xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision e5c86679)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 			       struct ath10k_ce_pipe *rx_pipe,
106 			       struct bmi_xfer *xfer);
107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
114 
115 static struct ce_attr host_ce_config_wlan[] = {
116 	/* CE0: host->target HTC control and raw streams */
117 	{
118 		.flags = CE_ATTR_FLAGS,
119 		.src_nentries = 16,
120 		.src_sz_max = 256,
121 		.dest_nentries = 0,
122 		.send_cb = ath10k_pci_htc_tx_cb,
123 	},
124 
125 	/* CE1: target->host HTT + HTC control */
126 	{
127 		.flags = CE_ATTR_FLAGS,
128 		.src_nentries = 0,
129 		.src_sz_max = 2048,
130 		.dest_nentries = 512,
131 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
132 	},
133 
134 	/* CE2: target->host WMI */
135 	{
136 		.flags = CE_ATTR_FLAGS,
137 		.src_nentries = 0,
138 		.src_sz_max = 2048,
139 		.dest_nentries = 128,
140 		.recv_cb = ath10k_pci_htc_rx_cb,
141 	},
142 
143 	/* CE3: host->target WMI */
144 	{
145 		.flags = CE_ATTR_FLAGS,
146 		.src_nentries = 32,
147 		.src_sz_max = 2048,
148 		.dest_nentries = 0,
149 		.send_cb = ath10k_pci_htc_tx_cb,
150 	},
151 
152 	/* CE4: host->target HTT */
153 	{
154 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 		.src_sz_max = 256,
157 		.dest_nentries = 0,
158 		.send_cb = ath10k_pci_htt_tx_cb,
159 	},
160 
161 	/* CE5: target->host HTT (HIF->HTT) */
162 	{
163 		.flags = CE_ATTR_FLAGS,
164 		.src_nentries = 0,
165 		.src_sz_max = 512,
166 		.dest_nentries = 512,
167 		.recv_cb = ath10k_pci_htt_rx_cb,
168 	},
169 
170 	/* CE6: target autonomous hif_memcpy */
171 	{
172 		.flags = CE_ATTR_FLAGS,
173 		.src_nentries = 0,
174 		.src_sz_max = 0,
175 		.dest_nentries = 0,
176 	},
177 
178 	/* CE7: ce_diag, the Diagnostic Window */
179 	{
180 		.flags = CE_ATTR_FLAGS,
181 		.src_nentries = 2,
182 		.src_sz_max = DIAG_TRANSFER_LIMIT,
183 		.dest_nentries = 2,
184 	},
185 
186 	/* CE8: target->host pktlog */
187 	{
188 		.flags = CE_ATTR_FLAGS,
189 		.src_nentries = 0,
190 		.src_sz_max = 2048,
191 		.dest_nentries = 128,
192 		.recv_cb = ath10k_pci_pktlog_rx_cb,
193 	},
194 
195 	/* CE9 target autonomous qcache memcpy */
196 	{
197 		.flags = CE_ATTR_FLAGS,
198 		.src_nentries = 0,
199 		.src_sz_max = 0,
200 		.dest_nentries = 0,
201 	},
202 
203 	/* CE10: target autonomous hif memcpy */
204 	{
205 		.flags = CE_ATTR_FLAGS,
206 		.src_nentries = 0,
207 		.src_sz_max = 0,
208 		.dest_nentries = 0,
209 	},
210 
211 	/* CE11: target autonomous hif memcpy */
212 	{
213 		.flags = CE_ATTR_FLAGS,
214 		.src_nentries = 0,
215 		.src_sz_max = 0,
216 		.dest_nentries = 0,
217 	},
218 };
219 
220 /* Target firmware's Copy Engine configuration. */
221 static struct ce_pipe_config target_ce_config_wlan[] = {
222 	/* CE0: host->target HTC control and raw streams */
223 	{
224 		.pipenum = __cpu_to_le32(0),
225 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 		.nentries = __cpu_to_le32(32),
227 		.nbytes_max = __cpu_to_le32(256),
228 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 		.reserved = __cpu_to_le32(0),
230 	},
231 
232 	/* CE1: target->host HTT + HTC control */
233 	{
234 		.pipenum = __cpu_to_le32(1),
235 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
236 		.nentries = __cpu_to_le32(32),
237 		.nbytes_max = __cpu_to_le32(2048),
238 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 		.reserved = __cpu_to_le32(0),
240 	},
241 
242 	/* CE2: target->host WMI */
243 	{
244 		.pipenum = __cpu_to_le32(2),
245 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
246 		.nentries = __cpu_to_le32(64),
247 		.nbytes_max = __cpu_to_le32(2048),
248 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 		.reserved = __cpu_to_le32(0),
250 	},
251 
252 	/* CE3: host->target WMI */
253 	{
254 		.pipenum = __cpu_to_le32(3),
255 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 		.nentries = __cpu_to_le32(32),
257 		.nbytes_max = __cpu_to_le32(2048),
258 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 		.reserved = __cpu_to_le32(0),
260 	},
261 
262 	/* CE4: host->target HTT */
263 	{
264 		.pipenum = __cpu_to_le32(4),
265 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 		.nentries = __cpu_to_le32(256),
267 		.nbytes_max = __cpu_to_le32(256),
268 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 		.reserved = __cpu_to_le32(0),
270 	},
271 
272 	/* NB: 50% of src nentries, since tx has 2 frags */
273 
274 	/* CE5: target->host HTT (HIF->HTT) */
275 	{
276 		.pipenum = __cpu_to_le32(5),
277 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
278 		.nentries = __cpu_to_le32(32),
279 		.nbytes_max = __cpu_to_le32(512),
280 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 		.reserved = __cpu_to_le32(0),
282 	},
283 
284 	/* CE6: Reserved for target autonomous hif_memcpy */
285 	{
286 		.pipenum = __cpu_to_le32(6),
287 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 		.nentries = __cpu_to_le32(32),
289 		.nbytes_max = __cpu_to_le32(4096),
290 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 		.reserved = __cpu_to_le32(0),
292 	},
293 
294 	/* CE7 used only by Host */
295 	{
296 		.pipenum = __cpu_to_le32(7),
297 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 		.nentries = __cpu_to_le32(0),
299 		.nbytes_max = __cpu_to_le32(0),
300 		.flags = __cpu_to_le32(0),
301 		.reserved = __cpu_to_le32(0),
302 	},
303 
304 	/* CE8 target->host packtlog */
305 	{
306 		.pipenum = __cpu_to_le32(8),
307 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
308 		.nentries = __cpu_to_le32(64),
309 		.nbytes_max = __cpu_to_le32(2048),
310 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 		.reserved = __cpu_to_le32(0),
312 	},
313 
314 	/* CE9 target autonomous qcache memcpy */
315 	{
316 		.pipenum = __cpu_to_le32(9),
317 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 		.nentries = __cpu_to_le32(32),
319 		.nbytes_max = __cpu_to_le32(2048),
320 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 		.reserved = __cpu_to_le32(0),
322 	},
323 
324 	/* It not necessary to send target wlan configuration for CE10 & CE11
325 	 * as these CEs are not actively used in target.
326 	 */
327 };
328 
329 /*
330  * Map from service/endpoint to Copy Engine.
331  * This table is derived from the CE_PCI TABLE, above.
332  * It is passed to the Target at startup for use by firmware.
333  */
334 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
335 	{
336 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
338 		__cpu_to_le32(3),
339 	},
340 	{
341 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
343 		__cpu_to_le32(2),
344 	},
345 	{
346 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
348 		__cpu_to_le32(3),
349 	},
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
353 		__cpu_to_le32(2),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
358 		__cpu_to_le32(3),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
363 		__cpu_to_le32(2),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
368 		__cpu_to_le32(3),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
373 		__cpu_to_le32(2),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
378 		__cpu_to_le32(3),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
383 		__cpu_to_le32(2),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
388 		__cpu_to_le32(0),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
393 		__cpu_to_le32(1),
394 	},
395 	{ /* not used */
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
398 		__cpu_to_le32(0),
399 	},
400 	{ /* not used */
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
403 		__cpu_to_le32(1),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
408 		__cpu_to_le32(4),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
413 		__cpu_to_le32(5),
414 	},
415 
416 	/* (Additions here) */
417 
418 	{ /* must be last */
419 		__cpu_to_le32(0),
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 	},
423 };
424 
425 static bool ath10k_pci_is_awake(struct ath10k *ar)
426 {
427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 			   RTC_STATE_ADDRESS);
430 
431 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
432 }
433 
434 static void __ath10k_pci_wake(struct ath10k *ar)
435 {
436 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
437 
438 	lockdep_assert_held(&ar_pci->ps_lock);
439 
440 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
442 
443 	iowrite32(PCIE_SOC_WAKE_V_MASK,
444 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 		  PCIE_SOC_WAKE_ADDRESS);
446 }
447 
448 static void __ath10k_pci_sleep(struct ath10k *ar)
449 {
450 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
451 
452 	lockdep_assert_held(&ar_pci->ps_lock);
453 
454 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
456 
457 	iowrite32(PCIE_SOC_WAKE_RESET,
458 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 		  PCIE_SOC_WAKE_ADDRESS);
460 	ar_pci->ps_awake = false;
461 }
462 
463 static int ath10k_pci_wake_wait(struct ath10k *ar)
464 {
465 	int tot_delay = 0;
466 	int curr_delay = 5;
467 
468 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 		if (ath10k_pci_is_awake(ar)) {
470 			if (tot_delay > PCIE_WAKE_LATE_US)
471 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 					    tot_delay / 1000);
473 			return 0;
474 		}
475 
476 		udelay(curr_delay);
477 		tot_delay += curr_delay;
478 
479 		if (curr_delay < 50)
480 			curr_delay += 5;
481 	}
482 
483 	return -ETIMEDOUT;
484 }
485 
486 static int ath10k_pci_force_wake(struct ath10k *ar)
487 {
488 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 	unsigned long flags;
490 	int ret = 0;
491 
492 	if (ar_pci->pci_ps)
493 		return ret;
494 
495 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
496 
497 	if (!ar_pci->ps_awake) {
498 		iowrite32(PCIE_SOC_WAKE_V_MASK,
499 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 			  PCIE_SOC_WAKE_ADDRESS);
501 
502 		ret = ath10k_pci_wake_wait(ar);
503 		if (ret == 0)
504 			ar_pci->ps_awake = true;
505 	}
506 
507 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
508 
509 	return ret;
510 }
511 
512 static void ath10k_pci_force_sleep(struct ath10k *ar)
513 {
514 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
518 
519 	iowrite32(PCIE_SOC_WAKE_RESET,
520 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 		  PCIE_SOC_WAKE_ADDRESS);
522 	ar_pci->ps_awake = false;
523 
524 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
525 }
526 
527 static int ath10k_pci_wake(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 	int ret = 0;
532 
533 	if (ar_pci->pci_ps == 0)
534 		return ret;
535 
536 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
537 
538 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
540 
541 	/* This function can be called very frequently. To avoid excessive
542 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
543 	 */
544 	if (!ar_pci->ps_awake) {
545 		__ath10k_pci_wake(ar);
546 
547 		ret = ath10k_pci_wake_wait(ar);
548 		if (ret == 0)
549 			ar_pci->ps_awake = true;
550 	}
551 
552 	if (ret == 0) {
553 		ar_pci->ps_wake_refcount++;
554 		WARN_ON(ar_pci->ps_wake_refcount == 0);
555 	}
556 
557 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
558 
559 	return ret;
560 }
561 
562 static void ath10k_pci_sleep(struct ath10k *ar)
563 {
564 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 	unsigned long flags;
566 
567 	if (ar_pci->pci_ps == 0)
568 		return;
569 
570 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
571 
572 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
574 
575 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 		goto skip;
577 
578 	ar_pci->ps_wake_refcount--;
579 
580 	mod_timer(&ar_pci->ps_timer, jiffies +
581 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
582 
583 skip:
584 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
585 }
586 
587 static void ath10k_pci_ps_timer(unsigned long ptr)
588 {
589 	struct ath10k *ar = (void *)ptr;
590 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 	unsigned long flags;
592 
593 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
594 
595 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
597 
598 	if (ar_pci->ps_wake_refcount > 0)
599 		goto skip;
600 
601 	__ath10k_pci_sleep(ar);
602 
603 skip:
604 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
605 }
606 
607 static void ath10k_pci_sleep_sync(struct ath10k *ar)
608 {
609 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 	unsigned long flags;
611 
612 	if (ar_pci->pci_ps == 0) {
613 		ath10k_pci_force_sleep(ar);
614 		return;
615 	}
616 
617 	del_timer_sync(&ar_pci->ps_timer);
618 
619 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 	WARN_ON(ar_pci->ps_wake_refcount > 0);
621 	__ath10k_pci_sleep(ar);
622 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
623 }
624 
625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
626 {
627 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 	int ret;
629 
630 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 			    offset, offset + sizeof(value), ar_pci->mem_len);
633 		return;
634 	}
635 
636 	ret = ath10k_pci_wake(ar);
637 	if (ret) {
638 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 			    value, offset, ret);
640 		return;
641 	}
642 
643 	iowrite32(value, ar_pci->mem + offset);
644 	ath10k_pci_sleep(ar);
645 }
646 
647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
648 {
649 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 	u32 val;
651 	int ret;
652 
653 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 			    offset, offset + sizeof(val), ar_pci->mem_len);
656 		return 0;
657 	}
658 
659 	ret = ath10k_pci_wake(ar);
660 	if (ret) {
661 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 			    offset, ret);
663 		return 0xffffffff;
664 	}
665 
666 	val = ioread32(ar_pci->mem + offset);
667 	ath10k_pci_sleep(ar);
668 
669 	return val;
670 }
671 
672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
673 {
674 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
675 
676 	ar_pci->bus_ops->write32(ar, offset, value);
677 }
678 
679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
680 {
681 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
682 
683 	return ar_pci->bus_ops->read32(ar, offset);
684 }
685 
686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
687 {
688 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
689 }
690 
691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
692 {
693 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
694 }
695 
696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
697 {
698 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
699 }
700 
701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
702 {
703 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
704 }
705 
706 bool ath10k_pci_irq_pending(struct ath10k *ar)
707 {
708 	u32 cause;
709 
710 	/* Check if the shared legacy irq is for us */
711 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 				  PCIE_INTR_CAUSE_ADDRESS);
713 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 		return true;
715 
716 	return false;
717 }
718 
719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
720 {
721 	/* IMPORTANT: INTR_CLR register has to be set after
722 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 	 * really cleared. */
724 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
725 			   0);
726 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
727 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
728 
729 	/* IMPORTANT: this extra read transaction is required to
730 	 * flush the posted write buffer. */
731 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
732 				PCIE_INTR_ENABLE_ADDRESS);
733 }
734 
735 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
736 {
737 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
738 			   PCIE_INTR_ENABLE_ADDRESS,
739 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
740 
741 	/* IMPORTANT: this extra read transaction is required to
742 	 * flush the posted write buffer. */
743 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
744 				PCIE_INTR_ENABLE_ADDRESS);
745 }
746 
747 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
748 {
749 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
750 
751 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
752 		return "msi";
753 
754 	return "legacy";
755 }
756 
757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
758 {
759 	struct ath10k *ar = pipe->hif_ce_state;
760 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 	struct sk_buff *skb;
763 	dma_addr_t paddr;
764 	int ret;
765 
766 	skb = dev_alloc_skb(pipe->buf_sz);
767 	if (!skb)
768 		return -ENOMEM;
769 
770 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
771 
772 	paddr = dma_map_single(ar->dev, skb->data,
773 			       skb->len + skb_tailroom(skb),
774 			       DMA_FROM_DEVICE);
775 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 		dev_kfree_skb_any(skb);
778 		return -EIO;
779 	}
780 
781 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
782 
783 	spin_lock_bh(&ar_pci->ce_lock);
784 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 	spin_unlock_bh(&ar_pci->ce_lock);
786 	if (ret) {
787 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 				 DMA_FROM_DEVICE);
789 		dev_kfree_skb_any(skb);
790 		return ret;
791 	}
792 
793 	return 0;
794 }
795 
796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
797 {
798 	struct ath10k *ar = pipe->hif_ce_state;
799 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 	int ret, num;
802 
803 	if (pipe->buf_sz == 0)
804 		return;
805 
806 	if (!ce_pipe->dest_ring)
807 		return;
808 
809 	spin_lock_bh(&ar_pci->ce_lock);
810 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 	spin_unlock_bh(&ar_pci->ce_lock);
812 
813 	while (num >= 0) {
814 		ret = __ath10k_pci_rx_post_buf(pipe);
815 		if (ret) {
816 			if (ret == -ENOSPC)
817 				break;
818 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
819 			mod_timer(&ar_pci->rx_post_retry, jiffies +
820 				  ATH10K_PCI_RX_POST_RETRY_MS);
821 			break;
822 		}
823 		num--;
824 	}
825 }
826 
827 void ath10k_pci_rx_post(struct ath10k *ar)
828 {
829 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
830 	int i;
831 
832 	for (i = 0; i < CE_COUNT; i++)
833 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
834 }
835 
836 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
837 {
838 	struct ath10k *ar = (void *)ptr;
839 
840 	ath10k_pci_rx_post(ar);
841 }
842 
843 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
844 {
845 	u32 val = 0, region = addr & 0xfffff;
846 
847 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
848 				 & 0x7ff) << 21;
849 	val |= 0x100000 | region;
850 	return val;
851 }
852 
853 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
854 {
855 	u32 val = 0, region = addr & 0xfffff;
856 
857 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
858 	val |= 0x100000 | region;
859 	return val;
860 }
861 
862 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
863 {
864 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
865 
866 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
867 		return -ENOTSUPP;
868 
869 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
870 }
871 
872 /*
873  * Diagnostic read/write access is provided for startup/config/debug usage.
874  * Caller must guarantee proper alignment, when applicable, and single user
875  * at any moment.
876  */
877 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
878 				    int nbytes)
879 {
880 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
881 	int ret = 0;
882 	u32 *buf;
883 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
884 	struct ath10k_ce_pipe *ce_diag;
885 	/* Host buffer address in CE space */
886 	u32 ce_data;
887 	dma_addr_t ce_data_base = 0;
888 	void *data_buf = NULL;
889 	int i;
890 
891 	spin_lock_bh(&ar_pci->ce_lock);
892 
893 	ce_diag = ar_pci->ce_diag;
894 
895 	/*
896 	 * Allocate a temporary bounce buffer to hold caller's data
897 	 * to be DMA'ed from Target. This guarantees
898 	 *   1) 4-byte alignment
899 	 *   2) Buffer in DMA-able space
900 	 */
901 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
902 
903 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
904 						       alloc_nbytes,
905 						       &ce_data_base,
906 						       GFP_ATOMIC);
907 
908 	if (!data_buf) {
909 		ret = -ENOMEM;
910 		goto done;
911 	}
912 
913 	remaining_bytes = nbytes;
914 	ce_data = ce_data_base;
915 	while (remaining_bytes) {
916 		nbytes = min_t(unsigned int, remaining_bytes,
917 			       DIAG_TRANSFER_LIMIT);
918 
919 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
920 		if (ret != 0)
921 			goto done;
922 
923 		/* Request CE to send from Target(!) address to Host buffer */
924 		/*
925 		 * The address supplied by the caller is in the
926 		 * Target CPU virtual address space.
927 		 *
928 		 * In order to use this address with the diagnostic CE,
929 		 * convert it from Target CPU virtual address space
930 		 * to CE address space
931 		 */
932 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
933 
934 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
935 					    0);
936 		if (ret)
937 			goto done;
938 
939 		i = 0;
940 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
941 							    NULL) != 0) {
942 			mdelay(1);
943 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
944 				ret = -EBUSY;
945 				goto done;
946 			}
947 		}
948 
949 		i = 0;
950 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
951 							    (void **)&buf,
952 							    &completed_nbytes)
953 								!= 0) {
954 			mdelay(1);
955 
956 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
957 				ret = -EBUSY;
958 				goto done;
959 			}
960 		}
961 
962 		if (nbytes != completed_nbytes) {
963 			ret = -EIO;
964 			goto done;
965 		}
966 
967 		if (*buf != ce_data) {
968 			ret = -EIO;
969 			goto done;
970 		}
971 
972 		remaining_bytes -= nbytes;
973 
974 		if (ret) {
975 			ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
976 				    address, ret);
977 			break;
978 		}
979 		memcpy(data, data_buf, nbytes);
980 
981 		address += nbytes;
982 		data += nbytes;
983 	}
984 
985 done:
986 
987 	if (data_buf)
988 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
989 				  ce_data_base);
990 
991 	spin_unlock_bh(&ar_pci->ce_lock);
992 
993 	return ret;
994 }
995 
996 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
997 {
998 	__le32 val = 0;
999 	int ret;
1000 
1001 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1002 	*value = __le32_to_cpu(val);
1003 
1004 	return ret;
1005 }
1006 
1007 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1008 				     u32 src, u32 len)
1009 {
1010 	u32 host_addr, addr;
1011 	int ret;
1012 
1013 	host_addr = host_interest_item_address(src);
1014 
1015 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1016 	if (ret != 0) {
1017 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1018 			    src, ret);
1019 		return ret;
1020 	}
1021 
1022 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1023 	if (ret != 0) {
1024 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1025 			    addr, len, ret);
1026 		return ret;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1033 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1034 
1035 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1036 			      const void *data, int nbytes)
1037 {
1038 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1039 	int ret = 0;
1040 	u32 *buf;
1041 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1042 	struct ath10k_ce_pipe *ce_diag;
1043 	void *data_buf = NULL;
1044 	u32 ce_data;	/* Host buffer address in CE space */
1045 	dma_addr_t ce_data_base = 0;
1046 	int i;
1047 
1048 	spin_lock_bh(&ar_pci->ce_lock);
1049 
1050 	ce_diag = ar_pci->ce_diag;
1051 
1052 	/*
1053 	 * Allocate a temporary bounce buffer to hold caller's data
1054 	 * to be DMA'ed to Target. This guarantees
1055 	 *   1) 4-byte alignment
1056 	 *   2) Buffer in DMA-able space
1057 	 */
1058 	orig_nbytes = nbytes;
1059 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1060 						       orig_nbytes,
1061 						       &ce_data_base,
1062 						       GFP_ATOMIC);
1063 	if (!data_buf) {
1064 		ret = -ENOMEM;
1065 		goto done;
1066 	}
1067 
1068 	/* Copy caller's data to allocated DMA buf */
1069 	memcpy(data_buf, data, orig_nbytes);
1070 
1071 	/*
1072 	 * The address supplied by the caller is in the
1073 	 * Target CPU virtual address space.
