb->len + skb_tailroom(skb); 1256 1257 if (unlikely(max_nbytes < nbytes)) { 1258 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1259 nbytes, max_nbytes); 1260 continue; 1261 } 1262 1263 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1264 max_nbytes, DMA_FROM_DEVICE); 1265 skb_put(skb, nbytes); 1266 __skb_queue_tail(&list, skb); 1267 } 1268 1269 nentries = skb_queue_len(&list); 1270 while ((skb = __skb_dequeue(&list))) { 1271 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1272 ce_state->id, skb->len); 1273 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1274 skb->data, skb->len); 1275 1276 orig_len = skb->len; 1277 callback(ar, skb); 1278 skb_push(skb, orig_len - skb->len); 1279 skb_reset_tail_pointer(skb); 1280 skb_trim(skb, 0); 1281 1282 /*let device gain the buffer again*/ 1283 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1284 skb->len + skb_tailroom(skb), 1285 DMA_FROM_DEVICE); 1286 } 1287 ath10k_ce_rx_update_write_idx(ce_pipe, nentries); 1288 } 1289 1290 /* Called by lower (CE) layer when data is received from the Target. */ 1291 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1292 { 1293 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1294 } 1295 1296 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1297 { 1298 /* CE4 polling needs to be done whenever CE pipe which transports 1299 * HTT Rx (target->host) is processed. 1300 */ 1301 ath10k_ce_per_engine_service(ce_state->ar, 4); 1302 1303 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1304 } 1305 1306 /* Called by lower (CE) layer when data is received from the Target. 1307 * Only 10.4 firmware uses separate CE to transfer pktlog data. 1308 */ 1309 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) 1310 { 1311 ath10k_pci_process_rx_cb(ce_state, 1312 ath10k_htt_rx_pktlog_completion_handler); 1313 } 1314 1315 /* Called by lower (CE) layer when a send to HTT Target completes. */ 1316 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state) 1317 { 1318 struct ath10k *ar = ce_state->ar; 1319 struct sk_buff *skb; 1320 1321 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1322 /* no need to call tx completion for NULL pointers */ 1323 if (!skb) 1324 continue; 1325 1326 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, 1327 skb->len, DMA_TO_DEVICE); 1328 ath10k_htt_hif_tx_complete(ar, skb); 1329 } 1330 } 1331 1332 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) 1333 { 1334 skb_pull(skb, sizeof(struct ath10k_htc_hdr)); 1335 ath10k_htt_t2h_msg_handler(ar, skb); 1336 } 1337 1338 /* Called by lower (CE) layer when HTT data is received from the Target. */ 1339 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state) 1340 { 1341 /* CE4 polling needs to be done whenever CE pipe which transports 1342 * HTT Rx (target->host) is processed. 1343 */ 1344 ath10k_ce_per_engine_service(ce_state->ar, 4); 1345 1346 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver); 1347 } 1348 1349 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1350 struct ath10k_hif_sg_item *items, int n_items) 1351 { 1352 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1353 struct ath10k_ce *ce = ath10k_ce_priv(ar); 1354 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; 1355 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; 1356 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; 1357 unsigned int nentries_mask; 1358 unsigned int sw_index; 1359 unsigned int write_index; 1360 int err, i = 0; 1361 1362 spin_lock_bh(&ce->ce_lock); 1363 1364 nentries_mask = src_ring->nentries_mask; 1365 sw_index = src_ring->sw_index; 1366 write_index = src_ring->write_index; 1367 1368 if (unlikely(CE_RING_DELTA(nentries_mask, 1369 write_index, sw_index - 1) < n_items)) { 1370 err = -ENOBUFS; 1371 goto err; 1372 } 1373 1374 for (i = 0; i < n_items - 1; i++) { 1375 ath10k_dbg(ar, ATH10K_DBG_PCI, 1376 "pci tx item %d paddr %pad len %d n_items %d\n", 1377 i, &items[i].paddr, items[i].len, n_items); 1378 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1379 items[i].vaddr, items[i].len); 1380 1381 err = ath10k_ce_send_nolock(ce_pipe, 1382 items[i].transfer_context, 1383 items[i].paddr, 1384 items[i].len, 1385 items[i].transfer_id, 1386 CE_SEND_FLAG_GATHER); 1387 if (err) 1388 goto err; 1389 } 1390 1391 /* `i` is equal to `n_items -1` after for() */ 1392 1393 ath10k_dbg(ar, ATH10K_DBG_PCI, 1394 "pci tx item %d paddr %pad len %d n_items %d\n", 1395 i, &items[i].paddr, items[i].len, n_items); 1396 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1397 items[i].vaddr, items[i].len); 1398 1399 err = ath10k_ce_send_nolock(ce_pipe, 1400 items[i].transfer_context, 1401 items[i].paddr, 1402 items[i].len, 1403 items[i].transfer_id, 1404 0); 1405 if (err) 1406 goto err; 1407 1408 spin_unlock_bh(&ce->ce_lock); 1409 return 0; 1410 1411 err: 1412 for (; i > 0; i--) 1413 __ath10k_ce_send_revert(ce_pipe); 1414 1415 spin_unlock_bh(&ce->ce_lock); 1416 return err; 1417 } 1418 1419 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1420 size_t buf_len) 1421 { 1422 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len); 1423 } 1424 1425 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) 1426 { 1427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1428 1429 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); 1430 1431 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); 1432 } 1433 1434 static void ath10k_pci_dump_registers(struct ath10k *ar, 1435 struct ath10k_fw_crash_data *crash_data) 1436 { 1437 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; 1438 int i, ret; 1439 1440 lockdep_assert_held(&ar->dump_mutex); 1441 1442 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], 1443 hi_failure_state, 1444 REG_DUMP_COUNT_QCA988X * sizeof(__le32)); 1445 if (ret) { 1446 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); 1447 return; 1448 } 1449 1450 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); 1451 1452 ath10k_err(ar, "firmware register dump:\n"); 1453 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) 1454 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", 1455 i, 1456 __le32_to_cpu(reg_dump_values[i]), 1457 __le32_to_cpu(reg_dump_values[i + 1]), 1458 __le32_to_cpu(reg_dump_values[i + 2]), 1459 __le32_to_cpu(reg_dump_values[i + 3])); 1460 1461 if (!crash_data) 1462 return; 1463 1464 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) 1465 crash_data->registers[i] = reg_dump_values[i]; 1466 } 1467 1468 static int ath10k_pci_dump_memory_section(struct ath10k *ar, 1469 const struct ath10k_mem_region *mem_region, 1470 u8 *buf, size_t buf_len) 1471 { 1472 const struct ath10k_mem_section *cur_section, *next_section; 1473 unsigned int count, section_size, skip_size; 1474 int ret, i, j; 1475 1476 if (!mem_region || !buf) 1477 return 0; 1478 1479 cur_section = &mem_region->section_table.sections[0]; 1480 1481 if (mem_region->start > cur_section->start) { 1482 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", 1483 mem_region->start, cur_section->start); 1484 return 0; 1485 } 1486 1487 skip_size = cur_section->start - mem_region->start; 1488 1489 /* fill the gap between the first register section and register 1490 * start address 1491 */ 1492 for (i = 0; i < skip_size; i++) { 1493 *buf = ATH10K_MAGIC_NOT_COPIED; 1494 buf++; 1495 } 1496 1497 count = 0; 1498 1499 for (i = 0; cur_section != NULL; i++) { 1500 section_size = cur_section->end - cur_section->start; 1501 1502 if (section_size <= 0) { 1503 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", 1504 cur_section->start, 1505 cur_section->end); 1506 break; 1507 } 1508 1509 if ((i + 1) == mem_region->section_table.size) { 1510 /* last section */ 1511 next_section = NULL; 1512 skip_size = 0; 1513 } else { 1514 next_section = cur_section + 1; 1515 1516 if (cur_section->end > next_section->start) { 1517 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", 1518 next_section->start, 1519 cur_section->end); 1520 break; 1521 } 1522 1523 skip_size = next_section->start - cur_section->end; 1524 } 1525 1526 if (buf_len < (skip_size + section_size)) { 1527 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); 1528 break; 1529 } 1530 1531 buf_len -= skip_size + section_size; 1532 1533 /* read section to dest memory */ 1534 ret = ath10k_pci_diag_read_mem(ar, cur_section->start, 1535 buf, section_size); 1536 if (ret) { 1537 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", 1538 cur_section->start, ret); 1539 break; 1540 } 1541 1542 buf += section_size; 1543 count += section_size; 1544 1545 /* fill in the gap between this section and the next */ 1546 for (j = 0; j < skip_size; j++) { 1547 *buf = ATH10K_MAGIC_NOT_COPIED; 1548 buf++; 1549 } 1550 1551 count += skip_size; 1552 1553 if (!next_section) 1554 /* this was the last section */ 1555 break; 1556 1557 cur_section = next_section; 1558 } 1559 1560 return count; 1561 } 1562 1563 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config) 1564 { 1565 u32 val; 1566 1567 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1568 