xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision c8dbaa22)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k *ar,
105 			       struct ath10k_ce_pipe *tx_pipe,
106 			       struct ath10k_ce_pipe *rx_pipe,
107 			       struct bmi_xfer *xfer);
108 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
109 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
115 
116 static struct ce_attr host_ce_config_wlan[] = {
117 	/* CE0: host->target HTC control and raw streams */
118 	{
119 		.flags = CE_ATTR_FLAGS,
120 		.src_nentries = 16,
121 		.src_sz_max = 256,
122 		.dest_nentries = 0,
123 		.send_cb = ath10k_pci_htc_tx_cb,
124 	},
125 
126 	/* CE1: target->host HTT + HTC control */
127 	{
128 		.flags = CE_ATTR_FLAGS,
129 		.src_nentries = 0,
130 		.src_sz_max = 2048,
131 		.dest_nentries = 512,
132 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
133 	},
134 
135 	/* CE2: target->host WMI */
136 	{
137 		.flags = CE_ATTR_FLAGS,
138 		.src_nentries = 0,
139 		.src_sz_max = 2048,
140 		.dest_nentries = 128,
141 		.recv_cb = ath10k_pci_htc_rx_cb,
142 	},
143 
144 	/* CE3: host->target WMI */
145 	{
146 		.flags = CE_ATTR_FLAGS,
147 		.src_nentries = 32,
148 		.src_sz_max = 2048,
149 		.dest_nentries = 0,
150 		.send_cb = ath10k_pci_htc_tx_cb,
151 	},
152 
153 	/* CE4: host->target HTT */
154 	{
155 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
156 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
157 		.src_sz_max = 256,
158 		.dest_nentries = 0,
159 		.send_cb = ath10k_pci_htt_tx_cb,
160 	},
161 
162 	/* CE5: target->host HTT (HIF->HTT) */
163 	{
164 		.flags = CE_ATTR_FLAGS,
165 		.src_nentries = 0,
166 		.src_sz_max = 512,
167 		.dest_nentries = 512,
168 		.recv_cb = ath10k_pci_htt_rx_cb,
169 	},
170 
171 	/* CE6: target autonomous hif_memcpy */
172 	{
173 		.flags = CE_ATTR_FLAGS,
174 		.src_nentries = 0,
175 		.src_sz_max = 0,
176 		.dest_nentries = 0,
177 	},
178 
179 	/* CE7: ce_diag, the Diagnostic Window */
180 	{
181 		.flags = CE_ATTR_FLAGS,
182 		.src_nentries = 2,
183 		.src_sz_max = DIAG_TRANSFER_LIMIT,
184 		.dest_nentries = 2,
185 	},
186 
187 	/* CE8: target->host pktlog */
188 	{
189 		.flags = CE_ATTR_FLAGS,
190 		.src_nentries = 0,
191 		.src_sz_max = 2048,
192 		.dest_nentries = 128,
193 		.recv_cb = ath10k_pci_pktlog_rx_cb,
194 	},
195 
196 	/* CE9 target autonomous qcache memcpy */
197 	{
198 		.flags = CE_ATTR_FLAGS,
199 		.src_nentries = 0,
200 		.src_sz_max = 0,
201 		.dest_nentries = 0,
202 	},
203 
204 	/* CE10: target autonomous hif memcpy */
205 	{
206 		.flags = CE_ATTR_FLAGS,
207 		.src_nentries = 0,
208 		.src_sz_max = 0,
209 		.dest_nentries = 0,
210 	},
211 
212 	/* CE11: target autonomous hif memcpy */
213 	{
214 		.flags = CE_ATTR_FLAGS,
215 		.src_nentries = 0,
216 		.src_sz_max = 0,
217 		.dest_nentries = 0,
218 	},
219 };
220 
221 /* Target firmware's Copy Engine configuration. */
222 static struct ce_pipe_config target_ce_config_wlan[] = {
223 	/* CE0: host->target HTC control and raw streams */
224 	{
225 		.pipenum = __cpu_to_le32(0),
226 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
227 		.nentries = __cpu_to_le32(32),
228 		.nbytes_max = __cpu_to_le32(256),
229 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
230 		.reserved = __cpu_to_le32(0),
231 	},
232 
233 	/* CE1: target->host HTT + HTC control */
234 	{
235 		.pipenum = __cpu_to_le32(1),
236 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(2048),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE2: target->host WMI */
244 	{
245 		.pipenum = __cpu_to_le32(2),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(64),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE3: host->target WMI */
254 	{
255 		.pipenum = __cpu_to_le32(3),
256 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
257 		.nentries = __cpu_to_le32(32),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE4: host->target HTT */
264 	{
265 		.pipenum = __cpu_to_le32(4),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(256),
268 		.nbytes_max = __cpu_to_le32(256),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* NB: 50% of src nentries, since tx has 2 frags */
274 
275 	/* CE5: target->host HTT (HIF->HTT) */
276 	{
277 		.pipenum = __cpu_to_le32(5),
278 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
279 		.nentries = __cpu_to_le32(32),
280 		.nbytes_max = __cpu_to_le32(512),
281 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
282 		.reserved = __cpu_to_le32(0),
283 	},
284 
285 	/* CE6: Reserved for target autonomous hif_memcpy */
286 	{
287 		.pipenum = __cpu_to_le32(6),
288 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(4096),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE7 used only by Host */
296 	{
297 		.pipenum = __cpu_to_le32(7),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(0),
300 		.nbytes_max = __cpu_to_le32(0),
301 		.flags = __cpu_to_le32(0),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE8 target->host packtlog */
306 	{
307 		.pipenum = __cpu_to_le32(8),
308 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
309 		.nentries = __cpu_to_le32(64),
310 		.nbytes_max = __cpu_to_le32(2048),
311 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE9 target autonomous qcache memcpy */
316 	{
317 		.pipenum = __cpu_to_le32(9),
318 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
319 		.nentries = __cpu_to_le32(32),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* It not necessary to send target wlan configuration for CE10 & CE11
326 	 * as these CEs are not actively used in target.
327 	 */
328 };
329 
330 /*
331  * Map from service/endpoint to Copy Engine.
332  * This table is derived from the CE_PCI TABLE, above.
333  * It is passed to the Target at startup for use by firmware.
334  */
335 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
336 	{
337 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
339 		__cpu_to_le32(3),
340 	},
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
343 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
344 		__cpu_to_le32(2),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(0),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(1),
395 	},
396 	{ /* not used */
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{ /* not used */
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(4),
410 	},
411 	{
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(5),
415 	},
416 
417 	/* (Additions here) */
418 
419 	{ /* must be last */
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 		__cpu_to_le32(0),
423 	},
424 };
425 
426 static bool ath10k_pci_is_awake(struct ath10k *ar)
427 {
428 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
429 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
430 			   RTC_STATE_ADDRESS);
431 
432 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
433 }
434 
435 static void __ath10k_pci_wake(struct ath10k *ar)
436 {
437 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
438 
439 	lockdep_assert_held(&ar_pci->ps_lock);
440 
441 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
442 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
443 
444 	iowrite32(PCIE_SOC_WAKE_V_MASK,
445 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
446 		  PCIE_SOC_WAKE_ADDRESS);
447 }
448 
449 static void __ath10k_pci_sleep(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_RESET,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 	ar_pci->ps_awake = false;
462 }
463 
464 static int ath10k_pci_wake_wait(struct ath10k *ar)
465 {
466 	int tot_delay = 0;
467 	int curr_delay = 5;
468 
469 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
470 		if (ath10k_pci_is_awake(ar)) {
471 			if (tot_delay > PCIE_WAKE_LATE_US)
472 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
473 					    tot_delay / 1000);
474 			return 0;
475 		}
476 
477 		udelay(curr_delay);
478 		tot_delay += curr_delay;
479 
480 		if (curr_delay < 50)
481 			curr_delay += 5;
482 	}
483 
484 	return -ETIMEDOUT;
485 }
486 
487 static int ath10k_pci_force_wake(struct ath10k *ar)
488 {
489 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
490 	unsigned long flags;
491 	int ret = 0;
492 
493 	if (ar_pci->pci_ps)
494 		return ret;
495 
496 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
497 
498 	if (!ar_pci->ps_awake) {
499 		iowrite32(PCIE_SOC_WAKE_V_MASK,
500 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
501 			  PCIE_SOC_WAKE_ADDRESS);
502 
503 		ret = ath10k_pci_wake_wait(ar);
504 		if (ret == 0)
505 			ar_pci->ps_awake = true;
506 	}
507 
508 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
509 
510 	return ret;
511 }
512 
513 static void ath10k_pci_force_sleep(struct ath10k *ar)
514 {
515 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
519 
520 	iowrite32(PCIE_SOC_WAKE_RESET,
521 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
522 		  PCIE_SOC_WAKE_ADDRESS);
523 	ar_pci->ps_awake = false;
524 
525 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
526 }
527 
528 static int ath10k_pci_wake(struct ath10k *ar)
529 {
530 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
531 	unsigned long flags;
532 	int ret = 0;
533 
534 	if (ar_pci->pci_ps == 0)
535 		return ret;
536 
537 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
538 
539 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
540 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
541 
542 	/* This function can be called very frequently. To avoid excessive
543 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
544 	 */
545 	if (!ar_pci->ps_awake) {
546 		__ath10k_pci_wake(ar);
547 
548 		ret = ath10k_pci_wake_wait(ar);
549 		if (ret == 0)
550 			ar_pci->ps_awake = true;
551 	}
552 
553 	if (ret == 0) {
554 		ar_pci->ps_wake_refcount++;
555 		WARN_ON(ar_pci->ps_wake_refcount == 0);
556 	}
557 
558 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
559 
560 	return ret;
561 }
562 
563 static void ath10k_pci_sleep(struct ath10k *ar)
564 {
565 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
566 	unsigned long flags;
567 
568 	if (ar_pci->pci_ps == 0)
569 		return;
570 
571 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
572 
573 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
574 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
575 
576 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
577 		goto skip;
578 
579 	ar_pci->ps_wake_refcount--;
580 
581 	mod_timer(&ar_pci->ps_timer, jiffies +
582 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
583 
584 skip:
585 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
586 }
587 
588 static void ath10k_pci_ps_timer(unsigned long ptr)
589 {
590 	struct ath10k *ar = (void *)ptr;
591 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
592 	unsigned long flags;
593 
594 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
595 
596 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
597 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
598 
599 	if (ar_pci->ps_wake_refcount > 0)
600 		goto skip;
601 
602 	__ath10k_pci_sleep(ar);
603 
604 skip:
605 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
606 }
607 
608 static void ath10k_pci_sleep_sync(struct ath10k *ar)
609 {
610 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
611 	unsigned long flags;
612 
613 	if (ar_pci->pci_ps == 0) {
614 		ath10k_pci_force_sleep(ar);
615 		return;
616 	}
617 
618 	del_timer_sync(&ar_pci->ps_timer);
619 
620 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
621 	WARN_ON(ar_pci->ps_wake_refcount > 0);
622 	__ath10k_pci_sleep(ar);
623 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
624 }
625 
626 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
627 {
628 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
629 	int ret;
630 
631 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
632 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
633 			    offset, offset + sizeof(value), ar_pci->mem_len);
634 		return;
635 	}
636 
637 	ret = ath10k_pci_wake(ar);
638 	if (ret) {
639 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
640 			    value, offset, ret);
641 		return;
642 	}
643 
644 	iowrite32(value, ar_pci->mem + offset);
645 	ath10k_pci_sleep(ar);
646 }
647 
648 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
649 {
650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
651 	u32 val;
652 	int ret;
653 
654 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
655 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
656 			    offset, offset + sizeof(val), ar_pci->mem_len);
657 		return 0;
658 	}
659 
660 	ret = ath10k_pci_wake(ar);
661 	if (ret) {
662 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
663 			    offset, ret);
664 		return 0xffffffff;
665 	}
666 
667 	val = ioread32(ar_pci->mem + offset);
668 	ath10k_pci_sleep(ar);
669 
670 	return val;
671 }
672 
673 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
674 {
675 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
676 
677 	ar_pci->bus_ops->write32(ar, offset, value);
678 }
679 
680 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
681 {
682 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
683 
684 	return ar_pci->bus_ops->read32(ar, offset);
685 }
686 
687 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
688 {
689 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
690 }
691 
692 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
693 {
694 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
695 }
696 
697 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
698 {
699 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
700 }
701 
702 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
703 {
704 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
705 }
706 
707 bool ath10k_pci_irq_pending(struct ath10k *ar)
708 {
709 	u32 cause;
710 
711 	/* Check if the shared legacy irq is for us */
712 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
713 				  PCIE_INTR_CAUSE_ADDRESS);
714 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
715 		return true;
716 
717 	return false;
718 }
719 
720 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
721 {
722 	/* IMPORTANT: INTR_CLR register has to be set after
723 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
724 	 * really cleared.