1074 	 *
1075 	 * In order to use this address with the diagnostic CE,
1076 	 * convert it from
1077 	 *    Target CPU virtual address space
1078 	 * to
1079 	 *    CE address space
1080 	 */
1081 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1082 
1083 	remaining_bytes = orig_nbytes;
1084 	ce_data = ce_data_base;
1085 	while (remaining_bytes) {
1086 		/* FIXME: check cast */
1087 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1088 
1089 		/* Set up to receive directly into Target(!) address */
1090 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1091 		if (ret != 0)
1092 			goto done;
1093 
1094 		/*
1095 		 * Request CE to send caller-supplied data that
1096 		 * was copied to bounce buffer to Target(!) address.
1097 		 */
1098 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1099 					    nbytes, 0, 0);
1100 		if (ret != 0)
1101 			goto done;
1102 
1103 		i = 0;
1104 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1105 							    NULL) != 0) {
1106 			mdelay(1);
1107 
1108 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1109 				ret = -EBUSY;
1110 				goto done;
1111 			}
1112 		}
1113 
1114 		i = 0;
1115 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1116 							    (void **)&buf,
1117 							    &completed_nbytes)
1118 								!= 0) {
1119 			mdelay(1);
1120 
1121 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1122 				ret = -EBUSY;
1123 				goto done;
1124 			}
1125 		}
1126 
1127 		if (nbytes != completed_nbytes) {
1128 			ret = -EIO;
1129 			goto done;
1130 		}
1131 
1132 		if (*buf != address) {
1133 			ret = -EIO;
1134 			goto done;
1135 		}
1136 
1137 		remaining_bytes -= nbytes;
1138 		address += nbytes;
1139 		ce_data += nbytes;
1140 	}
1141 
1142 done:
1143 	if (data_buf) {
1144 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1145 				  ce_data_base);
1146 	}
1147 
1148 	if (ret != 0)
1149 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1150 			    address, ret);
1151 
1152 	spin_unlock_bh(&ar_pci->ce_lock);
1153 
1154 	return ret;
1155 }
1156 
1157 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1158 {
1159 	__le32 val = __cpu_to_le32(value);
1160 
1161 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1162 }
1163 
1164 /* Called by lower (CE) layer when a send to Target completes. */
1165 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1166 {
1167 	struct ath10k *ar = ce_state->ar;
1168 	struct sk_buff_head list;
1169 	struct sk_buff *skb;
1170 
1171 	__skb_queue_head_init(&list);
1172 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1173 		/* no need to call tx completion for NULL pointers */
1174 		if (skb == NULL)
1175 			continue;
1176 
1177 		__skb_queue_tail(&list, skb);
1178 	}
1179 
1180 	while ((skb = __skb_dequeue(&list)))
1181 		ath10k_htc_tx_completion_handler(ar, skb);
1182 }
1183 
1184 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1185 				     void (*callback)(struct ath10k *ar,
1186 						      struct sk_buff *skb))
1187 {
1188 	struct ath10k *ar = ce_state->ar;
1189 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1190 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1191 	struct sk_buff *skb;
1192 	struct sk_buff_head list;
1193 	void *transfer_context;
1194 	unsigned int nbytes, max_nbytes;
1195 
1196 	__skb_queue_head_init(&list);
1197 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1198 					     &nbytes) == 0) {
1199 		skb = transfer_context;
1200 		max_nbytes = skb->len + skb_tailroom(skb);
1201 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1202 				 max_nbytes, DMA_FROM_DEVICE);
1203 
1204 		if (unlikely(max_nbytes < nbytes)) {
1205 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1206 				    nbytes, max_nbytes);
1207 			dev_kfree_skb_any(skb);
1208 			continue;
1209 		}
1210 
1211 		skb_put(skb, nbytes);
1212 		__skb_queue_tail(&list, skb);
1213 	}
1214 
1215 	while ((skb = __skb_dequeue(&list))) {
1216 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1217 			   ce_state->id, skb->len);
1218 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1219 				skb->data, skb->len);
1220 
1221 		callback(ar, skb);
1222 	}
1223 
1224 	ath10k_pci_rx_post_pipe(pipe_info);
1225 }
1226 
1227 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1228 					 void (*callback)(struct ath10k *ar,
1229 							  struct sk_buff *skb))
1230 {
1231 	struct ath10k *ar = ce_state->ar;
1232 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1233 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1234 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1235 	struct sk_buff *skb;
1236 	struct sk_buff_head list;
1237 	void *transfer_context;
1238 	unsigned int nbytes, max_nbytes, nentries;
1239 	int orig_len;
1240 
1241 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1242 	 * is processed other than init and deinit. Before releasing CE5
1243 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1244 	 */
1245 	__skb_queue_head_init(&list);
1246 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1247 						    &nbytes) == 0) {
1248 		skb = transfer_context;
1249 		max_nbytes = skb->len + skb_tailroom(skb);
1250 
1251 		if (unlikely(max_nbytes < nbytes)) {
1252 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1253 				    nbytes, max_nbytes);
1254 			continue;
1255 		}
1256 
1257 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1258 					max_nbytes, DMA_FROM_DEVICE);
1259 		skb_put(skb, nbytes);
1260 		__skb_queue_tail(&list, skb);
1261 	}
1262 
1263 	nentries = skb_queue_len(&list);
1264 	while ((skb = __skb_dequeue(&list))) {
1265 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1266 			   ce_state->id, skb->len);
1267 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1268 				skb->data, skb->len);
1269 
1270 		orig_len = skb->len;
1271 		callback(ar, skb);
1272 		skb_push(skb, orig_len - skb->len);
1273 		skb_reset_tail_pointer(skb);
1274 		skb_trim(skb, 0);
1275 
1276 		/*let device gain the buffer again*/
1277 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1278 					   skb->len + skb_tailroom(skb),
1279 					   DMA_FROM_DEVICE);
1280 	}
1281 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1282 }
1283 
1284 /* Called by lower (CE) layer when data is received from the Target. */
1285 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1286 {
1287 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1288 }
1289 
1290 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1291 {
1292 	/* CE4 polling needs to be done whenever CE pipe which transports
1293 	 * HTT Rx (target->host) is processed.
1294 	 */
1295 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1296 
1297 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1298 }
1299 
1300 /* Called by lower (CE) layer when data is received from the Target.
1301  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1302  */
1303 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1304 {
1305 	ath10k_pci_process_rx_cb(ce_state,
1306 				 ath10k_htt_rx_pktlog_completion_handler);
1307 }
1308 
1309 /* Called by lower (CE) layer when a send to HTT Target completes. */
1310 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1311 {
1312 	struct ath10k *ar = ce_state->ar;
1313 	struct sk_buff *skb;
1314 
1315 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1316 		/* no need to call tx completion for NULL pointers */
1317 		if (!skb)
1318 			continue;
1319 
1320 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1321 				 skb->len, DMA_TO_DEVICE);
1322 		ath10k_htt_hif_tx_complete(ar, skb);
1323 	}
1324 }
1325 
1326 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1327 {
1328 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1329 	ath10k_htt_t2h_msg_handler(ar, skb);
1330 }
1331 
1332 /* Called by lower (CE) layer when HTT data is received from the Target. */
1333 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1334 {
1335 	/* CE4 polling needs to be done whenever CE pipe which transports
1336 	 * HTT Rx (target->host) is processed.
1337 	 */
1338 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1339 
1340 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1341 }
1342 
1343 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1344 			 struct ath10k_hif_sg_item *items, int n_items)
1345 {
1346 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1347 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1348 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1349 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1350 	unsigned int nentries_mask;
1351 	unsigned int sw_index;
1352 	unsigned int write_index;
1353 	int err, i = 0;
1354 
1355 	spin_lock_bh(&ar_pci->ce_lock);
1356 
1357 	nentries_mask = src_ring->nentries_mask;
1358 	sw_index = src_ring->sw_index;
1359 	write_index = src_ring->write_index;
1360 
1361 	if (unlikely(CE_RING_DELTA(nentries_mask,
1362 				   write_index, sw_index - 1) < n_items)) {
1363 		err = -ENOBUFS;
1364 		goto err;
1365 	}
1366 
1367 	for (i = 0; i < n_items - 1; i++) {
1368 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1369 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1370 			   i, items[i].paddr, items[i].len, n_items);
1371 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1372 				items[i].vaddr, items[i].len);
1373 
1374 		err = ath10k_ce_send_nolock(ce_pipe,
1375 					    items[i].transfer_context,
1376 					    items[i].paddr,
1377 					    items[i].len,
1378 					    items[i].transfer_id,
1379 					    CE_SEND_FLAG_GATHER);
1380 		if (err)
1381 			goto err;
1382 	}
1383 
1384 	/* `i` is equal to `n_items -1` after for() */
1385 
1386 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1387 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1388 		   i, items[i].paddr, items[i].len, n_items);
1389 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1390 			items[i].vaddr, items[i].len);
1391 
1392 	err = ath10k_ce_send_nolock(ce_pipe,
1393 				    items[i].transfer_context,
1394 				    items[i].paddr,
1395 				    items[i].len,
1396 				    items[i].transfer_id,
1397 				    0);
1398 	if (err)
1399 		goto err;
1400 
1401 	spin_unlock_bh(&ar_pci->ce_lock);
1402 	return 0;
1403 
1404 err:
1405 	for (; i > 0; i--)
1406 		__ath10k_ce_send_revert(ce_pipe);
1407 
1408 	spin_unlock_bh(&ar_pci->ce_lock);
1409 	return err;
1410 }
1411 
1412 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1413 			     size_t buf_len)
1414 {
1415 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1416 }
1417 
1418 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1419 {
1420 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1421 
1422 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1423 
1424 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1425 }
1426 
1427 static void ath10k_pci_dump_registers(struct ath10k *ar,
1428 				      struct ath10k_fw_crash_data *crash_data)
1429 {
1430 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1431 	int i, ret;
1432 
1433 	lockdep_assert_held(&ar->data_lock);
1434 
1435 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1436 				      hi_failure_state,
1437 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1438 	if (ret) {
1439 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1440 		return;
1441 	}
1442 
1443 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1444 
1445 	ath10k_err(ar, "firmware register dump:\n");
1446 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1447 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1448 			   i,
1449 			   __le32_to_cpu(reg_dump_values[i]),
1450 			   __le32_to_cpu(reg_dump_values[i + 1]),
1451 			   __le32_to_cpu(reg_dump_values[i + 2]),
1452 			   __le32_to_cpu(reg_dump_values[i + 3]));
1453 
1454 	if (!crash_data)
1455 		return;
1456 
1457 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1458 		crash_data->registers[i] = reg_dump_values[i];
1459 }
1460 
1461 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1462 {
1463 	struct ath10k_fw_crash_data *crash_data;
1464 	char uuid[50];
1465 
1466 	spin_lock_bh(&ar->data_lock);
1467 
1468 	ar->stats.fw_crash_counter++;
1469 
1470 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1471 
1472 	if (crash_data)
1473 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1474 	else
1475 		scnprintf(uuid, sizeof(uuid), "n/a");
1476 
1477 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1478 	ath10k_print_driver_info(ar);
1479 	ath10k_pci_dump_registers(ar, crash_data);
1480 	ath10k_ce_dump_registers(ar, crash_data);
1481 
1482 	spin_unlock_bh(&ar->data_lock);
1483 
1484 	queue_work(ar->workqueue, &ar->restart_work);
1485 }
1486 
1487 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1488 					int force)
1489 {
1490 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1491 
1492 	if (!force) {
1493 		int resources;
1494 		/*
1495 		 * Decide whether to actually poll for completions, or just
1496 		 * wait for a later chance.