FW_RAM_CONFIG_ADDRESS, config); 1569 1570 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1571 FW_RAM_CONFIG_ADDRESS); 1572 if (val != config) { 1573 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n", 1574 val, config); 1575 return -EIO; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* Always returns the length */ 1582 static int ath10k_pci_dump_memory_sram(struct ath10k *ar, 1583 const struct ath10k_mem_region *region, 1584 u8 *buf) 1585 { 1586 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1587 u32 base_addr, i; 1588 1589 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG); 1590 base_addr += region->start; 1591 1592 for (i = 0; i < region->len; i += 4) { 1593 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG); 1594 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG); 1595 } 1596 1597 return region->len; 1598 } 1599 1600 /* if an error happened returns < 0, otherwise the length */ 1601 static int ath10k_pci_dump_memory_reg(struct ath10k *ar, 1602 const struct ath10k_mem_region *region, 1603 u8 *buf) 1604 { 1605 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1606 u32 i; 1607 int ret; 1608 1609 mutex_lock(&ar->conf_mutex); 1610 if (ar->state != ATH10K_STATE_ON) { 1611 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n"); 1612 ret = -EIO; 1613 goto done; 1614 } 1615 1616 for (i = 0; i < region->len; i += 4) 1617 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i); 1618 1619 ret = region->len; 1620 done: 1621 mutex_unlock(&ar->conf_mutex); 1622 return ret; 1623 } 1624 1625 /* if an error happened returns < 0, otherwise the length */ 1626 static int ath10k_pci_dump_memory_generic(struct ath10k *ar, 1627 const struct ath10k_mem_region *current_region, 1628 u8 *buf) 1629 { 1630 int ret; 1631 1632 if (current_region->section_table.size > 0) 1633 /* Copy each section individually. */ 1634 return ath10k_pci_dump_memory_section(ar, 1635 current_region, 1636 buf, 1637 current_region->len); 1638 1639 /* No individiual memory sections defined so we can 1640 * copy the entire memory region. 1641 */ 1642 ret = ath10k_pci_diag_read_mem(ar, 1643 current_region->start, 1644 buf, 1645 current_region->len); 1646 if (ret) { 1647 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", 1648 current_region->name, ret); 1649 return ret; 1650 } 1651 1652 return current_region->len; 1653 } 1654 1655 static void ath10k_pci_dump_memory(struct ath10k *ar, 1656 struct ath10k_fw_crash_data *crash_data) 1657 { 1658 const struct ath10k_hw_mem_layout *mem_layout; 1659 const struct ath10k_mem_region *current_region; 1660 struct ath10k_dump_ram_data_hdr *hdr; 1661 u32 count, shift; 1662 size_t buf_len; 1663 int ret, i; 1664 u8 *buf; 1665 1666 lockdep_assert_held(&ar->dump_mutex); 1667 1668 if (!crash_data) 1669 return; 1670 1671 mem_layout = ath10k_coredump_get_mem_layout(ar); 1672 if (!mem_layout) 1673 return; 1674 1675 current_region = &mem_layout->region_table.regions[0]; 1676 1677 buf = crash_data->ramdump_buf; 1678 buf_len = crash_data->ramdump_buf_len; 1679 1680 memset(buf, 0, buf_len); 1681 1682 for (i = 0; i < mem_layout->region_table.size; i++) { 1683 count = 0; 1684 1685 if (current_region->len > buf_len) { 1686 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", 1687 current_region->name, 1688 current_region->len, 1689 buf_len); 1690 break; 1691 } 1692 1693 /* To get IRAM dump, the host driver needs to switch target 1694 * ram config from DRAM to IRAM. 1695 */ 1696 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 || 1697 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) { 1698 shift = current_region->start >> 20; 1699 1700 ret = ath10k_pci_set_ram_config(ar, shift); 1701 if (ret) { 1702 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n", 1703 current_region->name, ret); 1704 break; 1705 } 1706 } 1707 1708 /* Reserve space for the header. */ 1709 hdr = (void *)buf; 1710 buf += sizeof(*hdr); 1711 buf_len -= sizeof(*hdr); 1712 1713 switch (current_region->type) { 1714 case ATH10K_MEM_REGION_TYPE_IOSRAM: 1715 count = ath10k_pci_dump_memory_sram(ar, current_region, buf); 1716 break; 1717 case ATH10K_MEM_REGION_TYPE_IOREG: 1718 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf); 1719 if (ret < 0) 1720 break; 1721 1722 count = ret; 1723 break; 1724 default: 1725 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf); 1726 if (ret < 0) 1727 break; 1728 1729 count = ret; 1730 break; 1731 } 1732 1733 hdr->region_type = cpu_to_le32(current_region->type); 1734 hdr->start = cpu_to_le32(current_region->start); 1735 hdr->length = cpu_to_le32(count); 1736 1737 if (count == 0) 1738 /* Note: the header remains, just with zero length. */ 1739 break; 1740 1741 buf += count; 1742 buf_len -= count; 1743 1744 current_region++; 1745 } 1746 } 1747 1748 static void ath10k_pci_fw_dump_work(struct work_struct *work) 1749 { 1750 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci, 1751 dump_work); 1752 struct ath10k_fw_crash_data *crash_data; 1753 struct ath10k *ar = ar_pci->ar; 1754 char guid[UUID_STRING_LEN + 1]; 1755 1756 mutex_lock(&ar->dump_mutex); 1757 1758 spin_lock_bh(&ar->data_lock); 1759 ar->stats.fw_crash_counter++; 1760 spin_unlock_bh(&ar->data_lock); 1761 1762 crash_data = ath10k_coredump_new(ar); 1763 1764 if (crash_data) 1765 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); 1766 else 1767 scnprintf(guid, sizeof(guid), "n/a"); 1768 1769 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); 1770 ath10k_print_driver_info(ar); 1771 ath10k_pci_dump_registers(ar, crash_data); 1772 ath10k_ce_dump_registers(ar, crash_data); 1773 ath10k_pci_dump_memory(ar, crash_data); 1774 1775 mutex_unlock(&ar->dump_mutex); 1776 1777 queue_work(ar->workqueue, &ar->restart_work); 1778 } 1779 1780 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) 1781 { 1782 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1783 1784 queue_work(ar->workqueue, &ar_pci->dump_work); 1785 } 1786 1787 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, 1788 int force) 1789 { 1790 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); 1791 1792 if (!force) { 1793 int resources; 1794 /* 1795 * Decide whether to actually poll for completions, or just 1796 * wait for a later chance. 1797 * If there seem to be plenty of resources left, then just wait 1798 * since checking involves reading a CE register, which is a 1799 * relatively expensive operation. 1800 */ 1801 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); 1802 1803 /* 1804 * If at least 50% of the total resources are still available, 1805 * don't bother checking again yet. 1806 */ 1807 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) 1808 return; 1809 } 1810 ath10k_ce_per_engine_service(ar, pipe); 1811 } 1812 1813 static void ath10k_pci_rx_retry_sync(struct ath10k *ar) 1814 { 1815 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1816 1817 del_timer_sync(&ar_pci->rx_post_retry); 1818 } 1819 1820 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, 1821 u8 *ul_pipe, u8 *dl_pipe) 1822 { 1823 const struct service_to_pipe *entry; 1824 bool ul_set = false, dl_set = false; 1825 int i; 1826 1827 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); 1828 1829 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { 1830 entry = &target_service_to_ce_map_wlan[i]; 1831 1832 if (__le32_to_cpu(entry->service_id) != service_id) 1833 continue; 1834 1835 switch (__le32_to_cpu(entry->pipedir)) { 1836 case PIPEDIR_NONE: 1837 break; 1838 case PIPEDIR_IN: 1839 WARN_ON(dl_set); 1840 *dl_pipe = __le32_to_cpu(entry->pipenum); 1841 dl_set = true; 1842 break; 1843 case PIPEDIR_OUT: 1844 WARN_ON(ul_set); 1845 *ul_pipe = __le32_to_cpu(entry->pipenum); 1846 ul_set = true; 1847 break; 1848 case PIPEDIR_INOUT: 1849 WARN_ON(dl_set); 1850 WARN_ON(ul_set); 1851 *dl_pipe = __le32_to_cpu(entry->pipenum); 1852 *ul_pipe = __le32_to_cpu(entry->pipenum); 1853 dl_set = true; 1854 ul_set = true; 1855 break; 1856 } 1857 } 1858 1859 if (!ul_set || !dl_set) 1860 return -ENOENT; 1861 1862 return 0; 1863 } 1864 1865 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, 1866 u8 *ul_pipe, u8 *dl_pipe) 1867 { 1868 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); 1869 1870 (void)ath10k_pci_hif_map_service_to_pipe(ar, 1871 ATH10K_HTC_SVC_ID_RSVD_CTRL, 1872 ul_pipe, dl_pipe); 1873 } 1874 1875 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar) 1876 { 1877 u32 val; 1878 1879 switch (ar->hw_rev) { 1880 case ATH10K_HW_QCA988X: 1881 case ATH10K_HW_QCA9887: 1882 case ATH10K_HW_QCA6174: 1883 case ATH10K_HW_QCA9377: 1884 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1885 CORE_CTRL_ADDRESS); 1886 val &= ~CORE_CTRL_PCIE_REG_31_MASK; 1887 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1888 CORE_CTRL_ADDRESS, val); 1889 break; 1890 case ATH10K_HW_QCA99X0: 1891 case ATH10K_HW_QCA9984: 1892 case ATH10K_HW_QCA9888: 1893 case ATH10K_HW_QCA4019: 1894 /* TODO: Find appropriate register configuration for QCA99X0 1895 * to mask irq/MSI. 1896 */ 1897 break; 1898 case ATH10K_HW_WCN3990: 1899 break; 