725 	 */
726 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
727 			   0);
728 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
729 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
730 
731 	/* IMPORTANT: this extra read transaction is required to
732 	 * flush the posted write buffer.
733 	 */
734 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
735 				PCIE_INTR_ENABLE_ADDRESS);
736 }
737 
738 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
739 {
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
741 			   PCIE_INTR_ENABLE_ADDRESS,
742 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
743 
744 	/* IMPORTANT: this extra read transaction is required to
745 	 * flush the posted write buffer.
746 	 */
747 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
748 				PCIE_INTR_ENABLE_ADDRESS);
749 }
750 
751 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
752 {
753 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
754 
755 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
756 		return "msi";
757 
758 	return "legacy";
759 }
760 
761 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
762 {
763 	struct ath10k *ar = pipe->hif_ce_state;
764 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
765 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
766 	struct sk_buff *skb;
767 	dma_addr_t paddr;
768 	int ret;
769 
770 	skb = dev_alloc_skb(pipe->buf_sz);
771 	if (!skb)
772 		return -ENOMEM;
773 
774 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
775 
776 	paddr = dma_map_single(ar->dev, skb->data,
777 			       skb->len + skb_tailroom(skb),
778 			       DMA_FROM_DEVICE);
779 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
780 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
781 		dev_kfree_skb_any(skb);
782 		return -EIO;
783 	}
784 
785 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
786 
787 	spin_lock_bh(&ar_pci->ce_lock);
788 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
789 	spin_unlock_bh(&ar_pci->ce_lock);
790 	if (ret) {
791 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
792 				 DMA_FROM_DEVICE);
793 		dev_kfree_skb_any(skb);
794 		return ret;
795 	}
796 
797 	return 0;
798 }
799 
800 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
801 {
802 	struct ath10k *ar = pipe->hif_ce_state;
803 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
804 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
805 	int ret, num;
806 
807 	if (pipe->buf_sz == 0)
808 		return;
809 
810 	if (!ce_pipe->dest_ring)
811 		return;
812 
813 	spin_lock_bh(&ar_pci->ce_lock);
814 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
815 	spin_unlock_bh(&ar_pci->ce_lock);
816 
817 	while (num >= 0) {
818 		ret = __ath10k_pci_rx_post_buf(pipe);
819 		if (ret) {
820 			if (ret == -ENOSPC)
821 				break;
822 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
823 			mod_timer(&ar_pci->rx_post_retry, jiffies +
824 				  ATH10K_PCI_RX_POST_RETRY_MS);
825 			break;
826 		}
827 		num--;
828 	}
829 }
830 
831 void ath10k_pci_rx_post(struct ath10k *ar)
832 {
833 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
834 	int i;
835 
836 	for (i = 0; i < CE_COUNT; i++)
837 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
838 }
839 
840 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
841 {
842 	struct ath10k *ar = (void *)ptr;
843 
844 	ath10k_pci_rx_post(ar);
845 }
846 
847 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
848 {
849 	u32 val = 0, region = addr & 0xfffff;
850 
851 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
852 				 & 0x7ff) << 21;
853 	val |= 0x100000 | region;
854 	return val;
855 }
856 
857 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
858 {
859 	u32 val = 0, region = addr & 0xfffff;
860 
861 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
862 	val |= 0x100000 | region;
863 	return val;
864 }
865 
866 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
867 {
868 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
869 
870 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
871 		return -ENOTSUPP;
872 
873 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
874 }
875 
876 /*
877  * Diagnostic read/write access is provided for startup/config/debug usage.
878  * Caller must guarantee proper alignment, when applicable, and single user
879  * at any moment.
880  */
881 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
882 				    int nbytes)
883 {
884 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
885 	int ret = 0;
886 	u32 *buf;
887 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
888 	struct ath10k_ce_pipe *ce_diag;
889 	/* Host buffer address in CE space */
890 	u32 ce_data;
891 	dma_addr_t ce_data_base = 0;
892 	void *data_buf = NULL;
893 	int i;
894 
895 	spin_lock_bh(&ar_pci->ce_lock);
896 
897 	ce_diag = ar_pci->ce_diag;
898 
899 	/*
900 	 * Allocate a temporary bounce buffer to hold caller's data
901 	 * to be DMA'ed from Target. This guarantees
902 	 *   1) 4-byte alignment
903 	 *   2) Buffer in DMA-able space
904 	 */
905 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
906 
907 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
908 						       alloc_nbytes,
909 						       &ce_data_base,
910 						       GFP_ATOMIC);
911 
912 	if (!data_buf) {
913 		ret = -ENOMEM;
914 		goto done;
915 	}
916 
917 	remaining_bytes = nbytes;
918 	ce_data = ce_data_base;
919 	while (remaining_bytes) {
920 		nbytes = min_t(unsigned int, remaining_bytes,
921 			       DIAG_TRANSFER_LIMIT);
922 
923 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
924 		if (ret != 0)
925 			goto done;
926 
927 		/* Request CE to send from Target(!) address to Host buffer */
928 		/*
929 		 * The address supplied by the caller is in the
930 		 * Target CPU virtual address space.
931 		 *
932 		 * In order to use this address with the diagnostic CE,
933 		 * convert it from Target CPU virtual address space
934 		 * to CE address space
935 		 */
936 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
937 
938 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
939 					    0);
940 		if (ret)
941 			goto done;
942 
943 		i = 0;
944 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
945 							    NULL) != 0) {
946 			mdelay(1);
947 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
948 				ret = -EBUSY;
949 				goto done;
950 			}
951 		}
952 
953 		i = 0;
954 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
955 							    (void **)&buf,
956 							    &completed_nbytes)
957 								!= 0) {
958 			mdelay(1);
959 
960 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
961 				ret = -EBUSY;
962 				goto done;
963 			}
964 		}
965 
966 		if (nbytes != completed_nbytes) {
967 			ret = -EIO;
968 			goto done;
969 		}
970 
971 		if (*buf != ce_data) {
972 			ret = -EIO;
973 			goto done;
974 		}
975 
976 		remaining_bytes -= nbytes;
977 		memcpy(data, data_buf, nbytes);
978 
979 		address += nbytes;
980 		data += nbytes;
981 	}
982 
983 done:
984 
985 	if (data_buf)
986 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
987 				  ce_data_base);
988 
989 	spin_unlock_bh(&ar_pci->ce_lock);
990 
991 	return ret;
992 }
993 
994 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
995 {
996 	__le32 val = 0;
997 	int ret;
998 
999 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1000 	*value = __le32_to_cpu(val);
1001 
1002 	return ret;
1003 }
1004 
1005 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1006 				     u32 src, u32 len)
1007 {
1008 	u32 host_addr, addr;
1009 	int ret;
1010 
1011 	host_addr = host_interest_item_address(src);
1012 
1013 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1014 	if (ret != 0) {
1015 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1016 			    src, ret);
1017 		return ret;
1018 	}
1019 
1020 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1021 	if (ret != 0) {
1022 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1023 			    addr, len, ret);
1024 		return ret;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1031 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1032 
1033 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1034 			      const void *data, int nbytes)
1035 {
1036 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1037 	int ret = 0;
1038 	u32 *buf;
1039 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1040 	struct ath10k_ce_pipe *ce_diag;
1041 	void *data_buf = NULL;
1042 	u32 ce_data;	/* Host buffer address in CE space */
1043 	dma_addr_t ce_data_base = 0;
1044 	int i;
1045 
1046 	spin_lock_bh(&ar_pci->ce_lock);
1047 
1048 	ce_diag = ar_pci->ce_diag;
1049 
1050 	/*
1051 	 * Allocate a temporary bounce buffer to hold caller's data
1052 	 * to be DMA'ed to Target. This guarantees
1053 	 *   1) 4-byte alignment
1054 	 *   2) Buffer in DMA-able space
1055 	 */
1056 	orig_nbytes = nbytes;
1057 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1058 						       orig_nbytes,
1059 						       &ce_data_base,
1060 						       GFP_ATOMIC);
1061 	if (!data_buf) {
1062 		ret = -ENOMEM;
1063 		goto done;
1064 	}
1065 
1066 	/* Copy caller's data to allocated DMA buf */
1067 	memcpy(data_buf, data, orig_nbytes);
1068 
1069 	/*
1070 	 * The address supplied by the caller is in the
1071 	 * Target CPU virtual address space.
1072 	 *
1073 	 * In order to use this address with the diagnostic CE,
1074 	 * convert it from
1075 	 *    Target CPU virtual address space
1076 	 * to
1077 	 *    CE address space
1078 	 */
1079 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1080 
1081 	remaining_bytes = orig_nbytes;
1082 	ce_data = ce_data_base;
1083 	while (remaining_bytes) {
1084 		/* FIXME: check cast */
1085 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1086 
1087 		/* Set up to receive directly into Target(!) address */
1088 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1089 		if (ret != 0)
1090 			goto done;
1091 
1092 		/*
1093 		 * Request CE to send caller-supplied data that
1094 		 * was copied to bounce buffer to Target(!) address.
