xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision ae40e94f)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
12 
13 #include "core.h"
14 #include "debug.h"
15 #include "coredump.h"
16 
17 #include "targaddrs.h"
18 #include "bmi.h"
19 
20 #include "hif.h"
21 #include "htc.h"
22 
23 #include "ce.h"
24 #include "pci.h"
25 
26 enum ath10k_pci_reset_mode {
27 	ATH10K_PCI_RESET_AUTO = 0,
28 	ATH10K_PCI_RESET_WARM_ONLY = 1,
29 };
30 
31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33 
34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36 
37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39 
40 /* how long wait to wait for target to initialise, in ms */
41 #define ATH10K_PCI_TARGET_WAIT 3000
42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43 
44 /* Maximum number of bytes that can be handled atomically by
45  * diag read and write.
46  */
47 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
48 
49 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
50 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
51 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
52 
53 static const struct pci_device_id ath10k_pci_id_table[] = {
54 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
55 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56 
57 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65 	{0}
66 };
67 
68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
70 	 * hacks. ath10k doesn't have them and these devices crash horribly
71 	 * because of that.
72 	 */
73 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87 
88 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89 
90 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91 
92 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93 
94 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96 
97 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98 };
99 
100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101 static int ath10k_pci_cold_reset(struct ath10k *ar);
102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103 static int ath10k_pci_init_irq(struct ath10k *ar);
104 static int ath10k_pci_deinit_irq(struct ath10k *ar);
105 static int ath10k_pci_request_irq(struct ath10k *ar);
106 static void ath10k_pci_free_irq(struct ath10k *ar);
107 static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 			       struct ath10k_ce_pipe *tx_pipe,
109 			       struct ath10k_ce_pipe *rx_pipe,
110 			       struct bmi_xfer *xfer);
111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118 
119 static struct ce_attr host_ce_config_wlan[] = {
120 	/* CE0: host->target HTC control and raw streams */
121 	{
122 		.flags = CE_ATTR_FLAGS,
123 		.src_nentries = 16,
124 		.src_sz_max = 256,
125 		.dest_nentries = 0,
126 		.send_cb = ath10k_pci_htc_tx_cb,
127 	},
128 
129 	/* CE1: target->host HTT + HTC control */
130 	{
131 		.flags = CE_ATTR_FLAGS,
132 		.src_nentries = 0,
133 		.src_sz_max = 2048,
134 		.dest_nentries = 512,
135 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
136 	},
137 
138 	/* CE2: target->host WMI */
139 	{
140 		.flags = CE_ATTR_FLAGS,
141 		.src_nentries = 0,
142 		.src_sz_max = 2048,
143 		.dest_nentries = 128,
144 		.recv_cb = ath10k_pci_htc_rx_cb,
145 	},
146 
147 	/* CE3: host->target WMI */
148 	{
149 		.flags = CE_ATTR_FLAGS,
150 		.src_nentries = 32,
151 		.src_sz_max = 2048,
152 		.dest_nentries = 0,
153 		.send_cb = ath10k_pci_htc_tx_cb,
154 	},
155 
156 	/* CE4: host->target HTT */
157 	{
158 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160 		.src_sz_max = 256,
161 		.dest_nentries = 0,
162 		.send_cb = ath10k_pci_htt_tx_cb,
163 	},
164 
165 	/* CE5: target->host HTT (HIF->HTT) */
166 	{
167 		.flags = CE_ATTR_FLAGS,
168 		.src_nentries = 0,
169 		.src_sz_max = 512,
170 		.dest_nentries = 512,
171 		.recv_cb = ath10k_pci_htt_rx_cb,
172 	},
173 
174 	/* CE6: target autonomous hif_memcpy */
175 	{
176 		.flags = CE_ATTR_FLAGS,
177 		.src_nentries = 0,
178 		.src_sz_max = 0,
179 		.dest_nentries = 0,
180 	},
181 
182 	/* CE7: ce_diag, the Diagnostic Window */
183 	{
184 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185 		.src_nentries = 2,
186 		.src_sz_max = DIAG_TRANSFER_LIMIT,
187 		.dest_nentries = 2,
188 	},
189 
190 	/* CE8: target->host pktlog */
191 	{
192 		.flags = CE_ATTR_FLAGS,
193 		.src_nentries = 0,
194 		.src_sz_max = 2048,
195 		.dest_nentries = 128,
196 		.recv_cb = ath10k_pci_pktlog_rx_cb,
197 	},
198 
199 	/* CE9 target autonomous qcache memcpy */
200 	{
201 		.flags = CE_ATTR_FLAGS,
202 		.src_nentries = 0,
203 		.src_sz_max = 0,
204 		.dest_nentries = 0,
205 	},
206 
207 	/* CE10: target autonomous hif memcpy */
208 	{
209 		.flags = CE_ATTR_FLAGS,
210 		.src_nentries = 0,
211 		.src_sz_max = 0,
212 		.dest_nentries = 0,
213 	},
214 
215 	/* CE11: target autonomous hif memcpy */
216 	{
217 		.flags = CE_ATTR_FLAGS,
218 		.src_nentries = 0,
219 		.src_sz_max = 0,
220 		.dest_nentries = 0,
221 	},
222 };
223 
224 /* Target firmware's Copy Engine configuration. */
225 static struct ce_pipe_config target_ce_config_wlan[] = {
226 	/* CE0: host->target HTC control and raw streams */
227 	{
228 		.pipenum = __cpu_to_le32(0),
229 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 		.nentries = __cpu_to_le32(32),
231 		.nbytes_max = __cpu_to_le32(256),
232 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 		.reserved = __cpu_to_le32(0),
234 	},
235 
236 	/* CE1: target->host HTT + HTC control */
237 	{
238 		.pipenum = __cpu_to_le32(1),
239 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
240 		.nentries = __cpu_to_le32(32),
241 		.nbytes_max = __cpu_to_le32(2048),
242 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 		.reserved = __cpu_to_le32(0),
244 	},
245 
246 	/* CE2: target->host WMI */
247 	{
248 		.pipenum = __cpu_to_le32(2),
249 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
250 		.nentries = __cpu_to_le32(64),
251 		.nbytes_max = __cpu_to_le32(2048),
252 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 		.reserved = __cpu_to_le32(0),
254 	},
255 
256 	/* CE3: host->target WMI */
257 	{
258 		.pipenum = __cpu_to_le32(3),
259 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 		.nentries = __cpu_to_le32(32),
261 		.nbytes_max = __cpu_to_le32(2048),
262 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 		.reserved = __cpu_to_le32(0),
264 	},
265 
266 	/* CE4: host->target HTT */
267 	{
268 		.pipenum = __cpu_to_le32(4),
269 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 		.nentries = __cpu_to_le32(256),
271 		.nbytes_max = __cpu_to_le32(256),
272 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 		.reserved = __cpu_to_le32(0),
274 	},
275 
276 	/* NB: 50% of src nentries, since tx has 2 frags */
277 
278 	/* CE5: target->host HTT (HIF->HTT) */
279 	{
280 		.pipenum = __cpu_to_le32(5),
281 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
282 		.nentries = __cpu_to_le32(32),
283 		.nbytes_max = __cpu_to_le32(512),
284 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 		.reserved = __cpu_to_le32(0),
286 	},
287 
288 	/* CE6: Reserved for target autonomous hif_memcpy */
289 	{
290 		.pipenum = __cpu_to_le32(6),
291 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 		.nentries = __cpu_to_le32(32),
293 		.nbytes_max = __cpu_to_le32(4096),
294 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 		.reserved = __cpu_to_le32(0),
296 	},
297 
298 	/* CE7 used only by Host */
299 	{
300 		.pipenum = __cpu_to_le32(7),
301 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 		.nentries = __cpu_to_le32(0),
303 		.nbytes_max = __cpu_to_le32(0),
304 		.flags = __cpu_to_le32(0),
305 		.reserved = __cpu_to_le32(0),
306 	},
307 
308 	/* CE8 target->host packtlog */
309 	{
310 		.pipenum = __cpu_to_le32(8),
311 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
312 		.nentries = __cpu_to_le32(64),
313 		.nbytes_max = __cpu_to_le32(2048),
314 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 		.reserved = __cpu_to_le32(0),
316 	},
317 
318 	/* CE9 target autonomous qcache memcpy */
319 	{
320 		.pipenum = __cpu_to_le32(9),
321 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 		.nentries = __cpu_to_le32(32),
323 		.nbytes_max = __cpu_to_le32(2048),
324 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 		.reserved = __cpu_to_le32(0),
326 	},
327 
328 	/* It not necessary to send target wlan configuration for CE10 & CE11
329 	 * as these CEs are not actively used in target.
330 	 */
331 };
332 
333 /*
334  * Map from service/endpoint to Copy Engine.
335  * This table is derived from the CE_PCI TABLE, above.
336  * It is passed to the Target at startup for use by firmware.