1497 		 * If there seem to be plenty of resources left, then just wait
1498 		 * since checking involves reading a CE register, which is a
1499 		 * relatively expensive operation.
1500 		 */
1501 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1502 
1503 		/*
1504 		 * If at least 50% of the total resources are still available,
1505 		 * don't bother checking again yet.
1506 		 */
1507 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1508 			return;
1509 	}
1510 	ath10k_ce_per_engine_service(ar, pipe);
1511 }
1512 
1513 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1514 {
1515 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1516 
1517 	del_timer_sync(&ar_pci->rx_post_retry);
1518 }
1519 
1520 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1521 				       u8 *ul_pipe, u8 *dl_pipe)
1522 {
1523 	const struct service_to_pipe *entry;
1524 	bool ul_set = false, dl_set = false;
1525 	int i;
1526 
1527 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1528 
1529 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1530 		entry = &target_service_to_ce_map_wlan[i];
1531 
1532 		if (__le32_to_cpu(entry->service_id) != service_id)
1533 			continue;
1534 
1535 		switch (__le32_to_cpu(entry->pipedir)) {
1536 		case PIPEDIR_NONE:
1537 			break;
1538 		case PIPEDIR_IN:
1539 			WARN_ON(dl_set);
1540 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1541 			dl_set = true;
1542 			break;
1543 		case PIPEDIR_OUT:
1544 			WARN_ON(ul_set);
1545 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1546 			ul_set = true;
1547 			break;
1548 		case PIPEDIR_INOUT:
1549 			WARN_ON(dl_set);
1550 			WARN_ON(ul_set);
1551 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1552 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1553 			dl_set = true;
1554 			ul_set = true;
1555 			break;
1556 		}
1557 	}
1558 
1559 	if (WARN_ON(!ul_set || !dl_set))
1560 		return -ENOENT;
1561 
1562 	return 0;
1563 }
1564 
1565 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1566 				     u8 *ul_pipe, u8 *dl_pipe)
1567 {
1568 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1569 
1570 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1571 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1572 						 ul_pipe, dl_pipe);
1573 }
1574 
1575 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1576 {
1577 	u32 val;
1578 
1579 	switch (ar->hw_rev) {
1580 	case ATH10K_HW_QCA988X:
1581 	case ATH10K_HW_QCA9887:
1582 	case ATH10K_HW_QCA6174:
1583 	case ATH10K_HW_QCA9377:
1584 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1585 					CORE_CTRL_ADDRESS);
1586 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1587 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1588 				   CORE_CTRL_ADDRESS, val);
1589 		break;
1590 	case ATH10K_HW_QCA99X0:
1591 	case ATH10K_HW_QCA9984:
1592 	case ATH10K_HW_QCA9888:
1593 	case ATH10K_HW_QCA4019:
1594 		/* TODO: Find appropriate register configuration for QCA99X0
1595 		 *  to mask irq/MSI.
1596 		 */
1597 		break;
1598 	}
1599 }
1600 
1601 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1602 {
1603 	u32 val;
1604 
1605 	switch (ar->hw_rev) {
1606 	case ATH10K_HW_QCA988X:
1607 	case ATH10K_HW_QCA9887:
1608 	case ATH10K_HW_QCA6174:
1609 	case ATH10K_HW_QCA9377:
1610 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1611 					CORE_CTRL_ADDRESS);
1612 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1613 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1614 				   CORE_CTRL_ADDRESS, val);
1615 		break;
1616 	case ATH10K_HW_QCA99X0:
1617 	case ATH10K_HW_QCA9984:
1618 	case ATH10K_HW_QCA9888:
1619 	case ATH10K_HW_QCA4019:
1620 		/* TODO: Find appropriate register configuration for QCA99X0
1621 		 *  to unmask irq/MSI.
1622 		 */
1623 		break;
1624 	}
1625 }
1626 
1627 static void ath10k_pci_irq_disable(struct ath10k *ar)
1628 {
1629 	ath10k_ce_disable_interrupts(ar);
1630 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1631 	ath10k_pci_irq_msi_fw_mask(ar);
1632 }
1633 
1634 static void ath10k_pci_irq_sync(struct ath10k *ar)
1635 {
1636 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1637 
1638 	synchronize_irq(ar_pci->pdev->irq);
1639 }
1640 
1641 static void ath10k_pci_irq_enable(struct ath10k *ar)
1642 {
1643 	ath10k_ce_enable_interrupts(ar);
1644 	ath10k_pci_enable_legacy_irq(ar);
1645 	ath10k_pci_irq_msi_fw_unmask(ar);
1646 }
1647 
1648 static int ath10k_pci_hif_start(struct ath10k *ar)
1649 {
1650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1651 
1652 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1653 
1654 	napi_enable(&ar->napi);
1655 
1656 	ath10k_pci_irq_enable(ar);
1657 	ath10k_pci_rx_post(ar);
1658 
1659 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1660 				   ar_pci->link_ctl);
1661 
1662 	return 0;
1663 }
1664 
1665 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1666 {
1667 	struct ath10k *ar;
1668 	struct ath10k_ce_pipe *ce_pipe;
1669 	struct ath10k_ce_ring *ce_ring;
1670 	struct sk_buff *skb;
1671 	int i;
1672 
1673 	ar = pci_pipe->hif_ce_state;
1674 	ce_pipe = pci_pipe->ce_hdl;
1675 	ce_ring = ce_pipe->dest_ring;
1676 
1677 	if (!ce_ring)
1678 		return;
1679 
1680 	if (!pci_pipe->buf_sz)
1681 		return;
1682 
1683 	for (i = 0; i < ce_ring->nentries; i++) {
1684 		skb = ce_ring->per_transfer_context[i];
1685 		if (!skb)
1686 			continue;
1687 
1688 		ce_ring->per_transfer_context[i] = NULL;
1689 
1690 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1691 				 skb->len + skb_tailroom(skb),
1692 				 DMA_FROM_DEVICE);
1693 		dev_kfree_skb_any(skb);
1694 	}
1695 }
1696 
1697 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1698 {
1699 	struct ath10k *ar;
1700 	struct ath10k_ce_pipe *ce_pipe;
1701 	struct ath10k_ce_ring *ce_ring;
1702 	struct sk_buff *skb;
1703 	int i;
1704 
1705 	ar = pci_pipe->hif_ce_state;
1706 	ce_pipe = pci_pipe->ce_hdl;
1707 	ce_ring = ce_pipe->src_ring;
1708 
1709 	if (!ce_ring)
1710 		return;
1711 
1712 	if (!pci_pipe->buf_sz)
1713 		return;
1714 
1715 	for (i = 0; i < ce_ring->nentries; i++) {
1716 		skb = ce_ring->per_transfer_context[i];
1717 		if (!skb)
1718 			continue;
1719 
1720 		ce_ring->per_transfer_context[i] = NULL;
1721 
1722 		ath10k_htc_tx_completion_handler(ar, skb);
1723 	}
1724 }
1725 
1726 /*
1727  * Cleanup residual buffers for device shutdown:
1728  *    buffers that were enqueued for receive
1729  *    buffers that were to be sent
1730  * Note: Buffers that had completed but which were
1731  * not yet processed are on a completion queue. They
1732  * are handled when the completion thread shuts down.
1733  */
1734 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1735 {
1736 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1737 	int pipe_num;
1738 
1739 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1740 		struct ath10k_pci_pipe *pipe_info;
1741 
1742 		pipe_info = &ar_pci->pipe_info[pipe_num];
1743 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1744 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1745 	}
1746 }
1747 
1748 void ath10k_pci_ce_deinit(struct ath10k *ar)
1749 {
1750 	int i;
1751 
1752 	for (i = 0; i < CE_COUNT; i++)
1753 		ath10k_ce_deinit_pipe(ar, i);
1754 }
1755 
1756 void ath10k_pci_flush(struct ath10k *ar)
1757 {
1758 	ath10k_pci_rx_retry_sync(ar);
1759 	ath10k_pci_buffer_cleanup(ar);
1760 }
1761 
1762 static void ath10k_pci_hif_stop(struct ath10k *ar)
1763 {
1764 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1765 	unsigned long flags;
1766 
1767 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1768 
1769 	/* Most likely the device has HTT Rx ring configured. The only way to
1770 	 * prevent the device from accessing (and possible corrupting) host
1771 	 * memory is to reset the chip now.
1772 	 *
1773 	 * There's also no known way of masking MSI interrupts on the device.
1774 	 * For ranged MSI the CE-related interrupts can be masked. However
1775 	 * regardless how many MSI interrupts are assigned the first one
1776 	 * is always used for firmware indications (crashes) and cannot be
1777 	 * masked. To prevent the device from asserting the interrupt reset it
1778 	 * before proceeding with cleanup.