1095 		 */
1096 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1097 					    nbytes, 0, 0);
1098 		if (ret != 0)
1099 			goto done;
1100 
1101 		i = 0;
1102 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1103 							    NULL) != 0) {
1104 			mdelay(1);
1105 
1106 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1107 				ret = -EBUSY;
1108 				goto done;
1109 			}
1110 		}
1111 
1112 		i = 0;
1113 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1114 							    (void **)&buf,
1115 							    &completed_nbytes)
1116 								!= 0) {
1117 			mdelay(1);
1118 
1119 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1120 				ret = -EBUSY;
1121 				goto done;
1122 			}
1123 		}
1124 
1125 		if (nbytes != completed_nbytes) {
1126 			ret = -EIO;
1127 			goto done;
1128 		}
1129 
1130 		if (*buf != address) {
1131 			ret = -EIO;
1132 			goto done;
1133 		}
1134 
1135 		remaining_bytes -= nbytes;
1136 		address += nbytes;
1137 		ce_data += nbytes;
1138 	}
1139 
1140 done:
1141 	if (data_buf) {
1142 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1143 				  ce_data_base);
1144 	}
1145 
1146 	if (ret != 0)
1147 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1148 			    address, ret);
1149 
1150 	spin_unlock_bh(&ar_pci->ce_lock);
1151 
1152 	return ret;
1153 }
1154 
1155 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1156 {
1157 	__le32 val = __cpu_to_le32(value);
1158 
1159 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1160 }
1161 
1162 /* Called by lower (CE) layer when a send to Target completes. */
1163 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1164 {
1165 	struct ath10k *ar = ce_state->ar;
1166 	struct sk_buff_head list;
1167 	struct sk_buff *skb;
1168 
1169 	__skb_queue_head_init(&list);
1170 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1171 		/* no need to call tx completion for NULL pointers */
1172 		if (skb == NULL)
1173 			continue;
1174 
1175 		__skb_queue_tail(&list, skb);
1176 	}
1177 
1178 	while ((skb = __skb_dequeue(&list)))
1179 		ath10k_htc_tx_completion_handler(ar, skb);
1180 }
1181 
1182 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1183 				     void (*callback)(struct ath10k *ar,
1184 						      struct sk_buff *skb))
1185 {
1186 	struct ath10k *ar = ce_state->ar;
1187 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1188 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1189 	struct sk_buff *skb;
1190 	struct sk_buff_head list;
1191 	void *transfer_context;
1192 	unsigned int nbytes, max_nbytes;
1193 
1194 	__skb_queue_head_init(&list);
1195 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1196 					     &nbytes) == 0) {
1197 		skb = transfer_context;
1198 		max_nbytes = skb->len + skb_tailroom(skb);
1199 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1200 				 max_nbytes, DMA_FROM_DEVICE);
1201 
1202 		if (unlikely(max_nbytes < nbytes)) {
1203 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1204 				    nbytes, max_nbytes);
1205 			dev_kfree_skb_any(skb);
1206 			continue;
1207 		}
1208 
1209 		skb_put(skb, nbytes);
1210 		__skb_queue_tail(&list, skb);
1211 	}
1212 
1213 	while ((skb = __skb_dequeue(&list))) {
1214 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1215 			   ce_state->id, skb->len);
1216 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1217 				skb->data, skb->len);
1218 
1219 		callback(ar, skb);
1220 	}
1221 
1222 	ath10k_pci_rx_post_pipe(pipe_info);
1223 }
1224 
1225 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1226 					 void (*callback)(struct ath10k *ar,
1227 							  struct sk_buff *skb))
1228 {
1229 	struct ath10k *ar = ce_state->ar;
1230 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1231 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1232 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1233 	struct sk_buff *skb;
1234 	struct sk_buff_head list;
1235 	void *transfer_context;
1236 	unsigned int nbytes, max_nbytes, nentries;
1237 	int orig_len;
1238 
1239 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1240 	 * is processed other than init and deinit. Before releasing CE5
1241 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1242 	 */
1243 	__skb_queue_head_init(&list);
1244 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1245 						    &nbytes) == 0) {
1246 		skb = transfer_context;
1247 		max_nbytes = skb->len + skb_tailroom(skb);
1248 
1249 		if (unlikely(max_nbytes < nbytes)) {
1250 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1251 				    nbytes, max_nbytes);
1252 			continue;
1253 		}
1254 
1255 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1256 					max_nbytes, DMA_FROM_DEVICE);
1257 		skb_put(skb, nbytes);
1258 		__skb_queue_tail(&list, skb);
1259 	}
1260 
1261 	nentries = skb_queue_len(&list);
1262 	while ((skb = __skb_dequeue(&list))) {
1263 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1264 			   ce_state->id, skb->len);
1265 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1266 				skb->data, skb->len);
1267 
1268 		orig_len = skb->len;
1269 		callback(ar, skb);
1270 		skb_push(skb, orig_len - skb->len);
1271 		skb_reset_tail_pointer(skb);
1272 		skb_trim(skb, 0);
1273 
1274 		/*let device gain the buffer again*/
1275 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1276 					   skb->len + skb_tailroom(skb),
1277 					   DMA_FROM_DEVICE);
1278 	}
1279 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1280 }
1281 
1282 /* Called by lower (CE) layer when data is received from the Target. */
1283 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1284 {
1285 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1286 }
1287 
1288 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1289 {
1290 	/* CE4 polling needs to be done whenever CE pipe which transports
1291 	 * HTT Rx (target->host) is processed.
1292 	 */
1293 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1294 
1295 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1296 }
1297 
1298 /* Called by lower (CE) layer when data is received from the Target.
1299  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1300  */
1301 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1302 {
1303 	ath10k_pci_process_rx_cb(ce_state,
1304 				 ath10k_htt_rx_pktlog_completion_handler);
1305 }
1306 
1307 /* Called by lower (CE) layer when a send to HTT Target completes. */
1308 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1309 {
1310 	struct ath10k *ar = ce_state->ar;
1311 	struct sk_buff *skb;
1312 
1313 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1314 		/* no need to call tx completion for NULL pointers */
1315 		if (!skb)
1316 			continue;
1317 
1318 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1319 				 skb->len, DMA_TO_DEVICE);
1320 		ath10k_htt_hif_tx_complete(ar, skb);
1321 	}
1322 }
1323 
1324 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1325 {
1326 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1327 	ath10k_htt_t2h_msg_handler(ar, skb);
1328 }
1329 
1330 /* Called by lower (CE) layer when HTT data is received from the Target. */
1331 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1332 {
1333 	/* CE4 polling needs to be done whenever CE pipe which transports
1334 	 * HTT Rx (target->host) is processed.
1335 	 */
1336 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1337 
1338 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1339 }
1340 
1341 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1342 			 struct ath10k_hif_sg_item *items, int n_items)
1343 {
1344 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1345 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1346 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1347 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1348 	unsigned int nentries_mask;
1349 	unsigned int sw_index;
1350 	unsigned int write_index;
1351 	int err, i = 0;
1352 
1353 	spin_lock_bh(&ar_pci->ce_lock);
1354 
1355 	nentries_mask = src_ring->nentries_mask;
1356 	sw_index = src_ring->sw_index;
1357 	write_index = src_ring->write_index;
1358 
1359 	if (unlikely(CE_RING_DELTA(nentries_mask,
1360 				   write_index, sw_index - 1) < n_items)) {
1361 		err = -ENOBUFS;
1362 		goto err;
1363 	}
1364 
1365 	for (i = 0; i < n_items - 1; i++) {
1366 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1367 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1368 			   i, items[i].paddr, items[i].len, n_items);
1369 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1370 				items[i].vaddr, items[i].len);
1371 
1372 		err = ath10k_ce_send_nolock(ce_pipe,
1373 					    items[i].transfer_context,
1374 					    items[i].paddr,
1375 					    items[i].len,
1376 					    items[i].transfer_id,
1377 					    CE_SEND_FLAG_GATHER);
1378 		if (err)
1379 			goto err;
1380 	}
1381 
1382 	/* `i` is equal to `n_items -1` after for() */
1383 
1384 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1385 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1386 		   i, items[i].paddr, items[i].len, n_items);
1387 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1388 			items[i].vaddr, items[i].len);
1389 
1390 	err = ath10k_ce_send_nolock(ce_pipe,
1391 				    items[i].transfer_context,
1392 				    items[i].paddr,
1393 				    items[i].len,
1394 				    items[i].transfer_id,
1395 				    0);
1396 	if (err)
1397 		goto err;
1398 
1399 	spin_unlock_bh(&ar_pci->ce_lock);
1400 	return 0;
1401 
1402 err:
1403 	for (; i > 0; i--)
1404 		__ath10k_ce_send_revert(ce_pipe);
1405 
1406 	spin_unlock_bh(&ar_pci->ce_lock);
1407 	return err;
1408 }
1409 
1410 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1411 			     size_t buf_len)
1412 {
1413 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1414 }
1415 
1416 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1417 {
1418 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1419 
1420 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1421 
1422 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1423 }
1424 
1425 static void ath10k_pci_dump_registers(struct ath10k *ar,
1426 				      struct ath10k_fw_crash_data *crash_data)
1427 {
1428 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1429 	int i, ret;
1430 
1431 	lockdep_assert_held(&ar->data_lock);
1432 
1433 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1434 				      hi_failure_state,
1435 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1436 	if (ret) {
1437 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1438 		return;
1439 	}
1440 
1441 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1442 
1443 	ath10k_err(ar, "firmware register dump:\n");
1444 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1445 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1446 			   i,
1447 			   __le32_to_cpu(reg_dump_values[i]),
1448 			   __le32_to_cpu(reg_dump_values[i + 1]),
1449 			   __le32_to_cpu(reg_dump_values[i + 2]),
1450 			   __le32_to_cpu(reg_dump_values[i + 3]));
1451 
1452 	if (!crash_data)
1453 		return;
1454 
1455 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1456 		crash_data->registers[i] = reg_dump_values[i];
1457 }
1458 
1459 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1460 {
1461 	struct ath10k_fw_crash_data *crash_data;
1462 	char uuid[50];
1463 
1464 	spin_lock_bh(&ar->data_lock);
1465 
1466 	ar->stats.fw_crash_counter++;
1467 
1468 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1469 
1470 	if (crash_data)
1471 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1472 	else
1473 		scnprintf(uuid, sizeof(uuid), "n/a");
1474 
1475 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1476 	ath10k_print_driver_info(ar);
1477 	ath10k_pci_dump_registers(ar, crash_data);
1478 	ath10k_ce_dump_registers(ar, crash_data);
1479 
1480 	spin_unlock_bh(&ar->data_lock);
1481 
1482 	queue_work(ar->workqueue, &ar->restart_work);
1483 }
1484 
1485 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1486 					int force)
1487 {
1488 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1489 
1490 	if (!force) {
1491 		int resources;
1492 		/*
1493 		 * Decide whether to actually poll for completions, or just
1494 		 * wait for a later chance.