337  */
338 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
339 	{
340 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
342 		__cpu_to_le32(3),
343 	},
344 	{
345 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
347 		__cpu_to_le32(2),
348 	},
349 	{
350 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
352 		__cpu_to_le32(3),
353 	},
354 	{
355 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
357 		__cpu_to_le32(2),
358 	},
359 	{
360 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
362 		__cpu_to_le32(3),
363 	},
364 	{
365 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
367 		__cpu_to_le32(2),
368 	},
369 	{
370 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
372 		__cpu_to_le32(3),
373 	},
374 	{
375 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
377 		__cpu_to_le32(2),
378 	},
379 	{
380 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
382 		__cpu_to_le32(3),
383 	},
384 	{
385 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
387 		__cpu_to_le32(2),
388 	},
389 	{
390 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
392 		__cpu_to_le32(0),
393 	},
394 	{
395 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
397 		__cpu_to_le32(1),
398 	},
399 	{ /* not used */
400 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
402 		__cpu_to_le32(0),
403 	},
404 	{ /* not used */
405 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
407 		__cpu_to_le32(1),
408 	},
409 	{
410 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
412 		__cpu_to_le32(4),
413 	},
414 	{
415 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
417 		__cpu_to_le32(5),
418 	},
419 
420 	/* (Additions here) */
421 
422 	{ /* must be last */
423 		__cpu_to_le32(0),
424 		__cpu_to_le32(0),
425 		__cpu_to_le32(0),
426 	},
427 };
428 
429 static bool ath10k_pci_is_awake(struct ath10k *ar)
430 {
431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433 			   RTC_STATE_ADDRESS);
434 
435 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436 }
437 
438 static void __ath10k_pci_wake(struct ath10k *ar)
439 {
440 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441 
442 	lockdep_assert_held(&ar_pci->ps_lock);
443 
444 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446 
447 	iowrite32(PCIE_SOC_WAKE_V_MASK,
448 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 		  PCIE_SOC_WAKE_ADDRESS);
450 }
451 
452 static void __ath10k_pci_sleep(struct ath10k *ar)
453 {
454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455 
456 	lockdep_assert_held(&ar_pci->ps_lock);
457 
458 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460 
461 	iowrite32(PCIE_SOC_WAKE_RESET,
462 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 		  PCIE_SOC_WAKE_ADDRESS);
464 	ar_pci->ps_awake = false;
465 }
466 
467 static int ath10k_pci_wake_wait(struct ath10k *ar)
468 {
469 	int tot_delay = 0;
470 	int curr_delay = 5;
471 
472 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 		if (ath10k_pci_is_awake(ar)) {
474 			if (tot_delay > PCIE_WAKE_LATE_US)
475 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476 					    tot_delay / 1000);
477 			return 0;
478 		}
479 
480 		udelay(curr_delay);
481 		tot_delay += curr_delay;
482 
483 		if (curr_delay < 50)
484 			curr_delay += 5;
485 	}
486 
487 	return -ETIMEDOUT;
488 }
489 
490 static int ath10k_pci_force_wake(struct ath10k *ar)
491 {
492 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493 	unsigned long flags;
494 	int ret = 0;
495 
496 	if (ar_pci->pci_ps)
497 		return ret;
498 
499 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
500 
501 	if (!ar_pci->ps_awake) {
502 		iowrite32(PCIE_SOC_WAKE_V_MASK,
503 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 			  PCIE_SOC_WAKE_ADDRESS);
505 
506 		ret = ath10k_pci_wake_wait(ar);
507 		if (ret == 0)
508 			ar_pci->ps_awake = true;
509 	}
510 
511 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512 
513 	return ret;
514 }
515 
516 static void ath10k_pci_force_sleep(struct ath10k *ar)
517 {
518 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
522 
523 	iowrite32(PCIE_SOC_WAKE_RESET,
524 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 		  PCIE_SOC_WAKE_ADDRESS);
526 	ar_pci->ps_awake = false;
527 
528 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529 }
530 
531 static int ath10k_pci_wake(struct ath10k *ar)
532 {
533 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534 	unsigned long flags;
535 	int ret = 0;
536 
537 	if (ar_pci->pci_ps == 0)
538 		return ret;
539 
540 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
541 
542 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544 
545 	/* This function can be called very frequently. To avoid excessive
546 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
547 	 */
548 	if (!ar_pci->ps_awake) {
549 		__ath10k_pci_wake(ar);
550 
551 		ret = ath10k_pci_wake_wait(ar);
552 		if (ret == 0)
553 			ar_pci->ps_awake = true;
554 	}
555 
556 	if (ret == 0) {
557 		ar_pci->ps_wake_refcount++;
558 		WARN_ON(ar_pci->ps_wake_refcount == 0);
559 	}
560 
561 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562 
563 	return ret;
564 }
565 
566 static void ath10k_pci_sleep(struct ath10k *ar)
567 {
568 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569 	unsigned long flags;
570 
571 	if (ar_pci->pci_ps == 0)
572 		return;
573 
574 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
575 
576 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578 
579 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580 		goto skip;
581 
582 	ar_pci->ps_wake_refcount--;
583 
584 	mod_timer(&ar_pci->ps_timer, jiffies +
585 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586 
587 skip:
588 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589 }
590 
591 static void ath10k_pci_ps_timer(struct timer_list *t)
592 {
593 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 	struct ath10k *ar = ar_pci->ar;
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
598 
599 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601 
602 	if (ar_pci->ps_wake_refcount > 0)
603 		goto skip;
604 
605 	__ath10k_pci_sleep(ar);
606 
607 skip:
608 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609 }
610 
611 static void ath10k_pci_sleep_sync(struct ath10k *ar)
612 {
613 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614 	unsigned long flags;
615 
616 	if (ar_pci->pci_ps == 0) {
617 		ath10k_pci_force_sleep(ar);
618 		return;
619 	}
620 
621 	del_timer_sync(&ar_pci->ps_timer);
622 
623 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 	WARN_ON(ar_pci->ps_wake_refcount > 0);
625 	__ath10k_pci_sleep(ar);
626 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627 }
628 
629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630 {
631 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632 	int ret;
633 
634 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 			    offset, offset + sizeof(value), ar_pci->mem_len);
637 		return;
638 	}
639 
640 	ret = ath10k_pci_wake(ar);
641 	if (ret) {
642 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643 			    value, offset, ret);
644 		return;
645 	}
646 
647 	iowrite32(value, ar_pci->mem + offset);
648 	ath10k_pci_sleep(ar);
649 }
650 
651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652 {
653 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654 	u32 val;
655 	int ret;
656 
657 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 			    offset, offset + sizeof(val), ar_pci->mem_len);
660 		return 0;
661 	}
662 
663 	ret = ath10k_pci_wake(ar);
664 	if (ret) {
665 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666 			    offset, ret);
667 		return 0xffffffff;
668 	}
669 
670 	val = ioread32(ar_pci->mem + offset);
671 	ath10k_pci_sleep(ar);
672 
673 	return val;
674 }
675 
676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677 {
678 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
679 
680 	ce->bus_ops->write32(ar, offset, value);
681 }
682 
683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684 {
685 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
686 
687 	return ce->bus_ops->read32(ar, offset);
688 }
689 
690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691 {
692 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693 }
694 
695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696 {
697 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698 }
699 
700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701 {
702 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703 }
704 
705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706 {
707 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708 }
709 
710 bool ath10k_pci_irq_pending(struct ath10k *ar)
711 {
712 	u32 cause;
713 
714 	/* Check if the shared legacy irq is for us */
715 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 				  PCIE_INTR_CAUSE_ADDRESS);
717 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718 		return true;
719 
720 	return false;
721 }
722 
723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724 {
725 	/* IMPORTANT: INTR_CLR register has to be set after
726 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727 	 * really cleared.
728 	 */
729 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730 			   0);
731 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733 
734 	/* IMPORTANT: this extra read transaction is required to
735 	 * flush the posted write buffer.
736 	 */
737 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 				PCIE_INTR_ENABLE_ADDRESS);
739 }
740 
741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742 {
743 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 			   PCIE_INTR_ENABLE_ADDRESS,
745 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746 
747 	/* IMPORTANT: this extra read transaction is required to
748 	 * flush the posted write buffer.
749 	 */
750 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 				PCIE_INTR_ENABLE_ADDRESS);
752 }
753 
754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755 {
756 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757 
758 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759 		return "msi";
760 
761 	return "legacy";
762 }
763 
764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765 {
766 	struct ath10k *ar = pipe->hif_ce_state;
767 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769 	struct sk_buff *skb;
770 	dma_addr_t paddr;
771 	int ret;
772 
773 	skb = dev_alloc_skb(pipe->buf_sz);
774 	if (!skb)
775 		return -ENOMEM;
776 
777 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778 
779 	paddr = dma_map_single(ar->dev, skb->data,
780 			       skb->len + skb_tailroom(skb),
781 			       DMA_FROM_DEVICE);
782 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 		dev_kfree_skb_any(skb);
785 		return -EIO;
786 	}
787 
788 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
789 
790 	spin_lock_bh(&ce->ce_lock);
791 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 	spin_unlock_bh(&ce->ce_lock);
793 	if (ret) {
794 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795 				 DMA_FROM_DEVICE);
796 		dev_kfree_skb_any(skb);
797 		return ret;
798 	}
799 
800 	return 0;
801 }
802 
803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804 {
805 	struct ath10k *ar = pipe->hif_ce_state;
806 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809 	int ret, num;
810 
811 	if (pipe->buf_sz == 0)
812 		return;
813 
814 	if (!ce_pipe->dest_ring)
815 		return;
816 
817 	spin_lock_bh(&ce->ce_lock);
818 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 	spin_unlock_bh(&ce->ce_lock);
820 
821 	while (num >= 0) {
822 		ret = __ath10k_pci_rx_post_buf(pipe);
823 		if (ret) {
824 			if (ret == -ENOSPC)
825 				break;
826 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 			mod_timer(&ar_pci->rx_post_retry, jiffies +
828 				  ATH10K_PCI_RX_POST_RETRY_MS);
829 			break;
830 		}
831 		num--;
832 	}
833 }
834 
835 void ath10k_pci_rx_post(struct ath10k *ar)
836 {
837 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838 	int i;
839 
840 	for (i = 0; i < CE_COUNT; i++)
841 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842 }
843 
844 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845 {
846 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 	struct ath10k *ar = ar_pci->ar;
848 
849 	ath10k_pci_rx_post(ar);
850 }
851 
852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853 {
854 	u32 val = 0, region = addr & 0xfffff;
855 
856 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857 				 & 0x7ff) << 21;
858 	val |= 0x100000 | region;
859 	return val;
860 }
861 
862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863  * Support to access target space below 1M for qca6174 and qca9377.
864  * If target space is below 1M, the bit[20] of converted CE addr is 0.
865  * Otherwise bit[20] of converted CE addr is 1.
866  */
867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868 {
869 	u32 val = 0, region = addr & 0xfffff;
870 
871 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872 				 & 0x7ff) << 21;
873 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874 	return val;
875 }
876 
877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878 {
879 	u32 val = 0, region = addr & 0xfffff;
880 
881 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 	val |= 0x100000 | region;
883 	return val;
884 }
885 
886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887 {
888 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889 
890 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891 		return -ENOTSUPP;
892 
893 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894 }
895 
896 /*
897  * Diagnostic read/write access is provided for startup/config/debug usage.
898  * Caller must guarantee proper alignment, when applicable, and single user
899  * at any moment.
900  */
901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902 				    int nbytes)
903 {
904 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905 	int ret = 0;
906 	u32 *buf;
907 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 	struct ath10k_ce_pipe *ce_diag;
909 	/* Host buffer address in CE space */
910 	u32 ce_data;
911 	dma_addr_t ce_data_base = 0;
912 	void *data_buf = NULL;
913 	int i;
914 
915 	mutex_lock(&ar_pci->ce_diag_mutex);
916 	ce_diag = ar_pci->ce_diag;
917 
918 	/*
919 	 * Allocate a temporary bounce buffer to hold caller's data
920 	 * to be DMA'ed from Target. This guarantees
921 	 *   1) 4-byte alignment
922 	 *   2) Buffer in DMA-able space
923 	 */
924 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925 
926 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, alloc_nbytes,
927 						       &ce_data_base,
928 						       GFP_ATOMIC);
929 
930 	if (!data_buf) {
931 		ret = -ENOMEM;
932 		goto done;
933 	}
934 
935 	/* The address supplied by the caller is in the
936 	 * Target CPU virtual address space.
937 	 *
938 	 * In order to use this address with the diagnostic CE,
939 	 * convert it from Target CPU virtual address space
940 	 * to CE address space
941 	 */
942 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
943 
944 	remaining_bytes = nbytes;
945 	ce_data = ce_data_base;
946 	while (remaining_bytes) {
947 		nbytes = min_t(unsigned int, remaining_bytes,
948 			       DIAG_TRANSFER_LIMIT);
949 
950 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
951 		if (ret != 0)
952 			goto done;
953 
954 		/* Request CE to send from Target(!) address to Host buffer */
955 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
956 		if (ret)
957 			goto done;
958 
959 		i = 0;
960 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
961 			udelay(DIAG_ACCESS_CE_WAIT_US);
962 			i += DIAG_ACCESS_CE_WAIT_US;
963 
964 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
965 				ret = -EBUSY;
966 				goto done;
967 			}
968 		}
969 
970 		i = 0;
971 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
972 						     &completed_nbytes) != 0) {
973 			udelay(DIAG_ACCESS_CE_WAIT_US);
974 			i += DIAG_ACCESS_CE_WAIT_US;
975 
976 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
977 				ret = -EBUSY;
978 				goto done;
979 			}
980 		}
981 
982 		if (nbytes != completed_nbytes) {
983 			ret = -EIO;
984 			goto done;
985 		}
986 
987 		if (*buf != ce_data) {
988 			ret = -EIO;
989 			goto done;
990 		}
991 
992 		remaining_bytes -= nbytes;
993 		memcpy(data, data_buf, nbytes);
994 
995 		address += nbytes;
996 		data += nbytes;
997 	}
998 
999 done:
1000 
1001 	if (data_buf)
1002 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1003 				  ce_data_base);
1004 
1005 	mutex_unlock(&ar_pci->ce_diag_mutex);
1006 
1007 	return ret;
1008 }
1009 
1010 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1011 {
1012 	__le32 val = 0;
1013 	int ret;
1014 
1015 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1016 	*value = __le32_to_cpu(val);
1017 
1018 	return ret;
1019 }
1020 
1021 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1022 				     u32 src, u32 len)
1023 {
1024 	u32 host_addr, addr;
1025 	int ret;
1026 
1027 	host_addr = host_interest_item_address(src);
1028 
1029 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1030 	if (ret != 0) {
1031 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1032 			    src, ret);
1033 		return ret;
1034 	}
1035 
1036 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1037 	if (ret != 0) {
1038 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1039 			    addr, len, ret);
1040 		return ret;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1047 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1048 
1049 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1050 			      const void *data, int nbytes)
1051 {
1052 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1053 	int ret = 0;
1054 	u32 *buf;
1055 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1056 	struct ath10k_ce_pipe *ce_diag;
1057 	void *data_buf = NULL;
1058 	dma_addr_t ce_data_base = 0;
1059 	int i;
1060 
1061 	mutex_lock(&ar_pci->ce_diag_mutex);
1062 	ce_diag = ar_pci->ce_diag;
1063 
1064 	/*
1065 	 * Allocate a temporary bounce buffer to hold caller's data
1066 	 * to be DMA'ed to Target. This guarantees
1067 	 *   1) 4-byte alignment
1068 	 *   2) Buffer in DMA-able space
1069 	 */
1070 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1071 
1072 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1073 						       alloc_nbytes,
1074 						       &ce_data_base,
1075 						       GFP_ATOMIC);
1076 	if (!data_buf) {
1077 		ret = -ENOMEM;
1078 		goto done;
1079 	}
1080 
1081 	/*
1082 	 * The address supplied by the caller is in the
1083 	 * Target CPU virtual address space.
