xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision e639c869)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k *ar,
105 			       struct ath10k_ce_pipe *tx_pipe,
106 			       struct ath10k_ce_pipe *rx_pipe,
107 			       struct bmi_xfer *xfer);
108 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
109 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
115 
116 static struct ce_attr host_ce_config_wlan[] = {
117 	/* CE0: host->target HTC control and raw streams */
118 	{
119 		.flags = CE_ATTR_FLAGS,
120 		.src_nentries = 16,
121 		.src_sz_max = 256,
122 		.dest_nentries = 0,
123 		.send_cb = ath10k_pci_htc_tx_cb,
124 	},
125 
126 	/* CE1: target->host HTT + HTC control */
127 	{
128 		.flags = CE_ATTR_FLAGS,
129 		.src_nentries = 0,
130 		.src_sz_max = 2048,
131 		.dest_nentries = 512,
132 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
133 	},
134 
135 	/* CE2: target->host WMI */
136 	{
137 		.flags = CE_ATTR_FLAGS,
138 		.src_nentries = 0,
139 		.src_sz_max = 2048,
140 		.dest_nentries = 128,
141 		.recv_cb = ath10k_pci_htc_rx_cb,
142 	},
143 
144 	/* CE3: host->target WMI */
145 	{
146 		.flags = CE_ATTR_FLAGS,
147 		.src_nentries = 32,
148 		.src_sz_max = 2048,
149 		.dest_nentries = 0,
150 		.send_cb = ath10k_pci_htc_tx_cb,
151 	},
152 
153 	/* CE4: host->target HTT */
154 	{
155 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
156 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
157 		.src_sz_max = 256,
158 		.dest_nentries = 0,
159 		.send_cb = ath10k_pci_htt_tx_cb,
160 	},
161 
162 	/* CE5: target->host HTT (HIF->HTT) */
163 	{
164 		.flags = CE_ATTR_FLAGS,
165 		.src_nentries = 0,
166 		.src_sz_max = 512,
167 		.dest_nentries = 512,
168 		.recv_cb = ath10k_pci_htt_rx_cb,
169 	},
170 
171 	/* CE6: target autonomous hif_memcpy */
172 	{
173 		.flags = CE_ATTR_FLAGS,
174 		.src_nentries = 0,
175 		.src_sz_max = 0,
176 		.dest_nentries = 0,
177 	},
178 
179 	/* CE7: ce_diag, the Diagnostic Window */
180 	{
181 		.flags = CE_ATTR_FLAGS,
182 		.src_nentries = 2,
183 		.src_sz_max = DIAG_TRANSFER_LIMIT,
184 		.dest_nentries = 2,
185 	},
186 
187 	/* CE8: target->host pktlog */
188 	{
189 		.flags = CE_ATTR_FLAGS,
190 		.src_nentries = 0,
191 		.src_sz_max = 2048,
192 		.dest_nentries = 128,
193 		.recv_cb = ath10k_pci_pktlog_rx_cb,
194 	},
195 
196 	/* CE9 target autonomous qcache memcpy */
197 	{
198 		.flags = CE_ATTR_FLAGS,
199 		.src_nentries = 0,
200 		.src_sz_max = 0,
201 		.dest_nentries = 0,
202 	},
203 
204 	/* CE10: target autonomous hif memcpy */
205 	{
206 		.flags = CE_ATTR_FLAGS,
207 		.src_nentries = 0,
208 		.src_sz_max = 0,
209 		.dest_nentries = 0,
210 	},
211 
212 	/* CE11: target autonomous hif memcpy */
213 	{
214 		.flags = CE_ATTR_FLAGS,
215 		.src_nentries = 0,
216 		.src_sz_max = 0,
217 		.dest_nentries = 0,
218 	},
219 };
220 
221 /* Target firmware's Copy Engine configuration. */
222 static struct ce_pipe_config target_ce_config_wlan[] = {
223 	/* CE0: host->target HTC control and raw streams */
224 	{
225 		.pipenum = __cpu_to_le32(0),
226 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
227 		.nentries = __cpu_to_le32(32),
228 		.nbytes_max = __cpu_to_le32(256),
229 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
230 		.reserved = __cpu_to_le32(0),
231 	},
232 
233 	/* CE1: target->host HTT + HTC control */
234 	{
235 		.pipenum = __cpu_to_le32(1),
236 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(2048),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE2: target->host WMI */
244 	{
245 		.pipenum = __cpu_to_le32(2),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(64),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE3: host->target WMI */
254 	{
255 		.pipenum = __cpu_to_le32(3),
256 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
257 		.nentries = __cpu_to_le32(32),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE4: host->target HTT */
264 	{
265 		.pipenum = __cpu_to_le32(4),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(256),
268 		.nbytes_max = __cpu_to_le32(256),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* NB: 50% of src nentries, since tx has 2 frags */
274 
275 	/* CE5: target->host HTT (HIF->HTT) */
276 	{
277 		.pipenum = __cpu_to_le32(5),
278 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
279 		.nentries = __cpu_to_le32(32),
280 		.nbytes_max = __cpu_to_le32(512),
281 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
282 		.reserved = __cpu_to_le32(0),
283 	},
284 
285 	/* CE6: Reserved for target autonomous hif_memcpy */
286 	{
287 		.pipenum = __cpu_to_le32(6),
288 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(4096),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE7 used only by Host */
296 	{
297 		.pipenum = __cpu_to_le32(7),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(0),
300 		.nbytes_max = __cpu_to_le32(0),
301 		.flags = __cpu_to_le32(0),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE8 target->host packtlog */
306 	{
307 		.pipenum = __cpu_to_le32(8),
308 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
309 		.nentries = __cpu_to_le32(64),
310 		.nbytes_max = __cpu_to_le32(2048),
311 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE9 target autonomous qcache memcpy */
316 	{
317 		.pipenum = __cpu_to_le32(9),
318 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
319 		.nentries = __cpu_to_le32(32),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* It not necessary to send target wlan configuration for CE10 & CE11
326 	 * as these CEs are not actively used in target.
327 	 */
328 };
329 
330 /*
331  * Map from service/endpoint to Copy Engine.
332  * This table is derived from the CE_PCI TABLE, above.
333  * It is passed to the Target at startup for use by firmware.
334  */
335 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
336 	{
337 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
339 		__cpu_to_le32(3),
340 	},
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
343 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
344 		__cpu_to_le32(2),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(0),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(1),
395 	},
396 	{ /* not used */
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{ /* not used */
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(4),
410 	},
411 	{
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(5),
415 	},
416 
417 	/* (Additions here) */
418 
419 	{ /* must be last */
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 		__cpu_to_le32(0),
423 	},
424 };
425 
426 static bool ath10k_pci_is_awake(struct ath10k *ar)
427 {
428 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
429 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
430 			   RTC_STATE_ADDRESS);
431 
432 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
433 }
434 
435 static void __ath10k_pci_wake(struct ath10k *ar)
436 {
437 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
438 
439 	lockdep_assert_held(&ar_pci->ps_lock);
440 
441 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
442 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
443 
444 	iowrite32(PCIE_SOC_WAKE_V_MASK,
445 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
446 		  PCIE_SOC_WAKE_ADDRESS);
447 }
448 
449 static void __ath10k_pci_sleep(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_RESET,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 	ar_pci->ps_awake = false;
462 }
463 
464 static int ath10k_pci_wake_wait(struct ath10k *ar)
465 {
466 	int tot_delay = 0;
467 	int curr_delay = 5;
468 
469 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
470 		if (ath10k_pci_is_awake(ar)) {
471 			if (tot_delay > PCIE_WAKE_LATE_US)
472 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
473 					    tot_delay / 1000);
474 			return 0;
475 		}
476 
477 		udelay(curr_delay);
478 		tot_delay += curr_delay;
479 
480 		if (curr_delay < 50)
481 			curr_delay += 5;
482 	}
483 
484 	return -ETIMEDOUT;
485 }
486 
487 static int ath10k_pci_force_wake(struct ath10k *ar)
488 {
489 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
490 	unsigned long flags;
491 	int ret = 0;
492 
493 	if (ar_pci->pci_ps)
494 		return ret;
495 
496 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
497 
498 	if (!ar_pci->ps_awake) {
499 		iowrite32(PCIE_SOC_WAKE_V_MASK,
500 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
501 			  PCIE_SOC_WAKE_ADDRESS);
502 
503 		ret = ath10k_pci_wake_wait(ar);
504 		if (ret == 0)
505 			ar_pci->ps_awake = true;
506 	}
507 
508 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
509 
510 	return ret;
511 }
512 
513 static void ath10k_pci_force_sleep(struct ath10k *ar)
514 {
515 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
519 
520 	iowrite32(PCIE_SOC_WAKE_RESET,
521 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
522 		  PCIE_SOC_WAKE_ADDRESS);
523 	ar_pci->ps_awake = false;
524 
525 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
526 }
527 
528 static int ath10k_pci_wake(struct ath10k *ar)
529 {
530 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
531 	unsigned long flags;
532 	int ret = 0;
533 
534 	if (ar_pci->pci_ps == 0)
535 		return ret;
536 
537 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
538 
539 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
540 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
541 
542 	/* This function can be called very frequently. To avoid excessive
543 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
544 	 */
545 	if (!ar_pci->ps_awake) {
546 		__ath10k_pci_wake(ar);
547 
548 		ret = ath10k_pci_wake_wait(ar);
549 		if (ret == 0)
550 			ar_pci->ps_awake = true;
551 	}
552 
553 	if (ret == 0) {
554 		ar_pci->ps_wake_refcount++;
555 		WARN_ON(ar_pci->ps_wake_refcount == 0);
556 	}
557 
558 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
559 
560 	return ret;
561 }
562 
563 static void ath10k_pci_sleep(struct ath10k *ar)
564 {
565 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
566 	unsigned long flags;
567 
568 	if (ar_pci->pci_ps == 0)
569 		return;
570 
571 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
572 
573 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
574 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
575 
576 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
577 		goto skip;
578 
579 	ar_pci->ps_wake_refcount--;
580 
581 	mod_timer(&ar_pci->ps_timer, jiffies +
582 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
583 
584 skip:
585 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
586 }
587 
588 static void ath10k_pci_ps_timer(struct timer_list *t)
589 {
590 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
591 	struct ath10k *ar = ar_pci->ar;
592 	unsigned long flags;
593 
594 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
595 
596 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
597 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
598 
599 	if (ar_pci->ps_wake_refcount > 0)
600 		goto skip;
601 
602 	__ath10k_pci_sleep(ar);
603 
604 skip:
605 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
606 }
607 
608 static void ath10k_pci_sleep_sync(struct ath10k *ar)
609 {
610 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
611 	unsigned long flags;
612 
613 	if (ar_pci->pci_ps == 0) {
614 		ath10k_pci_force_sleep(ar);
615 		return;
616 	}
617 
618 	del_timer_sync(&ar_pci->ps_timer);
619 
620 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
621 	WARN_ON(ar_pci->ps_wake_refcount > 0);
622 	__ath10k_pci_sleep(ar);
623 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
624 }
625 
626 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
627 {
628 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
629 	int ret;
630 
631 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
632 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
633 			    offset, offset + sizeof(value), ar_pci->mem_len);
634 		return;
635 	}
636 
637 	ret = ath10k_pci_wake(ar);
638 	if (ret) {
639 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
640 			    value, offset, ret);
641 		return;
642 	}
643 
644 	iowrite32(value, ar_pci->mem + offset);
645 	ath10k_pci_sleep(ar);
646 }
647 
648 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
649 {
650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
651 	u32 val;
652 	int ret;
653 
654 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
655 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
656 			    offset, offset + sizeof(val), ar_pci->mem_len);
657 		return 0;
658 	}
659 
660 	ret = ath10k_pci_wake(ar);
661 	if (ret) {
662 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
663 			    offset, ret);
664 		return 0xffffffff;
665 	}
666 
667 	val = ioread32(ar_pci->mem + offset);
668 	ath10k_pci_sleep(ar);
669 
670 	return val;
671 }
672 
673 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
674 {
675 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
676 
677 	ce->bus_ops->write32(ar, offset, value);
678 }
679 
680 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
681 {
682 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
683 
684 	return ce->bus_ops->read32(ar, offset);
685 }
686 
687 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
688 {
689 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
690 }
691 
692 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
693 {
694 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
695 }
696 
697 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
698 {
699 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
700 }
701 
702 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
703 {
704 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
705 }
706 
707 bool ath10k_pci_irq_pending(struct ath10k *ar)
708 {
709 	u32 cause;
710 
711 	/* Check if the shared legacy irq is for us */
712 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
713 				  PCIE_INTR_CAUSE_ADDRESS);
714 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
715 		return true;
716 
717 	return false;
718 }
719 
720 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
721 {
722 	/* IMPORTANT: INTR_CLR register has to be set after
723 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
724 	 * really cleared.