1495 		 * If there seem to be plenty of resources left, then just wait
1496 		 * since checking involves reading a CE register, which is a
1497 		 * relatively expensive operation.
1498 		 */
1499 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1500 
1501 		/*
1502 		 * If at least 50% of the total resources are still available,
1503 		 * don't bother checking again yet.
1504 		 */
1505 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1506 			return;
1507 	}
1508 	ath10k_ce_per_engine_service(ar, pipe);
1509 }
1510 
1511 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1512 {
1513 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1514 
1515 	del_timer_sync(&ar_pci->rx_post_retry);
1516 }
1517 
1518 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1519 				       u8 *ul_pipe, u8 *dl_pipe)
1520 {
1521 	const struct service_to_pipe *entry;
1522 	bool ul_set = false, dl_set = false;
1523 	int i;
1524 
1525 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1526 
1527 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1528 		entry = &target_service_to_ce_map_wlan[i];
1529 
1530 		if (__le32_to_cpu(entry->service_id) != service_id)
1531 			continue;
1532 
1533 		switch (__le32_to_cpu(entry->pipedir)) {
1534 		case PIPEDIR_NONE:
1535 			break;
1536 		case PIPEDIR_IN:
1537 			WARN_ON(dl_set);
1538 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1539 			dl_set = true;
1540 			break;
1541 		case PIPEDIR_OUT:
1542 			WARN_ON(ul_set);
1543 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1544 			ul_set = true;
1545 			break;
1546 		case PIPEDIR_INOUT:
1547 			WARN_ON(dl_set);
1548 			WARN_ON(ul_set);
1549 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1550 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1551 			dl_set = true;
1552 			ul_set = true;
1553 			break;
1554 		}
1555 	}
1556 
1557 	if (WARN_ON(!ul_set || !dl_set))
1558 		return -ENOENT;
1559 
1560 	return 0;
1561 }
1562 
1563 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1564 				     u8 *ul_pipe, u8 *dl_pipe)
1565 {
1566 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1567 
1568 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1569 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1570 						 ul_pipe, dl_pipe);
1571 }
1572 
1573 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1574 {
1575 	u32 val;
1576 
1577 	switch (ar->hw_rev) {
1578 	case ATH10K_HW_QCA988X:
1579 	case ATH10K_HW_QCA9887:
1580 	case ATH10K_HW_QCA6174:
1581 	case ATH10K_HW_QCA9377:
1582 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1583 					CORE_CTRL_ADDRESS);
1584 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1585 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1586 				   CORE_CTRL_ADDRESS, val);
1587 		break;
1588 	case ATH10K_HW_QCA99X0:
1589 	case ATH10K_HW_QCA9984:
1590 	case ATH10K_HW_QCA9888:
1591 	case ATH10K_HW_QCA4019:
1592 		/* TODO: Find appropriate register configuration for QCA99X0
1593 		 *  to mask irq/MSI.
1594 		 */
1595 		break;
1596 	}
1597 }
1598 
1599 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1600 {
1601 	u32 val;
1602 
1603 	switch (ar->hw_rev) {
1604 	case ATH10K_HW_QCA988X:
1605 	case ATH10K_HW_QCA9887:
1606 	case ATH10K_HW_QCA6174:
1607 	case ATH10K_HW_QCA9377:
1608 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1609 					CORE_CTRL_ADDRESS);
1610 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1611 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1612 				   CORE_CTRL_ADDRESS, val);
1613 		break;
1614 	case ATH10K_HW_QCA99X0:
1615 	case ATH10K_HW_QCA9984:
1616 	case ATH10K_HW_QCA9888:
1617 	case ATH10K_HW_QCA4019:
1618 		/* TODO: Find appropriate register configuration for QCA99X0
1619 		 *  to unmask irq/MSI.
1620 		 */
1621 		break;
1622 	}
1623 }
1624 
1625 static void ath10k_pci_irq_disable(struct ath10k *ar)
1626 {
1627 	ath10k_ce_disable_interrupts(ar);
1628 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1629 	ath10k_pci_irq_msi_fw_mask(ar);
1630 }
1631 
1632 static void ath10k_pci_irq_sync(struct ath10k *ar)
1633 {
1634 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1635 
1636 	synchronize_irq(ar_pci->pdev->irq);
1637 }
1638 
1639 static void ath10k_pci_irq_enable(struct ath10k *ar)
1640 {
1641 	ath10k_ce_enable_interrupts(ar);
1642 	ath10k_pci_enable_legacy_irq(ar);
1643 	ath10k_pci_irq_msi_fw_unmask(ar);
1644 }
1645 
1646 static int ath10k_pci_hif_start(struct ath10k *ar)
1647 {
1648 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1649 
1650 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1651 
1652 	napi_enable(&ar->napi);
1653 
1654 	ath10k_pci_irq_enable(ar);
1655 	ath10k_pci_rx_post(ar);
1656 
1657 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1658 				   ar_pci->link_ctl);
1659 
1660 	return 0;
1661 }
1662 
1663 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1664 {
1665 	struct ath10k *ar;
1666 	struct ath10k_ce_pipe *ce_pipe;
1667 	struct ath10k_ce_ring *ce_ring;
1668 	struct sk_buff *skb;
1669 	int i;
1670 
1671 	ar = pci_pipe->hif_ce_state;
1672 	ce_pipe = pci_pipe->ce_hdl;
1673 	ce_ring = ce_pipe->dest_ring;
1674 
1675 	if (!ce_ring)
1676 		return;
1677 
1678 	if (!pci_pipe->buf_sz)
1679 		return;
1680 
1681 	for (i = 0; i < ce_ring->nentries; i++) {
1682 		skb = ce_ring->per_transfer_context[i];
1683 		if (!skb)
1684 			continue;
1685 
1686 		ce_ring->per_transfer_context[i] = NULL;
1687 
1688 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1689 				 skb->len + skb_tailroom(skb),
1690 				 DMA_FROM_DEVICE);
1691 		dev_kfree_skb_any(skb);
1692 	}
1693 }
1694 
1695 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1696 {
1697 	struct ath10k *ar;
1698 	struct ath10k_ce_pipe *ce_pipe;
1699 	struct ath10k_ce_ring *ce_ring;
1700 	struct sk_buff *skb;
1701 	int i;
1702 
1703 	ar = pci_pipe->hif_ce_state;
1704 	ce_pipe = pci_pipe->ce_hdl;
1705 	ce_ring = ce_pipe->src_ring;
1706 
1707 	if (!ce_ring)
1708 		return;
1709 
1710 	if (!pci_pipe->buf_sz)
1711 		return;
1712 
1713 	for (i = 0; i < ce_ring->nentries; i++) {
1714 		skb = ce_ring->per_transfer_context[i];
1715 		if (!skb)
1716 			continue;
1717 
1718 		ce_ring->per_transfer_context[i] = NULL;
1719 
1720 		ath10k_htc_tx_completion_handler(ar, skb);
1721 	}
1722 }
1723 
1724 /*
1725  * Cleanup residual buffers for device shutdown:
1726  *    buffers that were enqueued for receive
1727  *    buffers that were to be sent
1728  * Note: Buffers that had completed but which were
1729  * not yet processed are on a completion queue. They
1730  * are handled when the completion thread shuts down.
1731  */
1732 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1733 {
1734 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1735 	int pipe_num;
1736 
1737 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1738 		struct ath10k_pci_pipe *pipe_info;
1739 
1740 		pipe_info = &ar_pci->pipe_info[pipe_num];
1741 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1742 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1743 	}
1744 }
1745 
1746 void ath10k_pci_ce_deinit(struct ath10k *ar)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < CE_COUNT; i++)
1751 		ath10k_ce_deinit_pipe(ar, i);
1752 }
1753 
1754 void ath10k_pci_flush(struct ath10k *ar)
1755 {
1756 	ath10k_pci_rx_retry_sync(ar);
1757 	ath10k_pci_buffer_cleanup(ar);
1758 }
1759 
1760 static void ath10k_pci_hif_stop(struct ath10k *ar)
1761 {
1762 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1763 	unsigned long flags;
1764 
1765 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1766 
1767 	/* Most likely the device has HTT Rx ring configured. The only way to
1768 	 * prevent the device from accessing (and possible corrupting) host
1769 	 * memory is to reset the chip now.
1770 	 *
1771 	 * There's also no known way of masking MSI interrupts on the device.
1772 	 * For ranged MSI the CE-related interrupts can be masked. However
1773 	 * regardless how many MSI interrupts are assigned the first one
1774 	 * is always used for firmware indications (crashes) and cannot be
1775 	 * masked. To prevent the device from asserting the interrupt reset it
1776 	 * before proceeding with cleanup.