1084 	 *
1085 	 * In order to use this address with the diagnostic CE,
1086 	 * convert it from
1087 	 *    Target CPU virtual address space
1088 	 * to
1089 	 *    CE address space
1090 	 */
1091 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1092 
1093 	remaining_bytes = nbytes;
1094 	while (remaining_bytes) {
1095 		/* FIXME: check cast */
1096 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1097 
1098 		/* Copy caller's data to allocated DMA buf */
1099 		memcpy(data_buf, data, nbytes);
1100 
1101 		/* Set up to receive directly into Target(!) address */
1102 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1103 		if (ret != 0)
1104 			goto done;
1105 
1106 		/*
1107 		 * Request CE to send caller-supplied data that
1108 		 * was copied to bounce buffer to Target(!) address.
1109 		 */
1110 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1111 		if (ret != 0)
1112 			goto done;
1113 
1114 		i = 0;
1115 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1116 			udelay(DIAG_ACCESS_CE_WAIT_US);
1117 			i += DIAG_ACCESS_CE_WAIT_US;
1118 
1119 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1120 				ret = -EBUSY;
1121 				goto done;
1122 			}
1123 		}
1124 
1125 		i = 0;
1126 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1127 						     &completed_nbytes) != 0) {
1128 			udelay(DIAG_ACCESS_CE_WAIT_US);
1129 			i += DIAG_ACCESS_CE_WAIT_US;
1130 
1131 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1132 				ret = -EBUSY;
1133 				goto done;
1134 			}
1135 		}
1136 
1137 		if (nbytes != completed_nbytes) {
1138 			ret = -EIO;
1139 			goto done;
1140 		}
1141 
1142 		if (*buf != address) {
1143 			ret = -EIO;
1144 			goto done;
1145 		}
1146 
1147 		remaining_bytes -= nbytes;
1148 		address += nbytes;
1149 		data += nbytes;
1150 	}
1151 
1152 done:
1153 	if (data_buf) {
1154 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1155 				  ce_data_base);
1156 	}
1157 
1158 	if (ret != 0)
1159 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1160 			    address, ret);
1161 
1162 	mutex_unlock(&ar_pci->ce_diag_mutex);
1163 
1164 	return ret;
1165 }
1166 
1167 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1168 {
1169 	__le32 val = __cpu_to_le32(value);
1170 
1171 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1172 }
1173 
1174 /* Called by lower (CE) layer when a send to Target completes. */
1175 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1176 {
1177 	struct ath10k *ar = ce_state->ar;
1178 	struct sk_buff_head list;
1179 	struct sk_buff *skb;
1180 
1181 	__skb_queue_head_init(&list);
1182 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1183 		/* no need to call tx completion for NULL pointers */
1184 		if (skb == NULL)
1185 			continue;
1186 
1187 		__skb_queue_tail(&list, skb);
1188 	}
1189 
1190 	while ((skb = __skb_dequeue(&list)))
1191 		ath10k_htc_tx_completion_handler(ar, skb);
1192 }
1193 
1194 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1195 				     void (*callback)(struct ath10k *ar,
1196 						      struct sk_buff *skb))
1197 {
1198 	struct ath10k *ar = ce_state->ar;
1199 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1200 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1201 	struct sk_buff *skb;
1202 	struct sk_buff_head list;
1203 	void *transfer_context;
1204 	unsigned int nbytes, max_nbytes;
1205 
1206 	__skb_queue_head_init(&list);
1207 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1208 					     &nbytes) == 0) {
1209 		skb = transfer_context;
1210 		max_nbytes = skb->len + skb_tailroom(skb);
1211 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1212 				 max_nbytes, DMA_FROM_DEVICE);
1213 
1214 		if (unlikely(max_nbytes < nbytes)) {
1215 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1216 				    nbytes, max_nbytes);
1217 			dev_kfree_skb_any(skb);
1218 			continue;
1219 		}
1220 
1221 		skb_put(skb, nbytes);
1222 		__skb_queue_tail(&list, skb);
1223 	}
1224 
1225 	while ((skb = __skb_dequeue(&list))) {
1226 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1227 			   ce_state->id, skb->len);
1228 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1229 				skb->data, skb->len);
1230 
1231 		callback(ar, skb);
1232 	}
1233 
1234 	ath10k_pci_rx_post_pipe(pipe_info);
1235 }
1236 
1237 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1238 					 void (*callback)(struct ath10k *ar,
1239 							  struct sk_buff *skb))
1240 {
1241 	struct ath10k *ar = ce_state->ar;
1242 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1243 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1244 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1245 	struct sk_buff *skb;
1246 	struct sk_buff_head list;
1247 	void *transfer_context;
1248 	unsigned int nbytes, max_nbytes, nentries;
1249 	int orig_len;
1250 
1251 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1252 	 * is processed other than init and deinit. Before releasing CE5
1253 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1254 	 */
1255 	__skb_queue_head_init(&list);
1256 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1257 						    &nbytes) == 0) {
1258 		skb = transfer_context;
1259 		max_nbytes = skb->len + skb_tailroom(skb);
1260 
1261 		if (unlikely(max_nbytes < nbytes)) {
1262 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1263 				    nbytes, max_nbytes);
1264 			continue;
1265 		}
1266 
1267 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1268 					max_nbytes, DMA_FROM_DEVICE);
1269 		skb_put(skb, nbytes);
1270 		__skb_queue_tail(&list, skb);
1271 	}
1272 
1273 	nentries = skb_queue_len(&list);
1274 	while ((skb = __skb_dequeue(&list))) {
1275 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1276 			   ce_state->id, skb->len);
1277 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1278 				skb->data, skb->len);
1279 
1280 		orig_len = skb->len;
1281 		callback(ar, skb);
1282 		skb_push(skb, orig_len - skb->len);
1283 		skb_reset_tail_pointer(skb);
1284 		skb_trim(skb, 0);
1285 
1286 		/*let device gain the buffer again*/
1287 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1288 					   skb->len + skb_tailroom(skb),
1289 					   DMA_FROM_DEVICE);
1290 	}
1291 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1292 }
1293 
1294 /* Called by lower (CE) layer when data is received from the Target. */
1295 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1296 {
1297 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1298 }
1299 
1300 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1301 {
1302 	/* CE4 polling needs to be done whenever CE pipe which transports
1303 	 * HTT Rx (target->host) is processed.
1304 	 */
1305 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1306 
1307 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1308 }
1309 
1310 /* Called by lower (CE) layer when data is received from the Target.
1311  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1312  */
1313 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1314 {
1315 	ath10k_pci_process_rx_cb(ce_state,
1316 				 ath10k_htt_rx_pktlog_completion_handler);
1317 }
1318 
1319 /* Called by lower (CE) layer when a send to HTT Target completes. */
1320 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1321 {
1322 	struct ath10k *ar = ce_state->ar;
1323 	struct sk_buff *skb;
1324 
1325 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1326 		/* no need to call tx completion for NULL pointers */
1327 		if (!skb)
1328 			continue;
1329 
1330 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1331 				 skb->len, DMA_TO_DEVICE);
1332 		ath10k_htt_hif_tx_complete(ar, skb);
1333 	}
1334 }
1335 
1336 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1337 {
1338 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1339 	ath10k_htt_t2h_msg_handler(ar, skb);
1340 }
1341 
1342 /* Called by lower (CE) layer when HTT data is received from the Target. */
1343 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1344 {
1345 	/* CE4 polling needs to be done whenever CE pipe which transports
1346 	 * HTT Rx (target->host) is processed.
1347 	 */
1348 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1349 
1350 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1351 }
1352 
1353 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1354 			 struct ath10k_hif_sg_item *items, int n_items)
1355 {
1356 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1357 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1358 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1359 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1360 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1361 	unsigned int nentries_mask;
1362 	unsigned int sw_index;
1363 	unsigned int write_index;
1364 	int err, i = 0;
1365 
1366 	spin_lock_bh(&ce->ce_lock);
1367 
1368 	nentries_mask = src_ring->nentries_mask;
1369 	sw_index = src_ring->sw_index;
1370 	write_index = src_ring->write_index;
1371 
1372 	if (unlikely(CE_RING_DELTA(nentries_mask,
1373 				   write_index, sw_index - 1) < n_items)) {
1374 		err = -ENOBUFS;
1375 		goto err;
1376 	}
1377 
1378 	for (i = 0; i < n_items - 1; i++) {
1379 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1380 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1381 			   i, &items[i].paddr, items[i].len, n_items);
1382 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1383 				items[i].vaddr, items[i].len);
1384 
1385 		err = ath10k_ce_send_nolock(ce_pipe,
1386 					    items[i].transfer_context,
1387 					    items[i].paddr,
1388 					    items[i].len,
1389 					    items[i].transfer_id,
1390 					    CE_SEND_FLAG_GATHER);
1391 		if (err)
1392 			goto err;
1393 	}
1394 
1395 	/* `i` is equal to `n_items -1` after for() */
1396 
1397 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1398 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1399 		   i, &items[i].paddr, items[i].len, n_items);
1400 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1401 			items[i].vaddr, items[i].len);
1402 
1403 	err = ath10k_ce_send_nolock(ce_pipe,
1404 				    items[i].transfer_context,
1405 				    items[i].paddr,
1406 				    items[i].len,
1407 				    items[i].transfer_id,
1408 				    0);
1409 	if (err)
1410 		goto err;
1411 
1412 	spin_unlock_bh(&ce->ce_lock);
1413 	return 0;
1414 
1415 err:
1416 	for (; i > 0; i--)
1417 		__ath10k_ce_send_revert(ce_pipe);
1418 
1419 	spin_unlock_bh(&ce->ce_lock);
1420 	return err;
1421 }
1422 
1423 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1424 			     size_t buf_len)
1425 {
1426 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1427 }
1428 
1429 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1430 {
1431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1432 
1433 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1434 
1435 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1436 }
1437 
1438 static void ath10k_pci_dump_registers(struct ath10k *ar,
1439 				      struct ath10k_fw_crash_data *crash_data)
1440 {
1441 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1442 	int i, ret;
1443 
1444 	lockdep_assert_held(&ar->data_lock);
1445 
1446 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1447 				      hi_failure_state,
1448 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1449 	if (ret) {
1450 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1451 		return;
1452 	}
1453 
1454 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1455 
1456 	ath10k_err(ar, "firmware register dump:\n");
1457 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1458 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1459 			   i,
1460 			   __le32_to_cpu(reg_dump_values[i]),
1461 			   __le32_to_cpu(reg_dump_values[i + 1]),
1462 			   __le32_to_cpu(reg_dump_values[i + 2]),
1463 			   __le32_to_cpu(reg_dump_values[i + 3]));
1464 
1465 	if (!crash_data)
1466 		return;
1467 
1468 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1469 		crash_data->registers[i] = reg_dump_values[i];
1470 }
1471 
1472 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1473 					  const struct ath10k_mem_region *mem_region,
1474 					  u8 *buf, size_t buf_len)
1475 {
1476 	const struct ath10k_mem_section *cur_section, *next_section;
1477 	unsigned int count, section_size, skip_size;
1478 	int ret, i, j;
1479 
1480 	if (!mem_region || !buf)
1481 		return 0;
1482 
1483 	cur_section = &mem_region->section_table.sections[0];
1484 
1485 	if (mem_region->start > cur_section->start) {
1486 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1487 			    mem_region->start, cur_section->start);
1488 		return 0;
1489 	}
1490 
1491 	skip_size = cur_section->start - mem_region->start;
1492 
1493 	/* fill the gap between the first register section and register
1494 	 * start address
1495 	 */
1496 	for (i = 0; i < skip_size; i++) {
1497 		*buf = ATH10K_MAGIC_NOT_COPIED;
1498 		buf++;
1499 	}
1500 
1501 	count = 0;
1502 
1503 	for (i = 0; cur_section != NULL; i++) {
1504 		section_size = cur_section->end - cur_section->start;
1505 
1506 		if (section_size <= 0) {
1507 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1508 				    cur_section->start,
1509 				    cur_section->end);
1510 			break;
1511 		}
1512 
1513 		if ((i + 1) == mem_region->section_table.size) {
1514 			/* last section */
1515 			next_section = NULL;
1516 			skip_size = 0;
1517 		} else {
1518 			next_section = cur_section + 1;
1519 
1520 			if (cur_section->end > next_section->start) {
1521 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1522 					    next_section->start,
1523 					    cur_section->end);
1524 				break;
1525 			}
1526 
1527 			skip_size = next_section->start - cur_section->end;
1528 		}
1529 
1530 		if (buf_len < (skip_size + section_size)) {
1531 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1532 			break;
1533 		}
1534 
1535 		buf_len -= skip_size + section_size;
1536 
1537 		/* read section to dest memory */
1538 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1539 					       buf, section_size);
1540 		if (ret) {
1541 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1542 				    cur_section->start, ret);
1543 			break;
1544 		}
1545 
1546 		buf += section_size;
1547 		count += section_size;
1548 
1549 		/* fill in the gap between this section and the next */
1550 		for (j = 0; j < skip_size; j++) {
1551 			*buf = ATH10K_MAGIC_NOT_COPIED;
1552 			buf++;
1553 		}
1554 
1555 		count += skip_size;
1556 
1557 		if (!next_section)
1558 			/* this was the last section */
1559 			break;
1560 
1561 		cur_section = next_section;
1562 	}
1563 
1564 	return count;
1565 }
1566 
1567 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1568 {
1569 	u32 val;
1570 
1571 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1572 			   FW_RAM_CONFIG_ADDRESS, config);
1573 
1574 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1575 				FW_RAM_CONFIG_ADDRESS);
1576 	if (val != config) {
1577 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1578 			    val, config);
1579 		return -EIO;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /* if an error happened returns < 0, otherwise the length */
1586 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1587 				       const struct ath10k_mem_region *region,
1588 				       u8 *buf)
1589 {
1590 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1591 	u32 base_addr, i;
1592 
1593 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1594 	base_addr += region->start;
1595 
1596 	for (i = 0; i < region->len; i += 4) {
1597 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1598 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1599 	}
1600 
1601 	return region->len;
1602 }
1603 
1604 /* if an error happened returns < 0, otherwise the length */
1605 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1606 				      const struct ath10k_mem_region *region,
1607 				      u8 *buf)
1608 {
1609 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1610 	u32 i;
1611 
1612 	for (i = 0; i < region->len; i += 4)
1613 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1614 
1615 	return region->len;
1616 }
1617 
1618 /* if an error happened returns < 0, otherwise the length */
1619 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1620 					  const struct ath10k_mem_region *current_region,
1621 					  u8 *buf)
1622 {
1623 	int ret;
1624 
1625 	if (current_region->section_table.size > 0)
1626 		/* Copy each section individually. */
1627 		return ath10k_pci_dump_memory_section(ar,
1628 						      current_region,
1629 						      buf,
1630 						      current_region->len);
1631 
1632 	/* No individiual memory sections defined so we can
1633 	 * copy the entire memory region.