1779 	 */
1780 	ath10k_pci_safe_chip_reset(ar);
1781 
1782 	ath10k_pci_irq_disable(ar);
1783 	ath10k_pci_irq_sync(ar);
1784 	ath10k_pci_flush(ar);
1785 	napi_synchronize(&ar->napi);
1786 	napi_disable(&ar->napi);
1787 
1788 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1789 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1790 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1791 }
1792 
1793 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1794 				    void *req, u32 req_len,
1795 				    void *resp, u32 *resp_len)
1796 {
1797 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1798 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1799 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1800 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1801 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1802 	dma_addr_t req_paddr = 0;
1803 	dma_addr_t resp_paddr = 0;
1804 	struct bmi_xfer xfer = {};
1805 	void *treq, *tresp = NULL;
1806 	int ret = 0;
1807 
1808 	might_sleep();
1809 
1810 	if (resp && !resp_len)
1811 		return -EINVAL;
1812 
1813 	if (resp && resp_len && *resp_len == 0)
1814 		return -EINVAL;
1815 
1816 	treq = kmemdup(req, req_len, GFP_KERNEL);
1817 	if (!treq)
1818 		return -ENOMEM;
1819 
1820 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1821 	ret = dma_mapping_error(ar->dev, req_paddr);
1822 	if (ret) {
1823 		ret = -EIO;
1824 		goto err_dma;
1825 	}
1826 
1827 	if (resp && resp_len) {
1828 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1829 		if (!tresp) {
1830 			ret = -ENOMEM;
1831 			goto err_req;
1832 		}
1833 
1834 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1835 					    DMA_FROM_DEVICE);
1836 		ret = dma_mapping_error(ar->dev, resp_paddr);
1837 		if (ret) {
1838 			ret = -EIO;
1839 			goto err_req;
1840 		}
1841 
1842 		xfer.wait_for_resp = true;
1843 		xfer.resp_len = 0;
1844 
1845 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1846 	}
1847 
1848 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1849 	if (ret)
1850 		goto err_resp;
1851 
1852 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1853 	if (ret) {
1854 		u32 unused_buffer;
1855 		unsigned int unused_nbytes;
1856 		unsigned int unused_id;
1857 
1858 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1859 					   &unused_nbytes, &unused_id);
1860 	} else {
1861 		/* non-zero means we did not time out */
1862 		ret = 0;
1863 	}
1864 
1865 err_resp:
1866 	if (resp) {
1867 		u32 unused_buffer;
1868 
1869 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1870 		dma_unmap_single(ar->dev, resp_paddr,
1871 				 *resp_len, DMA_FROM_DEVICE);
1872 	}
1873 err_req:
1874 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1875 
1876 	if (ret == 0 && resp_len) {
1877 		*resp_len = min(*resp_len, xfer.resp_len);
1878 		memcpy(resp, tresp, xfer.resp_len);
1879 	}
1880 err_dma:
1881 	kfree(treq);
1882 	kfree(tresp);
1883 
1884 	return ret;
1885 }
1886 
1887 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1888 {
1889 	struct bmi_xfer *xfer;
1890 
1891 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1892 		return;
1893 
1894 	xfer->tx_done = true;
1895 }
1896 
1897 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1898 {
1899 	struct ath10k *ar = ce_state->ar;
1900 	struct bmi_xfer *xfer;
1901 	unsigned int nbytes;
1902 
1903 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1904 					  &nbytes))
1905 		return;
1906 
1907 	if (WARN_ON_ONCE(!xfer))
1908 		return;
1909 
1910 	if (!xfer->wait_for_resp) {
1911 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1912 		return;
1913 	}
1914 
1915 	xfer->resp_len = nbytes;
1916 	xfer->rx_done = true;
1917 }
1918 
1919 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1920 			       struct ath10k_ce_pipe *rx_pipe,
1921 			       struct bmi_xfer *xfer)
1922 {
1923 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1924 
1925 	while (time_before_eq(jiffies, timeout)) {
1926 		ath10k_pci_bmi_send_done(tx_pipe);
1927 		ath10k_pci_bmi_recv_data(rx_pipe);
1928 
1929 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1930 			return 0;
1931 
1932 		schedule();
1933 	}
1934 
1935 	return -ETIMEDOUT;
1936 }
1937 
1938 /*
1939  * Send an interrupt to the device to wake up the Target CPU
1940  * so it has an opportunity to notice any changed state.
1941  */
1942 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1943 {
1944 	u32 addr, val;
1945 
1946 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1947 	val = ath10k_pci_read32(ar, addr);
1948 	val |= CORE_CTRL_CPU_INTR_MASK;
1949 	ath10k_pci_write32(ar, addr, val);
1950 
1951 	return 0;
1952 }
1953 
1954 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1955 {
1956 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1957 
1958 	switch (ar_pci->pdev->device) {
1959 	case QCA988X_2_0_DEVICE_ID:
1960 	case QCA99X0_2_0_DEVICE_ID:
1961 	case QCA9888_2_0_DEVICE_ID:
1962 	case QCA9984_1_0_DEVICE_ID:
1963 	case QCA9887_1_0_DEVICE_ID:
1964 		return 1;
1965 	case QCA6164_2_1_DEVICE_ID:
1966 	case QCA6174_2_1_DEVICE_ID:
1967 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1968 		case QCA6174_HW_1_0_CHIP_ID_REV:
1969 		case QCA6174_HW_1_1_CHIP_ID_REV:
1970 		case QCA6174_HW_2_1_CHIP_ID_REV:
1971 		case QCA6174_HW_2_2_CHIP_ID_REV:
1972 			return 3;
1973 		case QCA6174_HW_1_3_CHIP_ID_REV:
1974 			return 2;
1975 		case QCA6174_HW_3_0_CHIP_ID_REV:
1976 		case QCA6174_HW_3_1_CHIP_ID_REV:
1977 		case QCA6174_HW_3_2_CHIP_ID_REV:
1978 			return 9;
1979 		}
1980 		break;
1981 	case QCA9377_1_0_DEVICE_ID:
1982 		return 4;
1983 	}
1984 
1985 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1986 	return 1;
1987 }
1988 
1989 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1990 {
1991 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1992 
1993 	return ar_pci->bus_ops->get_num_banks(ar);
1994 }
1995 
1996 int ath10k_pci_init_config(struct ath10k *ar)
1997 {
1998 	u32 interconnect_targ_addr;
1999 	u32 pcie_state_targ_addr = 0;
2000 	u32 pipe_cfg_targ_addr = 0;
2001 	u32 svc_to_pipe_map = 0;
2002 	u32 pcie_config_flags = 0;
2003 	u32 ealloc_value;
2004 	u32 ealloc_targ_addr;
2005 	u32 flag2_value;
2006 	u32 flag2_targ_addr;
2007 	int ret = 0;
2008 
2009 	/* Download to Target the CE Config and the service-to-CE map */
2010 	interconnect_targ_addr =
2011 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2012 
2013 	/* Supply Target-side CE configuration */
2014 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2015 				     &pcie_state_targ_addr);
2016 	if (ret != 0) {
2017 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2018 		return ret;
2019 	}
2020 
2021 	if (pcie_state_targ_addr == 0) {
2022 		ret = -EIO;
2023 		ath10k_err(ar, "Invalid pcie state addr\n");
2024 		return ret;
2025 	}
2026 
2027 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2028 					  offsetof(struct pcie_state,
2029 						   pipe_cfg_addr)),
2030 				     &pipe_cfg_targ_addr);
2031 	if (ret != 0) {
2032 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2033 		return ret;
2034 	}
2035 
2036 	if (pipe_cfg_targ_addr == 0) {
2037 		ret = -EIO;
2038 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2039 		return ret;
2040 	}
2041 
2042 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2043 					target_ce_config_wlan,
2044 					sizeof(struct ce_pipe_config) *
2045 					NUM_TARGET_CE_CONFIG_WLAN);
2046 
2047 	if (ret != 0) {
2048 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2049 		return ret;
2050 	}
2051 
2052 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2053 					  offsetof(struct pcie_state,
2054 						   svc_to_pipe_map)),
2055 				     &svc_to_pipe_map);
2056 	if (ret != 0) {
2057 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2058 		return ret;
2059 	}
2060 
2061 	if (svc_to_pipe_map == 0) {
2062 		ret = -EIO;
2063 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2064 		return ret;
2065 	}
2066 
2067 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2068 					target_service_to_ce_map_wlan,
2069 					sizeof(target_service_to_ce_map_wlan));
2070 	if (ret != 0) {
2071 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2072 		return ret;
2073 	}
2074 
2075 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2076 					  offsetof(struct pcie_state,
2077 						   config_flags)),
2078 				     &pcie_config_flags);
2079 	if (ret != 0) {
2080 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2081 		return ret;
2082 	}
2083 
2084 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2085 
2086 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2087 					   offsetof(struct pcie_state,
2088 						    config_flags)),
2089 				      pcie_config_flags);
2090 	if (ret != 0) {
2091 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2092 		return ret;
2093 	}
2094 
2095 	/* configure early allocation */
2096 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2097 
2098 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2099 	if (ret != 0) {
2100 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2101 		return ret;
2102 	}
2103 
2104 	/* first bank is switched to IRAM */
2105 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2106 			 HI_EARLY_ALLOC_MAGIC_MASK);
2107 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2108 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2109 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2110 
2111 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2112 	if (ret != 0) {
2113 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2114 		return ret;
2115 	}
2116 
2117 	/* Tell Target to proceed with initialization */
2118 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2119 
2120 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2121 	if (ret != 0) {
2122 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2123 		return ret;
2124 	}
2125 
2126 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2127 
2128 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2129 	if (ret != 0) {
2130 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2131 		return ret;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2138 {
2139 	struct ce_attr *attr;
2140 	struct ce_pipe_config *config;
2141 
2142 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2143 	 * since it is currently used for other feature.
2144 	 */
2145 
2146 	/* Override Host's Copy Engine 5 configuration */
2147 	attr = &host_ce_config_wlan[5];
2148 	attr->src_sz_max = 0;
2149 	attr->dest_nentries = 0;
2150 
2151 	/* Override Target firmware's Copy Engine configuration */
2152 	config = &target_ce_config_wlan[5];
2153 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2154 	config->nbytes_max = __cpu_to_le32(2048);
2155 
2156 	/* Map from service/endpoint to Copy Engine */
2157 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2158 }
2159 
2160 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2161 {
2162 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2163 	struct ath10k_pci_pipe *pipe;
2164 	int i, ret;
2165 
2166 	for (i = 0; i < CE_COUNT; i++) {
2167 		pipe = &ar_pci->pipe_info[i];
2168 		pipe->ce_hdl = &ar_pci->ce_states[i];
2169 		pipe->pipe_num = i;
2170 		pipe->hif_ce_state = ar;
2171 
2172 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2173 		if (ret) {
2174 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2175 				   i, ret);
2176 			return ret;
2177 		}
2178 
2179 		/* Last CE is Diagnostic Window */
2180 		if (i == CE_DIAG_PIPE) {
2181 			ar_pci->ce_diag = pipe->ce_hdl;
2182 			continue;
2183 		}
2184 
2185 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 void ath10k_pci_free_pipes(struct ath10k *ar)
2192 {
2193 	int i;
2194 
2195 	for (i = 0; i < CE_COUNT; i++)
2196 		ath10k_ce_free_pipe(ar, i);
2197 }
2198 
2199 int ath10k_pci_init_pipes(struct ath10k *ar)
2200 {
2201 	int i, ret;
2202 
2203 	for (i = 0; i < CE_COUNT; i++) {
2204 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2205 		if (ret) {
2206 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2207 				   i, ret);
2208 			return ret;
2209 		}
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2216 {
2217 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2218 	       FW_IND_EVENT_PENDING;
2219 }
2220 
2221 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2222 {
2223 	u32 val;
2224 
2225 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2226 	val &= ~FW_IND_EVENT_PENDING;
2227 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2228 }
2229 
2230 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2231 {
2232 	u32 val;
2233 
2234 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2235 	return (val == 0xffffffff);
2236 }
2237 
2238 /* this function effectively clears target memory controller assert line */
2239 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2240 {
2241 	u32 val;
2242 
2243 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2244 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2245 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2246 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2247 
2248 	msleep(10);
2249 
2250 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2251 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2252 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2253 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2254 
2255 	msleep(10);
2256 }
2257 
2258 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2259 {
2260 	u32 val;
2261 
2262 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2263 
2264 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2265 				SOC_RESET_CONTROL_ADDRESS);
2266 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2267 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2268 }
2269 
2270 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2271 {
2272 	u32 val;
2273 
2274 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2275 				SOC_RESET_CONTROL_ADDRESS);
2276 
2277 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2278 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2279 	msleep(10);
2280 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2281 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2282 }
2283 
2284 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2285 {
2286 	u32 val;
2287 
2288 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2289 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2290 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2291 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2292 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2293 }
2294 
2295 static int ath10k_pci_warm_reset(struct ath10k *ar)
2296 {
2297 	int ret;
2298 
2299 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2300 
2301 	spin_lock_bh(&ar->data_lock);
2302 	ar->stats.fw_warm_reset_counter++;
2303 	spin_unlock_bh(&ar->data_lock);
2304 
2305 	ath10k_pci_irq_disable(ar);
2306 
2307 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2308 	 * were to access copy engine while host performs copy engine reset
2309 	 * then it is possible for the device to confuse pci-e controller to
2310 	 * the point of bringing host system to a complete stop (i.e. hang).