1777 	 */
1778 	ath10k_pci_safe_chip_reset(ar);
1779 
1780 	ath10k_pci_irq_disable(ar);
1781 	ath10k_pci_irq_sync(ar);
1782 	ath10k_pci_flush(ar);
1783 	napi_synchronize(&ar->napi);
1784 	napi_disable(&ar->napi);
1785 
1786 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1787 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1788 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1789 }
1790 
1791 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1792 				    void *req, u32 req_len,
1793 				    void *resp, u32 *resp_len)
1794 {
1795 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1796 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1797 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1798 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1799 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1800 	dma_addr_t req_paddr = 0;
1801 	dma_addr_t resp_paddr = 0;
1802 	struct bmi_xfer xfer = {};
1803 	void *treq, *tresp = NULL;
1804 	int ret = 0;
1805 
1806 	might_sleep();
1807 
1808 	if (resp && !resp_len)
1809 		return -EINVAL;
1810 
1811 	if (resp && resp_len && *resp_len == 0)
1812 		return -EINVAL;
1813 
1814 	treq = kmemdup(req, req_len, GFP_KERNEL);
1815 	if (!treq)
1816 		return -ENOMEM;
1817 
1818 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1819 	ret = dma_mapping_error(ar->dev, req_paddr);
1820 	if (ret) {
1821 		ret = -EIO;
1822 		goto err_dma;
1823 	}
1824 
1825 	if (resp && resp_len) {
1826 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1827 		if (!tresp) {
1828 			ret = -ENOMEM;
1829 			goto err_req;
1830 		}
1831 
1832 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1833 					    DMA_FROM_DEVICE);
1834 		ret = dma_mapping_error(ar->dev, resp_paddr);
1835 		if (ret) {
1836 			ret = -EIO;
1837 			goto err_req;
1838 		}
1839 
1840 		xfer.wait_for_resp = true;
1841 		xfer.resp_len = 0;
1842 
1843 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1844 	}
1845 
1846 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1847 	if (ret)
1848 		goto err_resp;
1849 
1850 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
1851 	if (ret) {
1852 		u32 unused_buffer;
1853 		unsigned int unused_nbytes;
1854 		unsigned int unused_id;
1855 
1856 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1857 					   &unused_nbytes, &unused_id);
1858 	} else {
1859 		/* non-zero means we did not time out */
1860 		ret = 0;
1861 	}
1862 
1863 err_resp:
1864 	if (resp) {
1865 		u32 unused_buffer;
1866 
1867 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1868 		dma_unmap_single(ar->dev, resp_paddr,
1869 				 *resp_len, DMA_FROM_DEVICE);
1870 	}
1871 err_req:
1872 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1873 
1874 	if (ret == 0 && resp_len) {
1875 		*resp_len = min(*resp_len, xfer.resp_len);
1876 		memcpy(resp, tresp, xfer.resp_len);
1877 	}
1878 err_dma:
1879 	kfree(treq);
1880 	kfree(tresp);
1881 
1882 	return ret;
1883 }
1884 
1885 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1886 {
1887 	struct bmi_xfer *xfer;
1888 
1889 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1890 		return;
1891 
1892 	xfer->tx_done = true;
1893 }
1894 
1895 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1896 {
1897 	struct ath10k *ar = ce_state->ar;
1898 	struct bmi_xfer *xfer;
1899 	unsigned int nbytes;
1900 
1901 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1902 					  &nbytes))
1903 		return;
1904 
1905 	if (WARN_ON_ONCE(!xfer))
1906 		return;
1907 
1908 	if (!xfer->wait_for_resp) {
1909 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1910 		return;
1911 	}
1912 
1913 	xfer->resp_len = nbytes;
1914 	xfer->rx_done = true;
1915 }
1916 
1917 static int ath10k_pci_bmi_wait(struct ath10k *ar,
1918 			       struct ath10k_ce_pipe *tx_pipe,
1919 			       struct ath10k_ce_pipe *rx_pipe,
1920 			       struct bmi_xfer *xfer)
1921 {
1922 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1923 	unsigned long started = jiffies;
1924 	unsigned long dur;
1925 	int ret;
1926 
1927 	while (time_before_eq(jiffies, timeout)) {
1928 		ath10k_pci_bmi_send_done(tx_pipe);
1929 		ath10k_pci_bmi_recv_data(rx_pipe);
1930 
1931 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
1932 			ret = 0;
1933 			goto out;
1934 		}
1935 
1936 		schedule();
1937 	}
1938 
1939 	ret = -ETIMEDOUT;
1940 
1941 out:
1942 	dur = jiffies - started;
1943 	if (dur > HZ)
1944 		ath10k_dbg(ar, ATH10K_DBG_BMI,
1945 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
1946 			   dur, HZ, ret);
1947 	return ret;
1948 }
1949 
1950 /*
1951  * Send an interrupt to the device to wake up the Target CPU
1952  * so it has an opportunity to notice any changed state.
1953  */
1954 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1955 {
1956 	u32 addr, val;
1957 
1958 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1959 	val = ath10k_pci_read32(ar, addr);
1960 	val |= CORE_CTRL_CPU_INTR_MASK;
1961 	ath10k_pci_write32(ar, addr, val);
1962 
1963 	return 0;
1964 }
1965 
1966 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1967 {
1968 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1969 
1970 	switch (ar_pci->pdev->device) {
1971 	case QCA988X_2_0_DEVICE_ID:
1972 	case QCA99X0_2_0_DEVICE_ID:
1973 	case QCA9888_2_0_DEVICE_ID:
1974 	case QCA9984_1_0_DEVICE_ID:
1975 	case QCA9887_1_0_DEVICE_ID:
1976 		return 1;
1977 	case QCA6164_2_1_DEVICE_ID:
1978 	case QCA6174_2_1_DEVICE_ID:
1979 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1980 		case QCA6174_HW_1_0_CHIP_ID_REV:
1981 		case QCA6174_HW_1_1_CHIP_ID_REV:
1982 		case QCA6174_HW_2_1_CHIP_ID_REV:
1983 		case QCA6174_HW_2_2_CHIP_ID_REV:
1984 			return 3;
1985 		case QCA6174_HW_1_3_CHIP_ID_REV:
1986 			return 2;
1987 		case QCA6174_HW_3_0_CHIP_ID_REV:
1988 		case QCA6174_HW_3_1_CHIP_ID_REV:
1989 		case QCA6174_HW_3_2_CHIP_ID_REV:
1990 			return 9;
1991 		}
1992 		break;
1993 	case QCA9377_1_0_DEVICE_ID:
1994 		return 4;
1995 	}
1996 
1997 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1998 	return 1;
1999 }
2000 
2001 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2002 {
2003 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2004 
2005 	return ar_pci->bus_ops->get_num_banks(ar);
2006 }
2007 
2008 int ath10k_pci_init_config(struct ath10k *ar)
2009 {
2010 	u32 interconnect_targ_addr;
2011 	u32 pcie_state_targ_addr = 0;
2012 	u32 pipe_cfg_targ_addr = 0;
2013 	u32 svc_to_pipe_map = 0;
2014 	u32 pcie_config_flags = 0;
2015 	u32 ealloc_value;
2016 	u32 ealloc_targ_addr;
2017 	u32 flag2_value;
2018 	u32 flag2_targ_addr;
2019 	int ret = 0;
2020 
2021 	/* Download to Target the CE Config and the service-to-CE map */
2022 	interconnect_targ_addr =
2023 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2024 
2025 	/* Supply Target-side CE configuration */
2026 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2027 				     &pcie_state_targ_addr);
2028 	if (ret != 0) {
2029 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2030 		return ret;
2031 	}
2032 
2033 	if (pcie_state_targ_addr == 0) {
2034 		ret = -EIO;
2035 		ath10k_err(ar, "Invalid pcie state addr\n");
2036 		return ret;
2037 	}
2038 
2039 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2040 					  offsetof(struct pcie_state,
2041 						   pipe_cfg_addr)),
2042 				     &pipe_cfg_targ_addr);
2043 	if (ret != 0) {
2044 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2045 		return ret;
2046 	}
2047 
2048 	if (pipe_cfg_targ_addr == 0) {
2049 		ret = -EIO;
2050 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2051 		return ret;
2052 	}
2053 
2054 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2055 					target_ce_config_wlan,
2056 					sizeof(struct ce_pipe_config) *
2057 					NUM_TARGET_CE_CONFIG_WLAN);
2058 
2059 	if (ret != 0) {
2060 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2061 		return ret;
2062 	}
2063 
2064 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2065 					  offsetof(struct pcie_state,
2066 						   svc_to_pipe_map)),
2067 				     &svc_to_pipe_map);
2068 	if (ret != 0) {
2069 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2070 		return ret;
2071 	}
2072 
2073 	if (svc_to_pipe_map == 0) {
2074 		ret = -EIO;
2075 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2076 		return ret;
2077 	}
2078 
2079 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2080 					target_service_to_ce_map_wlan,
2081 					sizeof(target_service_to_ce_map_wlan));
2082 	if (ret != 0) {
2083 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2084 		return ret;
2085 	}
2086 
2087 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2088 					  offsetof(struct pcie_state,
2089 						   config_flags)),
2090 				     &pcie_config_flags);
2091 	if (ret != 0) {
2092 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2093 		return ret;
2094 	}
2095 
2096 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2097 
2098 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2099 					   offsetof(struct pcie_state,
2100 						    config_flags)),
2101 				      pcie_config_flags);
2102 	if (ret != 0) {
2103 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2104 		return ret;
2105 	}
2106 
2107 	/* configure early allocation */
2108 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2109 
2110 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2111 	if (ret != 0) {
2112 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2113 		return ret;
2114 	}
2115 
2116 	/* first bank is switched to IRAM */
2117 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2118 			 HI_EARLY_ALLOC_MAGIC_MASK);
2119 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2120 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2121 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2122 
2123 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2124 	if (ret != 0) {
2125 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2126 		return ret;
2127 	}
2128 
2129 	/* Tell Target to proceed with initialization */
2130 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2131 
2132 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2133 	if (ret != 0) {
2134 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2135 		return ret;
2136 	}
2137 
2138 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2139 
2140 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2141 	if (ret != 0) {
2142 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2143 		return ret;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2150 {
2151 	struct ce_attr *attr;
2152 	struct ce_pipe_config *config;
2153 
2154 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2155 	 * since it is currently used for other feature.
2156 	 */
2157 
2158 	/* Override Host's Copy Engine 5 configuration */
2159 	attr = &host_ce_config_wlan[5];
2160 	attr->src_sz_max = 0;
2161 	attr->dest_nentries = 0;
2162 
2163 	/* Override Target firmware's Copy Engine configuration */
2164 	config = &target_ce_config_wlan[5];
2165 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2166 	config->nbytes_max = __cpu_to_le32(2048);
2167 
2168 	/* Map from service/endpoint to Copy Engine */
2169 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2170 }
2171 
2172 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2173 {
2174 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2175 	struct ath10k_pci_pipe *pipe;
2176 	int i, ret;
2177 
2178 	for (i = 0; i < CE_COUNT; i++) {
2179 		pipe = &ar_pci->pipe_info[i];
2180 		pipe->ce_hdl = &ar_pci->ce_states[i];
2181 		pipe->pipe_num = i;
2182 		pipe->hif_ce_state = ar;
2183 
2184 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2185 		if (ret) {
2186 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2187 				   i, ret);
2188 			return ret;
2189 		}
2190 
2191 		/* Last CE is Diagnostic Window */
2192 		if (i == CE_DIAG_PIPE) {
2193 			ar_pci->ce_diag = pipe->ce_hdl;
2194 			continue;
2195 		}
2196 
2197 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 void ath10k_pci_free_pipes(struct ath10k *ar)
2204 {
2205 	int i;
2206 
2207 	for (i = 0; i < CE_COUNT; i++)
2208 		ath10k_ce_free_pipe(ar, i);
2209 }
2210 
2211 int ath10k_pci_init_pipes(struct ath10k *ar)
2212 {
2213 	int i, ret;
2214 
2215 	for (i = 0; i < CE_COUNT; i++) {
2216 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2217 		if (ret) {
2218 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2219 				   i, ret);
2220 			return ret;
2221 		}
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2228 {
2229 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2230 	       FW_IND_EVENT_PENDING;
2231 }
2232 
2233 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2234 {
2235 	u32 val;
2236 
2237 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2238 	val &= ~FW_IND_EVENT_PENDING;
2239 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2240 }
2241 
2242 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2243 {
2244 	u32 val;
2245 
2246 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2247 	return (val == 0xffffffff);
2248 }
2249 
2250 /* this function effectively clears target memory controller assert line */
2251 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2252 {
2253 	u32 val;
2254 
2255 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2256 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2257 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2258 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2259 
2260 	msleep(10);
2261 
2262 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2263 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2264 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2265 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2266 
2267 	msleep(10);
2268 }
2269 
2270 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2271 {
2272 	u32 val;
2273 
2274 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2275 
2276 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2277 				SOC_RESET_CONTROL_ADDRESS);
2278 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2279 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2280 }
2281 
2282 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2283 {
2284 	u32 val;
2285 
2286 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2287 				SOC_RESET_CONTROL_ADDRESS);
2288 
2289 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2290 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2291 	msleep(10);
2292 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2293 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2294 }
2295 
2296 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2297 {
2298 	u32 val;
2299 
2300 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2301 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2302 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2303 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2304 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2305 }
2306 
2307 static int ath10k_pci_warm_reset(struct ath10k *ar)
2308 {
2309 	int ret;
2310 
2311 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2312 
2313 	spin_lock_bh(&ar->data_lock);
2314 	ar->stats.fw_warm_reset_counter++;
2315 	spin_unlock_bh(&ar->data_lock);
2316 
2317 	ath10k_pci_irq_disable(ar);
2318 
2319 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2320 	 * were to access copy engine while host performs copy engine reset
2321 	 * then it is possible for the device to confuse pci-e controller to
2322 	 * the point of bringing host system to a complete stop (i.e. hang).