725 	 */
726 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
727 			   0);
728 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
729 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
730 
731 	/* IMPORTANT: this extra read transaction is required to
732 	 * flush the posted write buffer.
733 	 */
734 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
735 				PCIE_INTR_ENABLE_ADDRESS);
736 }
737 
738 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
739 {
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
741 			   PCIE_INTR_ENABLE_ADDRESS,
742 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
743 
744 	/* IMPORTANT: this extra read transaction is required to
745 	 * flush the posted write buffer.
746 	 */
747 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
748 				PCIE_INTR_ENABLE_ADDRESS);
749 }
750 
751 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
752 {
753 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
754 
755 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
756 		return "msi";
757 
758 	return "legacy";
759 }
760 
761 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
762 {
763 	struct ath10k *ar = pipe->hif_ce_state;
764 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
765 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
766 	struct sk_buff *skb;
767 	dma_addr_t paddr;
768 	int ret;
769 
770 	skb = dev_alloc_skb(pipe->buf_sz);
771 	if (!skb)
772 		return -ENOMEM;
773 
774 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
775 
776 	paddr = dma_map_single(ar->dev, skb->data,
777 			       skb->len + skb_tailroom(skb),
778 			       DMA_FROM_DEVICE);
779 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
780 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
781 		dev_kfree_skb_any(skb);
782 		return -EIO;
783 	}
784 
785 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
786 
787 	spin_lock_bh(&ce->ce_lock);
788 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
789 	spin_unlock_bh(&ce->ce_lock);
790 	if (ret) {
791 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
792 				 DMA_FROM_DEVICE);
793 		dev_kfree_skb_any(skb);
794 		return ret;
795 	}
796 
797 	return 0;
798 }
799 
800 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
801 {
802 	struct ath10k *ar = pipe->hif_ce_state;
803 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
804 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
805 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
806 	int ret, num;
807 
808 	if (pipe->buf_sz == 0)
809 		return;
810 
811 	if (!ce_pipe->dest_ring)
812 		return;
813 
814 	spin_lock_bh(&ce->ce_lock);
815 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
816 	spin_unlock_bh(&ce->ce_lock);
817 
818 	while (num >= 0) {
819 		ret = __ath10k_pci_rx_post_buf(pipe);
820 		if (ret) {
821 			if (ret == -ENOSPC)
822 				break;
823 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
824 			mod_timer(&ar_pci->rx_post_retry, jiffies +
825 				  ATH10K_PCI_RX_POST_RETRY_MS);
826 			break;
827 		}
828 		num--;
829 	}
830 }
831 
832 void ath10k_pci_rx_post(struct ath10k *ar)
833 {
834 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
835 	int i;
836 
837 	for (i = 0; i < CE_COUNT; i++)
838 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
839 }
840 
841 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
842 {
843 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
844 	struct ath10k *ar = ar_pci->ar;
845 
846 	ath10k_pci_rx_post(ar);
847 }
848 
849 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
850 {
851 	u32 val = 0, region = addr & 0xfffff;
852 
853 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
854 				 & 0x7ff) << 21;
855 	val |= 0x100000 | region;
856 	return val;
857 }
858 
859 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
860 {
861 	u32 val = 0, region = addr & 0xfffff;
862 
863 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
864 	val |= 0x100000 | region;
865 	return val;
866 }
867 
868 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
869 {
870 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
871 
872 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
873 		return -ENOTSUPP;
874 
875 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
876 }
877 
878 /*
879  * Diagnostic read/write access is provided for startup/config/debug usage.
880  * Caller must guarantee proper alignment, when applicable, and single user
881  * at any moment.
882  */
883 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
884 				    int nbytes)
885 {
886 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
887 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
888 	int ret = 0;
889 	u32 *buf;
890 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
891 	struct ath10k_ce_pipe *ce_diag;
892 	/* Host buffer address in CE space */
893 	u32 ce_data;
894 	dma_addr_t ce_data_base = 0;
895 	void *data_buf = NULL;
896 	int i;
897 
898 	spin_lock_bh(&ce->ce_lock);
899 
900 	ce_diag = ar_pci->ce_diag;
901 
902 	/*
903 	 * Allocate a temporary bounce buffer to hold caller's data
904 	 * to be DMA'ed from Target. This guarantees
905 	 *   1) 4-byte alignment
906 	 *   2) Buffer in DMA-able space
907 	 */
908 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
909 
910 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
911 						       alloc_nbytes,
912 						       &ce_data_base,
913 						       GFP_ATOMIC);
914 
915 	if (!data_buf) {
916 		ret = -ENOMEM;
917 		goto done;
918 	}
919 
920 	remaining_bytes = nbytes;
921 	ce_data = ce_data_base;
922 	while (remaining_bytes) {
923 		nbytes = min_t(unsigned int, remaining_bytes,
924 			       DIAG_TRANSFER_LIMIT);
925 
926 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
927 		if (ret != 0)
928 			goto done;
929 
930 		/* Request CE to send from Target(!) address to Host buffer */
931 		/*
932 		 * The address supplied by the caller is in the
933 		 * Target CPU virtual address space.
934 		 *
935 		 * In order to use this address with the diagnostic CE,
936 		 * convert it from Target CPU virtual address space
937 		 * to CE address space
938 		 */
939 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
940 
941 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
942 					    0);
943 		if (ret)
944 			goto done;
945 
946 		i = 0;
947 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
948 							    NULL) != 0) {
949 			mdelay(1);
950 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
951 				ret = -EBUSY;
952 				goto done;
953 			}
954 		}
955 
956 		i = 0;
957 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
958 							    (void **)&buf,
959 							    &completed_nbytes)
960 								!= 0) {
961 			mdelay(1);
962 
963 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
964 				ret = -EBUSY;
965 				goto done;
966 			}
967 		}
968 
969 		if (nbytes != completed_nbytes) {
970 			ret = -EIO;
971 			goto done;
972 		}
973 
974 		if (*buf != ce_data) {
975 			ret = -EIO;
976 			goto done;
977 		}
978 
979 		remaining_bytes -= nbytes;
980 		memcpy(data, data_buf, nbytes);
981 
982 		address += nbytes;
983 		data += nbytes;
984 	}
985 
986 done:
987 
988 	if (data_buf)
989 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
990 				  ce_data_base);
991 
992 	spin_unlock_bh(&ce->ce_lock);
993 
994 	return ret;
995 }
996 
997 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
998 {
999 	__le32 val = 0;
1000 	int ret;
1001 
1002 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1003 	*value = __le32_to_cpu(val);
1004 
1005 	return ret;
1006 }
1007 
1008 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1009 				     u32 src, u32 len)
1010 {
1011 	u32 host_addr, addr;
1012 	int ret;
1013 
1014 	host_addr = host_interest_item_address(src);
1015 
1016 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1017 	if (ret != 0) {
1018 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1019 			    src, ret);
1020 		return ret;
1021 	}
1022 
1023 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1024 	if (ret != 0) {
1025 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1026 			    addr, len, ret);
1027 		return ret;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1034 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1035 
1036 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1037 			      const void *data, int nbytes)
1038 {
1039 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1040 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1041 	int ret = 0;
1042 	u32 *buf;
1043 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1044 	struct ath10k_ce_pipe *ce_diag;
1045 	void *data_buf = NULL;
1046 	u32 ce_data;	/* Host buffer address in CE space */
1047 	dma_addr_t ce_data_base = 0;
1048 	int i;
1049 
1050 	spin_lock_bh(&ce->ce_lock);
1051 
1052 	ce_diag = ar_pci->ce_diag;
1053 
1054 	/*
1055 	 * Allocate a temporary bounce buffer to hold caller's data
1056 	 * to be DMA'ed to Target. This guarantees
1057 	 *   1) 4-byte alignment
1058 	 *   2) Buffer in DMA-able space
1059 	 */
1060 	orig_nbytes = nbytes;
1061 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1062 						       orig_nbytes,
1063 						       &ce_data_base,
1064 						       GFP_ATOMIC);
1065 	if (!data_buf) {
1066 		ret = -ENOMEM;
1067 		goto done;
1068 	}
1069 
1070 	/* Copy caller's data to allocated DMA buf */
1071 	memcpy(data_buf, data, orig_nbytes);
1072 
1073 	/*
1074 	 * The address supplied by the caller is in the
1075 	 * Target CPU virtual address space.
1076 	 *
1077 	 * In order to use this address with the diagnostic CE,
1078 	 * convert it from
1079 	 *    Target CPU virtual address space
1080 	 * to
1081 	 *    CE address space
1082 	 */
1083 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1084 
1085 	remaining_bytes = orig_nbytes;
1086 	ce_data = ce_data_base;
1087 	while (remaining_bytes) {
1088 		/* FIXME: check cast */
1089 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1090 
1091 		/* Set up to receive directly into Target(!) address */
1092 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1093 		if (ret != 0)
1094 			goto done;
1095 
1096 		/*
1097 		 * Request CE to send caller-supplied data that
1098 		 * was copied to bounce buffer to Target(!) address.