1634 	 */
1635 	ret = ath10k_pci_diag_read_mem(ar,
1636 				       current_region->start,
1637 				       buf,
1638 				       current_region->len);
1639 	if (ret) {
1640 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1641 			    current_region->name, ret);
1642 		return ret;
1643 	}
1644 
1645 	return current_region->len;
1646 }
1647 
1648 static void ath10k_pci_dump_memory(struct ath10k *ar,
1649 				   struct ath10k_fw_crash_data *crash_data)
1650 {
1651 	const struct ath10k_hw_mem_layout *mem_layout;
1652 	const struct ath10k_mem_region *current_region;
1653 	struct ath10k_dump_ram_data_hdr *hdr;
1654 	u32 count, shift;
1655 	size_t buf_len;
1656 	int ret, i;
1657 	u8 *buf;
1658 
1659 	lockdep_assert_held(&ar->data_lock);
1660 
1661 	if (!crash_data)
1662 		return;
1663 
1664 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1665 	if (!mem_layout)
1666 		return;
1667 
1668 	current_region = &mem_layout->region_table.regions[0];
1669 
1670 	buf = crash_data->ramdump_buf;
1671 	buf_len = crash_data->ramdump_buf_len;
1672 
1673 	memset(buf, 0, buf_len);
1674 
1675 	for (i = 0; i < mem_layout->region_table.size; i++) {
1676 		count = 0;
1677 
1678 		if (current_region->len > buf_len) {
1679 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1680 				    current_region->name,
1681 				    current_region->len,
1682 				    buf_len);
1683 			break;
1684 		}
1685 
1686 		/* To get IRAM dump, the host driver needs to switch target
1687 		 * ram config from DRAM to IRAM.
1688 		 */
1689 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1690 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1691 			shift = current_region->start >> 20;
1692 
1693 			ret = ath10k_pci_set_ram_config(ar, shift);
1694 			if (ret) {
1695 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1696 					    current_region->name, ret);
1697 				break;
1698 			}
1699 		}
1700 
1701 		/* Reserve space for the header. */
1702 		hdr = (void *)buf;
1703 		buf += sizeof(*hdr);
1704 		buf_len -= sizeof(*hdr);
1705 
1706 		switch (current_region->type) {
1707 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1708 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1709 			break;
1710 		case ATH10K_MEM_REGION_TYPE_IOREG:
1711 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1712 			break;
1713 		default:
1714 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1715 			if (ret < 0)
1716 				break;
1717 
1718 			count = ret;
1719 			break;
1720 		}
1721 
1722 		hdr->region_type = cpu_to_le32(current_region->type);
1723 		hdr->start = cpu_to_le32(current_region->start);
1724 		hdr->length = cpu_to_le32(count);
1725 
1726 		if (count == 0)
1727 			/* Note: the header remains, just with zero length. */
1728 			break;
1729 
1730 		buf += count;
1731 		buf_len -= count;
1732 
1733 		current_region++;
1734 	}
1735 }
1736 
1737 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1738 {
1739 	struct ath10k_fw_crash_data *crash_data;
1740 	char guid[UUID_STRING_LEN + 1];
1741 
1742 	spin_lock_bh(&ar->data_lock);
1743 
1744 	ar->stats.fw_crash_counter++;
1745 
1746 	crash_data = ath10k_coredump_new(ar);
1747 
1748 	if (crash_data)
1749 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1750 	else
1751 		scnprintf(guid, sizeof(guid), "n/a");
1752 
1753 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1754 	ath10k_print_driver_info(ar);
1755 	ath10k_pci_dump_registers(ar, crash_data);
1756 	ath10k_ce_dump_registers(ar, crash_data);
1757 	ath10k_pci_dump_memory(ar, crash_data);
1758 
1759 	spin_unlock_bh(&ar->data_lock);
1760 
1761 	queue_work(ar->workqueue, &ar->restart_work);
1762 }
1763 
1764 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1765 					int force)
1766 {
1767 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1768 
1769 	if (!force) {
1770 		int resources;
1771 		/*
1772 		 * Decide whether to actually poll for completions, or just
1773 		 * wait for a later chance.
1774 		 * If there seem to be plenty of resources left, then just wait
1775 		 * since checking involves reading a CE register, which is a
1776 		 * relatively expensive operation.
1777 		 */
1778 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1779 
1780 		/*
1781 		 * If at least 50% of the total resources are still available,
1782 		 * don't bother checking again yet.
1783 		 */
1784 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1785 			return;
1786 	}
1787 	ath10k_ce_per_engine_service(ar, pipe);
1788 }
1789 
1790 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1791 {
1792 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1793 
1794 	del_timer_sync(&ar_pci->rx_post_retry);
1795 }
1796 
1797 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1798 				       u8 *ul_pipe, u8 *dl_pipe)
1799 {
1800 	const struct service_to_pipe *entry;
1801 	bool ul_set = false, dl_set = false;
1802 	int i;
1803 
1804 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1805 
1806 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1807 		entry = &target_service_to_ce_map_wlan[i];
1808 
1809 		if (__le32_to_cpu(entry->service_id) != service_id)
1810 			continue;
1811 
1812 		switch (__le32_to_cpu(entry->pipedir)) {
1813 		case PIPEDIR_NONE:
1814 			break;
1815 		case PIPEDIR_IN:
1816 			WARN_ON(dl_set);
1817 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1818 			dl_set = true;
1819 			break;
1820 		case PIPEDIR_OUT:
1821 			WARN_ON(ul_set);
1822 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1823 			ul_set = true;
1824 			break;
1825 		case PIPEDIR_INOUT:
1826 			WARN_ON(dl_set);
1827 			WARN_ON(ul_set);
1828 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1829 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1830 			dl_set = true;
1831 			ul_set = true;
1832 			break;
1833 		}
1834 	}
1835 
1836 	if (!ul_set || !dl_set)
1837 		return -ENOENT;
1838 
1839 	return 0;
1840 }
1841 
1842 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1843 				     u8 *ul_pipe, u8 *dl_pipe)
1844 {
1845 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1846 
1847 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1848 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1849 						 ul_pipe, dl_pipe);
1850 }
1851 
1852 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1853 {
1854 	u32 val;
1855 
1856 	switch (ar->hw_rev) {
1857 	case ATH10K_HW_QCA988X:
1858 	case ATH10K_HW_QCA9887:
1859 	case ATH10K_HW_QCA6174:
1860 	case ATH10K_HW_QCA9377:
1861 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1862 					CORE_CTRL_ADDRESS);
1863 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1864 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1865 				   CORE_CTRL_ADDRESS, val);
1866 		break;
1867 	case ATH10K_HW_QCA99X0:
1868 	case ATH10K_HW_QCA9984:
1869 	case ATH10K_HW_QCA9888:
1870 	case ATH10K_HW_QCA4019:
1871 		/* TODO: Find appropriate register configuration for QCA99X0
1872 		 *  to mask irq/MSI.
1873 		 */
1874 		break;
1875 	case ATH10K_HW_WCN3990:
1876 		break;
1877 	}
1878 }
1879 
1880 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1881 {
1882 	u32 val;
1883 
1884 	switch (ar->hw_rev) {
1885 	case ATH10K_HW_QCA988X:
1886 	case ATH10K_HW_QCA9887:
1887 	case ATH10K_HW_QCA6174:
1888 	case ATH10K_HW_QCA9377:
1889 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1890 					CORE_CTRL_ADDRESS);
1891 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1892 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1893 				   CORE_CTRL_ADDRESS, val);
1894 		break;
1895 	case ATH10K_HW_QCA99X0:
1896 	case ATH10K_HW_QCA9984:
1897 	case ATH10K_HW_QCA9888:
1898 	case ATH10K_HW_QCA4019:
1899 		/* TODO: Find appropriate register configuration for QCA99X0
1900 		 *  to unmask irq/MSI.
1901 		 */
1902 		break;
1903 	case ATH10K_HW_WCN3990:
1904 		break;
1905 	}
1906 }
1907 
1908 static void ath10k_pci_irq_disable(struct ath10k *ar)
1909 {
1910 	ath10k_ce_disable_interrupts(ar);
1911 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1912 	ath10k_pci_irq_msi_fw_mask(ar);
1913 }
1914 
1915 static void ath10k_pci_irq_sync(struct ath10k *ar)
1916 {
1917 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1918 
1919 	synchronize_irq(ar_pci->pdev->irq);
1920 }
1921 
1922 static void ath10k_pci_irq_enable(struct ath10k *ar)
1923 {
1924 	ath10k_ce_enable_interrupts(ar);
1925 	ath10k_pci_enable_legacy_irq(ar);
1926 	ath10k_pci_irq_msi_fw_unmask(ar);
1927 }
1928 
1929 static int ath10k_pci_hif_start(struct ath10k *ar)
1930 {
1931 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1932 
1933 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1934 
1935 	napi_enable(&ar->napi);
1936 
1937 	ath10k_pci_irq_enable(ar);
1938 	ath10k_pci_rx_post(ar);
1939 
1940 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1941 				   ar_pci->link_ctl);
1942 
1943 	return 0;
1944 }
1945 
1946 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1947 {
1948 	struct ath10k *ar;
1949 	struct ath10k_ce_pipe *ce_pipe;
1950 	struct ath10k_ce_ring *ce_ring;
1951 	struct sk_buff *skb;
1952 	int i;
1953 
1954 	ar = pci_pipe->hif_ce_state;
1955 	ce_pipe = pci_pipe->ce_hdl;
1956 	ce_ring = ce_pipe->dest_ring;
1957 
1958 	if (!ce_ring)
1959 		return;
1960 
1961 	if (!pci_pipe->buf_sz)
1962 		return;
1963 
1964 	for (i = 0; i < ce_ring->nentries; i++) {
1965 		skb = ce_ring->per_transfer_context[i];
1966 		if (!skb)
1967 			continue;
1968 
1969 		ce_ring->per_transfer_context[i] = NULL;
1970 
1971 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1972 				 skb->len + skb_tailroom(skb),
1973 				 DMA_FROM_DEVICE);
1974 		dev_kfree_skb_any(skb);
1975 	}
1976 }
1977 
1978 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1979 {
1980 	struct ath10k *ar;
1981 	struct ath10k_ce_pipe *ce_pipe;
1982 	struct ath10k_ce_ring *ce_ring;
1983 	struct sk_buff *skb;
1984 	int i;
1985 
1986 	ar = pci_pipe->hif_ce_state;
1987 	ce_pipe = pci_pipe->ce_hdl;
1988 	ce_ring = ce_pipe->src_ring;
1989 
1990 	if (!ce_ring)
1991 		return;
1992 
1993 	if (!pci_pipe->buf_sz)
1994 		return;
1995 
1996 	for (i = 0; i < ce_ring->nentries; i++) {
1997 		skb = ce_ring->per_transfer_context[i];
1998 		if (!skb)
1999 			continue;
2000 
2001 		ce_ring->per_transfer_context[i] = NULL;
2002 
2003 		ath10k_htc_tx_completion_handler(ar, skb);
2004 	}
2005 }
2006 
2007 /*
2008  * Cleanup residual buffers for device shutdown:
2009  *    buffers that were enqueued for receive
2010  *    buffers that were to be sent
2011  * Note: Buffers that had completed but which were
2012  * not yet processed are on a completion queue. They
2013  * are handled when the completion thread shuts down.