2323 	 */
2324 	ath10k_pci_warm_reset_si0(ar);
2325 	ath10k_pci_warm_reset_cpu(ar);
2326 	ath10k_pci_init_pipes(ar);
2327 	ath10k_pci_wait_for_target_init(ar);
2328 
2329 	ath10k_pci_warm_reset_clear_lf(ar);
2330 	ath10k_pci_warm_reset_ce(ar);
2331 	ath10k_pci_warm_reset_cpu(ar);
2332 	ath10k_pci_init_pipes(ar);
2333 
2334 	ret = ath10k_pci_wait_for_target_init(ar);
2335 	if (ret) {
2336 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2337 		return ret;
2338 	}
2339 
2340 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2341 
2342 	return 0;
2343 }
2344 
2345 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2346 {
2347 	ath10k_pci_irq_disable(ar);
2348 	return ath10k_pci_qca99x0_chip_reset(ar);
2349 }
2350 
2351 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2352 {
2353 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2354 
2355 	if (!ar_pci->pci_soft_reset)
2356 		return -ENOTSUPP;
2357 
2358 	return ar_pci->pci_soft_reset(ar);
2359 }
2360 
2361 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2362 {
2363 	int i, ret;
2364 	u32 val;
2365 
2366 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2367 
2368 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2369 	 * It is thus preferred to use warm reset which is safer but may not be
2370 	 * able to recover the device from all possible fail scenarios.
2371 	 *
2372 	 * Warm reset doesn't always work on first try so attempt it a few
2373 	 * times before giving up.
2374 	 */
2375 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2376 		ret = ath10k_pci_warm_reset(ar);
2377 		if (ret) {
2378 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2379 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2380 				    ret);
2381 			continue;
2382 		}
2383 
2384 		/* FIXME: Sometimes copy engine doesn't recover after warm
2385 		 * reset. In most cases this needs cold reset. In some of these
2386 		 * cases the device is in such a state that a cold reset may
2387 		 * lock up the host.
2388 		 *
2389 		 * Reading any host interest register via copy engine is
2390 		 * sufficient to verify if device is capable of booting
2391 		 * firmware blob.
2392 		 */
2393 		ret = ath10k_pci_init_pipes(ar);
2394 		if (ret) {
2395 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2396 				    ret);
2397 			continue;
2398 		}
2399 
2400 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2401 					     &val);
2402 		if (ret) {
2403 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2404 				    ret);
2405 			continue;
2406 		}
2407 
2408 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2409 		return 0;
2410 	}
2411 
2412 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2413 		ath10k_warn(ar, "refusing cold reset as requested\n");
2414 		return -EPERM;
2415 	}
2416 
2417 	ret = ath10k_pci_cold_reset(ar);
2418 	if (ret) {
2419 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2420 		return ret;
2421 	}
2422 
2423 	ret = ath10k_pci_wait_for_target_init(ar);
2424 	if (ret) {
2425 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2426 			    ret);
2427 		return ret;
2428 	}
2429 
2430 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2431 
2432 	return 0;
2433 }
2434 
2435 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2436 {
2437 	int ret;
2438 
2439 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2440 
2441 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2442 
2443 	ret = ath10k_pci_cold_reset(ar);
2444 	if (ret) {
2445 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2446 		return ret;
2447 	}
2448 
2449 	ret = ath10k_pci_wait_for_target_init(ar);
2450 	if (ret) {
2451 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2452 			    ret);
2453 		return ret;
2454 	}
2455 
2456 	ret = ath10k_pci_warm_reset(ar);
2457 	if (ret) {
2458 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2459 		return ret;
2460 	}
2461 
2462 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2463 
2464 	return 0;
2465 }
2466 
2467 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2468 {
2469 	int ret;
2470 
2471 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2472 
2473 	ret = ath10k_pci_cold_reset(ar);
2474 	if (ret) {
2475 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2476 		return ret;
2477 	}
2478 
2479 	ret = ath10k_pci_wait_for_target_init(ar);
2480 	if (ret) {
2481 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2482 			    ret);
2483 		return ret;
2484 	}
2485 
2486 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2487 
2488 	return 0;
2489 }
2490 
2491 static int ath10k_pci_chip_reset(struct ath10k *ar)
2492 {
2493 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2494 
2495 	if (WARN_ON(!ar_pci->pci_hard_reset))
2496 		return -ENOTSUPP;
2497 
2498 	return ar_pci->pci_hard_reset(ar);
2499 }
2500 
2501 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2502 {
2503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2504 	int ret;
2505 
2506 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2507 
2508 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2509 				  &ar_pci->link_ctl);
2510 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2511 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2512 
2513 	/*
2514 	 * Bring the target up cleanly.
2515 	 *
2516 	 * The target may be in an undefined state with an AUX-powered Target
2517 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2518 	 * restarted (without unloading the driver) then the Target is left
2519 	 * (aux) powered and running. On a subsequent driver load, the Target
2520 	 * is in an unexpected state. We try to catch that here in order to
2521 	 * reset the Target and retry the probe.
2522 	 */
2523 	ret = ath10k_pci_chip_reset(ar);
2524 	if (ret) {
2525 		if (ath10k_pci_has_fw_crashed(ar)) {
2526 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2527 			ath10k_pci_fw_crashed_clear(ar);
2528 			ath10k_pci_fw_crashed_dump(ar);
2529 		}
2530 
2531 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2532 		goto err_sleep;
2533 	}
2534 
2535 	ret = ath10k_pci_init_pipes(ar);
2536 	if (ret) {
2537 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2538 		goto err_sleep;
2539 	}
2540 
2541 	ret = ath10k_pci_init_config(ar);
2542 	if (ret) {
2543 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2544 		goto err_ce;
2545 	}
2546 
2547 	ret = ath10k_pci_wake_target_cpu(ar);
2548 	if (ret) {
2549 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2550 		goto err_ce;
2551 	}
2552 
2553 	return 0;
2554 
2555 err_ce:
2556 	ath10k_pci_ce_deinit(ar);
2557 
2558 err_sleep:
2559 	return ret;
2560 }
2561 
2562 void ath10k_pci_hif_power_down(struct ath10k *ar)
2563 {
2564 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2565 
2566 	/* Currently hif_power_up performs effectively a reset and hif_stop
2567 	 * resets the chip as well so there's no point in resetting here.
2568 	 */
2569 }
2570 
2571 #ifdef CONFIG_PM
2572 
2573 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2574 {
2575 	/* The grace timer can still be counting down and ar->ps_awake be true.
2576 	 * It is known that the device may be asleep after resuming regardless
2577 	 * of the SoC powersave state before suspending. Hence make sure the
2578 	 * device is asleep before proceeding.
2579 	 */
2580 	ath10k_pci_sleep_sync(ar);
2581 
2582 	return 0;
2583 }
2584 
2585 static int ath10k_pci_hif_resume(struct ath10k *ar)
2586 {
2587 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2588 	struct pci_dev *pdev = ar_pci->pdev;
2589 	u32 val;
2590 	int ret = 0;
2591 
2592 	ret = ath10k_pci_force_wake(ar);
2593 	if (ret) {
2594 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2595 		return ret;
2596 	}
2597 
2598 	/* Suspend/Resume resets the PCI configuration space, so we have to
2599 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2600 	 * from interfering with C3 CPU state. pci_restore_state won't help
2601 	 * here since it only restores the first 64 bytes pci config header.