2311 	 */
2312 	ath10k_pci_warm_reset_si0(ar);
2313 	ath10k_pci_warm_reset_cpu(ar);
2314 	ath10k_pci_init_pipes(ar);
2315 	ath10k_pci_wait_for_target_init(ar);
2316 
2317 	ath10k_pci_warm_reset_clear_lf(ar);
2318 	ath10k_pci_warm_reset_ce(ar);
2319 	ath10k_pci_warm_reset_cpu(ar);
2320 	ath10k_pci_init_pipes(ar);
2321 
2322 	ret = ath10k_pci_wait_for_target_init(ar);
2323 	if (ret) {
2324 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2325 		return ret;
2326 	}
2327 
2328 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2329 
2330 	return 0;
2331 }
2332 
2333 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2334 {
2335 	ath10k_pci_irq_disable(ar);
2336 	return ath10k_pci_qca99x0_chip_reset(ar);
2337 }
2338 
2339 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2340 {
2341 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2342 
2343 	if (!ar_pci->pci_soft_reset)
2344 		return -ENOTSUPP;
2345 
2346 	return ar_pci->pci_soft_reset(ar);
2347 }
2348 
2349 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2350 {
2351 	int i, ret;
2352 	u32 val;
2353 
2354 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2355 
2356 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2357 	 * It is thus preferred to use warm reset which is safer but may not be
2358 	 * able to recover the device from all possible fail scenarios.
2359 	 *
2360 	 * Warm reset doesn't always work on first try so attempt it a few
2361 	 * times before giving up.
2362 	 */
2363 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2364 		ret = ath10k_pci_warm_reset(ar);
2365 		if (ret) {
2366 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2367 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2368 				    ret);
2369 			continue;
2370 		}
2371 
2372 		/* FIXME: Sometimes copy engine doesn't recover after warm
2373 		 * reset. In most cases this needs cold reset. In some of these
2374 		 * cases the device is in such a state that a cold reset may
2375 		 * lock up the host.
2376 		 *
2377 		 * Reading any host interest register via copy engine is
2378 		 * sufficient to verify if device is capable of booting
2379 		 * firmware blob.
2380 		 */
2381 		ret = ath10k_pci_init_pipes(ar);
2382 		if (ret) {
2383 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2384 				    ret);
2385 			continue;
2386 		}
2387 
2388 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2389 					     &val);
2390 		if (ret) {
2391 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2392 				    ret);
2393 			continue;
2394 		}
2395 
2396 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2397 		return 0;
2398 	}
2399 
2400 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2401 		ath10k_warn(ar, "refusing cold reset as requested\n");
2402 		return -EPERM;
2403 	}
2404 
2405 	ret = ath10k_pci_cold_reset(ar);
2406 	if (ret) {
2407 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2408 		return ret;
2409 	}
2410 
2411 	ret = ath10k_pci_wait_for_target_init(ar);
2412 	if (ret) {
2413 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2414 			    ret);
2415 		return ret;
2416 	}
2417 
2418 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2419 
2420 	return 0;
2421 }
2422 
2423 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2424 {
2425 	int ret;
2426 
2427 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2428 
2429 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2430 
2431 	ret = ath10k_pci_cold_reset(ar);
2432 	if (ret) {
2433 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2434 		return ret;
2435 	}
2436 
2437 	ret = ath10k_pci_wait_for_target_init(ar);
2438 	if (ret) {
2439 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2440 			    ret);
2441 		return ret;
2442 	}
2443 
2444 	ret = ath10k_pci_warm_reset(ar);
2445 	if (ret) {
2446 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2447 		return ret;
2448 	}
2449 
2450 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2451 
2452 	return 0;
2453 }
2454 
2455 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2456 {
2457 	int ret;
2458 
2459 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2460 
2461 	ret = ath10k_pci_cold_reset(ar);
2462 	if (ret) {
2463 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2464 		return ret;
2465 	}
2466 
2467 	ret = ath10k_pci_wait_for_target_init(ar);
2468 	if (ret) {
2469 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2470 			    ret);
2471 		return ret;
2472 	}
2473 
2474 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2475 
2476 	return 0;
2477 }
2478 
2479 static int ath10k_pci_chip_reset(struct ath10k *ar)
2480 {
2481 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2482 
2483 	if (WARN_ON(!ar_pci->pci_hard_reset))
2484 		return -ENOTSUPP;
2485 
2486 	return ar_pci->pci_hard_reset(ar);
2487 }
2488 
2489 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2490 {
2491 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2492 	int ret;
2493 
2494 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2495 
2496 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2497 				  &ar_pci->link_ctl);
2498 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2499 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2500 
2501 	/*
2502 	 * Bring the target up cleanly.
2503 	 *
2504 	 * The target may be in an undefined state with an AUX-powered Target
2505 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2506 	 * restarted (without unloading the driver) then the Target is left
2507 	 * (aux) powered and running. On a subsequent driver load, the Target
2508 	 * is in an unexpected state. We try to catch that here in order to
2509 	 * reset the Target and retry the probe.
2510 	 */
2511 	ret = ath10k_pci_chip_reset(ar);
2512 	if (ret) {
2513 		if (ath10k_pci_has_fw_crashed(ar)) {
2514 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2515 			ath10k_pci_fw_crashed_clear(ar);
2516 			ath10k_pci_fw_crashed_dump(ar);
2517 		}
2518 
2519 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2520 		goto err_sleep;
2521 	}
2522 
2523 	ret = ath10k_pci_init_pipes(ar);
2524 	if (ret) {
2525 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2526 		goto err_sleep;
2527 	}
2528 
2529 	ret = ath10k_pci_init_config(ar);
2530 	if (ret) {
2531 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2532 		goto err_ce;
2533 	}
2534 
2535 	ret = ath10k_pci_wake_target_cpu(ar);
2536 	if (ret) {
2537 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2538 		goto err_ce;
2539 	}
2540 
2541 	return 0;
2542 
2543 err_ce:
2544 	ath10k_pci_ce_deinit(ar);
2545 
2546 err_sleep:
2547 	return ret;
2548 }
2549 
2550 void ath10k_pci_hif_power_down(struct ath10k *ar)
2551 {
2552 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2553 
2554 	/* Currently hif_power_up performs effectively a reset and hif_stop
2555 	 * resets the chip as well so there's no point in resetting here.
2556 	 */
2557 }
2558 
2559 #ifdef CONFIG_PM
2560 
2561 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2562 {
2563 	/* The grace timer can still be counting down and ar->ps_awake be true.
2564 	 * It is known that the device may be asleep after resuming regardless
2565 	 * of the SoC powersave state before suspending. Hence make sure the
2566 	 * device is asleep before proceeding.
2567 	 */
2568 	ath10k_pci_sleep_sync(ar);
2569 
2570 	return 0;
2571 }
2572 
2573 static int ath10k_pci_hif_resume(struct ath10k *ar)
2574 {
2575 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2576 	struct pci_dev *pdev = ar_pci->pdev;
2577 	u32 val;
2578 	int ret = 0;
2579 
2580 	ret = ath10k_pci_force_wake(ar);
2581 	if (ret) {
2582 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2583 		return ret;
2584 	}
2585 
2586 	/* Suspend/Resume resets the PCI configuration space, so we have to
2587 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2588 	 * from interfering with C3 CPU state. pci_restore_state won't help
2589 	 * here since it only restores the first 64 bytes pci config header.