2014  */
2015 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2016 {
2017 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2018 	int pipe_num;
2019 
2020 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2021 		struct ath10k_pci_pipe *pipe_info;
2022 
2023 		pipe_info = &ar_pci->pipe_info[pipe_num];
2024 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2025 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2026 	}
2027 }
2028 
2029 void ath10k_pci_ce_deinit(struct ath10k *ar)
2030 {
2031 	int i;
2032 
2033 	for (i = 0; i < CE_COUNT; i++)
2034 		ath10k_ce_deinit_pipe(ar, i);
2035 }
2036 
2037 void ath10k_pci_flush(struct ath10k *ar)
2038 {
2039 	ath10k_pci_rx_retry_sync(ar);
2040 	ath10k_pci_buffer_cleanup(ar);
2041 }
2042 
2043 static void ath10k_pci_hif_stop(struct ath10k *ar)
2044 {
2045 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046 	unsigned long flags;
2047 
2048 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2049 
2050 	/* Most likely the device has HTT Rx ring configured. The only way to
2051 	 * prevent the device from accessing (and possible corrupting) host
2052 	 * memory is to reset the chip now.
2053 	 *
2054 	 * There's also no known way of masking MSI interrupts on the device.
2055 	 * For ranged MSI the CE-related interrupts can be masked. However
2056 	 * regardless how many MSI interrupts are assigned the first one
2057 	 * is always used for firmware indications (crashes) and cannot be
2058 	 * masked. To prevent the device from asserting the interrupt reset it
2059 	 * before proceeding with cleanup.
2060 	 */
2061 	ath10k_pci_safe_chip_reset(ar);
2062 
2063 	ath10k_pci_irq_disable(ar);
2064 	ath10k_pci_irq_sync(ar);
2065 	napi_synchronize(&ar->napi);
2066 	napi_disable(&ar->napi);
2067 	ath10k_pci_flush(ar);
2068 
2069 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2070 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2071 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2072 }
2073 
2074 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2075 				    void *req, u32 req_len,
2076 				    void *resp, u32 *resp_len)
2077 {
2078 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2079 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2080 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2081 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2082 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2083 	dma_addr_t req_paddr = 0;
2084 	dma_addr_t resp_paddr = 0;
2085 	struct bmi_xfer xfer = {};
2086 	void *treq, *tresp = NULL;
2087 	int ret = 0;
2088 
2089 	might_sleep();
2090 
2091 	if (resp && !resp_len)
2092 		return -EINVAL;
2093 
2094 	if (resp && resp_len && *resp_len == 0)
2095 		return -EINVAL;
2096 
2097 	treq = kmemdup(req, req_len, GFP_KERNEL);
2098 	if (!treq)
2099 		return -ENOMEM;
2100 
2101 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2102 	ret = dma_mapping_error(ar->dev, req_paddr);
2103 	if (ret) {
2104 		ret = -EIO;
2105 		goto err_dma;
2106 	}
2107 
2108 	if (resp && resp_len) {
2109 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2110 		if (!tresp) {
2111 			ret = -ENOMEM;
2112 			goto err_req;
2113 		}
2114 
2115 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2116 					    DMA_FROM_DEVICE);
2117 		ret = dma_mapping_error(ar->dev, resp_paddr);
2118 		if (ret) {
2119 			ret = -EIO;
2120 			goto err_req;
2121 		}
2122 
2123 		xfer.wait_for_resp = true;
2124 		xfer.resp_len = 0;
2125 
2126 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2127 	}
2128 
2129 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2130 	if (ret)
2131 		goto err_resp;
2132 
2133 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2134 	if (ret) {
2135 		dma_addr_t unused_buffer;
2136 		unsigned int unused_nbytes;
2137 		unsigned int unused_id;
2138 
2139 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2140 					   &unused_nbytes, &unused_id);
2141 	} else {
2142 		/* non-zero means we did not time out */
2143 		ret = 0;
2144 	}
2145 
2146 err_resp:
2147 	if (resp) {
2148 		dma_addr_t unused_buffer;
2149 
2150 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2151 		dma_unmap_single(ar->dev, resp_paddr,
2152 				 *resp_len, DMA_FROM_DEVICE);
2153 	}
2154 err_req:
2155 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2156 
2157 	if (ret == 0 && resp_len) {
2158 		*resp_len = min(*resp_len, xfer.resp_len);
2159 		memcpy(resp, tresp, xfer.resp_len);
2160 	}
2161 err_dma:
2162 	kfree(treq);
2163 	kfree(tresp);
2164 
2165 	return ret;
2166 }
2167 
2168 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2169 {
2170 	struct bmi_xfer *xfer;
2171 
2172 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2173 		return;
2174 
2175 	xfer->tx_done = true;
2176 }
2177 
2178 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2179 {
2180 	struct ath10k *ar = ce_state->ar;
2181 	struct bmi_xfer *xfer;
2182 	unsigned int nbytes;
2183 
2184 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2185 					  &nbytes))
2186 		return;
2187 
2188 	if (WARN_ON_ONCE(!xfer))
2189 		return;
2190 
2191 	if (!xfer->wait_for_resp) {
2192 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2193 		return;
2194 	}
2195 
2196 	xfer->resp_len = nbytes;
2197 	xfer->rx_done = true;
2198 }
2199 
2200 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2201 			       struct ath10k_ce_pipe *tx_pipe,
2202 			       struct ath10k_ce_pipe *rx_pipe,
2203 			       struct bmi_xfer *xfer)
2204 {
2205 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2206 	unsigned long started = jiffies;
2207 	unsigned long dur;
2208 	int ret;
2209 
2210 	while (time_before_eq(jiffies, timeout)) {
2211 		ath10k_pci_bmi_send_done(tx_pipe);
2212 		ath10k_pci_bmi_recv_data(rx_pipe);
2213 
2214 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2215 			ret = 0;
2216 			goto out;
2217 		}
2218 
2219 		schedule();
2220 	}
2221 
2222 	ret = -ETIMEDOUT;
2223 
2224 out:
2225 	dur = jiffies - started;
2226 	if (dur > HZ)
2227 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2228 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2229 			   dur, HZ, ret);
2230 	return ret;
2231 }
2232 
2233 /*
2234  * Send an interrupt to the device to wake up the Target CPU
2235  * so it has an opportunity to notice any changed state.
2236  */
2237 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2238 {
2239 	u32 addr, val;
2240 
2241 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2242 	val = ath10k_pci_read32(ar, addr);
2243 	val |= CORE_CTRL_CPU_INTR_MASK;
2244 	ath10k_pci_write32(ar, addr, val);
2245 
2246 	return 0;
2247 }
2248 
2249 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2250 {
2251 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2252 
2253 	switch (ar_pci->pdev->device) {
2254 	case QCA988X_2_0_DEVICE_ID_UBNT:
2255 	case QCA988X_2_0_DEVICE_ID:
2256 	case QCA99X0_2_0_DEVICE_ID:
2257 	case QCA9888_2_0_DEVICE_ID:
2258 	case QCA9984_1_0_DEVICE_ID:
2259 	case QCA9887_1_0_DEVICE_ID:
2260 		return 1;
2261 	case QCA6164_2_1_DEVICE_ID:
2262 	case QCA6174_2_1_DEVICE_ID:
2263 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2264 		case QCA6174_HW_1_0_CHIP_ID_REV:
2265 		case QCA6174_HW_1_1_CHIP_ID_REV:
2266 		case QCA6174_HW_2_1_CHIP_ID_REV:
2267 		case QCA6174_HW_2_2_CHIP_ID_REV:
2268 			return 3;
2269 		case QCA6174_HW_1_3_CHIP_ID_REV:
2270 			return 2;
2271 		case QCA6174_HW_3_0_CHIP_ID_REV:
2272 		case QCA6174_HW_3_1_CHIP_ID_REV:
2273 		case QCA6174_HW_3_2_CHIP_ID_REV:
2274 			return 9;
2275 		}
2276 		break;
2277 	case QCA9377_1_0_DEVICE_ID:
2278 		return 9;
2279 	}
2280 
2281 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2282 	return 1;
2283 }
2284 
2285 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2286 {
2287 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2288 
2289 	return ce->bus_ops->get_num_banks(ar);
2290 }
2291 
2292 int ath10k_pci_init_config(struct ath10k *ar)
2293 {
2294 	u32 interconnect_targ_addr;
2295 	u32 pcie_state_targ_addr = 0;
2296 	u32 pipe_cfg_targ_addr = 0;
2297 	u32 svc_to_pipe_map = 0;
2298 	u32 pcie_config_flags = 0;
2299 	u32 ealloc_value;
2300 	u32 ealloc_targ_addr;
2301 	u32 flag2_value;
2302 	u32 flag2_targ_addr;
2303 	int ret = 0;
2304 
2305 	/* Download to Target the CE Config and the service-to-CE map */
2306 	interconnect_targ_addr =
2307 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2308 
2309 	/* Supply Target-side CE configuration */
2310 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2311 				     &pcie_state_targ_addr);
2312 	if (ret != 0) {
2313 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2314 		return ret;
2315 	}
2316 
2317 	if (pcie_state_targ_addr == 0) {
2318 		ret = -EIO;
2319 		ath10k_err(ar, "Invalid pcie state addr\n");
2320 		return ret;
2321 	}
2322 
2323 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2324 					  offsetof(struct pcie_state,
2325 						   pipe_cfg_addr)),
2326 				     &pipe_cfg_targ_addr);
2327 	if (ret != 0) {
2328 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2329 		return ret;
2330 	}
2331 
2332 	if (pipe_cfg_targ_addr == 0) {
2333 		ret = -EIO;
2334 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2335 		return ret;
2336 	}
2337 
2338 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2339 					target_ce_config_wlan,
2340 					sizeof(struct ce_pipe_config) *
2341 					NUM_TARGET_CE_CONFIG_WLAN);
2342 
2343 	if (ret != 0) {
2344 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2345 		return ret;
2346 	}
2347 
2348 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2349 					  offsetof(struct pcie_state,
2350 						   svc_to_pipe_map)),
2351 				     &svc_to_pipe_map);
2352 	if (ret != 0) {
2353 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2354 		return ret;
2355 	}
2356 
2357 	if (svc_to_pipe_map == 0) {
2358 		ret = -EIO;
2359 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2360 		return ret;
2361 	}
2362 
2363 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2364 					target_service_to_ce_map_wlan,
2365 					sizeof(target_service_to_ce_map_wlan));
2366 	if (ret != 0) {
2367 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2368 		return ret;
2369 	}
2370 
2371 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2372 					  offsetof(struct pcie_state,
2373 						   config_flags)),
2374 				     &pcie_config_flags);
2375 	if (ret != 0) {
2376 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2377 		return ret;
2378 	}
2379 
2380 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2381 
2382 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2383 					   offsetof(struct pcie_state,
2384 						    config_flags)),
2385 				      pcie_config_flags);
2386 	if (ret != 0) {
2387 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2388 		return ret;
2389 	}
2390 
2391 	/* configure early allocation */
2392 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2393 
2394 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2395 	if (ret != 0) {
2396 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2397 		return ret;
2398 	}
2399 
2400 	/* first bank is switched to IRAM */
2401 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2402 			 HI_EARLY_ALLOC_MAGIC_MASK);
2403 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2404 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2405 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2406 
2407 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2408 	if (ret != 0) {
2409 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2410 		return ret;
2411 	}
2412 
2413 	/* Tell Target to proceed with initialization */
2414 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2415 
2416 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2417 	if (ret != 0) {
2418 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2419 		return ret;
2420 	}
2421 
2422 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2423 
2424 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2425 	if (ret != 0) {
2426 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2427 		return ret;
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2434 {
2435 	struct ce_attr *attr;
2436 	struct ce_pipe_config *config;
2437 
2438 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2439 	 * since it is currently used for other feature.