1099 		 */
1100 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1101 					    nbytes, 0, 0);
1102 		if (ret != 0)
1103 			goto done;
1104 
1105 		i = 0;
1106 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1107 							    NULL) != 0) {
1108 			mdelay(1);
1109 
1110 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1111 				ret = -EBUSY;
1112 				goto done;
1113 			}
1114 		}
1115 
1116 		i = 0;
1117 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1118 							    (void **)&buf,
1119 							    &completed_nbytes)
1120 								!= 0) {
1121 			mdelay(1);
1122 
1123 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1124 				ret = -EBUSY;
1125 				goto done;
1126 			}
1127 		}
1128 
1129 		if (nbytes != completed_nbytes) {
1130 			ret = -EIO;
1131 			goto done;
1132 		}
1133 
1134 		if (*buf != address) {
1135 			ret = -EIO;
1136 			goto done;
1137 		}
1138 
1139 		remaining_bytes -= nbytes;
1140 		address += nbytes;
1141 		ce_data += nbytes;
1142 	}
1143 
1144 done:
1145 	if (data_buf) {
1146 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1147 				  ce_data_base);
1148 	}
1149 
1150 	if (ret != 0)
1151 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1152 			    address, ret);
1153 
1154 	spin_unlock_bh(&ce->ce_lock);
1155 
1156 	return ret;
1157 }
1158 
1159 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1160 {
1161 	__le32 val = __cpu_to_le32(value);
1162 
1163 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1164 }
1165 
1166 /* Called by lower (CE) layer when a send to Target completes. */
1167 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1168 {
1169 	struct ath10k *ar = ce_state->ar;
1170 	struct sk_buff_head list;
1171 	struct sk_buff *skb;
1172 
1173 	__skb_queue_head_init(&list);
1174 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1175 		/* no need to call tx completion for NULL pointers */
1176 		if (skb == NULL)
1177 			continue;
1178 
1179 		__skb_queue_tail(&list, skb);
1180 	}
1181 
1182 	while ((skb = __skb_dequeue(&list)))
1183 		ath10k_htc_tx_completion_handler(ar, skb);
1184 }
1185 
1186 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1187 				     void (*callback)(struct ath10k *ar,
1188 						      struct sk_buff *skb))
1189 {
1190 	struct ath10k *ar = ce_state->ar;
1191 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1192 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1193 	struct sk_buff *skb;
1194 	struct sk_buff_head list;
1195 	void *transfer_context;
1196 	unsigned int nbytes, max_nbytes;
1197 
1198 	__skb_queue_head_init(&list);
1199 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1200 					     &nbytes) == 0) {
1201 		skb = transfer_context;
1202 		max_nbytes = skb->len + skb_tailroom(skb);
1203 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1204 				 max_nbytes, DMA_FROM_DEVICE);
1205 
1206 		if (unlikely(max_nbytes < nbytes)) {
1207 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1208 				    nbytes, max_nbytes);
1209 			dev_kfree_skb_any(skb);
1210 			continue;
1211 		}
1212 
1213 		skb_put(skb, nbytes);
1214 		__skb_queue_tail(&list, skb);
1215 	}
1216 
1217 	while ((skb = __skb_dequeue(&list))) {
1218 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1219 			   ce_state->id, skb->len);
1220 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1221 				skb->data, skb->len);
1222 
1223 		callback(ar, skb);
1224 	}
1225 
1226 	ath10k_pci_rx_post_pipe(pipe_info);
1227 }
1228 
1229 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1230 					 void (*callback)(struct ath10k *ar,
1231 							  struct sk_buff *skb))
1232 {
1233 	struct ath10k *ar = ce_state->ar;
1234 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1235 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1236 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1237 	struct sk_buff *skb;
1238 	struct sk_buff_head list;
1239 	void *transfer_context;
1240 	unsigned int nbytes, max_nbytes, nentries;
1241 	int orig_len;
1242 
1243 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1244 	 * is processed other than init and deinit. Before releasing CE5
1245 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1246 	 */
1247 	__skb_queue_head_init(&list);
1248 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1249 						    &nbytes) == 0) {
1250 		skb = transfer_context;
1251 		max_nbytes = skb->len + skb_tailroom(skb);
1252 
1253 		if (unlikely(max_nbytes < nbytes)) {
1254 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1255 				    nbytes, max_nbytes);
1256 			continue;
1257 		}
1258 
1259 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1260 					max_nbytes, DMA_FROM_DEVICE);
1261 		skb_put(skb, nbytes);
1262 		__skb_queue_tail(&list, skb);
1263 	}
1264 
1265 	nentries = skb_queue_len(&list);
1266 	while ((skb = __skb_dequeue(&list))) {
1267 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1268 			   ce_state->id, skb->len);
1269 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1270 				skb->data, skb->len);
1271 
1272 		orig_len = skb->len;
1273 		callback(ar, skb);
1274 		skb_push(skb, orig_len - skb->len);
1275 		skb_reset_tail_pointer(skb);
1276 		skb_trim(skb, 0);
1277 
1278 		/*let device gain the buffer again*/
1279 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1280 					   skb->len + skb_tailroom(skb),
1281 					   DMA_FROM_DEVICE);
1282 	}
1283 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1284 }
1285 
1286 /* Called by lower (CE) layer when data is received from the Target. */
1287 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1288 {
1289 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1290 }
1291 
1292 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293 {
1294 	/* CE4 polling needs to be done whenever CE pipe which transports
1295 	 * HTT Rx (target->host) is processed.
1296 	 */
1297 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1298 
1299 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1300 }
1301 
1302 /* Called by lower (CE) layer when data is received from the Target.
1303  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1304  */
1305 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1306 {
1307 	ath10k_pci_process_rx_cb(ce_state,
1308 				 ath10k_htt_rx_pktlog_completion_handler);
1309 }
1310 
1311 /* Called by lower (CE) layer when a send to HTT Target completes. */
1312 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1313 {
1314 	struct ath10k *ar = ce_state->ar;
1315 	struct sk_buff *skb;
1316 
1317 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1318 		/* no need to call tx completion for NULL pointers */
1319 		if (!skb)
1320 			continue;
1321 
1322 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1323 				 skb->len, DMA_TO_DEVICE);
1324 		ath10k_htt_hif_tx_complete(ar, skb);
1325 	}
1326 }
1327 
1328 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1329 {
1330 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1331 	ath10k_htt_t2h_msg_handler(ar, skb);
1332 }
1333 
1334 /* Called by lower (CE) layer when HTT data is received from the Target. */
1335 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1336 {
1337 	/* CE4 polling needs to be done whenever CE pipe which transports
1338 	 * HTT Rx (target->host) is processed.
1339 	 */
1340 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1341 
1342 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1343 }
1344 
1345 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1346 			 struct ath10k_hif_sg_item *items, int n_items)
1347 {
1348 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1349 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1350 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1351 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1352 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1353 	unsigned int nentries_mask;
1354 	unsigned int sw_index;
1355 	unsigned int write_index;
1356 	int err, i = 0;
1357 
1358 	spin_lock_bh(&ce->ce_lock);
1359 
1360 	nentries_mask = src_ring->nentries_mask;
1361 	sw_index = src_ring->sw_index;
1362 	write_index = src_ring->write_index;
1363 
1364 	if (unlikely(CE_RING_DELTA(nentries_mask,
1365 				   write_index, sw_index - 1) < n_items)) {
1366 		err = -ENOBUFS;
1367 		goto err;
1368 	}
1369 
1370 	for (i = 0; i < n_items - 1; i++) {
1371 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1372 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1373 			   i, items[i].paddr, items[i].len, n_items);
1374 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1375 				items[i].vaddr, items[i].len);
1376 
1377 		err = ath10k_ce_send_nolock(ce_pipe,
1378 					    items[i].transfer_context,
1379 					    items[i].paddr,
1380 					    items[i].len,
1381 					    items[i].transfer_id,
1382 					    CE_SEND_FLAG_GATHER);
1383 		if (err)
1384 			goto err;
1385 	}
1386 
1387 	/* `i` is equal to `n_items -1` after for() */
1388 
1389 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1390 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1391 		   i, items[i].paddr, items[i].len, n_items);
1392 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1393 			items[i].vaddr, items[i].len);
1394 
1395 	err = ath10k_ce_send_nolock(ce_pipe,
1396 				    items[i].transfer_context,
1397 				    items[i].paddr,
1398 				    items[i].len,
1399 				    items[i].transfer_id,
1400 				    0);
1401 	if (err)
1402 		goto err;
1403 
1404 	spin_unlock_bh(&ce->ce_lock);
1405 	return 0;
1406 
1407 err:
1408 	for (; i > 0; i--)
1409 		__ath10k_ce_send_revert(ce_pipe);
1410 
1411 	spin_unlock_bh(&ce->ce_lock);
1412 	return err;
1413 }
1414 
1415 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1416 			     size_t buf_len)
1417 {
1418 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1419 }
1420 
1421 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1422 {
1423 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1424 
1425 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1426 
1427 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1428 }
1429 
1430 static void ath10k_pci_dump_registers(struct ath10k *ar,
1431 				      struct ath10k_fw_crash_data *crash_data)
1432 {
1433 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1434 	int i, ret;
1435 
1436 	lockdep_assert_held(&ar->data_lock);
1437 
1438 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1439 				      hi_failure_state,
1440 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1441 	if (ret) {
1442 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1443 		return;
1444 	}
1445 
1446 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1447 
1448 	ath10k_err(ar, "firmware register dump:\n");
1449 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1450 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1451 			   i,
1452 			   __le32_to_cpu(reg_dump_values[i]),
1453 			   __le32_to_cpu(reg_dump_values[i + 1]),
1454 			   __le32_to_cpu(reg_dump_values[i + 2]),
1455 			   __le32_to_cpu(reg_dump_values[i + 3]));
1456 
1457 	if (!crash_data)
1458 		return;
1459 
1460 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1461 		crash_data->registers[i] = reg_dump_values[i];
1462 }
1463 
1464 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1465 {
1466 	struct ath10k_fw_crash_data *crash_data;
1467 	char guid[UUID_STRING_LEN + 1];
1468 
1469 	spin_lock_bh(&ar->data_lock);
1470 
1471 	ar->stats.fw_crash_counter++;
1472 
1473 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1474 
1475 	if (crash_data)
1476 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1477 	else
1478 		scnprintf(guid, sizeof(guid), "n/a");
1479 
1480 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1481 	ath10k_print_driver_info(ar);
1482 	ath10k_pci_dump_registers(ar, crash_data);
1483 	ath10k_ce_dump_registers(ar, crash_data);
1484 
1485 	spin_unlock_bh(&ar->data_lock);
1486 
1487 	queue_work(ar->workqueue, &ar->restart_work);
1488 }
1489 
1490 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1491 					int force)
1492 {
1493 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1494 
1495 	if (!force) {
1496 		int resources;
1497 		/*
1498 		 * Decide whether to actually poll for completions, or just
1499 		 * wait for a later chance.
1500 		 * If there seem to be plenty of resources left, then just wait
1501 		 * since checking involves reading a CE register, which is a
1502 		 * relatively expensive operation.