2590 	 */
2591 	pci_read_config_dword(pdev, 0x40, &val);
2592 	if ((val & 0x0000ff00) != 0)
2593 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2594 
2595 	return ret;
2596 }
2597 #endif
2598 
2599 static bool ath10k_pci_validate_cal(void *data, size_t size)
2600 {
2601 	__le16 *cal_words = data;
2602 	u16 checksum = 0;
2603 	size_t i;
2604 
2605 	if (size % 2 != 0)
2606 		return false;
2607 
2608 	for (i = 0; i < size / 2; i++)
2609 		checksum ^= le16_to_cpu(cal_words[i]);
2610 
2611 	return checksum == 0xffff;
2612 }
2613 
2614 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2615 {
2616 	/* Enable SI clock */
2617 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2618 
2619 	/* Configure GPIOs for I2C operation */
2620 	ath10k_pci_write32(ar,
2621 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2622 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2623 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2624 			      GPIO_PIN0_CONFIG) |
2625 			   SM(1, GPIO_PIN0_PAD_PULL));
2626 
2627 	ath10k_pci_write32(ar,
2628 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2629 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2630 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2631 			   SM(1, GPIO_PIN0_PAD_PULL));
2632 
2633 	ath10k_pci_write32(ar,
2634 			   GPIO_BASE_ADDRESS +
2635 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2636 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2637 
2638 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2639 	ath10k_pci_write32(ar,
2640 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2641 			   SM(1, SI_CONFIG_ERR_INT) |
2642 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2643 			   SM(1, SI_CONFIG_I2C) |
2644 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2645 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2646 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2647 			   SM(8, SI_CONFIG_DIVIDER));
2648 }
2649 
2650 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2651 {
2652 	u32 reg;
2653 	int wait_limit;
2654 
2655 	/* set device select byte and for the read operation */
2656 	reg = QCA9887_EEPROM_SELECT_READ |
2657 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2658 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2659 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2660 
2661 	/* write transmit data, transfer length, and START bit */
2662 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2663 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2664 			   SM(4, SI_CS_TX_CNT));
2665 
2666 	/* wait max 1 sec */
2667 	wait_limit = 100000;
2668 
2669 	/* wait for SI_CS_DONE_INT */
2670 	do {
2671 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2672 		if (MS(reg, SI_CS_DONE_INT))
2673 			break;
2674 
2675 		wait_limit--;
2676 		udelay(10);
2677 	} while (wait_limit > 0);
2678 
2679 	if (!MS(reg, SI_CS_DONE_INT)) {
2680 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2681 			   addr);
2682 		return -ETIMEDOUT;
2683 	}
2684 
2685 	/* clear SI_CS_DONE_INT */
2686 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2687 
2688 	if (MS(reg, SI_CS_DONE_ERR)) {
2689 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2690 		return -EIO;
2691 	}
2692 
2693 	/* extract receive data */
2694 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2695 	*out = reg;
2696 
2697 	return 0;
2698 }
2699 
2700 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2701 					   size_t *data_len)
2702 {
2703 	u8 *caldata = NULL;
2704 	size_t calsize, i;
2705 	int ret;
2706 
2707 	if (!QCA_REV_9887(ar))
2708 		return -EOPNOTSUPP;
2709 
2710 	calsize = ar->hw_params.cal_data_len;
2711 	caldata = kmalloc(calsize, GFP_KERNEL);
2712 	if (!caldata)
2713 		return -ENOMEM;
2714 
2715 	ath10k_pci_enable_eeprom(ar);
2716 
2717 	for (i = 0; i < calsize; i++) {
2718 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2719 		if (ret)
2720 			goto err_free;
2721 	}
2722 
2723 	if (!ath10k_pci_validate_cal(caldata, calsize))
2724 		goto err_free;
2725 
2726 	*data = caldata;
2727 	*data_len = calsize;
2728 
2729 	return 0;
2730 
2731 err_free:
2732 	kfree(caldata);
2733 
2734 	return -EINVAL;
2735 }
2736 
2737 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2738 	.tx_sg			= ath10k_pci_hif_tx_sg,
2739 	.diag_read		= ath10k_pci_hif_diag_read,
2740 	.diag_write		= ath10k_pci_diag_write_mem,
2741 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2742 	.start			= ath10k_pci_hif_start,
2743 	.stop			= ath10k_pci_hif_stop,
2744 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2745 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2746 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2747 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2748 	.power_up		= ath10k_pci_hif_power_up,
2749 	.power_down		= ath10k_pci_hif_power_down,
2750 	.read32			= ath10k_pci_read32,
2751 	.write32		= ath10k_pci_write32,
2752 #ifdef CONFIG_PM
2753 	.suspend		= ath10k_pci_hif_suspend,
2754 	.resume			= ath10k_pci_hif_resume,
2755 #endif
2756 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2757 };
2758 
2759 /*
2760  * Top-level interrupt handler for all PCI interrupts from a Target.
2761  * When a block of MSI interrupts is allocated, this top-level handler
2762  * is not used; instead, we directly call the correct sub-handler.
2763  */
2764 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2765 {
2766 	struct ath10k *ar = arg;
2767 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2768 	int ret;
2769 
2770 	if (ath10k_pci_has_device_gone(ar))
2771 		return IRQ_NONE;
2772 
2773 	ret = ath10k_pci_force_wake(ar);
2774 	if (ret) {
2775 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2776 		return IRQ_NONE;
2777 	}
2778 
2779 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2780 	    !ath10k_pci_irq_pending(ar))
2781 		return IRQ_NONE;
2782 
2783 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2784 	ath10k_pci_irq_msi_fw_mask(ar);
2785 	napi_schedule(&ar->napi);
2786 
2787 	return IRQ_HANDLED;
2788 }
2789 
2790 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2791 {
2792 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2793 	int done = 0;
2794 
2795 	if (ath10k_pci_has_fw_crashed(ar)) {
2796 		ath10k_pci_fw_crashed_clear(ar);
2797 		ath10k_pci_fw_crashed_dump(ar);
2798 		napi_complete(ctx);
2799 		return done;
2800 	}
2801 
2802 	ath10k_ce_per_engine_service_any(ar);
2803 
2804 	done = ath10k_htt_txrx_compl_task(ar, budget);
2805 
2806 	if (done < budget) {
2807 		napi_complete_done(ctx, done);
2808 		/* In case of MSI, it is possible that interrupts are received
2809 		 * while NAPI poll is inprogress. So pending interrupts that are
2810 		 * received after processing all copy engine pipes by NAPI poll
2811 		 * will not be handled again. This is causing failure to
2812 		 * complete boot sequence in x86 platform. So before enabling
2813 		 * interrupts safer to check for pending interrupts for
2814 		 * immediate servicing.
2815 		 */
2816 		if (CE_INTERRUPT_SUMMARY(ar)) {
2817 			napi_reschedule(ctx);
2818 			goto out;
2819 		}
2820 		ath10k_pci_enable_legacy_irq(ar);
2821 		ath10k_pci_irq_msi_fw_unmask(ar);
2822 	}
2823 
2824 out:
2825 	return done;
2826 }
2827 
2828 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2829 {
2830 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2831 	int ret;
2832 
2833 	ret = request_irq(ar_pci->pdev->irq,
2834 			  ath10k_pci_interrupt_handler,
2835 			  IRQF_SHARED, "ath10k_pci", ar);
2836 	if (ret) {
2837 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2838 			    ar_pci->pdev->irq, ret);
2839 		return ret;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2846 {
2847 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2848 	int ret;
2849 
2850 	ret = request_irq(ar_pci->pdev->irq,
2851 			  ath10k_pci_interrupt_handler,
2852 			  IRQF_SHARED, "ath10k_pci", ar);
2853 	if (ret) {
2854 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2855 			    ar_pci->pdev->irq, ret);
2856 		return ret;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static int ath10k_pci_request_irq(struct ath10k *ar)
2863 {
2864 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2865 
2866 	switch (ar_pci->oper_irq_mode) {
2867 	case ATH10K_PCI_IRQ_LEGACY:
2868 		return ath10k_pci_request_irq_legacy(ar);
2869 	case ATH10K_PCI_IRQ_MSI:
2870 		return ath10k_pci_request_irq_msi(ar);
2871 	default:
2872 		return -EINVAL;
2873 	}
2874 }
2875 
2876 static void ath10k_pci_free_irq(struct ath10k *ar)
2877 {
2878 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2879 
2880 	free_irq(ar_pci->pdev->irq, ar);
2881 }
2882 
2883 void ath10k_pci_init_napi(struct ath10k *ar)
2884 {
2885 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2886 		       ATH10K_NAPI_BUDGET);
2887 }
2888 
2889 static int ath10k_pci_init_irq(struct ath10k *ar)
2890 {
2891 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2892 	int ret;
2893 
2894 	ath10k_pci_init_napi(ar);
2895 
2896 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2897 		ath10k_info(ar, "limiting irq mode to: %d\n",
2898 			    ath10k_pci_irq_mode);
2899 
2900 	/* Try MSI */
2901 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2902 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2903 		ret = pci_enable_msi(ar_pci->pdev);
2904 		if (ret == 0)
2905 			return 0;
2906 
2907 		/* fall-through */
2908 	}
2909 
2910 	/* Try legacy irq
2911 	 *
2912 	 * A potential race occurs here: The CORE_BASE write
2913 	 * depends on target correctly decoding AXI address but
2914 	 * host won't know when target writes BAR to CORE_CTRL.
2915 	 * This write might get lost if target has NOT written BAR.
2916 	 * For now, fix the race by repeating the write in below
2917 	 * synchronization checking. */
2918 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2919 
2920 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2921 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2922 
2923 	return 0;
2924 }
2925 
2926 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2927 {
2928 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2929 			   0);
2930 }
2931 
2932 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2933 {
2934 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2935 
2936 	switch (ar_pci->oper_irq_mode) {
2937 	case ATH10K_PCI_IRQ_LEGACY:
2938 		ath10k_pci_deinit_irq_legacy(ar);
2939 		break;
2940 	default:
2941 		pci_disable_msi(ar_pci->pdev);
2942 		break;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2949 {
2950 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2951 	unsigned long timeout;
2952 	u32 val;
2953 
2954 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2955 
2956 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2957 
2958 	do {
2959 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2960 
2961 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2962 			   val);
2963 
2964 		/* target should never return this */
2965 		if (val == 0xffffffff)
2966 			continue;
2967 
2968 		/* the device has crashed so don't bother trying anymore */
2969 		if (val & FW_IND_EVENT_PENDING)
2970 			break;
2971 
2972 		if (val & FW_IND_INITIALIZED)
2973 			break;
2974 
2975 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2976 			/* Fix potential race by repeating CORE_BASE writes */
2977 			ath10k_pci_enable_legacy_irq(ar);
2978 
2979 		mdelay(10);
2980 	} while (time_before(jiffies, timeout));
2981 
2982 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2983 	ath10k_pci_irq_msi_fw_mask(ar);
2984 
2985 	if (val == 0xffffffff) {
2986 		ath10k_err(ar, "failed to read device register, device is gone\n");
2987 		return -EIO;
2988 	}
2989 
2990 	if (val & FW_IND_EVENT_PENDING) {
2991 		ath10k_warn(ar, "device has crashed during init\n");
2992 		return -ECOMM;
2993 	}
2994 
2995 	if (!(val & FW_IND_INITIALIZED)) {
2996 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2997 			   val);
2998 		return -ETIMEDOUT;
2999 	}
3000 
3001 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3002 	return 0;
3003 }
3004 
3005 static int ath10k_pci_cold_reset(struct ath10k *ar)
3006 {
3007 	u32 val;
3008 
3009 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3010 
3011 	spin_lock_bh(&ar->data_lock);
3012 
3013 	ar->stats.fw_cold_reset_counter++;
3014 
3015 	spin_unlock_bh(&ar->data_lock);
3016 
3017 	/* Put Target, including PCIe, into RESET. */
3018 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3019 	val |= 1;
3020 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3021 
3022 	/* After writing into SOC_GLOBAL_RESET to put device into
3023 	 * reset and pulling out of reset pcie may not be stable
3024 	 * for any immediate pcie register access and cause bus error,
3025 	 * add delay before any pcie access request to fix this issue.