2440 	 */
2441 
2442 	/* Override Host's Copy Engine 5 configuration */
2443 	attr = &host_ce_config_wlan[5];
2444 	attr->src_sz_max = 0;
2445 	attr->dest_nentries = 0;
2446 
2447 	/* Override Target firmware's Copy Engine configuration */
2448 	config = &target_ce_config_wlan[5];
2449 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2450 	config->nbytes_max = __cpu_to_le32(2048);
2451 
2452 	/* Map from service/endpoint to Copy Engine */
2453 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2454 }
2455 
2456 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2457 {
2458 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2459 	struct ath10k_pci_pipe *pipe;
2460 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2461 	int i, ret;
2462 
2463 	for (i = 0; i < CE_COUNT; i++) {
2464 		pipe = &ar_pci->pipe_info[i];
2465 		pipe->ce_hdl = &ce->ce_states[i];
2466 		pipe->pipe_num = i;
2467 		pipe->hif_ce_state = ar;
2468 
2469 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2470 		if (ret) {
2471 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2472 				   i, ret);
2473 			return ret;
2474 		}
2475 
2476 		/* Last CE is Diagnostic Window */
2477 		if (i == CE_DIAG_PIPE) {
2478 			ar_pci->ce_diag = pipe->ce_hdl;
2479 			continue;
2480 		}
2481 
2482 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 void ath10k_pci_free_pipes(struct ath10k *ar)
2489 {
2490 	int i;
2491 
2492 	for (i = 0; i < CE_COUNT; i++)
2493 		ath10k_ce_free_pipe(ar, i);
2494 }
2495 
2496 int ath10k_pci_init_pipes(struct ath10k *ar)
2497 {
2498 	int i, ret;
2499 
2500 	for (i = 0; i < CE_COUNT; i++) {
2501 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2502 		if (ret) {
2503 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2504 				   i, ret);
2505 			return ret;
2506 		}
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2513 {
2514 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2515 	       FW_IND_EVENT_PENDING;
2516 }
2517 
2518 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2519 {
2520 	u32 val;
2521 
2522 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2523 	val &= ~FW_IND_EVENT_PENDING;
2524 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2525 }
2526 
2527 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2528 {
2529 	u32 val;
2530 
2531 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2532 	return (val == 0xffffffff);
2533 }
2534 
2535 /* this function effectively clears target memory controller assert line */
2536 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2537 {
2538 	u32 val;
2539 
2540 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2541 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2542 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2543 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2544 
2545 	msleep(10);
2546 
2547 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2548 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2549 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2550 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2551 
2552 	msleep(10);
2553 }
2554 
2555 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2556 {
2557 	u32 val;
2558 
2559 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2560 
2561 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2562 				SOC_RESET_CONTROL_ADDRESS);
2563 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2564 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2565 }
2566 
2567 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2568 {
2569 	u32 val;
2570 
2571 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2572 				SOC_RESET_CONTROL_ADDRESS);
2573 
2574 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2575 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2576 	msleep(10);
2577 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2578 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2579 }
2580 
2581 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2582 {
2583 	u32 val;
2584 
2585 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2586 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2587 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2588 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2589 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2590 }
2591 
2592 static int ath10k_pci_warm_reset(struct ath10k *ar)
2593 {
2594 	int ret;
2595 
2596 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2597 
2598 	spin_lock_bh(&ar->data_lock);
2599 	ar->stats.fw_warm_reset_counter++;
2600 	spin_unlock_bh(&ar->data_lock);
2601 
2602 	ath10k_pci_irq_disable(ar);
2603 
2604 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2605 	 * were to access copy engine while host performs copy engine reset
2606 	 * then it is possible for the device to confuse pci-e controller to
2607 	 * the point of bringing host system to a complete stop (i.e. hang).
2608 	 */
2609 	ath10k_pci_warm_reset_si0(ar);
2610 	ath10k_pci_warm_reset_cpu(ar);
2611 	ath10k_pci_init_pipes(ar);
2612 	ath10k_pci_wait_for_target_init(ar);
2613 
2614 	ath10k_pci_warm_reset_clear_lf(ar);
2615 	ath10k_pci_warm_reset_ce(ar);
2616 	ath10k_pci_warm_reset_cpu(ar);
2617 	ath10k_pci_init_pipes(ar);
2618 
2619 	ret = ath10k_pci_wait_for_target_init(ar);
2620 	if (ret) {
2621 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2622 		return ret;
2623 	}
2624 
2625 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2626 
2627 	return 0;
2628 }
2629 
2630 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2631 {
2632 	ath10k_pci_irq_disable(ar);
2633 	return ath10k_pci_qca99x0_chip_reset(ar);
2634 }
2635 
2636 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2637 {
2638 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2639 
2640 	if (!ar_pci->pci_soft_reset)
2641 		return -ENOTSUPP;
2642 
2643 	return ar_pci->pci_soft_reset(ar);
2644 }
2645 
2646 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2647 {
2648 	int i, ret;
2649 	u32 val;
2650 
2651 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2652 
2653 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2654 	 * It is thus preferred to use warm reset which is safer but may not be
2655 	 * able to recover the device from all possible fail scenarios.
2656 	 *
2657 	 * Warm reset doesn't always work on first try so attempt it a few
2658 	 * times before giving up.
2659 	 */
2660 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2661 		ret = ath10k_pci_warm_reset(ar);
2662 		if (ret) {
2663 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2664 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2665 				    ret);
2666 			continue;
2667 		}
2668 
2669 		/* FIXME: Sometimes copy engine doesn't recover after warm
2670 		 * reset. In most cases this needs cold reset. In some of these
2671 		 * cases the device is in such a state that a cold reset may
2672 		 * lock up the host.
2673 		 *
2674 		 * Reading any host interest register via copy engine is
2675 		 * sufficient to verify if device is capable of booting
2676 		 * firmware blob.
2677 		 */
2678 		ret = ath10k_pci_init_pipes(ar);
2679 		if (ret) {
2680 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2681 				    ret);
2682 			continue;
2683 		}
2684 
2685 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2686 					     &val);
2687 		if (ret) {
2688 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2689 				    ret);
2690 			continue;
2691 		}
2692 
2693 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2694 		return 0;
2695 	}
2696 
2697 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2698 		ath10k_warn(ar, "refusing cold reset as requested\n");
2699 		return -EPERM;
2700 	}
2701 
2702 	ret = ath10k_pci_cold_reset(ar);
2703 	if (ret) {
2704 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2705 		return ret;
2706 	}
2707 
2708 	ret = ath10k_pci_wait_for_target_init(ar);
2709 	if (ret) {
2710 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2711 			    ret);
2712 		return ret;
2713 	}
2714 
2715 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2716 
2717 	return 0;
2718 }
2719 
2720 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2721 {
2722 	int ret;
2723 
2724 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2725 
2726 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2727 
2728 	ret = ath10k_pci_cold_reset(ar);
2729 	if (ret) {
2730 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2731 		return ret;
2732 	}
2733 
2734 	ret = ath10k_pci_wait_for_target_init(ar);
2735 	if (ret) {
2736 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2737 			    ret);
2738 		return ret;
2739 	}
2740 
2741 	ret = ath10k_pci_warm_reset(ar);
2742 	if (ret) {
2743 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2744 		return ret;
2745 	}
2746 
2747 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2748 
2749 	return 0;
2750 }
2751 
2752 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2753 {
2754 	int ret;
2755 
2756 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2757 
2758 	ret = ath10k_pci_cold_reset(ar);
2759 	if (ret) {
2760 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2761 		return ret;
2762 	}
2763 
2764 	ret = ath10k_pci_wait_for_target_init(ar);
2765 	if (ret) {
2766 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2767 			    ret);
2768 		return ret;
2769 	}
2770 
2771 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2772 
2773 	return 0;
2774 }
2775 
2776 static int ath10k_pci_chip_reset(struct ath10k *ar)
2777 {
2778 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2779 
2780 	if (WARN_ON(!ar_pci->pci_hard_reset))
2781 		return -ENOTSUPP;
2782 
2783 	return ar_pci->pci_hard_reset(ar);
2784 }
2785 
2786 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2787 				   enum ath10k_firmware_mode fw_mode)
2788 {
2789 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2790 	int ret;
2791 
2792 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2793 
2794 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2795 				  &ar_pci->link_ctl);
2796 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2797 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2798 
2799 	/*
2800 	 * Bring the target up cleanly.
2801 	 *
2802 	 * The target may be in an undefined state with an AUX-powered Target
2803 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2804 	 * restarted (without unloading the driver) then the Target is left
2805 	 * (aux) powered and running. On a subsequent driver load, the Target
2806 	 * is in an unexpected state. We try to catch that here in order to
2807 	 * reset the Target and retry the probe.
2808 	 */
2809 	ret = ath10k_pci_chip_reset(ar);
2810 	if (ret) {
2811 		if (ath10k_pci_has_fw_crashed(ar)) {
2812 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2813 			ath10k_pci_fw_crashed_clear(ar);
2814 			ath10k_pci_fw_crashed_dump(ar);
2815 		}
2816 
2817 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2818 		goto err_sleep;
2819 	}
2820 
2821 	ret = ath10k_pci_init_pipes(ar);
2822 	if (ret) {
2823 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2824 		goto err_sleep;
2825 	}
2826 
2827 	ret = ath10k_pci_init_config(ar);
2828 	if (ret) {
2829 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2830 		goto err_ce;
2831 	}
2832 
2833 	ret = ath10k_pci_wake_target_cpu(ar);
2834 	if (ret) {
2835 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2836 		goto err_ce;
2837 	}
2838 
2839 	return 0;
2840 
2841 err_ce:
2842 	ath10k_pci_ce_deinit(ar);
2843 
2844 err_sleep:
2845 	return ret;
2846 }
2847 
2848 void ath10k_pci_hif_power_down(struct ath10k *ar)
2849 {
2850 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2851 
2852 	/* Currently hif_power_up performs effectively a reset and hif_stop
2853 	 * resets the chip as well so there's no point in resetting here.
2854 	 */
2855 }
2856 
2857 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2858 {
2859 	/* Nothing to do; the important stuff is in the driver suspend. */
2860 	return 0;
2861 }
2862 
2863 static int ath10k_pci_suspend(struct ath10k *ar)
2864 {
2865 	/* The grace timer can still be counting down and ar->ps_awake be true.
2866 	 * It is known that the device may be asleep after resuming regardless
2867 	 * of the SoC powersave state before suspending. Hence make sure the
2868 	 * device is asleep before proceeding.
2869 	 */
2870 	ath10k_pci_sleep_sync(ar);
2871 
2872 	return 0;
2873 }
2874 
2875 static int ath10k_pci_hif_resume(struct ath10k *ar)
2876 {
2877 	/* Nothing to do; the important stuff is in the driver resume. */
2878 	return 0;
2879 }
2880 
2881 static int ath10k_pci_resume(struct ath10k *ar)
2882 {
2883 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2884 	struct pci_dev *pdev = ar_pci->pdev;
2885 	u32 val;
2886 	int ret = 0;
2887 
2888 	ret = ath10k_pci_force_wake(ar);
2889 	if (ret) {
2890 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2891 		return ret;
2892 	}
2893 
2894 	/* Suspend/Resume resets the PCI configuration space, so we have to
2895 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2896 	 * from interfering with C3 CPU state. pci_restore_state won't help
2897 	 * here since it only restores the first 64 bytes pci config header.