1503 		 */
1504 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1505 
1506 		/*
1507 		 * If at least 50% of the total resources are still available,
1508 		 * don't bother checking again yet.
1509 		 */
1510 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1511 			return;
1512 	}
1513 	ath10k_ce_per_engine_service(ar, pipe);
1514 }
1515 
1516 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1517 {
1518 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1519 
1520 	del_timer_sync(&ar_pci->rx_post_retry);
1521 }
1522 
1523 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1524 				       u8 *ul_pipe, u8 *dl_pipe)
1525 {
1526 	const struct service_to_pipe *entry;
1527 	bool ul_set = false, dl_set = false;
1528 	int i;
1529 
1530 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1531 
1532 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1533 		entry = &target_service_to_ce_map_wlan[i];
1534 
1535 		if (__le32_to_cpu(entry->service_id) != service_id)
1536 			continue;
1537 
1538 		switch (__le32_to_cpu(entry->pipedir)) {
1539 		case PIPEDIR_NONE:
1540 			break;
1541 		case PIPEDIR_IN:
1542 			WARN_ON(dl_set);
1543 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1544 			dl_set = true;
1545 			break;
1546 		case PIPEDIR_OUT:
1547 			WARN_ON(ul_set);
1548 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1549 			ul_set = true;
1550 			break;
1551 		case PIPEDIR_INOUT:
1552 			WARN_ON(dl_set);
1553 			WARN_ON(ul_set);
1554 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1555 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1556 			dl_set = true;
1557 			ul_set = true;
1558 			break;
1559 		}
1560 	}
1561 
1562 	if (WARN_ON(!ul_set || !dl_set))
1563 		return -ENOENT;
1564 
1565 	return 0;
1566 }
1567 
1568 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1569 				     u8 *ul_pipe, u8 *dl_pipe)
1570 {
1571 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1572 
1573 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1574 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1575 						 ul_pipe, dl_pipe);
1576 }
1577 
1578 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1579 {
1580 	u32 val;
1581 
1582 	switch (ar->hw_rev) {
1583 	case ATH10K_HW_QCA988X:
1584 	case ATH10K_HW_QCA9887:
1585 	case ATH10K_HW_QCA6174:
1586 	case ATH10K_HW_QCA9377:
1587 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1588 					CORE_CTRL_ADDRESS);
1589 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1590 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1591 				   CORE_CTRL_ADDRESS, val);
1592 		break;
1593 	case ATH10K_HW_QCA99X0:
1594 	case ATH10K_HW_QCA9984:
1595 	case ATH10K_HW_QCA9888:
1596 	case ATH10K_HW_QCA4019:
1597 		/* TODO: Find appropriate register configuration for QCA99X0
1598 		 *  to mask irq/MSI.
1599 		 */
1600 		break;
1601 	case ATH10K_HW_WCN3990:
1602 		break;
1603 	}
1604 }
1605 
1606 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1607 {
1608 	u32 val;
1609 
1610 	switch (ar->hw_rev) {
1611 	case ATH10K_HW_QCA988X:
1612 	case ATH10K_HW_QCA9887:
1613 	case ATH10K_HW_QCA6174:
1614 	case ATH10K_HW_QCA9377:
1615 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1616 					CORE_CTRL_ADDRESS);
1617 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1618 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1619 				   CORE_CTRL_ADDRESS, val);
1620 		break;
1621 	case ATH10K_HW_QCA99X0:
1622 	case ATH10K_HW_QCA9984:
1623 	case ATH10K_HW_QCA9888:
1624 	case ATH10K_HW_QCA4019:
1625 		/* TODO: Find appropriate register configuration for QCA99X0
1626 		 *  to unmask irq/MSI.
1627 		 */
1628 		break;
1629 	case ATH10K_HW_WCN3990:
1630 		break;
1631 	}
1632 }
1633 
1634 static void ath10k_pci_irq_disable(struct ath10k *ar)
1635 {
1636 	ath10k_ce_disable_interrupts(ar);
1637 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1638 	ath10k_pci_irq_msi_fw_mask(ar);
1639 }
1640 
1641 static void ath10k_pci_irq_sync(struct ath10k *ar)
1642 {
1643 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1644 
1645 	synchronize_irq(ar_pci->pdev->irq);
1646 }
1647 
1648 static void ath10k_pci_irq_enable(struct ath10k *ar)
1649 {
1650 	ath10k_ce_enable_interrupts(ar);
1651 	ath10k_pci_enable_legacy_irq(ar);
1652 	ath10k_pci_irq_msi_fw_unmask(ar);
1653 }
1654 
1655 static int ath10k_pci_hif_start(struct ath10k *ar)
1656 {
1657 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1658 
1659 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1660 
1661 	napi_enable(&ar->napi);
1662 
1663 	ath10k_pci_irq_enable(ar);
1664 	ath10k_pci_rx_post(ar);
1665 
1666 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1667 				   ar_pci->link_ctl);
1668 
1669 	return 0;
1670 }
1671 
1672 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1673 {
1674 	struct ath10k *ar;
1675 	struct ath10k_ce_pipe *ce_pipe;
1676 	struct ath10k_ce_ring *ce_ring;
1677 	struct sk_buff *skb;
1678 	int i;
1679 
1680 	ar = pci_pipe->hif_ce_state;
1681 	ce_pipe = pci_pipe->ce_hdl;
1682 	ce_ring = ce_pipe->dest_ring;
1683 
1684 	if (!ce_ring)
1685 		return;
1686 
1687 	if (!pci_pipe->buf_sz)
1688 		return;
1689 
1690 	for (i = 0; i < ce_ring->nentries; i++) {
1691 		skb = ce_ring->per_transfer_context[i];
1692 		if (!skb)
1693 			continue;
1694 
1695 		ce_ring->per_transfer_context[i] = NULL;
1696 
1697 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1698 				 skb->len + skb_tailroom(skb),
1699 				 DMA_FROM_DEVICE);
1700 		dev_kfree_skb_any(skb);
1701 	}
1702 }
1703 
1704 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1705 {
1706 	struct ath10k *ar;
1707 	struct ath10k_ce_pipe *ce_pipe;
1708 	struct ath10k_ce_ring *ce_ring;
1709 	struct sk_buff *skb;
1710 	int i;
1711 
1712 	ar = pci_pipe->hif_ce_state;
1713 	ce_pipe = pci_pipe->ce_hdl;
1714 	ce_ring = ce_pipe->src_ring;
1715 
1716 	if (!ce_ring)
1717 		return;
1718 
1719 	if (!pci_pipe->buf_sz)
1720 		return;
1721 
1722 	for (i = 0; i < ce_ring->nentries; i++) {
1723 		skb = ce_ring->per_transfer_context[i];
1724 		if (!skb)
1725 			continue;
1726 
1727 		ce_ring->per_transfer_context[i] = NULL;
1728 
1729 		ath10k_htc_tx_completion_handler(ar, skb);
1730 	}
1731 }
1732 
1733 /*
1734  * Cleanup residual buffers for device shutdown:
1735  *    buffers that were enqueued for receive
1736  *    buffers that were to be sent
1737  * Note: Buffers that had completed but which were
1738  * not yet processed are on a completion queue. They
1739  * are handled when the completion thread shuts down.
1740  */
1741 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1742 {
1743 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1744 	int pipe_num;
1745 
1746 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1747 		struct ath10k_pci_pipe *pipe_info;
1748 
1749 		pipe_info = &ar_pci->pipe_info[pipe_num];
1750 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1751 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1752 	}
1753 }
1754 
1755 void ath10k_pci_ce_deinit(struct ath10k *ar)
1756 {
1757 	int i;
1758 
1759 	for (i = 0; i < CE_COUNT; i++)
1760 		ath10k_ce_deinit_pipe(ar, i);
1761 }
1762 
1763 void ath10k_pci_flush(struct ath10k *ar)
1764 {
1765 	ath10k_pci_rx_retry_sync(ar);
1766 	ath10k_pci_buffer_cleanup(ar);
1767 }
1768 
1769 static void ath10k_pci_hif_stop(struct ath10k *ar)
1770 {
1771 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1772 	unsigned long flags;
1773 
1774 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1775 
1776 	/* Most likely the device has HTT Rx ring configured. The only way to
1777 	 * prevent the device from accessing (and possible corrupting) host
1778 	 * memory is to reset the chip now.
1779 	 *
1780 	 * There's also no known way of masking MSI interrupts on the device.
1781 	 * For ranged MSI the CE-related interrupts can be masked. However
1782 	 * regardless how many MSI interrupts are assigned the first one
1783 	 * is always used for firmware indications (crashes) and cannot be
1784 	 * masked. To prevent the device from asserting the interrupt reset it
1785 	 * before proceeding with cleanup.