2602 	 */
2603 	pci_read_config_dword(pdev, 0x40, &val);
2604 	if ((val & 0x0000ff00) != 0)
2605 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2606 
2607 	return ret;
2608 }
2609 #endif
2610 
2611 static bool ath10k_pci_validate_cal(void *data, size_t size)
2612 {
2613 	__le16 *cal_words = data;
2614 	u16 checksum = 0;
2615 	size_t i;
2616 
2617 	if (size % 2 != 0)
2618 		return false;
2619 
2620 	for (i = 0; i < size / 2; i++)
2621 		checksum ^= le16_to_cpu(cal_words[i]);
2622 
2623 	return checksum == 0xffff;
2624 }
2625 
2626 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2627 {
2628 	/* Enable SI clock */
2629 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2630 
2631 	/* Configure GPIOs for I2C operation */
2632 	ath10k_pci_write32(ar,
2633 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2634 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2635 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2636 			      GPIO_PIN0_CONFIG) |
2637 			   SM(1, GPIO_PIN0_PAD_PULL));
2638 
2639 	ath10k_pci_write32(ar,
2640 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2641 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2642 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2643 			   SM(1, GPIO_PIN0_PAD_PULL));
2644 
2645 	ath10k_pci_write32(ar,
2646 			   GPIO_BASE_ADDRESS +
2647 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2648 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2649 
2650 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2651 	ath10k_pci_write32(ar,
2652 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2653 			   SM(1, SI_CONFIG_ERR_INT) |
2654 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2655 			   SM(1, SI_CONFIG_I2C) |
2656 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2657 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2658 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2659 			   SM(8, SI_CONFIG_DIVIDER));
2660 }
2661 
2662 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2663 {
2664 	u32 reg;
2665 	int wait_limit;
2666 
2667 	/* set device select byte and for the read operation */
2668 	reg = QCA9887_EEPROM_SELECT_READ |
2669 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2670 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2671 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2672 
2673 	/* write transmit data, transfer length, and START bit */
2674 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2675 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2676 			   SM(4, SI_CS_TX_CNT));
2677 
2678 	/* wait max 1 sec */
2679 	wait_limit = 100000;
2680 
2681 	/* wait for SI_CS_DONE_INT */
2682 	do {
2683 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2684 		if (MS(reg, SI_CS_DONE_INT))
2685 			break;
2686 
2687 		wait_limit--;
2688 		udelay(10);
2689 	} while (wait_limit > 0);
2690 
2691 	if (!MS(reg, SI_CS_DONE_INT)) {
2692 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2693 			   addr);
2694 		return -ETIMEDOUT;
2695 	}
2696 
2697 	/* clear SI_CS_DONE_INT */
2698 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2699 
2700 	if (MS(reg, SI_CS_DONE_ERR)) {
2701 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2702 		return -EIO;
2703 	}
2704 
2705 	/* extract receive data */
2706 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2707 	*out = reg;
2708 
2709 	return 0;
2710 }
2711 
2712 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2713 					   size_t *data_len)
2714 {
2715 	u8 *caldata = NULL;
2716 	size_t calsize, i;
2717 	int ret;
2718 
2719 	if (!QCA_REV_9887(ar))
2720 		return -EOPNOTSUPP;
2721 
2722 	calsize = ar->hw_params.cal_data_len;
2723 	caldata = kmalloc(calsize, GFP_KERNEL);
2724 	if (!caldata)
2725 		return -ENOMEM;
2726 
2727 	ath10k_pci_enable_eeprom(ar);
2728 
2729 	for (i = 0; i < calsize; i++) {
2730 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2731 		if (ret)
2732 			goto err_free;
2733 	}
2734 
2735 	if (!ath10k_pci_validate_cal(caldata, calsize))
2736 		goto err_free;
2737 
2738 	*data = caldata;
2739 	*data_len = calsize;
2740 
2741 	return 0;
2742 
2743 err_free:
2744 	kfree(caldata);
2745 
2746 	return -EINVAL;
2747 }
2748 
2749 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2750 	.tx_sg			= ath10k_pci_hif_tx_sg,
2751 	.diag_read		= ath10k_pci_hif_diag_read,
2752 	.diag_write		= ath10k_pci_diag_write_mem,
2753 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2754 	.start			= ath10k_pci_hif_start,
2755 	.stop			= ath10k_pci_hif_stop,
2756 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2757 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2758 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2759 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2760 	.power_up		= ath10k_pci_hif_power_up,
2761 	.power_down		= ath10k_pci_hif_power_down,
2762 	.read32			= ath10k_pci_read32,
2763 	.write32		= ath10k_pci_write32,
2764 #ifdef CONFIG_PM
2765 	.suspend		= ath10k_pci_hif_suspend,
2766 	.resume			= ath10k_pci_hif_resume,
2767 #endif
2768 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2769 };
2770 
2771 /*
2772  * Top-level interrupt handler for all PCI interrupts from a Target.
2773  * When a block of MSI interrupts is allocated, this top-level handler
2774  * is not used; instead, we directly call the correct sub-handler.
2775  */
2776 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2777 {
2778 	struct ath10k *ar = arg;
2779 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2780 	int ret;
2781 
2782 	if (ath10k_pci_has_device_gone(ar))
2783 		return IRQ_NONE;
2784 
2785 	ret = ath10k_pci_force_wake(ar);
2786 	if (ret) {
2787 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2788 		return IRQ_NONE;
2789 	}
2790 
2791 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2792 	    !ath10k_pci_irq_pending(ar))
2793 		return IRQ_NONE;
2794 
2795 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2796 	ath10k_pci_irq_msi_fw_mask(ar);
2797 	napi_schedule(&ar->napi);
2798 
2799 	return IRQ_HANDLED;
2800 }
2801 
2802 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2803 {
2804 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2805 	int done = 0;
2806 
2807 	if (ath10k_pci_has_fw_crashed(ar)) {
2808 		ath10k_pci_fw_crashed_clear(ar);
2809 		ath10k_pci_fw_crashed_dump(ar);
2810 		napi_complete(ctx);
2811 		return done;
2812 	}
2813 
2814 	ath10k_ce_per_engine_service_any(ar);
2815 
2816 	done = ath10k_htt_txrx_compl_task(ar, budget);
2817 
2818 	if (done < budget) {
2819 		napi_complete_done(ctx, done);
2820 		/* In case of MSI, it is possible that interrupts are received
2821 		 * while NAPI poll is inprogress. So pending interrupts that are
2822 		 * received after processing all copy engine pipes by NAPI poll
2823 		 * will not be handled again. This is causing failure to
2824 		 * complete boot sequence in x86 platform. So before enabling
2825 		 * interrupts safer to check for pending interrupts for
2826 		 * immediate servicing.
2827 		 */
2828 		if (CE_INTERRUPT_SUMMARY(ar)) {
2829 			napi_reschedule(ctx);
2830 			goto out;
2831 		}
2832 		ath10k_pci_enable_legacy_irq(ar);
2833 		ath10k_pci_irq_msi_fw_unmask(ar);
2834 	}
2835 
2836 out:
2837 	return done;
2838 }
2839 
2840 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2841 {
2842 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2843 	int ret;
2844 
2845 	ret = request_irq(ar_pci->pdev->irq,
2846 			  ath10k_pci_interrupt_handler,
2847 			  IRQF_SHARED, "ath10k_pci", ar);
2848 	if (ret) {
2849 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2850 			    ar_pci->pdev->irq, ret);
2851 		return ret;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2858 {
2859 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2860 	int ret;
2861 
2862 	ret = request_irq(ar_pci->pdev->irq,
2863 			  ath10k_pci_interrupt_handler,
2864 			  IRQF_SHARED, "ath10k_pci", ar);
2865 	if (ret) {
2866 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2867 			    ar_pci->pdev->irq, ret);
2868 		return ret;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 static int ath10k_pci_request_irq(struct ath10k *ar)
2875 {
2876 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2877 
2878 	switch (ar_pci->oper_irq_mode) {
2879 	case ATH10K_PCI_IRQ_LEGACY:
2880 		return ath10k_pci_request_irq_legacy(ar);
2881 	case ATH10K_PCI_IRQ_MSI:
2882 		return ath10k_pci_request_irq_msi(ar);
2883 	default:
2884 		return -EINVAL;
2885 	}
2886 }
2887 
2888 static void ath10k_pci_free_irq(struct ath10k *ar)
2889 {
2890 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2891 
2892 	free_irq(ar_pci->pdev->irq, ar);
2893 }
2894 
2895 void ath10k_pci_init_napi(struct ath10k *ar)
2896 {
2897 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2898 		       ATH10K_NAPI_BUDGET);
2899 }
2900 
2901 static int ath10k_pci_init_irq(struct ath10k *ar)
2902 {
2903 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2904 	int ret;
2905 
2906 	ath10k_pci_init_napi(ar);
2907 
2908 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2909 		ath10k_info(ar, "limiting irq mode to: %d\n",
2910 			    ath10k_pci_irq_mode);
2911 
2912 	/* Try MSI */
2913 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2914 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2915 		ret = pci_enable_msi(ar_pci->pdev);
2916 		if (ret == 0)
2917 			return 0;
2918 
2919 		/* fall-through */
2920 	}
2921 
2922 	/* Try legacy irq
2923 	 *
2924 	 * A potential race occurs here: The CORE_BASE write
2925 	 * depends on target correctly decoding AXI address but
2926 	 * host won't know when target writes BAR to CORE_CTRL.
2927 	 * This write might get lost if target has NOT written BAR.
2928 	 * For now, fix the race by repeating the write in below
2929 	 * synchronization checking.
2930 	 */
2931 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2932 
2933 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2934 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2935 
2936 	return 0;
2937 }
2938 
2939 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2940 {
2941 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2942 			   0);
2943 }
2944 
2945 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2946 {
2947 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2948 
2949 	switch (ar_pci->oper_irq_mode) {
2950 	case ATH10K_PCI_IRQ_LEGACY:
2951 		ath10k_pci_deinit_irq_legacy(ar);
2952 		break;
2953 	default:
2954 		pci_disable_msi(ar_pci->pdev);
2955 		break;
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2962 {
2963 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2964 	unsigned long timeout;
2965 	u32 val;
2966 
2967 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2968 
2969 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2970 
2971 	do {
2972 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2973 
2974 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2975 			   val);
2976 
2977 		/* target should never return this */
2978 		if (val == 0xffffffff)
2979 			continue;
2980 
2981 		/* the device has crashed so don't bother trying anymore */
2982 		if (val & FW_IND_EVENT_PENDING)
2983 			break;
2984 
2985 		if (val & FW_IND_INITIALIZED)
2986 			break;
2987 
2988 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2989 			/* Fix potential race by repeating CORE_BASE writes */
2990 			ath10k_pci_enable_legacy_irq(ar);
2991 
2992 		mdelay(10);
2993 	} while (time_before(jiffies, timeout));
2994 
2995 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2996 	ath10k_pci_irq_msi_fw_mask(ar);
2997 
2998 	if (val == 0xffffffff) {
2999 		ath10k_err(ar, "failed to read device register, device is gone\n");
3000 		return -EIO;
3001 	}
3002 
3003 	if (val & FW_IND_EVENT_PENDING) {
3004 		ath10k_warn(ar, "device has crashed during init\n");
3005 		return -ECOMM;
3006 	}
3007 
3008 	if (!(val & FW_IND_INITIALIZED)) {
3009 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3010 			   val);
3011 		return -ETIMEDOUT;
3012 	}
3013 
3014 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3015 	return 0;
3016 }
3017 
3018 static int ath10k_pci_cold_reset(struct ath10k *ar)
3019 {
3020 	u32 val;
3021 
3022 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3023 
3024 	spin_lock_bh(&ar->data_lock);
3025 
3026 	ar->stats.fw_cold_reset_counter++;
3027 
3028 	spin_unlock_bh(&ar->data_lock);
3029 
3030 	/* Put Target, including PCIe, into RESET. */
3031 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3032 	val |= 1;
3033 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3034 
3035 	/* After writing into SOC_GLOBAL_RESET to put device into
3036 	 * reset and pulling out of reset pcie may not be stable
3037 	 * for any immediate pcie register access and cause bus error,
3038 	 * add delay before any pcie access request to fix this issue.