2898 	 */
2899 	pci_read_config_dword(pdev, 0x40, &val);
2900 	if ((val & 0x0000ff00) != 0)
2901 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2902 
2903 	return ret;
2904 }
2905 
2906 static bool ath10k_pci_validate_cal(void *data, size_t size)
2907 {
2908 	__le16 *cal_words = data;
2909 	u16 checksum = 0;
2910 	size_t i;
2911 
2912 	if (size % 2 != 0)
2913 		return false;
2914 
2915 	for (i = 0; i < size / 2; i++)
2916 		checksum ^= le16_to_cpu(cal_words[i]);
2917 
2918 	return checksum == 0xffff;
2919 }
2920 
2921 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2922 {
2923 	/* Enable SI clock */
2924 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2925 
2926 	/* Configure GPIOs for I2C operation */
2927 	ath10k_pci_write32(ar,
2928 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2929 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2930 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2931 			      GPIO_PIN0_CONFIG) |
2932 			   SM(1, GPIO_PIN0_PAD_PULL));
2933 
2934 	ath10k_pci_write32(ar,
2935 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2936 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2937 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2938 			   SM(1, GPIO_PIN0_PAD_PULL));
2939 
2940 	ath10k_pci_write32(ar,
2941 			   GPIO_BASE_ADDRESS +
2942 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2943 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2944 
2945 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2946 	ath10k_pci_write32(ar,
2947 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2948 			   SM(1, SI_CONFIG_ERR_INT) |
2949 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2950 			   SM(1, SI_CONFIG_I2C) |
2951 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2952 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2953 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2954 			   SM(8, SI_CONFIG_DIVIDER));
2955 }
2956 
2957 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2958 {
2959 	u32 reg;
2960 	int wait_limit;
2961 
2962 	/* set device select byte and for the read operation */
2963 	reg = QCA9887_EEPROM_SELECT_READ |
2964 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2965 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2966 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2967 
2968 	/* write transmit data, transfer length, and START bit */
2969 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2970 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2971 			   SM(4, SI_CS_TX_CNT));
2972 
2973 	/* wait max 1 sec */
2974 	wait_limit = 100000;
2975 
2976 	/* wait for SI_CS_DONE_INT */
2977 	do {
2978 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2979 		if (MS(reg, SI_CS_DONE_INT))
2980 			break;
2981 
2982 		wait_limit--;
2983 		udelay(10);
2984 	} while (wait_limit > 0);
2985 
2986 	if (!MS(reg, SI_CS_DONE_INT)) {
2987 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2988 			   addr);
2989 		return -ETIMEDOUT;
2990 	}
2991 
2992 	/* clear SI_CS_DONE_INT */
2993 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2994 
2995 	if (MS(reg, SI_CS_DONE_ERR)) {
2996 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2997 		return -EIO;
2998 	}
2999 
3000 	/* extract receive data */
3001 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3002 	*out = reg;
3003 
3004 	return 0;
3005 }
3006 
3007 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3008 					   size_t *data_len)
3009 {
3010 	u8 *caldata = NULL;
3011 	size_t calsize, i;
3012 	int ret;
3013 
3014 	if (!QCA_REV_9887(ar))
3015 		return -EOPNOTSUPP;
3016 
3017 	calsize = ar->hw_params.cal_data_len;
3018 	caldata = kmalloc(calsize, GFP_KERNEL);
3019 	if (!caldata)
3020 		return -ENOMEM;
3021 
3022 	ath10k_pci_enable_eeprom(ar);
3023 
3024 	for (i = 0; i < calsize; i++) {
3025 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3026 		if (ret)
3027 			goto err_free;
3028 	}
3029 
3030 	if (!ath10k_pci_validate_cal(caldata, calsize))
3031 		goto err_free;
3032 
3033 	*data = caldata;
3034 	*data_len = calsize;
3035 
3036 	return 0;
3037 
3038 err_free:
3039 	kfree(caldata);
3040 
3041 	return -EINVAL;
3042 }
3043 
3044 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3045 	.tx_sg			= ath10k_pci_hif_tx_sg,
3046 	.diag_read		= ath10k_pci_hif_diag_read,
3047 	.diag_write		= ath10k_pci_diag_write_mem,
3048 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3049 	.start			= ath10k_pci_hif_start,
3050 	.stop			= ath10k_pci_hif_stop,
3051 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3052 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3053 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3054 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3055 	.power_up		= ath10k_pci_hif_power_up,
3056 	.power_down		= ath10k_pci_hif_power_down,
3057 	.read32			= ath10k_pci_read32,
3058 	.write32		= ath10k_pci_write32,
3059 	.suspend		= ath10k_pci_hif_suspend,
3060 	.resume			= ath10k_pci_hif_resume,
3061 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3062 };
3063 
3064 /*
3065  * Top-level interrupt handler for all PCI interrupts from a Target.
3066  * When a block of MSI interrupts is allocated, this top-level handler
3067  * is not used; instead, we directly call the correct sub-handler.
3068  */
3069 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3070 {
3071 	struct ath10k *ar = arg;
3072 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3073 	int ret;
3074 
3075 	if (ath10k_pci_has_device_gone(ar))
3076 		return IRQ_NONE;
3077 
3078 	ret = ath10k_pci_force_wake(ar);
3079 	if (ret) {
3080 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3081 		return IRQ_NONE;
3082 	}
3083 
3084 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3085 	    !ath10k_pci_irq_pending(ar))
3086 		return IRQ_NONE;
3087 
3088 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3089 	ath10k_pci_irq_msi_fw_mask(ar);
3090 	napi_schedule(&ar->napi);
3091 
3092 	return IRQ_HANDLED;
3093 }
3094 
3095 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3096 {
3097 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3098 	int done = 0;
3099 
3100 	if (ath10k_pci_has_fw_crashed(ar)) {
3101 		ath10k_pci_fw_crashed_clear(ar);
3102 		ath10k_pci_fw_crashed_dump(ar);
3103 		napi_complete(ctx);
3104 		return done;
3105 	}
3106 
3107 	ath10k_ce_per_engine_service_any(ar);
3108 
3109 	done = ath10k_htt_txrx_compl_task(ar, budget);
3110 
3111 	if (done < budget) {
3112 		napi_complete_done(ctx, done);
3113 		/* In case of MSI, it is possible that interrupts are received
3114 		 * while NAPI poll is inprogress. So pending interrupts that are
3115 		 * received after processing all copy engine pipes by NAPI poll
3116 		 * will not be handled again. This is causing failure to
3117 		 * complete boot sequence in x86 platform. So before enabling
3118 		 * interrupts safer to check for pending interrupts for
3119 		 * immediate servicing.
3120 		 */
3121 		if (ath10k_ce_interrupt_summary(ar)) {
3122 			napi_reschedule(ctx);
3123 			goto out;
3124 		}
3125 		ath10k_pci_enable_legacy_irq(ar);
3126 		ath10k_pci_irq_msi_fw_unmask(ar);
3127 	}
3128 
3129 out:
3130 	return done;
3131 }
3132 
3133 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3134 {
3135 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3136 	int ret;
3137 
3138 	ret = request_irq(ar_pci->pdev->irq,
3139 			  ath10k_pci_interrupt_handler,
3140 			  IRQF_SHARED, "ath10k_pci", ar);
3141 	if (ret) {
3142 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3143 			    ar_pci->pdev->irq, ret);
3144 		return ret;
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3151 {
3152 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3153 	int ret;
3154 
3155 	ret = request_irq(ar_pci->pdev->irq,
3156 			  ath10k_pci_interrupt_handler,
3157 			  IRQF_SHARED, "ath10k_pci", ar);
3158 	if (ret) {
3159 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3160 			    ar_pci->pdev->irq, ret);
3161 		return ret;
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static int ath10k_pci_request_irq(struct ath10k *ar)
3168 {
3169 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3170 
3171 	switch (ar_pci->oper_irq_mode) {
3172 	case ATH10K_PCI_IRQ_LEGACY:
3173 		return ath10k_pci_request_irq_legacy(ar);
3174 	case ATH10K_PCI_IRQ_MSI:
3175 		return ath10k_pci_request_irq_msi(ar);
3176 	default:
3177 		return -EINVAL;
3178 	}
3179 }
3180 
3181 static void ath10k_pci_free_irq(struct ath10k *ar)
3182 {
3183 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3184 
3185 	free_irq(ar_pci->pdev->irq, ar);
3186 }
3187 
3188 void ath10k_pci_init_napi(struct ath10k *ar)
3189 {
3190 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3191 		       ATH10K_NAPI_BUDGET);
3192 }
3193 
3194 static int ath10k_pci_init_irq(struct ath10k *ar)
3195 {
3196 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3197 	int ret;
3198 
3199 	ath10k_pci_init_napi(ar);
3200 
3201 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3202 		ath10k_info(ar, "limiting irq mode to: %d\n",
3203 			    ath10k_pci_irq_mode);
3204 
3205 	/* Try MSI */
3206 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3207 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3208 		ret = pci_enable_msi(ar_pci->pdev);
3209 		if (ret == 0)
3210 			return 0;
3211 
3212 		/* fall-through */
3213 	}
3214 
3215 	/* Try legacy irq
3216 	 *
3217 	 * A potential race occurs here: The CORE_BASE write
3218 	 * depends on target correctly decoding AXI address but
3219 	 * host won't know when target writes BAR to CORE_CTRL.
3220 	 * This write might get lost if target has NOT written BAR.
3221 	 * For now, fix the race by repeating the write in below
3222 	 * synchronization checking.
3223 	 */
3224 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3225 
3226 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3227 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3228 
3229 	return 0;
3230 }
3231 
3232 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3233 {
3234 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3235 			   0);
3236 }
3237 
3238 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3239 {
3240 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3241 
3242 	switch (ar_pci->oper_irq_mode) {
3243 	case ATH10K_PCI_IRQ_LEGACY:
3244 		ath10k_pci_deinit_irq_legacy(ar);
3245 		break;
3246 	default:
3247 		pci_disable_msi(ar_pci->pdev);
3248 		break;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3255 {
3256 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3257 	unsigned long timeout;
3258 	u32 val;
3259 
3260 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3261 
3262 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3263 
3264 	do {
3265 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3266 
3267 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3268 			   val);
3269 
3270 		/* target should never return this */
3271 		if (val == 0xffffffff)
3272 			continue;
3273 
3274 		/* the device has crashed so don't bother trying anymore */
3275 		if (val & FW_IND_EVENT_PENDING)
3276 			break;
3277 
3278 		if (val & FW_IND_INITIALIZED)
3279 			break;
3280 
3281 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3282 			/* Fix potential race by repeating CORE_BASE writes */
3283 			ath10k_pci_enable_legacy_irq(ar);
3284 
3285 		mdelay(10);
3286 	} while (time_before(jiffies, timeout));
3287 
3288 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3289 	ath10k_pci_irq_msi_fw_mask(ar);
3290 
3291 	if (val == 0xffffffff) {
3292 		ath10k_err(ar, "failed to read device register, device is gone\n");
3293 		return -EIO;
3294 	}
3295 
3296 	if (val & FW_IND_EVENT_PENDING) {
3297 		ath10k_warn(ar, "device has crashed during init\n");
3298 		return -ECOMM;
3299 	}
3300 
3301 	if (!(val & FW_IND_INITIALIZED)) {
3302 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3303 			   val);
3304 		return -ETIMEDOUT;
3305 	}
3306 
3307 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3308 	return 0;
3309 }
3310 
3311 static int ath10k_pci_cold_reset(struct ath10k *ar)
3312 {
3313 	u32 val;
3314 
3315 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3316 
3317 	spin_lock_bh(&ar->data_lock);
3318 
3319 	ar->stats.fw_cold_reset_counter++;
3320 
3321 	spin_unlock_bh(&ar->data_lock);
3322 
3323 	/* Put Target, including PCIe, into RESET. */
3324 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3325 	val |= 1;
3326 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3327 
3328 	/* After writing into SOC_GLOBAL_RESET to put device into
3329 	 * reset and pulling out of reset pcie may not be stable
3330 	 * for any immediate pcie register access and cause bus error,
3331 	 * add delay before any pcie access request to fix this issue.