1900 } 1901 } 1902 1903 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar) 1904 { 1905 u32 val; 1906 1907 switch (ar->hw_rev) { 1908 case ATH10K_HW_QCA988X: 1909 case ATH10K_HW_QCA9887: 1910 case ATH10K_HW_QCA6174: 1911 case ATH10K_HW_QCA9377: 1912 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1913 CORE_CTRL_ADDRESS); 1914 val |= CORE_CTRL_PCIE_REG_31_MASK; 1915 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1916 CORE_CTRL_ADDRESS, val); 1917 break; 1918 case ATH10K_HW_QCA99X0: 1919 case ATH10K_HW_QCA9984: 1920 case ATH10K_HW_QCA9888: 1921 case ATH10K_HW_QCA4019: 1922 /* TODO: Find appropriate register configuration for QCA99X0 1923 * to unmask irq/MSI. 1924 */ 1925 break; 1926 case ATH10K_HW_WCN3990: 1927 break; 1928 } 1929 } 1930 1931 static void ath10k_pci_irq_disable(struct ath10k *ar) 1932 { 1933 ath10k_ce_disable_interrupts(ar); 1934 ath10k_pci_disable_and_clear_legacy_irq(ar); 1935 ath10k_pci_irq_msi_fw_mask(ar); 1936 } 1937 1938 static void ath10k_pci_irq_sync(struct ath10k *ar) 1939 { 1940 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1941 1942 synchronize_irq(ar_pci->pdev->irq); 1943 } 1944 1945 static void ath10k_pci_irq_enable(struct ath10k *ar) 1946 { 1947 ath10k_ce_enable_interrupts(ar); 1948 ath10k_pci_enable_legacy_irq(ar); 1949 ath10k_pci_irq_msi_fw_unmask(ar); 1950 } 1951 1952 static int ath10k_pci_hif_start(struct ath10k *ar) 1953 { 1954 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1955 1956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); 1957 1958 napi_enable(&ar->napi); 1959 1960 ath10k_pci_irq_enable(ar); 1961 ath10k_pci_rx_post(ar); 1962 1963 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, 1964 ar_pci->link_ctl); 1965 1966 return 0; 1967 } 1968 1969 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 1970 { 1971 struct ath10k *ar; 1972 struct ath10k_ce_pipe *ce_pipe; 1973 struct ath10k_ce_ring *ce_ring; 1974 struct sk_buff *skb; 1975 int i; 1976 1977 ar = pci_pipe->hif_ce_state; 1978 ce_pipe = pci_pipe->ce_hdl; 1979 ce_ring = ce_pipe->dest_ring; 1980 1981 if (!ce_ring) 1982 return; 1983 1984 if (!pci_pipe->buf_sz) 1985 return; 1986 1987 for (i = 0; i < ce_ring->nentries; i++) { 1988 skb = ce_ring->per_transfer_context[i]; 1989 if (!skb) 1990 continue; 1991 1992 ce_ring->per_transfer_context[i] = NULL; 1993 1994 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1995 skb->len + skb_tailroom(skb), 1996 DMA_FROM_DEVICE); 1997 dev_kfree_skb_any(skb); 1998 } 1999 } 2000 2001 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 2002 { 2003 struct ath10k *ar; 2004 struct ath10k_ce_pipe *ce_pipe; 2005 struct ath10k_ce_ring *ce_ring; 2006 struct sk_buff *skb; 2007 int i; 2008 2009 ar = pci_pipe->hif_ce_state; 2010 ce_pipe = pci_pipe->ce_hdl; 2011 ce_ring = ce_pipe->src_ring; 2012 2013 if (!ce_ring) 2014 return; 2015 2016 if (!pci_pipe->buf_sz) 2017 return; 2018 2019 for (i = 0; i < ce_ring->nentries; i++) { 2020 skb = ce_ring->per_transfer_context[i]; 2021 if (!skb) 2022 continue; 2023 2024 ce_ring->per_transfer_context[i] = NULL; 2025 2026 ath10k_htc_tx_completion_handler(ar, skb); 2027 } 2028 } 2029 2030 /* 2031 * Cleanup residual buffers for device shutdown: 2032 * buffers that were enqueued for receive 2033 * buffers that were to be sent 2034 * Note: Buffers that had completed but which were 2035 * not yet processed are on a completion queue. They 2036 * are handled when the completion thread shuts down. 2037 */ 2038 static void ath10k_pci_buffer_cleanup(struct ath10k *ar) 2039 { 2040 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2041 int pipe_num; 2042 2043 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { 2044 struct ath10k_pci_pipe *pipe_info; 2045 2046 pipe_info = &ar_pci->pipe_info[pipe_num]; 2047 ath10k_pci_rx_pipe_cleanup(pipe_info); 2048 ath10k_pci_tx_pipe_cleanup(pipe_info); 2049 } 2050 } 2051 2052 void ath10k_pci_ce_deinit(struct ath10k *ar) 2053 { 2054 int i; 2055 2056 for (i = 0; i < CE_COUNT; i++) 2057 ath10k_ce_deinit_pipe(ar, i); 2058 } 2059 2060 void ath10k_pci_flush(struct ath10k *ar) 2061 { 2062 ath10k_pci_rx_retry_sync(ar); 2063 ath10k_pci_buffer_cleanup(ar); 2064 } 2065 2066 static void ath10k_pci_hif_stop(struct ath10k *ar) 2067 { 2068 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2069 unsigned long flags; 2070 2071 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); 2072 2073 ath10k_pci_irq_disable(ar); 2074 ath10k_pci_irq_sync(ar); 2075 napi_synchronize(&ar->napi); 2076 napi_disable(&ar->napi); 2077 2078 /* Most likely the device has HTT Rx ring configured. The only way to 2079 * prevent the device from accessing (and possible corrupting) host 2080 * memory is to reset the chip now. 2081 * 2082 * There's also no known way of masking MSI interrupts on the device. 2083 * For ranged MSI the CE-related interrupts can be masked. However 2084 * regardless how many MSI interrupts are assigned the first one 2085 * is always used for firmware indications (crashes) and cannot be 2086 * masked. To prevent the device from asserting the interrupt reset it 2087 * before proceeding with cleanup. 2088 */ 2089 ath10k_pci_safe_chip_reset(ar); 2090 2091 ath10k_pci_flush(ar); 2092 2093 spin_lock_irqsave(&ar_pci->ps_lock, flags); 2094 WARN_ON(ar_pci->ps_wake_refcount > 0); 2095 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 2096 } 2097 2098 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, 2099 void *req, u32 req_len, 2100 void *resp, u32 *resp_len) 2101 { 2102 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2103 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; 2104 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; 2105 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; 2106 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; 2107 dma_addr_t req_paddr = 0; 2108 dma_addr_t resp_paddr = 0; 2109 struct bmi_xfer xfer = {}; 2110 void *treq, *tresp = NULL; 2111 int ret = 0; 2112 2113 might_sleep(); 2114 2115 if (resp && !resp_len) 2116 return -EINVAL; 2117 2118 if (resp && resp_len && *resp_len == 0) 2119 return -EINVAL; 2120 2121 treq = kmemdup(req, req_len, GFP_KERNEL); 2122 if (!treq) 2123 return -ENOMEM; 2124 2125 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); 2126 ret = dma_mapping_error(ar->dev, req_paddr); 2127 if (ret) { 2128 ret = -EIO; 2129 goto err_dma; 2130 } 2131 2132 if (resp && resp_len) { 2133 tresp = kzalloc(*resp_len, GFP_KERNEL); 2134 if (!tresp) { 2135 ret = -ENOMEM; 2136 goto err_req; 2137 } 2138 2139 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, 2140 DMA_FROM_DEVICE); 2141 ret = dma_mapping_error(ar->dev, resp_paddr); 2142 if (ret) { 2143 ret = -EIO; 2144 goto err_req; 2145 } 2146 2147 xfer.wait_for_resp = true; 2148 xfer.resp_len = 0; 2149 2150 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); 2151 } 2152 2153 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); 2154 if (ret) 2155 goto err_resp; 2156 2157 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer); 2158 if (ret) { 2159 dma_addr_t unused_buffer; 2160 unsigned int unused_nbytes; 2161 unsigned int unused_id; 2162 2163 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, 2164 &unused_nbytes, &unused_id); 2165 } else { 2166 /* non-zero means we did not time out */ 2167 ret = 0; 2168 } 2169 2170 err_resp: 2171 if (resp) { 2172 dma_addr_t unused_buffer; 2173 2174 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); 2175 dma_unmap_single(ar->dev, resp_paddr, 2176 *resp_len, DMA_FROM_DEVICE); 2177 } 2178 err_req: 2179 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); 2180 2181 if (ret == 0 && resp_len) { 2182 *resp_len = min(*resp_len, xfer.resp_len); 2183 memcpy(resp, tresp, xfer.resp_len); 2184 } 2185 err_dma: 2186 kfree(treq); 2187 kfree(tresp); 2188 2189 return ret; 2190 } 2191 2192 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) 2193 { 2194 struct bmi_xfer *xfer; 2195 2196 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer)) 2197 return; 2198 2199 xfer->tx_done = true; 2200 } 2201 2202 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) 2203 { 2204 struct ath10k *ar = ce_state->ar; 2205 struct bmi_xfer *xfer; 2206 unsigned int nbytes; 2207 2208 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, 2209 &nbytes)) 2210 return; 2211 2212 if (WARN_ON_ONCE(!xfer)) 2213 return; 2214 2215 if (!xfer->wait_for_resp) { 2216 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); 2217 return; 2218 } 2219 2220 xfer->resp_len = nbytes; 2221 xfer->rx_done = true; 2222 } 2223 2224 static int ath10k_pci_bmi_wait(struct ath10k *ar, 2225 struct ath10k_ce_pipe *tx_pipe, 2226 struct ath10k_ce_pipe *rx_pipe, 2227 struct bmi_xfer *xfer) 2228 { 2229 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 2230 unsigned long started = jiffies; 2231 unsigned long dur; 2232 int ret; 2233 2234 while (time_before_eq(jiffies, timeout)) { 2235 ath10k_pci_bmi_send_done(tx_pipe); 2236 ath10k_pci_bmi_recv_data(rx_pipe); 2237 2238 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) { 2239 ret = 0; 2240 goto out; 2241 } 2242 2243 schedule(); 2244 } 2245 2246 ret = -ETIMEDOUT; 2247 2248 out: 2249 dur = jiffies - started; 2250 if (dur > HZ) 2251 ath10k_dbg(ar, ATH10K_DBG_BMI, 2252 "bmi cmd took %lu jiffies hz %d ret %d\n", 2253 dur, HZ, ret); 2254 return ret; 2255 } 2256 2257 /* 2258 * Send an interrupt to the device to wake up the Target CPU 2259 * so it has an opportunity to notice any changed state. 