3026 	 */
3027 	msleep(20);
3028 
3029 	/* Pull Target, including PCIe, out of RESET. */
3030 	val &= ~1;
3031 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3032 
3033 	msleep(20);
3034 
3035 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3036 
3037 	return 0;
3038 }
3039 
3040 static int ath10k_pci_claim(struct ath10k *ar)
3041 {
3042 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3043 	struct pci_dev *pdev = ar_pci->pdev;
3044 	int ret;
3045 
3046 	pci_set_drvdata(pdev, ar);
3047 
3048 	ret = pci_enable_device(pdev);
3049 	if (ret) {
3050 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3051 		return ret;
3052 	}
3053 
3054 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3055 	if (ret) {
3056 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3057 			   ret);
3058 		goto err_device;
3059 	}
3060 
3061 	/* Target expects 32 bit DMA. Enforce it. */
3062 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3063 	if (ret) {
3064 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3065 		goto err_region;
3066 	}
3067 
3068 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3069 	if (ret) {
3070 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3071 			   ret);
3072 		goto err_region;
3073 	}
3074 
3075 	pci_set_master(pdev);
3076 
3077 	/* Arrange for access to Target SoC registers. */
3078 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3079 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3080 	if (!ar_pci->mem) {
3081 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3082 		ret = -EIO;
3083 		goto err_master;
3084 	}
3085 
3086 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3087 	return 0;
3088 
3089 err_master:
3090 	pci_clear_master(pdev);
3091 
3092 err_region:
3093 	pci_release_region(pdev, BAR_NUM);
3094 
3095 err_device:
3096 	pci_disable_device(pdev);
3097 
3098 	return ret;
3099 }
3100 
3101 static void ath10k_pci_release(struct ath10k *ar)
3102 {
3103 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3104 	struct pci_dev *pdev = ar_pci->pdev;
3105 
3106 	pci_iounmap(pdev, ar_pci->mem);
3107 	pci_release_region(pdev, BAR_NUM);
3108 	pci_clear_master(pdev);
3109 	pci_disable_device(pdev);
3110 }
3111 
3112 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3113 {
3114 	const struct ath10k_pci_supp_chip *supp_chip;
3115 	int i;
3116 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3117 
3118 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3119 		supp_chip = &ath10k_pci_supp_chips[i];
3120 
3121 		if (supp_chip->dev_id == dev_id &&
3122 		    supp_chip->rev_id == rev_id)
3123 			return true;
3124 	}
3125 
3126 	return false;
3127 }
3128 
3129 int ath10k_pci_setup_resource(struct ath10k *ar)
3130 {
3131 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3132 	int ret;
3133 
3134 	spin_lock_init(&ar_pci->ce_lock);
3135 	spin_lock_init(&ar_pci->ps_lock);
3136 
3137 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3138 		    (unsigned long)ar);
3139 
3140 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3141 		ath10k_pci_override_ce_config(ar);
3142 
3143 	ret = ath10k_pci_alloc_pipes(ar);
3144 	if (ret) {
3145 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3146 			   ret);
3147 		return ret;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 void ath10k_pci_release_resource(struct ath10k *ar)
3154 {
3155 	ath10k_pci_rx_retry_sync(ar);
3156 	netif_napi_del(&ar->napi);
3157 	ath10k_pci_ce_deinit(ar);
3158 	ath10k_pci_free_pipes(ar);
3159 }
3160 
3161 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3162 	.read32		= ath10k_bus_pci_read32,
3163 	.write32	= ath10k_bus_pci_write32,
3164 	.get_num_banks	= ath10k_pci_get_num_banks,
3165 };
3166 
3167 static int ath10k_pci_probe(struct pci_dev *pdev,
3168 			    const struct pci_device_id *pci_dev)
3169 {
3170 	int ret = 0;
3171 	struct ath10k *ar;
3172 	struct ath10k_pci *ar_pci;
3173 	enum ath10k_hw_rev hw_rev;
3174 	u32 chip_id;
3175 	bool pci_ps;
3176 	int (*pci_soft_reset)(struct ath10k *ar);
3177 	int (*pci_hard_reset)(struct ath10k *ar);
3178 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3179 
3180 	switch (pci_dev->device) {
3181 	case QCA988X_2_0_DEVICE_ID:
3182 		hw_rev = ATH10K_HW_QCA988X;
3183 		pci_ps = false;
3184 		pci_soft_reset = ath10k_pci_warm_reset;
3185 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3186 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3187 		break;
3188 	case QCA9887_1_0_DEVICE_ID:
3189 		hw_rev = ATH10K_HW_QCA9887;
3190 		pci_ps = false;
3191 		pci_soft_reset = ath10k_pci_warm_reset;
3192 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3193 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3194 		break;
3195 	case QCA6164_2_1_DEVICE_ID:
3196 	case QCA6174_2_1_DEVICE_ID:
3197 		hw_rev = ATH10K_HW_QCA6174;
3198 		pci_ps = true;
3199 		pci_soft_reset = ath10k_pci_warm_reset;
3200 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3201 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3202 		break;
3203 	case QCA99X0_2_0_DEVICE_ID:
3204 		hw_rev = ATH10K_HW_QCA99X0;
3205 		pci_ps = false;
3206 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3207 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3208 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3209 		break;
3210 	case QCA9984_1_0_DEVICE_ID:
3211 		hw_rev = ATH10K_HW_QCA9984;
3212 		pci_ps = false;
3213 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3214 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3215 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3216 		break;
3217 	case QCA9888_2_0_DEVICE_ID:
3218 		hw_rev = ATH10K_HW_QCA9888;
3219 		pci_ps = false;
3220 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3221 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3222 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3223 		break;
3224 	case QCA9377_1_0_DEVICE_ID:
3225 		hw_rev = ATH10K_HW_QCA9377;
3226 		pci_ps = true;
3227 		pci_soft_reset = NULL;
3228 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3229 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3230 		break;
3231 	default:
3232 		WARN_ON(1);
3233 		return -ENOTSUPP;
3234 	}
3235 
3236 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3237 				hw_rev, &ath10k_pci_hif_ops);
3238 	if (!ar) {
3239 		dev_err(&pdev->dev, "failed to allocate core\n");
3240 		return -ENOMEM;
3241 	}
3242 
3243 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3244 		   pdev->vendor, pdev->device,
3245 		   pdev->subsystem_vendor, pdev->subsystem_device);
3246 
3247 	ar_pci = ath10k_pci_priv(ar);
3248 	ar_pci->pdev = pdev;
3249 	ar_pci->dev = &pdev->dev;
3250 	ar_pci->ar = ar;
3251 	ar->dev_id = pci_dev->device;
3252 	ar_pci->pci_ps = pci_ps;
3253 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3254 	ar_pci->pci_soft_reset = pci_soft_reset;
3255 	ar_pci->pci_hard_reset = pci_hard_reset;
3256 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3257 
3258 	ar->id.vendor = pdev->vendor;
3259 	ar->id.device = pdev->device;
3260 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3261 	ar->id.subsystem_device = pdev->subsystem_device;
3262 
3263 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3264 		    (unsigned long)ar);
3265 
3266 	ret = ath10k_pci_setup_resource(ar);
3267 	if (ret) {
3268 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3269 		goto err_core_destroy;
3270 	}
3271 
3272 	ret = ath10k_pci_claim(ar);
3273 	if (ret) {
3274 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3275 		goto err_free_pipes;
3276 	}
3277 
3278 	ret = ath10k_pci_force_wake(ar);
3279 	if (ret) {
3280 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3281 		goto err_sleep;
3282 	}
3283 
3284 	ath10k_pci_ce_deinit(ar);
3285 	ath10k_pci_irq_disable(ar);
3286 
3287 	ret = ath10k_pci_init_irq(ar);
3288 	if (ret) {
3289 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3290 		goto err_sleep;
3291 	}
3292 
3293 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3294 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3295 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3296 
3297 	ret = ath10k_pci_request_irq(ar);
3298 	if (ret) {
3299 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3300 		goto err_deinit_irq;
3301 	}
3302 
3303 	ret = ath10k_pci_chip_reset(ar);
3304 	if (ret) {
3305 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3306 		goto err_free_irq;
3307 	}
3308 
3309 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3310 	if (chip_id == 0xffffffff) {
3311 		ath10k_err(ar, "failed to get chip id\n");
3312 		goto err_free_irq;
3313 	}
3314 
3315 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3316 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3317 			   pdev->device, chip_id);
3318 		goto err_free_irq;
3319 	}
3320 
3321 	ret = ath10k_core_register(ar, chip_id);
3322 	if (ret) {
3323 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3324 		goto err_free_irq;
3325 	}
3326 
3327 	return 0;
3328 
3329 err_free_irq:
3330 	ath10k_pci_free_irq(ar);
3331 	ath10k_pci_rx_retry_sync(ar);
3332 
3333 err_deinit_irq:
3334 	ath10k_pci_deinit_irq(ar);
3335 
3336 err_sleep:
3337 	ath10k_pci_sleep_sync(ar);
3338 	ath10k_pci_release(ar);
3339 
3340 err_free_pipes:
3341 	ath10k_pci_free_pipes(ar);
3342 
3343 err_core_destroy:
3344 	ath10k_core_destroy(ar);
3345 
3346 	return ret;
3347 }
3348 
3349 static void ath10k_pci_remove(struct pci_dev *pdev)
3350 {
3351 	struct ath10k *ar = pci_get_drvdata(pdev);
3352 	struct ath10k_pci *ar_pci;
3353 
3354 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3355 
3356 	if (!ar)
3357 		return;
3358 
3359 	ar_pci = ath10k_pci_priv(ar);
3360 
3361 	if (!ar_pci)
3362 		return;
3363 
3364 	ath10k_core_unregister(ar);
3365 	ath10k_pci_free_irq(ar);
3366 	ath10k_pci_deinit_irq(ar);
3367 	ath10k_pci_release_resource(ar);
3368 	ath10k_pci_sleep_sync(ar);
3369 	ath10k_pci_release(ar);
3370 	ath10k_core_destroy(ar);
3371 }
3372 
3373 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3374 
3375 static struct pci_driver ath10k_pci_driver = {
3376 	.name = "ath10k_pci",
3377 	.id_table = ath10k_pci_id_table,
3378 	.probe = ath10k_pci_probe,
3379 	.remove = ath10k_pci_remove,
3380 };
3381 
3382 static int __init ath10k_pci_init(void)
3383 {
3384 	int ret;
3385 
3386 	ret = pci_register_driver(&ath10k_pci_driver);
3387 	if (ret)
3388 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3389 		       ret);
3390 
3391 	ret = ath10k_ahb_init();
3392 	if (ret)
3393 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3394 
3395 	return ret;
3396 }
3397 module_init(ath10k_pci_init);
3398 
3399 static void __exit ath10k_pci_exit(void)
3400 {
3401 	pci_unregister_driver(&ath10k_pci_driver);
3402 	ath10k_ahb_exit();
3403 }
3404 
3405 module_exit(ath10k_pci_exit);
3406 
3407 MODULE_AUTHOR("Qualcomm Atheros");
3408 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3409 MODULE_LICENSE("Dual BSD/GPL");
3410 
3411 /* QCA988x 2.0 firmware files */
3412 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3413 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3414 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3415 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3416 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3417 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3418 
3419 /* QCA9887 1.0 firmware files */
3420 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3421 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3422 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3423 
3424 /* QCA6174 2.1 firmware files */
3425 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3426 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3427 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3428 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3429 
3430 /* QCA6174 3.1 firmware files */
3431 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3432 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3433 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3434 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3435 
3436 /* QCA9377 1.0 firmware files */
3437 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3438 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3439