3332 	 */
3333 	msleep(20);
3334 
3335 	/* Pull Target, including PCIe, out of RESET. */
3336 	val &= ~1;
3337 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3338 
3339 	msleep(20);
3340 
3341 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3342 
3343 	return 0;
3344 }
3345 
3346 static int ath10k_pci_claim(struct ath10k *ar)
3347 {
3348 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3349 	struct pci_dev *pdev = ar_pci->pdev;
3350 	int ret;
3351 
3352 	pci_set_drvdata(pdev, ar);
3353 
3354 	ret = pci_enable_device(pdev);
3355 	if (ret) {
3356 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3357 		return ret;
3358 	}
3359 
3360 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3361 	if (ret) {
3362 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3363 			   ret);
3364 		goto err_device;
3365 	}
3366 
3367 	/* Target expects 32 bit DMA. Enforce it. */
3368 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3369 	if (ret) {
3370 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3371 		goto err_region;
3372 	}
3373 
3374 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3375 	if (ret) {
3376 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3377 			   ret);
3378 		goto err_region;
3379 	}
3380 
3381 	pci_set_master(pdev);
3382 
3383 	/* Arrange for access to Target SoC registers. */
3384 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3385 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3386 	if (!ar_pci->mem) {
3387 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3388 		ret = -EIO;
3389 		goto err_master;
3390 	}
3391 
3392 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3393 	return 0;
3394 
3395 err_master:
3396 	pci_clear_master(pdev);
3397 
3398 err_region:
3399 	pci_release_region(pdev, BAR_NUM);
3400 
3401 err_device:
3402 	pci_disable_device(pdev);
3403 
3404 	return ret;
3405 }
3406 
3407 static void ath10k_pci_release(struct ath10k *ar)
3408 {
3409 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3410 	struct pci_dev *pdev = ar_pci->pdev;
3411 
3412 	pci_iounmap(pdev, ar_pci->mem);
3413 	pci_release_region(pdev, BAR_NUM);
3414 	pci_clear_master(pdev);
3415 	pci_disable_device(pdev);
3416 }
3417 
3418 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3419 {
3420 	const struct ath10k_pci_supp_chip *supp_chip;
3421 	int i;
3422 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3423 
3424 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3425 		supp_chip = &ath10k_pci_supp_chips[i];
3426 
3427 		if (supp_chip->dev_id == dev_id &&
3428 		    supp_chip->rev_id == rev_id)
3429 			return true;
3430 	}
3431 
3432 	return false;
3433 }
3434 
3435 int ath10k_pci_setup_resource(struct ath10k *ar)
3436 {
3437 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3438 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3439 	int ret;
3440 
3441 	spin_lock_init(&ce->ce_lock);
3442 	spin_lock_init(&ar_pci->ps_lock);
3443 	mutex_init(&ar_pci->ce_diag_mutex);
3444 
3445 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3446 
3447 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3448 		ath10k_pci_override_ce_config(ar);
3449 
3450 	ret = ath10k_pci_alloc_pipes(ar);
3451 	if (ret) {
3452 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3453 			   ret);
3454 		return ret;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 void ath10k_pci_release_resource(struct ath10k *ar)
3461 {
3462 	ath10k_pci_rx_retry_sync(ar);
3463 	netif_napi_del(&ar->napi);
3464 	ath10k_pci_ce_deinit(ar);
3465 	ath10k_pci_free_pipes(ar);
3466 }
3467 
3468 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3469 	.read32		= ath10k_bus_pci_read32,
3470 	.write32	= ath10k_bus_pci_write32,
3471 	.get_num_banks	= ath10k_pci_get_num_banks,
3472 };
3473 
3474 static int ath10k_pci_probe(struct pci_dev *pdev,
3475 			    const struct pci_device_id *pci_dev)
3476 {
3477 	int ret = 0;
3478 	struct ath10k *ar;
3479 	struct ath10k_pci *ar_pci;
3480 	enum ath10k_hw_rev hw_rev;
3481 	struct ath10k_bus_params bus_params;
3482 	bool pci_ps;
3483 	int (*pci_soft_reset)(struct ath10k *ar);
3484 	int (*pci_hard_reset)(struct ath10k *ar);
3485 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3486 
3487 	switch (pci_dev->device) {
3488 	case QCA988X_2_0_DEVICE_ID_UBNT:
3489 	case QCA988X_2_0_DEVICE_ID:
3490 		hw_rev = ATH10K_HW_QCA988X;
3491 		pci_ps = false;
3492 		pci_soft_reset = ath10k_pci_warm_reset;
3493 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3494 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3495 		break;
3496 	case QCA9887_1_0_DEVICE_ID:
3497 		hw_rev = ATH10K_HW_QCA9887;
3498 		pci_ps = false;
3499 		pci_soft_reset = ath10k_pci_warm_reset;
3500 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3501 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3502 		break;
3503 	case QCA6164_2_1_DEVICE_ID:
3504 	case QCA6174_2_1_DEVICE_ID:
3505 		hw_rev = ATH10K_HW_QCA6174;
3506 		pci_ps = true;
3507 		pci_soft_reset = ath10k_pci_warm_reset;
3508 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3509 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3510 		break;
3511 	case QCA99X0_2_0_DEVICE_ID:
3512 		hw_rev = ATH10K_HW_QCA99X0;
3513 		pci_ps = false;
3514 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3515 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3516 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3517 		break;
3518 	case QCA9984_1_0_DEVICE_ID:
3519 		hw_rev = ATH10K_HW_QCA9984;
3520 		pci_ps = false;
3521 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3522 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3523 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3524 		break;
3525 	case QCA9888_2_0_DEVICE_ID:
3526 		hw_rev = ATH10K_HW_QCA9888;
3527 		pci_ps = false;
3528 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3529 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3530 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3531 		break;
3532 	case QCA9377_1_0_DEVICE_ID:
3533 		hw_rev = ATH10K_HW_QCA9377;
3534 		pci_ps = true;
3535 		pci_soft_reset = ath10k_pci_warm_reset;
3536 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3537 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3538 		break;
3539 	default:
3540 		WARN_ON(1);
3541 		return -ENOTSUPP;
3542 	}
3543 
3544 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3545 				hw_rev, &ath10k_pci_hif_ops);
3546 	if (!ar) {
3547 		dev_err(&pdev->dev, "failed to allocate core\n");
3548 		return -ENOMEM;
3549 	}
3550 
3551 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3552 		   pdev->vendor, pdev->device,
3553 		   pdev->subsystem_vendor, pdev->subsystem_device);
3554 
3555 	ar_pci = ath10k_pci_priv(ar);
3556 	ar_pci->pdev = pdev;
3557 	ar_pci->dev = &pdev->dev;
3558 	ar_pci->ar = ar;
3559 	ar->dev_id = pci_dev->device;
3560 	ar_pci->pci_ps = pci_ps;
3561 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3562 	ar_pci->pci_soft_reset = pci_soft_reset;
3563 	ar_pci->pci_hard_reset = pci_hard_reset;
3564 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3565 	ar->ce_priv = &ar_pci->ce;
3566 
3567 	ar->id.vendor = pdev->vendor;
3568 	ar->id.device = pdev->device;
3569 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3570 	ar->id.subsystem_device = pdev->subsystem_device;
3571 
3572 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3573 
3574 	ret = ath10k_pci_setup_resource(ar);
3575 	if (ret) {
3576 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3577 		goto err_core_destroy;
3578 	}
3579 
3580 	ret = ath10k_pci_claim(ar);
3581 	if (ret) {
3582 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3583 		goto err_free_pipes;
3584 	}
3585 
3586 	ret = ath10k_pci_force_wake(ar);
3587 	if (ret) {
3588 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3589 		goto err_sleep;
3590 	}
3591 
3592 	ath10k_pci_ce_deinit(ar);
3593 	ath10k_pci_irq_disable(ar);
3594 
3595 	ret = ath10k_pci_init_irq(ar);
3596 	if (ret) {
3597 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3598 		goto err_sleep;
3599 	}
3600 
3601 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3602 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3603 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3604 
3605 	ret = ath10k_pci_request_irq(ar);
3606 	if (ret) {
3607 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3608 		goto err_deinit_irq;
3609 	}
3610 
3611 	ret = ath10k_pci_chip_reset(ar);
3612 	if (ret) {
3613 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3614 		goto err_free_irq;
3615 	}
3616 
3617 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3618 	bus_params.link_can_suspend = true;
3619 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3620 	if (bus_params.chip_id == 0xffffffff) {
3621 		ath10k_err(ar, "failed to get chip id\n");
3622 		goto err_free_irq;
3623 	}
3624 
3625 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3626 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3627 			   pdev->device, bus_params.chip_id);
3628 		goto err_free_irq;
3629 	}
3630 
3631 	ret = ath10k_core_register(ar, &bus_params);
3632 	if (ret) {
3633 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3634 		goto err_free_irq;
3635 	}
3636 
3637 	return 0;
3638 
3639 err_free_irq:
3640 	ath10k_pci_free_irq(ar);
3641 	ath10k_pci_rx_retry_sync(ar);
3642 
3643 err_deinit_irq:
3644 	ath10k_pci_deinit_irq(ar);
3645 
3646 err_sleep:
3647 	ath10k_pci_sleep_sync(ar);
3648 	ath10k_pci_release(ar);
3649 
3650 err_free_pipes:
3651 	ath10k_pci_free_pipes(ar);
3652 
3653 err_core_destroy:
3654 	ath10k_core_destroy(ar);
3655 
3656 	return ret;
3657 }
3658 
3659 static void ath10k_pci_remove(struct pci_dev *pdev)
3660 {
3661 	struct ath10k *ar = pci_get_drvdata(pdev);
3662 	struct ath10k_pci *ar_pci;
3663 
3664 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3665 
3666 	if (!ar)
3667 		return;
3668 
3669 	ar_pci = ath10k_pci_priv(ar);
3670 
3671 	if (!ar_pci)
3672 		return;
3673 
3674 	ath10k_core_unregister(ar);
3675 	ath10k_pci_free_irq(ar);
3676 	ath10k_pci_deinit_irq(ar);
3677 	ath10k_pci_release_resource(ar);
3678 	ath10k_pci_sleep_sync(ar);
3679 	ath10k_pci_release(ar);
3680 	ath10k_core_destroy(ar);
3681 }
3682 
3683 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3684 
3685 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3686 {
3687 	struct ath10k *ar = dev_get_drvdata(dev);
3688 	int ret;
3689 
3690 	ret = ath10k_pci_suspend(ar);
3691 	if (ret)
3692 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3693 
3694 	return ret;
3695 }
3696 
3697 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3698 {
3699 	struct ath10k *ar = dev_get_drvdata(dev);
3700 	int ret;
3701 
3702 	ret = ath10k_pci_resume(ar);
3703 	if (ret)
3704 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3705 
3706 	return ret;
3707 }
3708 
3709 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3710 			 ath10k_pci_pm_suspend,
3711 			 ath10k_pci_pm_resume);
3712 
3713 static struct pci_driver ath10k_pci_driver = {
3714 	.name = "ath10k_pci",
3715 	.id_table = ath10k_pci_id_table,
3716 	.probe = ath10k_pci_probe,
3717 	.remove = ath10k_pci_remove,
3718 #ifdef CONFIG_PM
3719 	.driver.pm = &ath10k_pci_pm_ops,
3720 #endif
3721 };
3722 
3723 static int __init ath10k_pci_init(void)
3724 {
3725 	int ret;
3726 
3727 	ret = pci_register_driver(&ath10k_pci_driver);
3728 	if (ret)
3729 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3730 		       ret);
3731 
3732 	ret = ath10k_ahb_init();
3733 	if (ret)
3734 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3735 
3736 	return ret;
3737 }
3738 module_init(ath10k_pci_init);
3739 
3740 static void __exit ath10k_pci_exit(void)
3741 {
3742 	pci_unregister_driver(&ath10k_pci_driver);
3743 	ath10k_ahb_exit();
3744 }
3745 
3746 module_exit(ath10k_pci_exit);
3747 
3748 MODULE_AUTHOR("Qualcomm Atheros");
3749 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3750 MODULE_LICENSE("Dual BSD/GPL");
3751 
3752 /* QCA988x 2.0 firmware files */
3753 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3754 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3755 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3756 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3757 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3758 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3759 
3760 /* QCA9887 1.0 firmware files */
3761 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3762 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3763 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3764 
3765 /* QCA6174 2.1 firmware files */
3766 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3767 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3768 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3769 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3770 
3771 /* QCA6174 3.1 firmware files */
3772 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3773 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3774 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3775 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3776 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3777 
3778 /* QCA9377 1.0 firmware files */
3779 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3780 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3781 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3782