2260 */ 2261 static int ath10k_pci_wake_target_cpu(struct ath10k *ar) 2262 { 2263 u32 addr, val; 2264 2265 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS; 2266 val = ath10k_pci_read32(ar, addr); 2267 val |= CORE_CTRL_CPU_INTR_MASK; 2268 ath10k_pci_write32(ar, addr, val); 2269 2270 return 0; 2271 } 2272 2273 static int ath10k_pci_get_num_banks(struct ath10k *ar) 2274 { 2275 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2276 2277 switch (ar_pci->pdev->device) { 2278 case QCA988X_2_0_DEVICE_ID_UBNT: 2279 case QCA988X_2_0_DEVICE_ID: 2280 case QCA99X0_2_0_DEVICE_ID: 2281 case QCA9888_2_0_DEVICE_ID: 2282 case QCA9984_1_0_DEVICE_ID: 2283 case QCA9887_1_0_DEVICE_ID: 2284 return 1; 2285 case QCA6164_2_1_DEVICE_ID: 2286 case QCA6174_2_1_DEVICE_ID: 2287 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) { 2288 case QCA6174_HW_1_0_CHIP_ID_REV: 2289 case QCA6174_HW_1_1_CHIP_ID_REV: 2290 case QCA6174_HW_2_1_CHIP_ID_REV: 2291 case QCA6174_HW_2_2_CHIP_ID_REV: 2292 return 3; 2293 case QCA6174_HW_1_3_CHIP_ID_REV: 2294 return 2; 2295 case QCA6174_HW_3_0_CHIP_ID_REV: 2296 case QCA6174_HW_3_1_CHIP_ID_REV: 2297 case QCA6174_HW_3_2_CHIP_ID_REV: 2298 return 9; 2299 } 2300 break; 2301 case QCA9377_1_0_DEVICE_ID: 2302 return 9; 2303 } 2304 2305 ath10k_warn(ar, "unknown number of banks, assuming 1\n"); 2306 return 1; 2307 } 2308 2309 static int ath10k_bus_get_num_banks(struct ath10k *ar) 2310 { 2311 struct ath10k_ce *ce = ath10k_ce_priv(ar); 2312 2313 return ce->bus_ops->get_num_banks(ar); 2314 } 2315 2316 int ath10k_pci_init_config(struct ath10k *ar) 2317 { 2318 u32 interconnect_targ_addr; 2319 u32 pcie_state_targ_addr = 0; 2320 u32 pipe_cfg_targ_addr = 0; 2321 u32 svc_to_pipe_map = 0; 2322 u32 pcie_config_flags = 0; 2323 u32 ealloc_value; 2324 u32 ealloc_targ_addr; 2325 u32 flag2_value; 2326 u32 flag2_targ_addr; 2327 int ret = 0; 2328 2329 /* Download to Target the CE Config and the service-to-CE map */ 2330 interconnect_targ_addr = 2331 host_interest_item_address(HI_ITEM(hi_interconnect_state)); 2332 2333 /* Supply Target-side CE configuration */ 2334 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr, 2335 &pcie_state_targ_addr); 2336 if (ret != 0) { 2337 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); 2338 return ret; 2339 } 2340 2341 if (pcie_state_targ_addr == 0) { 2342 ret = -EIO; 2343 ath10k_err(ar, "Invalid pcie state addr\n"); 2344 return ret; 2345 } 2346 2347 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2348 offsetof(struct pcie_state, 2349 pipe_cfg_addr)), 2350 &pipe_cfg_targ_addr); 2351 if (ret != 0) { 2352 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); 2353 return ret; 2354 } 2355 2356 if (pipe_cfg_targ_addr == 0) { 2357 ret = -EIO; 2358 ath10k_err(ar, "Invalid pipe cfg addr\n"); 2359 return ret; 2360 } 2361 2362 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, 2363 target_ce_config_wlan, 2364 sizeof(struct ce_pipe_config) * 2365 NUM_TARGET_CE_CONFIG_WLAN); 2366 2367 if (ret != 0) { 2368 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); 2369 return ret; 2370 } 2371 2372 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2373 offsetof(struct pcie_state, 2374 svc_to_pipe_map)), 2375 &svc_to_pipe_map); 2376 if (ret != 0) { 2377 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); 2378 return ret; 2379 } 2380 2381 if (svc_to_pipe_map == 0) { 2382 ret = -EIO; 2383 ath10k_err(ar, "Invalid svc_to_pipe map\n"); 2384 return ret; 2385 } 2386 2387 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, 2388 target_service_to_ce_map_wlan, 2389 sizeof(target_service_to_ce_map_wlan)); 2390 if (ret != 0) { 2391 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); 2392 return ret; 2393 } 2394 2395 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2396 offsetof(struct pcie_state, 2397 config_flags)), 2398 &pcie_config_flags); 2399 if (ret != 0) { 2400 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); 2401 return ret; 2402 } 2403 2404 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; 2405 2406 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr + 2407 offsetof(struct pcie_state, 2408 config_flags)), 2409 pcie_config_flags); 2410 if (ret != 0) { 2411 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); 2412 return ret; 2413 } 2414 2415 /* configure early allocation */ 2416 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); 2417 2418 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value); 2419 if (ret != 0) { 2420 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret); 2421 return ret; 2422 } 2423 2424 /* first bank is switched to IRAM */ 2425 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & 2426 HI_EARLY_ALLOC_MAGIC_MASK); 2427 ealloc_value |= ((ath10k_bus_get_num_banks(ar) << 2428 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & 2429 HI_EARLY_ALLOC_IRAM_BANKS_MASK); 2430 2431 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value); 2432 if (ret != 0) { 2433 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); 2434 return ret; 2435 } 2436 2437 /* Tell Target to proceed with initialization */ 2438 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); 2439 2440 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value); 2441 if (ret != 0) { 2442 ath10k_err(ar, "Failed to get option val: %d\n", ret); 2443 return ret; 2444 } 2445 2446 flag2_value |= HI_OPTION_EARLY_CFG_DONE; 2447 2448 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value); 2449 if (ret != 0) { 2450 ath10k_err(ar, "Failed to set option val: %d\n", ret); 2451 return ret; 2452 } 2453 2454 return 0; 2455 } 2456 2457 static void ath10k_pci_override_ce_config(struct ath10k *ar) 2458 { 2459 struct ce_attr *attr; 2460 struct ce_pipe_config *config; 2461 2462 /* For QCA6174 we're overriding the Copy Engine 5 configuration, 2463 * since it is currently used for other feature. 2464 */ 2465 2466 /* Override Host's Copy Engine 5 configuration */ 2467 attr = &host_ce_config_wlan[5]; 2468 attr->src_sz_max = 0; 2469 attr->dest_nentries = 0; 2470 2471 /* Override Target firmware's Copy Engine configuration */ 2472 config = &target_ce_config_wlan[5]; 2473 config->pipedir = __cpu_to_le32(PIPEDIR_OUT); 2474 config->nbytes_max = __cpu_to_le32(2048); 2475 2476 /* Map from service/endpoint to Copy Engine */ 2477 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1); 2478 } 2479 2480 int ath10k_pci_alloc_pipes(struct ath10k *ar) 2481 { 2482 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2483 struct ath10k_pci_pipe *pipe; 2484 struct ath10k_ce *ce = ath10k_ce_priv(ar); 2485 int i, ret; 2486 2487 for (i = 0; i < CE_COUNT; i++) { 2488 pipe = &ar_pci->pipe_info[i]; 2489 pipe->ce_hdl = &ce->ce_states[i]; 2490 pipe->pipe_num = i; 2491 pipe->hif_ce_state = ar; 2492 2493 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); 2494 if (ret) { 2495 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", 2496 i, ret); 2497 return ret; 2498 } 2499 2500 /* Last CE is Diagnostic Window */ 2501 if (i == CE_DIAG_PIPE) { 2502 ar_pci->ce_diag = pipe->ce_hdl; 2503 continue; 2504 } 2505 2506 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max); 2507 } 2508 2509 return 0; 2510 } 2511 2512 void ath10k_pci_free_pipes(struct ath10k *ar) 2513 { 2514 int i; 2515 2516 for (i = 0; i < CE_COUNT; i++) 2517 ath10k_ce_free_pipe(ar, i); 2518 } 2519 2520 int ath10k_pci_init_pipes(struct ath10k *ar) 2521 { 2522 int i, ret; 2523 2524 for (i = 0; i < CE_COUNT; i++) { 2525 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]); 2526 if (ret) { 2527 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", 2528 i, ret); 2529 return ret; 2530 } 2531 } 2532 2533 return 0; 2534 } 2535 2536 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) 2537 { 2538 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & 2539 FW_IND_EVENT_PENDING; 2540 } 2541 2542 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) 2543 { 2544 u32 val; 2545 2546 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2547 val &= ~FW_IND_EVENT_PENDING; 2548 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); 2549 } 2550 2551 static bool ath10k_pci_has_device_gone(struct ath10k *ar) 2552 { 2553 u32 val; 2554 2555 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2556 return (val == 0xffffffff); 2557 } 2558 2559 /* this function effectively clears target memory controller assert line */ 2560 static void ath10k_pci_warm_reset_si0(struct ath10k *ar) 2561 { 2562 u32 val; 2563 2564 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2565 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2566 val | SOC_RESET_CONTROL_SI0_RST_MASK); 2567 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2568 