3039 	 */
3040 	msleep(20);
3041 
3042 	/* Pull Target, including PCIe, out of RESET. */
3043 	val &= ~1;
3044 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3045 
3046 	msleep(20);
3047 
3048 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3049 
3050 	return 0;
3051 }
3052 
3053 static int ath10k_pci_claim(struct ath10k *ar)
3054 {
3055 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3056 	struct pci_dev *pdev = ar_pci->pdev;
3057 	int ret;
3058 
3059 	pci_set_drvdata(pdev, ar);
3060 
3061 	ret = pci_enable_device(pdev);
3062 	if (ret) {
3063 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3064 		return ret;
3065 	}
3066 
3067 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3068 	if (ret) {
3069 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3070 			   ret);
3071 		goto err_device;
3072 	}
3073 
3074 	/* Target expects 32 bit DMA. Enforce it. */
3075 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3076 	if (ret) {
3077 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3078 		goto err_region;
3079 	}
3080 
3081 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3082 	if (ret) {
3083 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3084 			   ret);
3085 		goto err_region;
3086 	}
3087 
3088 	pci_set_master(pdev);
3089 
3090 	/* Arrange for access to Target SoC registers. */
3091 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3092 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3093 	if (!ar_pci->mem) {
3094 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3095 		ret = -EIO;
3096 		goto err_master;
3097 	}
3098 
3099 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3100 	return 0;
3101 
3102 err_master:
3103 	pci_clear_master(pdev);
3104 
3105 err_region:
3106 	pci_release_region(pdev, BAR_NUM);
3107 
3108 err_device:
3109 	pci_disable_device(pdev);
3110 
3111 	return ret;
3112 }
3113 
3114 static void ath10k_pci_release(struct ath10k *ar)
3115 {
3116 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3117 	struct pci_dev *pdev = ar_pci->pdev;
3118 
3119 	pci_iounmap(pdev, ar_pci->mem);
3120 	pci_release_region(pdev, BAR_NUM);
3121 	pci_clear_master(pdev);
3122 	pci_disable_device(pdev);
3123 }
3124 
3125 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3126 {
3127 	const struct ath10k_pci_supp_chip *supp_chip;
3128 	int i;
3129 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3130 
3131 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3132 		supp_chip = &ath10k_pci_supp_chips[i];
3133 
3134 		if (supp_chip->dev_id == dev_id &&
3135 		    supp_chip->rev_id == rev_id)
3136 			return true;
3137 	}
3138 
3139 	return false;
3140 }
3141 
3142 int ath10k_pci_setup_resource(struct ath10k *ar)
3143 {
3144 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3145 	int ret;
3146 
3147 	spin_lock_init(&ar_pci->ce_lock);
3148 	spin_lock_init(&ar_pci->ps_lock);
3149 
3150 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3151 		    (unsigned long)ar);
3152 
3153 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3154 		ath10k_pci_override_ce_config(ar);
3155 
3156 	ret = ath10k_pci_alloc_pipes(ar);
3157 	if (ret) {
3158 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3159 			   ret);
3160 		return ret;
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 void ath10k_pci_release_resource(struct ath10k *ar)
3167 {
3168 	ath10k_pci_rx_retry_sync(ar);
3169 	netif_napi_del(&ar->napi);
3170 	ath10k_pci_ce_deinit(ar);
3171 	ath10k_pci_free_pipes(ar);
3172 }
3173 
3174 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3175 	.read32		= ath10k_bus_pci_read32,
3176 	.write32	= ath10k_bus_pci_write32,
3177 	.get_num_banks	= ath10k_pci_get_num_banks,
3178 };
3179 
3180 static int ath10k_pci_probe(struct pci_dev *pdev,
3181 			    const struct pci_device_id *pci_dev)
3182 {
3183 	int ret = 0;
3184 	struct ath10k *ar;
3185 	struct ath10k_pci *ar_pci;
3186 	enum ath10k_hw_rev hw_rev;
3187 	u32 chip_id;
3188 	bool pci_ps;
3189 	int (*pci_soft_reset)(struct ath10k *ar);
3190 	int (*pci_hard_reset)(struct ath10k *ar);
3191 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3192 
3193 	switch (pci_dev->device) {
3194 	case QCA988X_2_0_DEVICE_ID:
3195 		hw_rev = ATH10K_HW_QCA988X;
3196 		pci_ps = false;
3197 		pci_soft_reset = ath10k_pci_warm_reset;
3198 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3199 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3200 		break;
3201 	case QCA9887_1_0_DEVICE_ID:
3202 		hw_rev = ATH10K_HW_QCA9887;
3203 		pci_ps = false;
3204 		pci_soft_reset = ath10k_pci_warm_reset;
3205 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3206 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3207 		break;
3208 	case QCA6164_2_1_DEVICE_ID:
3209 	case QCA6174_2_1_DEVICE_ID:
3210 		hw_rev = ATH10K_HW_QCA6174;
3211 		pci_ps = true;
3212 		pci_soft_reset = ath10k_pci_warm_reset;
3213 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3214 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3215 		break;
3216 	case QCA99X0_2_0_DEVICE_ID:
3217 		hw_rev = ATH10K_HW_QCA99X0;
3218 		pci_ps = false;
3219 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3220 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3221 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3222 		break;
3223 	case QCA9984_1_0_DEVICE_ID:
3224 		hw_rev = ATH10K_HW_QCA9984;
3225 		pci_ps = false;
3226 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3227 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3228 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3229 		break;
3230 	case QCA9888_2_0_DEVICE_ID:
3231 		hw_rev = ATH10K_HW_QCA9888;
3232 		pci_ps = false;
3233 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3234 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3235 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3236 		break;
3237 	case QCA9377_1_0_DEVICE_ID:
3238 		hw_rev = ATH10K_HW_QCA9377;
3239 		pci_ps = true;
3240 		pci_soft_reset = NULL;
3241 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3242 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3243 		break;
3244 	default:
3245 		WARN_ON(1);
3246 		return -ENOTSUPP;
3247 	}
3248 
3249 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3250 				hw_rev, &ath10k_pci_hif_ops);
3251 	if (!ar) {
3252 		dev_err(&pdev->dev, "failed to allocate core\n");
3253 		return -ENOMEM;
3254 	}
3255 
3256 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3257 		   pdev->vendor, pdev->device,
3258 		   pdev->subsystem_vendor, pdev->subsystem_device);
3259 
3260 	ar_pci = ath10k_pci_priv(ar);
3261 	ar_pci->pdev = pdev;
3262 	ar_pci->dev = &pdev->dev;
3263 	ar_pci->ar = ar;
3264 	ar->dev_id = pci_dev->device;
3265 	ar_pci->pci_ps = pci_ps;
3266 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3267 	ar_pci->pci_soft_reset = pci_soft_reset;
3268 	ar_pci->pci_hard_reset = pci_hard_reset;
3269 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3270 
3271 	ar->id.vendor = pdev->vendor;
3272 	ar->id.device = pdev->device;
3273 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3274 	ar->id.subsystem_device = pdev->subsystem_device;
3275 
3276 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3277 		    (unsigned long)ar);
3278 
3279 	ret = ath10k_pci_setup_resource(ar);
3280 	if (ret) {
3281 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3282 		goto err_core_destroy;
3283 	}
3284 
3285 	ret = ath10k_pci_claim(ar);
3286 	if (ret) {
3287 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3288 		goto err_free_pipes;
3289 	}
3290 
3291 	ret = ath10k_pci_force_wake(ar);
3292 	if (ret) {
3293 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3294 		goto err_sleep;
3295 	}
3296 
3297 	ath10k_pci_ce_deinit(ar);
3298 	ath10k_pci_irq_disable(ar);
3299 
3300 	ret = ath10k_pci_init_irq(ar);
3301 	if (ret) {
3302 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3303 		goto err_sleep;
3304 	}
3305 
3306 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3307 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3308 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3309 
3310 	ret = ath10k_pci_request_irq(ar);
3311 	if (ret) {
3312 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3313 		goto err_deinit_irq;
3314 	}
3315 
3316 	ret = ath10k_pci_chip_reset(ar);
3317 	if (ret) {
3318 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3319 		goto err_free_irq;
3320 	}
3321 
3322 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3323 	if (chip_id == 0xffffffff) {
3324 		ath10k_err(ar, "failed to get chip id\n");
3325 		goto err_free_irq;
3326 	}
3327 
3328 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3329 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3330 			   pdev->device, chip_id);
3331 		goto err_free_irq;
3332 	}
3333 
3334 	ret = ath10k_core_register(ar, chip_id);
3335 	if (ret) {
3336 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3337 		goto err_free_irq;
3338 	}
3339 
3340 	return 0;
3341 
3342 err_free_irq:
3343 	ath10k_pci_free_irq(ar);
3344 	ath10k_pci_rx_retry_sync(ar);
3345 
3346 err_deinit_irq:
3347 	ath10k_pci_deinit_irq(ar);
3348 
3349 err_sleep:
3350 	ath10k_pci_sleep_sync(ar);
3351 	ath10k_pci_release(ar);
3352 
3353 err_free_pipes:
3354 	ath10k_pci_free_pipes(ar);
3355 
3356 err_core_destroy:
3357 	ath10k_core_destroy(ar);
3358 
3359 	return ret;
3360 }
3361 
3362 static void ath10k_pci_remove(struct pci_dev *pdev)
3363 {
3364 	struct ath10k *ar = pci_get_drvdata(pdev);
3365 	struct ath10k_pci *ar_pci;
3366 
3367 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3368 
3369 	if (!ar)
3370 		return;
3371 
3372 	ar_pci = ath10k_pci_priv(ar);
3373 
3374 	if (!ar_pci)
3375 		return;
3376 
3377 	ath10k_core_unregister(ar);
3378 	ath10k_pci_free_irq(ar);
3379 	ath10k_pci_deinit_irq(ar);
3380 	ath10k_pci_release_resource(ar);
3381 	ath10k_pci_sleep_sync(ar);
3382 	ath10k_pci_release(ar);
3383 	ath10k_core_destroy(ar);
3384 }
3385 
3386 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3387 
3388 static struct pci_driver ath10k_pci_driver = {
3389 	.name = "ath10k_pci",
3390 	.id_table = ath10k_pci_id_table,
3391 	.probe = ath10k_pci_probe,
3392 	.remove = ath10k_pci_remove,
3393 };
3394 
3395 static int __init ath10k_pci_init(void)
3396 {
3397 	int ret;
3398 
3399 	ret = pci_register_driver(&ath10k_pci_driver);
3400 	if (ret)
3401 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3402 		       ret);
3403 
3404 	ret = ath10k_ahb_init();
3405 	if (ret)
3406 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3407 
3408 	return ret;
3409 }
3410 module_init(ath10k_pci_init);
3411 
3412 static void __exit ath10k_pci_exit(void)
3413 {
3414 	pci_unregister_driver(&ath10k_pci_driver);
3415 	ath10k_ahb_exit();
3416 }
3417 
3418 module_exit(ath10k_pci_exit);
3419 
3420 MODULE_AUTHOR("Qualcomm Atheros");
3421 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3422 MODULE_LICENSE("Dual BSD/GPL");
3423 
3424 /* QCA988x 2.0 firmware files */
3425 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3426 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3427 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3428 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3429 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3430 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3431 
3432 /* QCA9887 1.0 firmware files */
3433 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3434 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3435 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3436 
3437 /* QCA6174 2.1 firmware files */
3438 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3439 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3440 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3441 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3442 
3443 /* QCA6174 3.1 firmware files */
3444 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3445 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3446 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3447 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3448 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3449 
3450 /* QCA9377 1.0 firmware files */
3451 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3452 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3453