1786 	 */
1787 	ath10k_pci_safe_chip_reset(ar);
1788 
1789 	ath10k_pci_irq_disable(ar);
1790 	ath10k_pci_irq_sync(ar);
1791 	ath10k_pci_flush(ar);
1792 	napi_synchronize(&ar->napi);
1793 	napi_disable(&ar->napi);
1794 
1795 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1796 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1797 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1798 }
1799 
1800 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1801 				    void *req, u32 req_len,
1802 				    void *resp, u32 *resp_len)
1803 {
1804 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1805 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1806 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1807 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1808 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1809 	dma_addr_t req_paddr = 0;
1810 	dma_addr_t resp_paddr = 0;
1811 	struct bmi_xfer xfer = {};
1812 	void *treq, *tresp = NULL;
1813 	int ret = 0;
1814 
1815 	might_sleep();
1816 
1817 	if (resp && !resp_len)
1818 		return -EINVAL;
1819 
1820 	if (resp && resp_len && *resp_len == 0)
1821 		return -EINVAL;
1822 
1823 	treq = kmemdup(req, req_len, GFP_KERNEL);
1824 	if (!treq)
1825 		return -ENOMEM;
1826 
1827 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1828 	ret = dma_mapping_error(ar->dev, req_paddr);
1829 	if (ret) {
1830 		ret = -EIO;
1831 		goto err_dma;
1832 	}
1833 
1834 	if (resp && resp_len) {
1835 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1836 		if (!tresp) {
1837 			ret = -ENOMEM;
1838 			goto err_req;
1839 		}
1840 
1841 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1842 					    DMA_FROM_DEVICE);
1843 		ret = dma_mapping_error(ar->dev, resp_paddr);
1844 		if (ret) {
1845 			ret = -EIO;
1846 			goto err_req;
1847 		}
1848 
1849 		xfer.wait_for_resp = true;
1850 		xfer.resp_len = 0;
1851 
1852 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1853 	}
1854 
1855 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1856 	if (ret)
1857 		goto err_resp;
1858 
1859 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
1860 	if (ret) {
1861 		u32 unused_buffer;
1862 		unsigned int unused_nbytes;
1863 		unsigned int unused_id;
1864 
1865 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1866 					   &unused_nbytes, &unused_id);
1867 	} else {
1868 		/* non-zero means we did not time out */
1869 		ret = 0;
1870 	}
1871 
1872 err_resp:
1873 	if (resp) {
1874 		u32 unused_buffer;
1875 
1876 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1877 		dma_unmap_single(ar->dev, resp_paddr,
1878 				 *resp_len, DMA_FROM_DEVICE);
1879 	}
1880 err_req:
1881 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1882 
1883 	if (ret == 0 && resp_len) {
1884 		*resp_len = min(*resp_len, xfer.resp_len);
1885 		memcpy(resp, tresp, xfer.resp_len);
1886 	}
1887 err_dma:
1888 	kfree(treq);
1889 	kfree(tresp);
1890 
1891 	return ret;
1892 }
1893 
1894 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1895 {
1896 	struct bmi_xfer *xfer;
1897 
1898 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1899 		return;
1900 
1901 	xfer->tx_done = true;
1902 }
1903 
1904 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1905 {
1906 	struct ath10k *ar = ce_state->ar;
1907 	struct bmi_xfer *xfer;
1908 	unsigned int nbytes;
1909 
1910 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1911 					  &nbytes))
1912 		return;
1913 
1914 	if (WARN_ON_ONCE(!xfer))
1915 		return;
1916 
1917 	if (!xfer->wait_for_resp) {
1918 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1919 		return;
1920 	}
1921 
1922 	xfer->resp_len = nbytes;
1923 	xfer->rx_done = true;
1924 }
1925 
1926 static int ath10k_pci_bmi_wait(struct ath10k *ar,
1927 			       struct ath10k_ce_pipe *tx_pipe,
1928 			       struct ath10k_ce_pipe *rx_pipe,
1929 			       struct bmi_xfer *xfer)
1930 {
1931 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1932 	unsigned long started = jiffies;
1933 	unsigned long dur;
1934 	int ret;
1935 
1936 	while (time_before_eq(jiffies, timeout)) {
1937 		ath10k_pci_bmi_send_done(tx_pipe);
1938 		ath10k_pci_bmi_recv_data(rx_pipe);
1939 
1940 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
1941 			ret = 0;
1942 			goto out;
1943 		}
1944 
1945 		schedule();
1946 	}
1947 
1948 	ret = -ETIMEDOUT;
1949 
1950 out:
1951 	dur = jiffies - started;
1952 	if (dur > HZ)
1953 		ath10k_dbg(ar, ATH10K_DBG_BMI,
1954 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
1955 			   dur, HZ, ret);
1956 	return ret;
1957 }
1958 
1959 /*
1960  * Send an interrupt to the device to wake up the Target CPU
1961  * so it has an opportunity to notice any changed state.
1962  */
1963 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1964 {
1965 	u32 addr, val;
1966 
1967 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1968 	val = ath10k_pci_read32(ar, addr);
1969 	val |= CORE_CTRL_CPU_INTR_MASK;
1970 	ath10k_pci_write32(ar, addr, val);
1971 
1972 	return 0;
1973 }
1974 
1975 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1976 {
1977 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1978 
1979 	switch (ar_pci->pdev->device) {
1980 	case QCA988X_2_0_DEVICE_ID:
1981 	case QCA99X0_2_0_DEVICE_ID:
1982 	case QCA9888_2_0_DEVICE_ID:
1983 	case QCA9984_1_0_DEVICE_ID:
1984 	case QCA9887_1_0_DEVICE_ID:
1985 		return 1;
1986 	case QCA6164_2_1_DEVICE_ID:
1987 	case QCA6174_2_1_DEVICE_ID:
1988 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1989 		case QCA6174_HW_1_0_CHIP_ID_REV:
1990 		case QCA6174_HW_1_1_CHIP_ID_REV:
1991 		case QCA6174_HW_2_1_CHIP_ID_REV:
1992 		case QCA6174_HW_2_2_CHIP_ID_REV:
1993 			return 3;
1994 		case QCA6174_HW_1_3_CHIP_ID_REV:
1995 			return 2;
1996 		case QCA6174_HW_3_0_CHIP_ID_REV:
1997 		case QCA6174_HW_3_1_CHIP_ID_REV:
1998 		case QCA6174_HW_3_2_CHIP_ID_REV:
1999 			return 9;
2000 		}
2001 		break;
2002 	case QCA9377_1_0_DEVICE_ID:
2003 		return 4;
2004 	}
2005 
2006 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2007 	return 1;
2008 }
2009 
2010 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2011 {
2012 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2013 
2014 	return ce->bus_ops->get_num_banks(ar);
2015 }
2016 
2017 int ath10k_pci_init_config(struct ath10k *ar)
2018 {
2019 	u32 interconnect_targ_addr;
2020 	u32 pcie_state_targ_addr = 0;
2021 	u32 pipe_cfg_targ_addr = 0;
2022 	u32 svc_to_pipe_map = 0;
2023 	u32 pcie_config_flags = 0;
2024 	u32 ealloc_value;
2025 	u32 ealloc_targ_addr;
2026 	u32 flag2_value;
2027 	u32 flag2_targ_addr;
2028 	int ret = 0;
2029 
2030 	/* Download to Target the CE Config and the service-to-CE map */
2031 	interconnect_targ_addr =
2032 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2033 
2034 	/* Supply Target-side CE configuration */
2035 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2036 				     &pcie_state_targ_addr);
2037 	if (ret != 0) {
2038 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2039 		return ret;
2040 	}
2041 
2042 	if (pcie_state_targ_addr == 0) {
2043 		ret = -EIO;
2044 		ath10k_err(ar, "Invalid pcie state addr\n");
2045 		return ret;
2046 	}
2047 
2048 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2049 					  offsetof(struct pcie_state,
2050 						   pipe_cfg_addr)),
2051 				     &pipe_cfg_targ_addr);
2052 	if (ret != 0) {
2053 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2054 		return ret;
2055 	}
2056 
2057 	if (pipe_cfg_targ_addr == 0) {
2058 		ret = -EIO;
2059 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2060 		return ret;
2061 	}
2062 
2063 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2064 					target_ce_config_wlan,
2065 					sizeof(struct ce_pipe_config) *
2066 					NUM_TARGET_CE_CONFIG_WLAN);
2067 
2068 	if (ret != 0) {
2069 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2070 		return ret;
2071 	}
2072 
2073 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2074 					  offsetof(struct pcie_state,
2075 						   svc_to_pipe_map)),
2076 				     &svc_to_pipe_map);
2077 	if (ret != 0) {
2078 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2079 		return ret;
2080 	}
2081 
2082 	if (svc_to_pipe_map == 0) {
2083 		ret = -EIO;
2084 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2085 		return ret;
2086 	}
2087 
2088 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2089 					target_service_to_ce_map_wlan,
2090 					sizeof(target_service_to_ce_map_wlan));
2091 	if (ret != 0) {
2092 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2093 		return ret;
2094 	}
2095 
2096 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2097 					  offsetof(struct pcie_state,
2098 						   config_flags)),
2099 				     &pcie_config_flags);
2100 	if (ret != 0) {
2101 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2102 		return ret;
2103 	}
2104 
2105 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2106 
2107 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2108 					   offsetof(struct pcie_state,
2109 						    config_flags)),
2110 				      pcie_config_flags);
2111 	if (ret != 0) {
2112 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2113 		return ret;
2114 	}
2115 
2116 	/* configure early allocation */
2117 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2118 
2119 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2120 	if (ret != 0) {
2121 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2122 		return ret;
2123 	}
2124 
2125 	/* first bank is switched to IRAM */
2126 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2127 			 HI_EARLY_ALLOC_MAGIC_MASK);
2128 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2129 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2130 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2131 
2132 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2133 	if (ret != 0) {
2134 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2135 		return ret;
2136 	}
2137 
2138 	/* Tell Target to proceed with initialization */
2139 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2140 
2141 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2142 	if (ret != 0) {
2143 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2144 		return ret;
2145 	}
2146 
2147 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2148 
2149 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2150 	if (ret != 0) {
2151 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2152 		return ret;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2159 {
2160 	struct ce_attr *attr;
2161 	struct ce_pipe_config *config;
2162 
2163 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2164 	 * since it is currently used for other feature.
2165 	 */
2166 
2167 	/* Override Host's Copy Engine 5 configuration */
2168 	attr = &host_ce_config_wlan[5];
2169 	attr->src_sz_max = 0;
2170 	attr->dest_nentries = 0;
2171 
2172 	/* Override Target firmware's Copy Engine configuration */
2173 	config = &target_ce_config_wlan[5];
2174 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2175 	config->nbytes_max = __cpu_to_le32(2048);
2176 
2177 	/* Map from service/endpoint to Copy Engine */
2178 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2179 }
2180 
2181 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2182 {
2183 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2184 	struct ath10k_pci_pipe *pipe;
2185 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2186 	int i, ret;
2187 
2188 	for (i = 0; i < CE_COUNT; i++) {
2189 		pipe = &ar_pci->pipe_info[i];
2190 		pipe->ce_hdl = &ce->ce_states[i];
2191 		pipe->pipe_num = i;
2192 		pipe->hif_ce_state = ar;
2193 
2194 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2195 		if (ret) {
2196 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2197 				   i, ret);
2198 			return ret;
2199 		}
2200 
2201 		/* Last CE is Diagnostic Window */
2202 		if (i == CE_DIAG_PIPE) {
2203 			ar_pci->ce_diag = pipe->ce_hdl;
2204 			continue;
2205 		}
2206 
2207 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 void ath10k_pci_free_pipes(struct ath10k *ar)
2214 {
2215 	int i;
2216 
2217 	for (i = 0; i < CE_COUNT; i++)
2218 		ath10k_ce_free_pipe(ar, i);
2219 }
2220 
2221 int ath10k_pci_init_pipes(struct ath10k *ar)
2222 {
2223 	int i, ret;
2224 
2225 	for (i = 0; i < CE_COUNT; i++) {
2226 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2227 		if (ret) {
2228 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2229 				   i, ret);
2230 			return ret;
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2238 {
2239 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2240 	       FW_IND_EVENT_PENDING;
2241 }
2242 
2243 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2244 {
2245 	u32 val;
2246 
2247 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2248 	val &= ~FW_IND_EVENT_PENDING;
2249 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2250 }
2251 
2252 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2253 {
2254 	u32 val;
2255 
2256 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2257 	return (val == 0xffffffff);
2258 }
2259 
2260 /* this function effectively clears target memory controller assert line */
2261 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2262 {
2263 	u32 val;
2264 
2265 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2266 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2267 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2268 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2269 
2270 	msleep(10);
2271 
2272 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2273 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2274 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2275 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2276 
2277 	msleep(10);
2278 }
2279 
2280 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2281 {
2282 	u32 val;
2283 
2284 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2285 
2286 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2287 				SOC_RESET_CONTROL_ADDRESS);
2288 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2289 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2290 }
2291 
2292 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2293 {
2294 	u32 val;
2295 
2296 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2297 				SOC_RESET_CONTROL_ADDRESS);
2298 
2299 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2300 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2301 	msleep(10);
2302 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2303 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2304 }
2305 
2306 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2307 {
2308 	u32 val;
2309 
2310 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2311 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2312 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2313 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2314 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2315 }
2316 
2317 static int ath10k_pci_warm_reset(struct ath10k *ar)
2318 {
2319 	int ret;
2320 
2321 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2322 
2323 	spin_lock_bh(&ar->data_lock);
2324 	ar->stats.fw_warm_reset_counter++;
2325 	spin_unlock_bh(&ar->data_lock);
2326 
2327 	ath10k_pci_irq_disable(ar);
2328 
2329 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2330 	 * were to access copy engine while host performs copy engine reset
2331 	 * then it is possible for the device to confuse pci-e controller to
2332 	 * the point of bringing host system to a complete stop (i.e. hang).