2569 msleep(10); 2570 2571 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2572 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2573 val & ~SOC_RESET_CONTROL_SI0_RST_MASK); 2574 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2575 2576 msleep(10); 2577 } 2578 2579 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar) 2580 { 2581 u32 val; 2582 2583 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); 2584 2585 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2586 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2587 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); 2588 } 2589 2590 static void ath10k_pci_warm_reset_ce(struct ath10k *ar) 2591 { 2592 u32 val; 2593 2594 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2595 2596 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2597 val | SOC_RESET_CONTROL_CE_RST_MASK); 2598 msleep(10); 2599 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2600 val & ~SOC_RESET_CONTROL_CE_RST_MASK); 2601 } 2602 2603 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar) 2604 { 2605 u32 val; 2606 2607 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS); 2608 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS, 2609 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); 2610 } 2611 2612 static int ath10k_pci_warm_reset(struct ath10k *ar) 2613 { 2614 int ret; 2615 2616 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); 2617 2618 spin_lock_bh(&ar->data_lock); 2619 ar->stats.fw_warm_reset_counter++; 2620 spin_unlock_bh(&ar->data_lock); 2621 2622 ath10k_pci_irq_disable(ar); 2623 2624 /* Make sure the target CPU is not doing anything dangerous, e.g. if it 2625 * were to access copy engine while host performs copy engine reset 2626 * then it is possible for the device to confuse pci-e controller to 2627 * the point of bringing host system to a complete stop (i.e. hang). 2628 */ 2629 ath10k_pci_warm_reset_si0(ar); 2630 ath10k_pci_warm_reset_cpu(ar); 2631 ath10k_pci_init_pipes(ar); 2632 ath10k_pci_wait_for_target_init(ar); 2633 2634 ath10k_pci_warm_reset_clear_lf(ar); 2635 ath10k_pci_warm_reset_ce(ar); 2636 ath10k_pci_warm_reset_cpu(ar); 2637 ath10k_pci_init_pipes(ar); 2638 2639 ret = ath10k_pci_wait_for_target_init(ar); 2640 if (ret) { 2641 ath10k_warn(ar, "failed to wait for target init: %d\n", ret); 2642 return ret; 2643 } 2644 2645 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); 2646 2647 return 0; 2648 } 2649 2650 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar) 2651 { 2652 ath10k_pci_irq_disable(ar); 2653 return ath10k_pci_qca99x0_chip_reset(ar); 2654 } 2655 2656 static int ath10k_pci_safe_chip_reset(struct ath10k *ar) 2657 { 2658 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2659 2660 if (!ar_pci->pci_soft_reset) 2661 return -ENOTSUPP; 2662 2663 return ar_pci->pci_soft_reset(ar); 2664 } 2665 2666 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar) 2667 { 2668 int i, ret; 2669 u32 val; 2670 2671 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n"); 2672 2673 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset. 2674 * It is thus preferred to use warm reset which is safer but may not be 2675 * able to recover the device from all possible fail scenarios. 2676 * 2677 * Warm reset doesn't always work on first try so attempt it a few 2678 * times before giving up. 2679 */ 2680 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { 2681 ret = ath10k_pci_warm_reset(ar); 2682 if (ret) { 2683 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n", 2684 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, 2685 ret); 2686 continue; 2687 } 2688 2689 /* FIXME: Sometimes copy engine doesn't recover after warm 2690 * reset. In most cases this needs cold reset. In some of these 2691 * cases the device is in such a state that a cold reset may 2692 * lock up the host. 2693 * 2694 * Reading any host interest register via copy engine is 2695 * sufficient to verify if device is capable of booting 2696 * firmware blob. 2697 */ 2698 ret = ath10k_pci_init_pipes(ar); 2699 if (ret) { 2700 ath10k_warn(ar, "failed to init copy engine: %d\n", 2701 ret); 2702 continue; 2703 } 2704 2705 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS, 2706 &val); 2707 if (ret) { 2708 ath10k_warn(ar, "failed to poke copy engine: %d\n", 2709 ret); 2710 continue; 2711 } 2712 2713 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n"); 2714 return 0; 2715 } 2716 2717 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) { 2718 ath10k_warn(ar, "refusing cold reset as requested\n"); 2719 return -EPERM; 2720 } 2721 2722 ret = ath10k_pci_cold_reset(ar); 2723 if (ret) { 2724 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2725 return ret; 2726 } 2727 2728 ret = ath10k_pci_wait_for_target_init(ar); 2729 if (ret) { 2730 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2731 ret); 2732 return ret; 2733 } 2734 2735 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n"); 2736 2737 return 0; 2738 } 2739 2740 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar) 2741 { 2742 int ret; 2743 2744 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n"); 2745 2746 /* FIXME: QCA6174 requires cold + warm reset to work. */ 2747 2748 ret = ath10k_pci_cold_reset(ar); 2749 if (ret) { 2750 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2751 return ret; 2752 } 2753 2754 ret = ath10k_pci_wait_for_target_init(ar); 2755 if (ret) { 2756 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2757 ret); 2758 return ret; 2759 } 2760 2761 ret = ath10k_pci_warm_reset(ar); 2762 if (ret) { 2763 ath10k_warn(ar, "failed to warm reset: %d\n", ret); 2764 return ret; 2765 } 2766 2767 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n"); 2768 2769 return 0; 2770 } 2771 2772 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar) 2773 { 2774 int ret; 2775 2776 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n"); 2777 2778 ret = ath10k_pci_cold_reset(ar); 2779 if (ret) { 2780 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2781 return ret; 2782 } 2783 2784 ret = ath10k_pci_wait_for_target_init(ar); 2785 if (ret) { 2786 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2787 ret); 2788 return ret; 2789 } 2790 2791 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n"); 2792 2793 return 0; 2794 } 2795 2796 static int ath10k_pci_chip_reset(struct ath10k *ar) 2797 { 2798 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2799 2800 if (WARN_ON(!ar_pci->pci_hard_reset)) 2801 return -ENOTSUPP; 2802 2803 return ar_pci->pci_hard_reset(ar); 2804 } 2805 2806 static int ath10k_pci_hif_power_up(struct ath10k *ar, 2807 enum ath10k_firmware_mode fw_mode) 2808 { 2809 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2810 int ret; 2811 2812 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); 2813 2814 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2815 &ar_pci->link_ctl); 2816 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2817 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC); 2818 2819 /* 2820 * Bring the target up cleanly. 2821 * 2822 * The target may be in an undefined state with an AUX-powered Target 2823 * and a Host in WoW mode. If the Host crashes, loses power, or is 2824 * restarted (without unloading the driver) then the Target is left 2825 * (aux) powered and running. On a subsequent driver load, the Target 2826 * is in an unexpected state. We try to catch that here in order to 2827 * reset the Target and retry the probe. 2828 */ 2829 ret = ath10k_pci_chip_reset(ar); 2830 if (ret) { 2831 if (ath10k_pci_has_fw_crashed(ar)) { 2832 ath10k_warn(ar, "firmware crashed during chip reset\n"); 2833 ath10k_pci_fw_crashed_clear(ar); 2834 ath10k_pci_fw_crashed_dump(ar); 2835 } 2836 2837 ath10k_err(ar, "failed to reset chip: %d\n", ret); 2838 goto err_sleep; 2839 } 2840 2841 ret = ath10k_pci_init_pipes(ar); 2842 if (ret) { 2843 ath10k_err(ar, "failed to initialize CE: %d\n", ret); 2844 goto err_sleep; 2845 } 2846 2847 ret = ath10k_pci_init_config(ar); 2848 if (ret) { 2849 ath10k_err(ar, "failed to setup init config: %d\n", ret); 2850 goto err_ce; 2851 } 2852 2853 ret = ath10k_pci_wake_target_cpu(ar); 2854 if (ret) { 2855 ath10k_err(ar, "could not wake up target CPU: %d\n", ret); 2856 goto err_ce; 2857 } 2858 2859 return 0; 2860 2861 err_ce: 2862 ath10k_pci_ce_deinit(ar); 2863 2864 err_sleep: 2865 return ret; 2866 } 2867 2868 void ath10k_pci_hif_power_down(struct ath10k *ar) 2869 { 2870 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); 2871 2872 /* Currently hif_power_up performs effectively a reset and hif_stop 2873 * resets the chip as well so there's no point in resetting here. 2874 */ 2875 } 2876 2877 static int ath10k_pci_hif_suspend(struct ath10k *ar) 2878 { 2879 /* Nothing to do; the important stuff is in the driver suspend. */ 2880 return 0; 2881 } 2882 2883 static int ath10k_pci_suspend(struct ath10k *ar) 2884 { 2885 /* The grace timer can still be counting down and ar->ps_awake be true. 2886 * It is known that the device may be asleep after resuming regardless 2887 * of the SoC powersave state before suspending. Hence make sure the 2888 * device is asleep before proceeding. 2889 */ 2890 ath10k_pci_sleep_sync(ar); 2891 2892 return 0; 2893 } 2894 2895 static int ath10k_pci_hif_resume(struct ath10k *ar) 2896 { 2897 /* Nothing to do; the important stuff is in the driver resume. */ 2898 return 0; 2899 } 2900 2901 static int ath10k_pci_resume(struct ath10k *ar) 2902 { 2903 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2904 struct pci_dev *pdev = ar_pci->pdev; 2905 u32 val; 2906 int ret = 0; 2907 2908 ret = ath10k_pci_force_wake(ar); 2909 if (ret) { 2910 ath10k_err(ar, "failed to wake up target: %d\n", ret); 2911 return ret; 2912 } 2913 2914 /* Suspend/Resume resets the PCI configuration space, so we have to 2915 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 2916 * from interfering with C3 CPU state. pci_restore_state won't help 2917 * here since it only restores the first 64 bytes pci config header. 2918 */ 2919 pci_read_config_dword(pdev, 0x40, &val); 2920 if ((val & 0x0000ff00) != 0) 2921 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 2922 2923 return ret; 2924 } 2925 2926 static bool ath10k_pci_validate_cal(void *data, size_t size) 2927 { 2928 __le16 *cal_words = data; 2929 u16 checksum = 0; 2930 size_t i; 2931 2932 if (size % 2 != 0) 2933 return false; 2934 2935 for (i = 0; i < size / 2; i++) 2936 checksum ^= le16_to_cpu(cal_words[i]); 2937 2938 return checksum == 0xffff; 2939 } 2940 2941 static void ath10k_pci_enable_eeprom(struct ath10k *ar) 2942 { 2943 /* Enable SI clock */ 2944 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0); 2945 2946 /* Configure GPIOs for I2C operation */ 2947 ath10k_pci_write32(ar, 2948 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2949 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN, 2950 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG, 2951 GPIO_PIN0_CONFIG) | 2952 SM(1, GPIO_PIN0_PAD_PULL)); 2953 2954 ath10k_pci_write32(ar, 2955 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2956 4 * QCA9887_1_0_SI_CLK_GPIO_PIN, 2957 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) | 2958 SM(1, GPIO_PIN0_PAD_PULL)); 2959 2960 ath10k_pci_write32(ar, 2961 GPIO_BASE_ADDRESS + 2962 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS, 2963 1u << QCA9887_1_0_SI_CLK_GPIO_PIN); 2964 2965 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */ 2966 ath10k_pci_write32(ar, 2967 SI_BASE_ADDRESS + SI_CONFIG_OFFSET, 2968 SM(1, SI_CONFIG_ERR_INT) | 2969 SM(1, SI_CONFIG_BIDIR_OD_DATA) | 2970 SM(1, SI_CONFIG_I2C) | 2971 SM(1, SI_CONFIG_POS_SAMPLE) | 2972 SM(1, SI_CONFIG_INACTIVE_DATA) | 2973 SM(1, SI_CONFIG_INACTIVE_CLK) | 2974 SM(8, SI_CONFIG_DIVIDER)); 2975 } 2976 2977 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out) 2978 { 2979 u32 reg; 2980 int wait_limit; 2981 2982 /* set device select byte and for the read operation */ 2983 reg = QCA9887_EEPROM_SELECT_READ | 2984 SM(addr, QCA9887_EEPROM_ADDR_LO) | 2985 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI); 2986 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg); 2987 2988 /* write transmit data, transfer length, and START bit */ 2989 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, 2990 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) | 2991 SM(4, SI_CS_TX_CNT)); 2992 2993 /* wait max 1 sec */ 2994 wait_limit = 100000; 2995 2996 /* wait for SI_CS_DONE_INT */ 2997 do { 2998 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET); 2999 if (MS(reg, SI_CS_DONE_INT)) 3000 break; 3001 3002 wait_limit--; 3003 udelay(10); 3004 } while (wait_limit > 0); 3005 3006 if (!MS(reg, SI_CS_DONE_INT)) { 3007 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n", 3008 addr); 3009 return -ETIMEDOUT; 3010 } 3011 3012 /* clear SI_CS_DONE_INT */ 3013 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg); 3014 3015 if (MS(reg, SI_CS_DONE_ERR)) { 3016 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr); 3017 return -EIO; 3018 } 3019 3020 /* extract receive data */ 3021 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET); 3022 *out = reg; 3023 3024 return 0; 3025 } 3026 3027 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data, 3028 size_t *data_len) 3029 { 3030 u8 *caldata = NULL; 3031 size_t calsize, i; 3032 int ret; 3033 3034 if (!QCA_REV_9887(ar)) 3035 return -EOPNOTSUPP; 3036 3037 calsize = ar->hw_params.cal_data_len; 3038 caldata = kmalloc(calsize, GFP_KERNEL); 3039 if (!caldata) 3040 return -ENOMEM; 3041 3042 ath10k_pci_enable_eeprom(ar); 3043 3044 for (i = 0; i < calsize; i++) { 3045 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]); 3046 if (ret) 3047 goto err_free; 3048 } 3049 3050 if (!ath10k_pci_validate_cal(caldata, calsize)) 3051 goto err_free; 3052 3053 *data = caldata; 3054 *data_len = calsize; 3055 3056 return 0; 3057 3058 err_free: 3059 kfree(caldata); 3060 3061 return -EINVAL; 3062 } 3063 3064 static const struct ath10k_hif_ops ath10k_pci_hif_ops = { 3065 .tx_sg = ath10k_pci_hif_tx_sg, 3066 .diag_read = ath10k_pci_hif_diag_read, 3067 .diag_write = ath10k_pci_diag_write_mem, 3068 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, 3069 .start = ath10k_pci_hif_start, 3070 .stop = ath10k_pci_hif_stop, 3071 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, 3072 .get_default_pipe = ath10k_pci_hif_get_default_pipe, 3073 .send_complete_check = ath10k_pci_hif_send_complete_check, 3074 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, 3075 .power_up = ath10k_pci_hif_power_up, 3076 .power_down = ath10k_pci_hif_power_down, 3077 .read32 = ath10k_pci_read32, 3078 .write32 = ath10k_pci_write32, 3079 .suspend = ath10k_pci_hif_suspend, 3080 .resume = ath10k_pci_hif_resume, 3081 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom, 3082 }; 3083 3084 /* 3085 * Top-level interrupt handler for all PCI interrupts from a Target. 3086 * When a block of MSI interrupts is allocated, this top-level handler 3087 * is not used; instead, we directly call the correct sub-handler. 3088 */ 3089 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) 3090 { 3091 struct ath10k *ar = arg; 3092 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3093 int ret; 3094 3095 if (ath10k_pci_has_device_gone(ar)) 3096 return IRQ_NONE; 3097 3098 ret = ath10k_pci_force_wake(ar); 3099 if (ret) { 3100 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret); 3101 return IRQ_NONE; 3102 } 3103 3104 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) && 3105 !ath10k_pci_irq_pending(ar)) 3106 return IRQ_NONE; 3107 3108 ath10k_pci_disable_and_clear_legacy_irq(ar); 3109 ath10k_pci_irq_msi_fw_mask(ar); 3110 napi_schedule(&ar->napi); 3111 3112 return IRQ_HANDLED; 3113 } 3114 3115 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget) 3116 { 3117 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 3118 int done = 0; 3119 3120 if (ath10k_pci_has_fw_crashed(ar)) { 3121 ath10k_pci_fw_crashed_clear(ar); 3122 ath10k_pci_fw_crashed_dump(ar); 3123 napi_complete(ctx); 3124 return done; 3125 } 3126 3127 ath10k_ce_per_engine_service_any(ar); 3128 3129 done = ath10k_htt_txrx_compl_task(ar, budget); 3130 3131 if (done < budget) { 3132 napi_complete_done(ctx, done); 3133 /* In case of MSI, it is possible that interrupts are received 3134 * while NAPI poll is inprogress. So pending interrupts that are 3135 * received after processing all copy engine pipes by NAPI poll 3136 * will not be handled again. This is causing failure to 3137 * complete boot sequence in x86 platform. So before enabling 3138 * interrupts safer to check for pending interrupts for 3139 * immediate servicing. 3140 */ 3141 if (ath10k_ce_interrupt_summary(ar)) { 3142 napi_reschedule(ctx); 3143 goto out; 3144 } 3145 ath10k_pci_enable_legacy_irq(ar); 3146 ath10k_pci_irq_msi_fw_unmask(ar); 3147 } 3148 3149 out: 3150 return done; 3151 } 3152 3153 static int ath10k_pci_request_irq_msi(struct ath10k *ar) 3154 { 3155 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3156 int ret; 3157 3158 ret = request_irq(ar_pci->pdev->irq, 3159 ath10k_pci_interrupt_handler, 3160 IRQF_SHARED, "ath10k_pci", ar); 3161 if (ret) { 3162 ath10k_warn(ar, "failed to request MSI irq %d: %d\n", 3163 ar_pci->pdev->irq, ret); 3164 return ret; 3165 } 3166 3167 return 0; 3168 } 3169 3170 static int ath10k_pci_request_irq_legacy(struct ath10k *ar) 3171 { 3172 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3173 int ret; 3174 3175 ret = request_irq(ar_pci->pdev->irq, 3176 ath10k_pci_interrupt_handler, 3177 IRQF_SHARED, "ath10k_pci", ar); 3178 if (ret) { 3179 ath10k_warn(ar, "failed to request legacy irq %d: %d\n", 3180 ar_pci->pdev->irq, ret); 3181 return ret; 3182 } 3183 3184 return 0; 3185 } 3186 3187 static int ath10k_pci_request_irq(struct ath10k *ar) 3188 { 3189 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3190 3191 switch (ar_pci->oper_irq_mode) { 3192 case ATH10K_PCI_IRQ_LEGACY: 3193 return ath10k_pci_request_irq_legacy(ar); 3194 case ATH10K_PCI_IRQ_MSI: 3195 return ath10k_pci_request_irq_msi(ar); 3196 default: 3197 return -EINVAL; 3198 } 3199 } 3200 3201 static void ath10k_pci_free_irq(struct ath10k *ar) 3202 { 3203 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3204 3205 free_irq(ar_pci->pdev->irq, ar); 3206 } 3207 3208 void ath10k_pci_init_napi(struct ath10k *ar) 3209 { 3210 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll, 3211 ATH10K_NAPI_BUDGET); 3212 } 3213 3214 static int ath10k_pci_init_irq(struct ath10k *ar) 3215 { 3216 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3217 int ret; 3218 3219 ath10k_pci_init_napi(ar); 3220 3221 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) 3222 ath10k_info(ar, "limiting irq mode to: %d\n", 3223 ath10k_pci_irq_mode); 3224 3225 /* Try MSI */ 3226 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { 3227 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI; 3228 ret = pci_enable_msi(ar_pci->pdev); 3229 if (ret == 0) 3230 return 0; 3231 3232 /* fall-through */ 3233 } 3234 3235 /* Try legacy irq 3236 * 3237 * A potential race occurs here: The CORE_BASE write 3238 * depends on target correctly decoding AXI address but 3239 * host won't know when target writes BAR to CORE_CTRL. 3240 * This write might get lost if target has NOT written BAR. 3241 * For now, fix the race by repeating the write in below 3242 * synchronization checking. 