2333 	 */
2334 	ath10k_pci_warm_reset_si0(ar);
2335 	ath10k_pci_warm_reset_cpu(ar);
2336 	ath10k_pci_init_pipes(ar);
2337 	ath10k_pci_wait_for_target_init(ar);
2338 
2339 	ath10k_pci_warm_reset_clear_lf(ar);
2340 	ath10k_pci_warm_reset_ce(ar);
2341 	ath10k_pci_warm_reset_cpu(ar);
2342 	ath10k_pci_init_pipes(ar);
2343 
2344 	ret = ath10k_pci_wait_for_target_init(ar);
2345 	if (ret) {
2346 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2347 		return ret;
2348 	}
2349 
2350 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2351 
2352 	return 0;
2353 }
2354 
2355 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2356 {
2357 	ath10k_pci_irq_disable(ar);
2358 	return ath10k_pci_qca99x0_chip_reset(ar);
2359 }
2360 
2361 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2362 {
2363 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2364 
2365 	if (!ar_pci->pci_soft_reset)
2366 		return -ENOTSUPP;
2367 
2368 	return ar_pci->pci_soft_reset(ar);
2369 }
2370 
2371 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2372 {
2373 	int i, ret;
2374 	u32 val;
2375 
2376 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2377 
2378 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2379 	 * It is thus preferred to use warm reset which is safer but may not be
2380 	 * able to recover the device from all possible fail scenarios.
2381 	 *
2382 	 * Warm reset doesn't always work on first try so attempt it a few
2383 	 * times before giving up.
2384 	 */
2385 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2386 		ret = ath10k_pci_warm_reset(ar);
2387 		if (ret) {
2388 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2389 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2390 				    ret);
2391 			continue;
2392 		}
2393 
2394 		/* FIXME: Sometimes copy engine doesn't recover after warm
2395 		 * reset. In most cases this needs cold reset. In some of these
2396 		 * cases the device is in such a state that a cold reset may
2397 		 * lock up the host.
2398 		 *
2399 		 * Reading any host interest register via copy engine is
2400 		 * sufficient to verify if device is capable of booting
2401 		 * firmware blob.
2402 		 */
2403 		ret = ath10k_pci_init_pipes(ar);
2404 		if (ret) {
2405 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2406 				    ret);
2407 			continue;
2408 		}
2409 
2410 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2411 					     &val);
2412 		if (ret) {
2413 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2414 				    ret);
2415 			continue;
2416 		}
2417 
2418 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2419 		return 0;
2420 	}
2421 
2422 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2423 		ath10k_warn(ar, "refusing cold reset as requested\n");
2424 		return -EPERM;
2425 	}
2426 
2427 	ret = ath10k_pci_cold_reset(ar);
2428 	if (ret) {
2429 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2430 		return ret;
2431 	}
2432 
2433 	ret = ath10k_pci_wait_for_target_init(ar);
2434 	if (ret) {
2435 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2436 			    ret);
2437 		return ret;
2438 	}
2439 
2440 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2441 
2442 	return 0;
2443 }
2444 
2445 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2446 {
2447 	int ret;
2448 
2449 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2450 
2451 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2452 
2453 	ret = ath10k_pci_cold_reset(ar);
2454 	if (ret) {
2455 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2456 		return ret;
2457 	}
2458 
2459 	ret = ath10k_pci_wait_for_target_init(ar);
2460 	if (ret) {
2461 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2462 			    ret);
2463 		return ret;
2464 	}
2465 
2466 	ret = ath10k_pci_warm_reset(ar);
2467 	if (ret) {
2468 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2469 		return ret;
2470 	}
2471 
2472 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2473 
2474 	return 0;
2475 }
2476 
2477 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2478 {
2479 	int ret;
2480 
2481 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2482 
2483 	ret = ath10k_pci_cold_reset(ar);
2484 	if (ret) {
2485 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2486 		return ret;
2487 	}
2488 
2489 	ret = ath10k_pci_wait_for_target_init(ar);
2490 	if (ret) {
2491 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2492 			    ret);
2493 		return ret;
2494 	}
2495 
2496 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2497 
2498 	return 0;
2499 }
2500 
2501 static int ath10k_pci_chip_reset(struct ath10k *ar)
2502 {
2503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2504 
2505 	if (WARN_ON(!ar_pci->pci_hard_reset))
2506 		return -ENOTSUPP;
2507 
2508 	return ar_pci->pci_hard_reset(ar);
2509 }
2510 
2511 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2512 {
2513 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2514 	int ret;
2515 
2516 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2517 
2518 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2519 				  &ar_pci->link_ctl);
2520 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2521 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2522 
2523 	/*
2524 	 * Bring the target up cleanly.
2525 	 *
2526 	 * The target may be in an undefined state with an AUX-powered Target
2527 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2528 	 * restarted (without unloading the driver) then the Target is left
2529 	 * (aux) powered and running. On a subsequent driver load, the Target
2530 	 * is in an unexpected state. We try to catch that here in order to
2531 	 * reset the Target and retry the probe.
2532 	 */
2533 	ret = ath10k_pci_chip_reset(ar);
2534 	if (ret) {
2535 		if (ath10k_pci_has_fw_crashed(ar)) {
2536 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2537 			ath10k_pci_fw_crashed_clear(ar);
2538 			ath10k_pci_fw_crashed_dump(ar);
2539 		}
2540 
2541 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2542 		goto err_sleep;
2543 	}
2544 
2545 	ret = ath10k_pci_init_pipes(ar);
2546 	if (ret) {
2547 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2548 		goto err_sleep;
2549 	}
2550 
2551 	ret = ath10k_pci_init_config(ar);
2552 	if (ret) {
2553 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2554 		goto err_ce;
2555 	}
2556 
2557 	ret = ath10k_pci_wake_target_cpu(ar);
2558 	if (ret) {
2559 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2560 		goto err_ce;
2561 	}
2562 
2563 	return 0;
2564 
2565 err_ce:
2566 	ath10k_pci_ce_deinit(ar);
2567 
2568 err_sleep:
2569 	return ret;
2570 }
2571 
2572 void ath10k_pci_hif_power_down(struct ath10k *ar)
2573 {
2574 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2575 
2576 	/* Currently hif_power_up performs effectively a reset and hif_stop
2577 	 * resets the chip as well so there's no point in resetting here.
2578 	 */
2579 }
2580 
2581 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2582 {
2583 	/* Nothing to do; the important stuff is in the driver suspend. */
2584 	return 0;
2585 }
2586 
2587 static int ath10k_pci_suspend(struct ath10k *ar)
2588 {
2589 	/* The grace timer can still be counting down and ar->ps_awake be true.
2590 	 * It is known that the device may be asleep after resuming regardless
2591 	 * of the SoC powersave state before suspending. Hence make sure the
2592 	 * device is asleep before proceeding.
2593 	 */
2594 	ath10k_pci_sleep_sync(ar);
2595 
2596 	return 0;
2597 }
2598 
2599 static int ath10k_pci_hif_resume(struct ath10k *ar)
2600 {
2601 	/* Nothing to do; the important stuff is in the driver resume. */
2602 	return 0;
2603 }
2604 
2605 static int ath10k_pci_resume(struct ath10k *ar)
2606 {
2607 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2608 	struct pci_dev *pdev = ar_pci->pdev;
2609 	u32 val;
2610 	int ret = 0;
2611 
2612 	ret = ath10k_pci_force_wake(ar);
2613 	if (ret) {
2614 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2615 		return ret;
2616 	}
2617 
2618 	/* Suspend/Resume resets the PCI configuration space, so we have to
2619 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2620 	 * from interfering with C3 CPU state. pci_restore_state won't help
2621 	 * here since it only restores the first 64 bytes pci config header.
2622 	 */
2623 	pci_read_config_dword(pdev, 0x40, &val);
2624 	if ((val & 0x0000ff00) != 0)
2625 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2626 
2627 	return ret;
2628 }
2629 
2630 static bool ath10k_pci_validate_cal(void *data, size_t size)
2631 {
2632 	__le16 *cal_words = data;
2633 	u16 checksum = 0;
2634 	size_t i;
2635 
2636 	if (size % 2 != 0)
2637 		return false;
2638 
2639 	for (i = 0; i < size / 2; i++)
2640 		checksum ^= le16_to_cpu(cal_words[i]);
2641 
2642 	return checksum == 0xffff;
2643 }
2644 
2645 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2646 {
2647 	/* Enable SI clock */
2648 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2649 
2650 	/* Configure GPIOs for I2C operation */
2651 	ath10k_pci_write32(ar,
2652 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2653 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2654 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2655 			      GPIO_PIN0_CONFIG) |
2656 			   SM(1, GPIO_PIN0_PAD_PULL));
2657 
2658 	ath10k_pci_write32(ar,
2659 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2660 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2661 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2662 			   SM(1, GPIO_PIN0_PAD_PULL));
2663 
2664 	ath10k_pci_write32(ar,
2665 			   GPIO_BASE_ADDRESS +
2666 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2667 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2668 
2669 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2670 	ath10k_pci_write32(ar,
2671 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2672 			   SM(1, SI_CONFIG_ERR_INT) |
2673 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2674 			   SM(1, SI_CONFIG_I2C) |
2675 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2676 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2677 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2678 			   SM(8, SI_CONFIG_DIVIDER));
2679 }
2680 
2681 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2682 {
2683 	u32 reg;
2684 	int wait_limit;
2685 
2686 	/* set device select byte and for the read operation */
2687 	reg = QCA9887_EEPROM_SELECT_READ |
2688 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2689 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2690 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2691 
2692 	/* write transmit data, transfer length, and START bit */
2693 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2694 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2695 			   SM(4, SI_CS_TX_CNT));
2696 
2697 	/* wait max 1 sec */
2698 	wait_limit = 100000;
2699 
2700 	/* wait for SI_CS_DONE_INT */
2701 	do {
2702 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2703 		if (MS(reg, SI_CS_DONE_INT))
2704 			break;
2705 
2706 		wait_limit--;
2707 		udelay(10);
2708 	} while (wait_limit > 0);
2709 
2710 	if (!MS(reg, SI_CS_DONE_INT)) {
2711 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2712 			   addr);
2713 		return -ETIMEDOUT;
2714 	}
2715 
2716 	/* clear SI_CS_DONE_INT */
2717 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2718 
2719 	if (MS(reg, SI_CS_DONE_ERR)) {
2720 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2721 		return -EIO;
2722 	}
2723 
2724 	/* extract receive data */
2725 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2726 	*out = reg;
2727 
2728 	return 0;
2729 }
2730 
2731 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2732 					   size_t *data_len)
2733 {
2734 	u8 *caldata = NULL;
2735 	size_t calsize, i;
2736 	int ret;
2737 
2738 	if (!QCA_REV_9887(ar))
2739 		return -EOPNOTSUPP;
2740 
2741 	calsize = ar->hw_params.cal_data_len;
2742 	caldata = kmalloc(calsize, GFP_KERNEL);
2743 	if (!caldata)
2744 		return -ENOMEM;
2745 
2746 	ath10k_pci_enable_eeprom(ar);
2747 
2748 	for (i = 0; i < calsize; i++) {
2749 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2750 		if (ret)
2751 			goto err_free;
2752 	}
2753 
2754 	if (!ath10k_pci_validate_cal(caldata, calsize))
2755 		goto err_free;
2756 
2757 	*data = caldata;
2758 	*data_len = calsize;
2759 
2760 	return 0;
2761 
2762 err_free:
2763 	kfree(caldata);
2764 
2765 	return -EINVAL;
2766 }
2767 
2768 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2769 	.tx_sg			= ath10k_pci_hif_tx_sg,
2770 	.diag_read		= ath10k_pci_hif_diag_read,
2771 	.diag_write		= ath10k_pci_diag_write_mem,
2772 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2773 	.start			= ath10k_pci_hif_start,
2774 	.stop			= ath10k_pci_hif_stop,
2775 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2776 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2777 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2778 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2779 	.power_up		= ath10k_pci_hif_power_up,
2780 	.power_down		= ath10k_pci_hif_power_down,
2781 	.read32			= ath10k_pci_read32,
2782 	.write32		= ath10k_pci_write32,
2783 	.suspend		= ath10k_pci_hif_suspend,
2784 	.resume			= ath10k_pci_hif_resume,
2785 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2786 };
2787 
2788 /*
2789  * Top-level interrupt handler for all PCI interrupts from a Target.