3243 */ 3244 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY; 3245 3246 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 3247 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 3248 3249 return 0; 3250 } 3251 3252 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) 3253 { 3254 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 3255 0); 3256 } 3257 3258 static int ath10k_pci_deinit_irq(struct ath10k *ar) 3259 { 3260 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3261 3262 switch (ar_pci->oper_irq_mode) { 3263 case ATH10K_PCI_IRQ_LEGACY: 3264 ath10k_pci_deinit_irq_legacy(ar); 3265 break; 3266 default: 3267 pci_disable_msi(ar_pci->pdev); 3268 break; 3269 } 3270 3271 return 0; 3272 } 3273 3274 int ath10k_pci_wait_for_target_init(struct ath10k *ar) 3275 { 3276 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3277 unsigned long timeout; 3278 u32 val; 3279 3280 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); 3281 3282 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); 3283 3284 do { 3285 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 3286 3287 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", 3288 val); 3289 3290 /* target should never return this */ 3291 if (val == 0xffffffff) 3292 continue; 3293 3294 /* the device has crashed so don't bother trying anymore */ 3295 if (val & FW_IND_EVENT_PENDING) 3296 break; 3297 3298 if (val & FW_IND_INITIALIZED) 3299 break; 3300 3301 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) 3302 /* Fix potential race by repeating CORE_BASE writes */ 3303 ath10k_pci_enable_legacy_irq(ar); 3304 3305 mdelay(10); 3306 } while (time_before(jiffies, timeout)); 3307 3308 ath10k_pci_disable_and_clear_legacy_irq(ar); 3309 ath10k_pci_irq_msi_fw_mask(ar); 3310 3311 if (val == 0xffffffff) { 3312 ath10k_err(ar, "failed to read device register, device is gone\n"); 3313 return -EIO; 3314 } 3315 3316 if (val & FW_IND_EVENT_PENDING) { 3317 ath10k_warn(ar, "device has crashed during init\n"); 3318 return -ECOMM; 3319 } 3320 3321 if (!(val & FW_IND_INITIALIZED)) { 3322 ath10k_err(ar, "failed to receive initialized event from target: %08x\n", 3323 val); 3324 return -ETIMEDOUT; 3325 } 3326 3327 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); 3328 return 0; 3329 } 3330 3331 static int ath10k_pci_cold_reset(struct ath10k *ar) 3332 { 3333 u32 val; 3334 3335 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); 3336 3337 spin_lock_bh(&ar->data_lock); 3338 3339 ar->stats.fw_cold_reset_counter++; 3340 3341 spin_unlock_bh(&ar->data_lock); 3342 3343 /* Put Target, including PCIe, into RESET. */ 3344 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); 3345 val |= 1; 3346 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3347 3348 /* After writing into SOC_GLOBAL_RESET to put device into 3349 * reset and pulling out of reset pcie may not be stable 3350 * for any immediate pcie register access and cause bus error, 3351 * add delay before any pcie access request to fix this issue. 3352 */ 3353 msleep(20); 3354 3355 /* Pull Target, including PCIe, out of RESET. */ 3356 val &= ~1; 3357 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3358 3359 msleep(20); 3360 3361 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); 3362 3363 return 0; 3364 } 3365 3366 static int ath10k_pci_claim(struct ath10k *ar) 3367 { 3368 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3369 struct pci_dev *pdev = ar_pci->pdev; 3370 int ret; 3371 3372 pci_set_drvdata(pdev, ar); 3373 3374 ret = pci_enable_device(pdev); 3375 if (ret) { 3376 ath10k_err(ar, "failed to enable pci device: %d\n", ret); 3377 return ret; 3378 } 3379 3380 ret = pci_request_region(pdev, BAR_NUM, "ath"); 3381 if (ret) { 3382 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, 3383 ret); 3384 goto err_device; 3385 } 3386 3387 /* Target expects 32 bit DMA. Enforce it. */ 3388 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3389 if (ret) { 3390 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); 3391 goto err_region; 3392 } 3393 3394 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3395 if (ret) { 3396 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n", 3397 ret); 3398 goto err_region; 3399 } 3400 3401 pci_set_master(pdev); 3402 3403 /* Arrange for access to Target SoC registers. */ 3404 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM); 3405 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); 3406 if (!ar_pci->mem) { 3407 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); 3408 ret = -EIO; 3409 goto err_master; 3410 } 3411 3412 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem); 3413 return 0; 3414 3415 err_master: 3416 pci_clear_master(pdev); 3417 3418 err_region: 3419 pci_release_region(pdev, BAR_NUM); 3420 3421 err_device: 3422 pci_disable_device(pdev); 3423 3424 return ret; 3425 } 3426 3427 static void ath10k_pci_release(struct ath10k *ar) 3428 { 3429 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3430 struct pci_dev *pdev = ar_pci->pdev; 3431 3432 pci_iounmap(pdev, ar_pci->mem); 3433 pci_release_region(pdev, BAR_NUM); 3434 pci_clear_master(pdev); 3435 pci_disable_device(pdev); 3436 } 3437 3438 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id) 3439 { 3440 const struct ath10k_pci_supp_chip *supp_chip; 3441 int i; 3442 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV); 3443 3444 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) { 3445 supp_chip = &ath10k_pci_supp_chips[i]; 3446 3447 if (supp_chip->dev_id == dev_id && 3448 supp_chip->rev_id == rev_id) 3449 return true; 3450 } 3451 3452 return false; 3453 } 3454 3455 int ath10k_pci_setup_resource(struct ath10k *ar) 3456 { 3457 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3458 struct ath10k_ce *ce = ath10k_ce_priv(ar); 3459 int ret; 3460 3461 spin_lock_init(&ce->ce_lock); 3462 spin_lock_init(&ar_pci->ps_lock); 3463 mutex_init(&ar_pci->ce_diag_mutex); 3464 3465 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work); 3466 3467 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0); 3468 3469 if (QCA_REV_6174(ar) || QCA_REV_9377(ar)) 3470 ath10k_pci_override_ce_config(ar); 3471 3472 ret = ath10k_pci_alloc_pipes(ar); 3473 if (ret) { 3474 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", 3475 ret); 3476 return ret; 3477 } 3478 3479 return 0; 3480 } 3481 3482 void ath10k_pci_release_resource(struct ath10k *ar) 3483 { 3484 ath10k_pci_rx_retry_sync(ar); 3485 netif_napi_del(&ar->napi); 3486 ath10k_pci_ce_deinit(ar); 3487 ath10k_pci_free_pipes(ar); 3488 } 3489 3490 static const struct ath10k_bus_ops ath10k_pci_bus_ops = { 3491 .read32 = ath10k_bus_pci_read32, 3492 .write32 = ath10k_bus_pci_write32, 3493 .get_num_banks = ath10k_pci_get_num_banks, 3494 }; 3495 3496 static int ath10k_pci_probe(struct pci_dev *pdev, 3497 const struct pci_device_id *pci_dev) 3498 { 3499 int ret = 0; 3500 struct ath10k *ar; 3501 struct ath10k_pci *ar_pci; 3502 enum ath10k_hw_rev hw_rev; 3503 struct ath10k_bus_params bus_params = {}; 3504 bool pci_ps, is_qca988x = false; 3505 int (*pci_soft_reset)(struct ath10k *ar); 3506 int (*pci_hard_reset)(struct ath10k *ar); 3507 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr); 3508 3509 switch (pci_dev->device) { 3510 case QCA988X_2_0_DEVICE_ID_UBNT: 3511 case QCA988X_2_0_DEVICE_ID: 3512 hw_rev = ATH10K_HW_QCA988X; 3513 pci_ps = false; 3514 is_qca988x = true; 3515 pci_soft_reset = ath10k_pci_warm_reset; 3516 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3517 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; 3518 break; 3519 case QCA9887_1_0_DEVICE_ID: 3520 hw_rev = ATH10K_HW_QCA9887; 3521 pci_ps = false; 3522 pci_soft_reset = ath10k_pci_warm_reset; 3523 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3524 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; 3525 break; 3526 case QCA6164_2_1_DEVICE_ID: 3527 case QCA6174_2_1_DEVICE_ID: 3528 hw_rev = ATH10K_HW_QCA6174; 3529 pci_ps = true; 3530 pci_soft_reset = ath10k_pci_warm_reset; 3531 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3532 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; 3533 break; 3534 case QCA99X0_2_0_DEVICE_ID: 3535 hw_rev = ATH10K_HW_QCA99X0; 3536 pci_ps = false; 3537 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3538 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3539 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3540 break; 3541 case QCA9984_1_0_DEVICE_ID: 3542 hw_rev = ATH10K_HW_QCA9984; 3543 pci_ps = false; 3544 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3545 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3546 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3547 break; 3548 case QCA9888_2_0_DEVICE_ID: 3549 hw_rev = ATH10K_HW_QCA9888; 3550 pci_ps = false; 3551 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3552 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3553 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3554 break; 3555 case QCA9377_1_0_DEVICE_ID: 3556 hw_rev = ATH10K_HW_QCA9377; 3557 pci_ps = true; 3558 pci_soft_reset = ath10k_pci_warm_reset; 3559 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3560 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; 3561 break; 3562 default: 3563 WARN_ON(1); 3564 return -ENOTSUPP; 3565 } 3566 3567 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI, 3568 hw_rev, &ath10k_pci_hif_ops); 3569 if (!ar) { 3570 dev_err(&pdev->dev, "failed to allocate core\n"); 3571 return -ENOMEM; 3572 } 3573 3574 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n", 3575 pdev->vendor, pdev->device, 3576 pdev->subsystem_vendor, pdev->subsystem_device); 3577 3578 ar_pci = ath10k_pci_priv(ar); 3579 ar_pci->pdev = pdev; 3580 ar_pci->dev = &pdev->dev; 3581 ar_pci->ar = ar; 3582 ar->dev_id = pci_dev->device; 3583 ar_pci->pci_ps = pci_ps; 3584 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops; 3585 ar_pci->pci_soft_reset = pci_soft_reset; 3586 ar_pci->pci_hard_reset = pci_hard_reset; 3587 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr; 3588 ar->ce_priv = &ar_pci->ce; 3589 3590 ar->id.vendor = pdev->vendor; 3591 ar->id.device = pdev->device; 3592 ar->id.subsystem_vendor = pdev->subsystem_vendor; 3593 ar->id.subsystem_device = pdev->subsystem_device; 3594 3595 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0); 3596 3597 ret = ath10k_pci_setup_resource(ar); 3598 if (ret) { 3599 ath10k_err(ar, "failed to setup resource: %d\n", ret); 3600 goto err_core_destroy; 3601 } 3602 3603 ret = ath10k_pci_claim(ar); 3604 if (ret) { 3605 ath10k_err(ar, "failed to claim device: %d\n", ret); 3606 goto err_free_pipes; 3607 } 3608 3609 ret = ath10k_pci_force_wake(ar); 3610 if (ret) { 3611 ath10k_warn(ar, "failed to wake up device : %d\n", ret); 3612 goto err_sleep; 3613 } 3614 3615 ath10k_pci_ce_deinit(ar); 3616 ath10k_pci_irq_disable(ar); 3617 3618 ret = ath10k_pci_init_irq(ar); 3619 if (ret) { 3620 ath10k_err(ar, "failed to init irqs: %d\n", ret); 3621 goto err_sleep; 3622 } 3623 3624 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n", 3625 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode, 3626 ath10k_pci_irq_mode, ath10k_pci_reset_mode); 3627 3628 ret = ath10k_pci_request_irq(ar); 3629 if (ret) { 3630 ath10k_warn(ar, "failed to request irqs: %d\n", ret); 3631 goto err_deinit_irq; 3632 } 3633 3634 bus_params.dev_type = ATH10K_DEV_TYPE_LL; 3635 bus_params.link_can_suspend = true; 3636 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that 3637 * fall off the bus during chip_reset. These chips have the same pci 3638 * device id as the QCA9880 BR4A or 2R4E. So that's why the check. 3639 */ 3640 if (is_qca988x) { 3641 bus_params.chip_id = 3642 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); 3643 if (bus_params.chip_id != 0xffffffff) { 3644 if (!ath10k_pci_chip_is_supported(pdev->device, 3645 bus_params.chip_id)) 3646 goto err_unsupported; 3647 } 3648 } 3649 3650 ret = ath10k_pci_chip_reset(ar); 3651 if (ret) { 3652 ath10k_err(ar, "failed to reset chip: %d\n", ret); 3653 goto err_free_irq; 3654 } 3655 3656 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); 3657 if (bus_params.chip_id == 0xffffffff) 3658 goto err_unsupported; 3659 3660 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) 3661 goto err_free_irq; 3662 3663 ret = ath10k_core_register(ar, &bus_params); 3664 if (ret) { 3665 ath10k_err(ar, "failed to register driver core: %d\n", ret); 3666 goto err_free_irq; 3667 } 3668 3669 return 0; 3670 3671 err_unsupported: 3672 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n", 3673 pdev->device, bus_params.chip_id); 3674 3675 err_free_irq: 3676 ath10k_pci_free_irq(ar); 3677 ath10k_pci_rx_retry_sync(ar); 3678 3679 err_deinit_irq: 3680 ath10k_pci_deinit_irq(ar); 3681 3682 err_sleep: 3683 ath10k_pci_sleep_sync(ar); 3684 ath10k_pci_release(ar); 3685 3686 err_free_pipes: 3687 ath10k_pci_free_pipes(ar); 3688 3689 err_core_destroy: 3690 ath10k_core_destroy(ar); 3691 3692 return ret; 3693 } 3694 3695 static void ath10k_pci_remove(struct pci_dev *pdev) 3696 { 3697 struct ath10k *ar = pci_get_drvdata(pdev); 3698 struct ath10k_pci *ar_pci; 3699 3700 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); 3701 3702 if (!ar) 3703 return; 3704 3705 ar_pci = ath10k_pci_priv(ar); 3706 3707 if (!ar_pci) 3708 return; 3709 3710 ath10k_core_unregister(ar); 3711 ath10k_pci_free_irq(ar); 3712 ath10k_pci_deinit_irq(ar); 3713 ath10k_pci_release_resource(ar); 3714 ath10k_pci_sleep_sync(ar); 3715 ath10k_pci_release(ar); 3716 ath10k_core_destroy(ar); 3717 } 3718 3719 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); 3720 3721 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev) 3722 { 3723 struct ath10k *ar = dev_get_drvdata(dev); 3724 int ret; 3725 3726 ret = ath10k_pci_suspend(ar); 3727 if (ret) 3728 ath10k_warn(ar, "failed to suspend hif: %d\n", ret); 3729 3730 return ret; 3731 } 3732 3733 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev) 3734 { 3735 struct ath10k *ar = dev_get_drvdata(dev); 3736 int ret; 3737 3738 ret = ath10k_pci_resume(ar); 3739 if (ret) 3740 ath10k_warn(ar, "failed to resume hif: %d\n", ret); 3741 3742 return ret; 3743 } 3744 3745 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops, 3746 ath10k_pci_pm_suspend, 3747 ath10k_pci_pm_resume); 3748 3749 static struct pci_driver ath10k_pci_driver = { 3750 .name = "ath10k_pci", 3751 .id_table = ath10k_pci_id_table, 3752 .probe = ath10k_pci_probe, 3753 .remove = ath10k_pci_remove, 3754 #ifdef CONFIG_PM 3755 .driver.pm = &ath10k_pci_pm_ops, 3756 #endif 3757 }; 3758 3759 static int __init ath10k_pci_init(void) 3760 { 3761 int ret; 3762 3763 ret = pci_register_driver(&ath10k_pci_driver); 3764 if (ret) 3765 printk(KERN_ERR "failed to register ath10k pci driver: %d\n", 3766 ret); 3767 3768 ret = ath10k_ahb_init(); 3769 if (ret) 3770 printk(KERN_ERR "ahb init failed: %d\n", ret); 3771 3772 return ret; 3773 } 3774 module_init(ath10k_pci_init); 3775 3776 static void __exit ath10k_pci_exit(void) 3777 { 3778 pci_unregister_driver(&ath10k_pci_driver); 3779 ath10k_ahb_exit(); 3780 } 3781 3782 module_exit(ath10k_pci_exit); 3783 3784 MODULE_AUTHOR("Qualcomm Atheros"); 3785 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices"); 3786 MODULE_LICENSE("Dual BSD/GPL"); 3787 3788 /* QCA988x 2.0 firmware files */ 3789 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE); 3790 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE); 3791 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3792 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3793 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); 3794 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3795 3796 /* QCA9887 1.0 firmware files */ 3797 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3798 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE); 3799 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3800 3801 /* QCA6174 2.1 firmware files */ 3802 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE); 3803 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE); 3804 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE); 3805 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3806 3807 /* QCA6174 3.1 firmware files */ 3808 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3809 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3810 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE); 3811 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE); 3812 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3813 3814 /* QCA9377 1.0 firmware files */ 3815 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE); 3816 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3817 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE); 3818