2790  * When a block of MSI interrupts is allocated, this top-level handler
2791  * is not used; instead, we directly call the correct sub-handler.
2792  */
2793 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2794 {
2795 	struct ath10k *ar = arg;
2796 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2797 	int ret;
2798 
2799 	if (ath10k_pci_has_device_gone(ar))
2800 		return IRQ_NONE;
2801 
2802 	ret = ath10k_pci_force_wake(ar);
2803 	if (ret) {
2804 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2805 		return IRQ_NONE;
2806 	}
2807 
2808 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2809 	    !ath10k_pci_irq_pending(ar))
2810 		return IRQ_NONE;
2811 
2812 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2813 	ath10k_pci_irq_msi_fw_mask(ar);
2814 	napi_schedule(&ar->napi);
2815 
2816 	return IRQ_HANDLED;
2817 }
2818 
2819 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2820 {
2821 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2822 	int done = 0;
2823 
2824 	if (ath10k_pci_has_fw_crashed(ar)) {
2825 		ath10k_pci_fw_crashed_clear(ar);
2826 		ath10k_pci_fw_crashed_dump(ar);
2827 		napi_complete(ctx);
2828 		return done;
2829 	}
2830 
2831 	ath10k_ce_per_engine_service_any(ar);
2832 
2833 	done = ath10k_htt_txrx_compl_task(ar, budget);
2834 
2835 	if (done < budget) {
2836 		napi_complete_done(ctx, done);
2837 		/* In case of MSI, it is possible that interrupts are received
2838 		 * while NAPI poll is inprogress. So pending interrupts that are
2839 		 * received after processing all copy engine pipes by NAPI poll
2840 		 * will not be handled again. This is causing failure to
2841 		 * complete boot sequence in x86 platform. So before enabling
2842 		 * interrupts safer to check for pending interrupts for
2843 		 * immediate servicing.
2844 		 */
2845 		if (ath10k_ce_interrupt_summary(ar)) {
2846 			napi_reschedule(ctx);
2847 			goto out;
2848 		}
2849 		ath10k_pci_enable_legacy_irq(ar);
2850 		ath10k_pci_irq_msi_fw_unmask(ar);
2851 	}
2852 
2853 out:
2854 	return done;
2855 }
2856 
2857 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2858 {
2859 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2860 	int ret;
2861 
2862 	ret = request_irq(ar_pci->pdev->irq,
2863 			  ath10k_pci_interrupt_handler,
2864 			  IRQF_SHARED, "ath10k_pci", ar);
2865 	if (ret) {
2866 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2867 			    ar_pci->pdev->irq, ret);
2868 		return ret;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2875 {
2876 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2877 	int ret;
2878 
2879 	ret = request_irq(ar_pci->pdev->irq,
2880 			  ath10k_pci_interrupt_handler,
2881 			  IRQF_SHARED, "ath10k_pci", ar);
2882 	if (ret) {
2883 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2884 			    ar_pci->pdev->irq, ret);
2885 		return ret;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 static int ath10k_pci_request_irq(struct ath10k *ar)
2892 {
2893 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2894 
2895 	switch (ar_pci->oper_irq_mode) {
2896 	case ATH10K_PCI_IRQ_LEGACY:
2897 		return ath10k_pci_request_irq_legacy(ar);
2898 	case ATH10K_PCI_IRQ_MSI:
2899 		return ath10k_pci_request_irq_msi(ar);
2900 	default:
2901 		return -EINVAL;
2902 	}
2903 }
2904 
2905 static void ath10k_pci_free_irq(struct ath10k *ar)
2906 {
2907 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2908 
2909 	free_irq(ar_pci->pdev->irq, ar);
2910 }
2911 
2912 void ath10k_pci_init_napi(struct ath10k *ar)
2913 {
2914 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2915 		       ATH10K_NAPI_BUDGET);
2916 }
2917 
2918 static int ath10k_pci_init_irq(struct ath10k *ar)
2919 {
2920 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2921 	int ret;
2922 
2923 	ath10k_pci_init_napi(ar);
2924 
2925 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2926 		ath10k_info(ar, "limiting irq mode to: %d\n",
2927 			    ath10k_pci_irq_mode);
2928 
2929 	/* Try MSI */
2930 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2931 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2932 		ret = pci_enable_msi(ar_pci->pdev);
2933 		if (ret == 0)
2934 			return 0;
2935 
2936 		/* fall-through */
2937 	}
2938 
2939 	/* Try legacy irq
2940 	 *
2941 	 * A potential race occurs here: The CORE_BASE write
2942 	 * depends on target correctly decoding AXI address but
2943 	 * host won't know when target writes BAR to CORE_CTRL.
2944 	 * This write might get lost if target has NOT written BAR.
2945 	 * For now, fix the race by repeating the write in below
2946 	 * synchronization checking.
2947 	 */
2948 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2949 
2950 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2951 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2952 
2953 	return 0;
2954 }
2955 
2956 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2957 {
2958 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2959 			   0);
2960 }
2961 
2962 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2963 {
2964 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2965 
2966 	switch (ar_pci->oper_irq_mode) {
2967 	case ATH10K_PCI_IRQ_LEGACY:
2968 		ath10k_pci_deinit_irq_legacy(ar);
2969 		break;
2970 	default:
2971 		pci_disable_msi(ar_pci->pdev);
2972 		break;
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2979 {
2980 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2981 	unsigned long timeout;
2982 	u32 val;
2983 
2984 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2985 
2986 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2987 
2988 	do {
2989 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2990 
2991 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2992 			   val);
2993 
2994 		/* target should never return this */
2995 		if (val == 0xffffffff)
2996 			continue;
2997 
2998 		/* the device has crashed so don't bother trying anymore */
2999 		if (val & FW_IND_EVENT_PENDING)
3000 			break;
3001 
3002 		if (val & FW_IND_INITIALIZED)
3003 			break;
3004 
3005 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3006 			/* Fix potential race by repeating CORE_BASE writes */
3007 			ath10k_pci_enable_legacy_irq(ar);
3008 
3009 		mdelay(10);
3010 	} while (time_before(jiffies, timeout));
3011 
3012 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3013 	ath10k_pci_irq_msi_fw_mask(ar);
3014 
3015 	if (val == 0xffffffff) {
3016 		ath10k_err(ar, "failed to read device register, device is gone\n");
3017 		return -EIO;
3018 	}
3019 
3020 	if (val & FW_IND_EVENT_PENDING) {
3021 		ath10k_warn(ar, "device has crashed during init\n");
3022 		return -ECOMM;
3023 	}
3024 
3025 	if (!(val & FW_IND_INITIALIZED)) {
3026 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3027 			   val);
3028 		return -ETIMEDOUT;
3029 	}
3030 
3031 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3032 	return 0;
3033 }
3034 
3035 static int ath10k_pci_cold_reset(struct ath10k *ar)
3036 {
3037 	u32 val;
3038 
3039 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3040 
3041 	spin_lock_bh(&ar->data_lock);
3042 
3043 	ar->stats.fw_cold_reset_counter++;
3044 
3045 	spin_unlock_bh(&ar->data_lock);
3046 
3047 	/* Put Target, including PCIe, into RESET. */
3048 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3049 	val |= 1;
3050 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3051 
3052 	/* After writing into SOC_GLOBAL_RESET to put device into
3053 	 * reset and pulling out of reset pcie may not be stable
3054 	 * for any immediate pcie register access and cause bus error,
3055 	 * add delay before any pcie access request to fix this issue.
3056 	 */
3057 	msleep(20);
3058 
3059 	/* Pull Target, including PCIe, out of RESET. */
3060 	val &= ~1;
3061 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3062 
3063 	msleep(20);
3064 
3065 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3066 
3067 	return 0;
3068 }
3069 
3070 static int ath10k_pci_claim(struct ath10k *ar)
3071 {
3072 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3073 	struct pci_dev *pdev = ar_pci->pdev;
3074 	int ret;
3075 
3076 	pci_set_drvdata(pdev, ar);
3077 
3078 	ret = pci_enable_device(pdev);
3079 	if (ret) {
3080 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3081 		return ret;
3082 	}
3083 
3084 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3085 	if (ret) {
3086 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3087 			   ret);
3088 		goto err_device;
3089 	}
3090 
3091 	/* Target expects 32 bit DMA. Enforce it. */
3092 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3093 	if (ret) {
3094 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3095 		goto err_region;
3096 	}
3097 
3098 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3099 	if (ret) {
3100 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3101 			   ret);
3102 		goto err_region;
3103 	}
3104 
3105 	pci_set_master(pdev);
3106 
3107 	/* Arrange for access to Target SoC registers. */
3108 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3109 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3110 	if (!ar_pci->mem) {
3111 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3112 		ret = -EIO;
3113 		goto err_master;
3114 	}
3115 
3116 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3117 	return 0;
3118 
3119 err_master:
3120 	pci_clear_master(pdev);
3121 
3122 err_region:
3123 	pci_release_region(pdev, BAR_NUM);
3124 
3125 err_device:
3126 	pci_disable_device(pdev);
3127 
3128 	return ret;
3129 }
3130 
3131 static void ath10k_pci_release(struct ath10k *ar)
3132 {
3133 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3134 	struct pci_dev *pdev = ar_pci->pdev;
3135 
3136 	pci_iounmap(pdev, ar_pci->mem);
3137 	pci_release_region(pdev, BAR_NUM);
3138 	pci_clear_master(pdev);
3139 	pci_disable_device(pdev);
3140 }
3141 
3142 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3143 {
3144 	const struct ath10k_pci_supp_chip *supp_chip;
3145 	int i;
3146 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3147 
3148 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3149 		supp_chip = &ath10k_pci_supp_chips[i];
3150 
3151 		if (supp_chip->dev_id == dev_id &&
3152 		    supp_chip->rev_id == rev_id)
3153 			return true;
3154 	}
3155 
3156 	return false;
3157 }
3158 
3159 int ath10k_pci_setup_resource(struct ath10k *ar)
3160 {
3161 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3162 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3163 	int ret;
3164 
3165 	spin_lock_init(&ce->ce_lock);
3166 	spin_lock_init(&ar_pci->ps_lock);
3167 
3168 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3169 
3170 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3171 		ath10k_pci_override_ce_config(ar);
3172 
3173 	ret = ath10k_pci_alloc_pipes(ar);
3174 	if (ret) {
3175 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3176 			   ret);
3177 		return ret;
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 void ath10k_pci_release_resource(struct ath10k *ar)
3184 {
3185 	ath10k_pci_rx_retry_sync(ar);
3186 	netif_napi_del(&ar->napi);
3187 	ath10k_pci_ce_deinit(ar);
3188 	ath10k_pci_free_pipes(ar);
3189 }
3190 
3191 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3192 	.read32		= ath10k_bus_pci_read32,
3193 	.write32	= ath10k_bus_pci_write32,
3194 	.get_num_banks	= ath10k_pci_get_num_banks,
3195 };
3196 
3197 static int ath10k_pci_probe(struct pci_dev *pdev,
3198 			    const struct pci_device_id *pci_dev)
3199 {
3200 	int ret = 0;
3201 	struct ath10k *ar;
3202 	struct ath10k_pci *ar_pci;
3203 	enum ath10k_hw_rev hw_rev;
3204 	u32 chip_id;
3205 	bool pci_ps;
3206 	int (*pci_soft_reset)(struct ath10k *ar);
3207 	int (*pci_hard_reset)(struct ath10k *ar);
3208 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3209 
3210 	switch (pci_dev->device) {
3211 	case QCA988X_2_0_DEVICE_ID:
3212 		hw_rev = ATH10K_HW_QCA988X;
3213 		pci_ps = false;
3214 		pci_soft_reset = ath10k_pci_warm_reset;
3215 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3216 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3217 		break;
3218 	case QCA9887_1_0_DEVICE_ID:
3219 		hw_rev = ATH10K_HW_QCA9887;
3220 		pci_ps = false;
3221 		pci_soft_reset = ath10k_pci_warm_reset;
3222 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3223 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3224 		break;
3225 	case QCA6164_2_1_DEVICE_ID:
3226 	case QCA6174_2_1_DEVICE_ID:
3227 		hw_rev = ATH10K_HW_QCA6174;
3228 		pci_ps = true;
3229 		pci_soft_reset = ath10k_pci_warm_reset;
3230 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3231 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3232 		break;
3233 	case QCA99X0_2_0_DEVICE_ID:
3234 		hw_rev = ATH10K_HW_QCA99X0;
3235 		pci_ps = false;
3236 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3237 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3238 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3239 		break;
3240 	case QCA9984_1_0_DEVICE_ID:
3241 		hw_rev = ATH10K_HW_QCA9984;
3242 		pci_ps = false;
3243 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3244 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3245 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3246 		break;
3247 	case QCA9888_2_0_DEVICE_ID:
3248 		hw_rev = ATH10K_HW_QCA9888;
3249 		pci_ps = false;
3250 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3251 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3252 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3253 		break;
3254 	case QCA9377_1_0_DEVICE_ID:
3255 		hw_rev = ATH10K_HW_QCA9377;
3256 		pci_ps = true;
3257 		pci_soft_reset = NULL;
3258 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3259 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3260 		break;
3261 	default:
3262 		WARN_ON(1);
3263 		return -ENOTSUPP;
3264 	}
3265 
3266 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3267 				hw_rev, &ath10k_pci_hif_ops);
3268 	if (!ar) {
3269 		dev_err(&pdev->dev, "failed to allocate core\n");
3270 		return -ENOMEM;
3271 	}
3272 
3273 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3274 		   pdev->vendor, pdev->device,
3275 		   pdev->subsystem_vendor, pdev->subsystem_device);
3276 
3277 	ar_pci = ath10k_pci_priv(ar);
3278 	ar_pci->pdev = pdev;
3279 	ar_pci->dev = &pdev->dev;
3280 	ar_pci->ar = ar;
3281 	ar->dev_id = pci_dev->device;
3282 	ar_pci->pci_ps = pci_ps;
3283 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3284 	ar_pci->pci_soft_reset = pci_soft_reset;
3285 	ar_pci->pci_hard_reset = pci_hard_reset;
3286 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3287 	ar->ce_priv = &ar_pci->ce;
3288 
3289 	ar->id.vendor = pdev->vendor;
3290 	ar->id.device = pdev->device;
3291 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3292 	ar->id.subsystem_device = pdev->subsystem_device;
3293 
3294 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3295 
3296 	ret = ath10k_pci_setup_resource(ar);
3297 	if (ret) {
3298 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3299 		goto err_core_destroy;
3300 	}
3301 
3302 	ret = ath10k_pci_claim(ar);
3303 	if (ret) {
3304 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3305 		goto err_free_pipes;
3306 	}
3307 
3308 	ret = ath10k_pci_force_wake(ar);
3309 	if (ret) {
3310 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3311 		goto err_sleep;
3312 	}
3313 
3314 	ath10k_pci_ce_deinit(ar);
3315 	ath10k_pci_irq_disable(ar);
3316 
3317 	ret = ath10k_pci_init_irq(ar);
3318 	if (ret) {
3319 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3320 		goto err_sleep;
3321 	}
3322 
3323 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3324 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3325 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3326 
3327 	ret = ath10k_pci_request_irq(ar);
3328 	if (ret) {
3329 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3330 		goto err_deinit_irq;
3331 	}
3332 
3333 	ret = ath10k_pci_chip_reset(ar);
3334 	if (ret) {
3335 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3336 		goto err_free_irq;
3337 	}
3338 
3339 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3340 	if (chip_id == 0xffffffff) {
3341 		ath10k_err(ar, "failed to get chip id\n");
3342 		goto err_free_irq;
3343 	}
3344 
3345 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3346 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3347 			   pdev->device, chip_id);
3348 		goto err_free_irq;
3349 	}
3350 
3351 	ret = ath10k_core_register(ar, chip_id);
3352 	if (ret) {
3353 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3354 		goto err_free_irq;
3355 	}
3356 
3357 	return 0;
3358 
3359 err_free_irq:
3360 	ath10k_pci_free_irq(ar);
3361 	ath10k_pci_rx_retry_sync(ar);
3362 
3363 err_deinit_irq:
3364 	ath10k_pci_deinit_irq(ar);
3365 
3366 err_sleep:
3367 	ath10k_pci_sleep_sync(ar);
3368 	ath10k_pci_release(ar);
3369 
3370 err_free_pipes:
3371 	ath10k_pci_free_pipes(ar);
3372 
3373 err_core_destroy:
3374 	ath10k_core_destroy(ar);
3375 
3376 	return ret;
3377 }
3378 
3379 static void ath10k_pci_remove(struct pci_dev *pdev)
3380 {
3381 	struct ath10k *ar = pci_get_drvdata(pdev);
3382 	struct ath10k_pci *ar_pci;
3383 
3384 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3385 
3386 	if (!ar)
3387 		return;
3388 
3389 	ar_pci = ath10k_pci_priv(ar);
3390 
3391 	if (!ar_pci)
3392 		return;
3393 
3394 	ath10k_core_unregister(ar);
3395 	ath10k_pci_free_irq(ar);
3396 	ath10k_pci_deinit_irq(ar);
3397 	ath10k_pci_release_resource(ar);
3398 	ath10k_pci_sleep_sync(ar);
3399 	ath10k_pci_release(ar);
3400 	ath10k_core_destroy(ar);
3401 }
3402 
3403 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3404 
3405 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3406 {
3407 	struct ath10k *ar = dev_get_drvdata(dev);
3408 	int ret;
3409 
3410 	ret = ath10k_pci_suspend(ar);
3411 	if (ret)
3412 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3413 
3414 	return ret;
3415 }
3416 
3417 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3418 {
3419 	struct ath10k *ar = dev_get_drvdata(dev);
3420 	int ret;
3421 
3422 	ret = ath10k_pci_resume(ar);
3423 	if (ret)
3424 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3425 
3426 	return ret;
3427 }
3428 
3429 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3430 			 ath10k_pci_pm_suspend,
3431 			 ath10k_pci_pm_resume);
3432 
3433 static struct pci_driver ath10k_pci_driver = {
3434 	.name = "ath10k_pci",
3435 	.id_table = ath10k_pci_id_table,
3436 	.probe = ath10k_pci_probe,
3437 	.remove = ath10k_pci_remove,
3438 #ifdef CONFIG_PM
3439 	.driver.pm = &ath10k_pci_pm_ops,
3440 #endif
3441 };
3442 
3443 static int __init ath10k_pci_init(void)
3444 {
3445 	int ret;
3446 
3447 	ret = pci_register_driver(&ath10k_pci_driver);
3448 	if (ret)
3449 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3450 		       ret);
3451 
3452 	ret = ath10k_ahb_init();
3453 	if (ret)
3454 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3455 
3456 	return ret;
3457 }
3458 module_init(ath10k_pci_init);
3459 
3460 static void __exit ath10k_pci_exit(void)
3461 {
3462 	pci_unregister_driver(&ath10k_pci_driver);
3463 	ath10k_ahb_exit();
3464 }
3465 
3466 module_exit(ath10k_pci_exit);
3467 
3468 MODULE_AUTHOR("Qualcomm Atheros");
3469 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3470 MODULE_LICENSE("Dual BSD/GPL");
3471 
3472 /* QCA988x 2.0 firmware files */
3473 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3474 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3475 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3476 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3477 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3478 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3479 
3480 /* QCA9887 1.0 firmware files */
3481 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3482 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3483 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3484 
3485 /* QCA6174 2.1 firmware files */
3486 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3487 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3488 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3489 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3490 
3491 /* QCA6174 3.1 firmware files */
3492 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3493 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3494 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3495 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3496 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3497 
3498 /* QCA9377 1.0 firmware files */
3499 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3500 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3501