xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision ac8b6f14)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
61 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
62 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
63 
64 static const struct pci_device_id ath10k_pci_id_table[] = {
65 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
66 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
67 
68 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
72 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
73 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
74 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
75 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
76 	{0}
77 };
78 
79 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
80 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
81 	 * hacks. ath10k doesn't have them and these devices crash horribly
82 	 * because of that.
83 	 */
84 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
85 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
88 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
89 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
90 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
91 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
92 
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
94 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
95 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
96 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
97 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
98 
99 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
102 
103 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
104 
105 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
106 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
107 
108 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
109 };
110 
111 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
112 static int ath10k_pci_cold_reset(struct ath10k *ar);
113 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
114 static int ath10k_pci_init_irq(struct ath10k *ar);
115 static int ath10k_pci_deinit_irq(struct ath10k *ar);
116 static int ath10k_pci_request_irq(struct ath10k *ar);
117 static void ath10k_pci_free_irq(struct ath10k *ar);
118 static int ath10k_pci_bmi_wait(struct ath10k *ar,
119 			       struct ath10k_ce_pipe *tx_pipe,
120 			       struct ath10k_ce_pipe *rx_pipe,
121 			       struct bmi_xfer *xfer);
122 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
123 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
125 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
126 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
127 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
128 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
129 
130 static struct ce_attr host_ce_config_wlan[] = {
131 	/* CE0: host->target HTC control and raw streams */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 16,
135 		.src_sz_max = 256,
136 		.dest_nentries = 0,
137 		.send_cb = ath10k_pci_htc_tx_cb,
138 	},
139 
140 	/* CE1: target->host HTT + HTC control */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 0,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 512,
146 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
147 	},
148 
149 	/* CE2: target->host WMI */
150 	{
151 		.flags = CE_ATTR_FLAGS,
152 		.src_nentries = 0,
153 		.src_sz_max = 2048,
154 		.dest_nentries = 128,
155 		.recv_cb = ath10k_pci_htc_rx_cb,
156 	},
157 
158 	/* CE3: host->target WMI */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 32,
162 		.src_sz_max = 2048,
163 		.dest_nentries = 0,
164 		.send_cb = ath10k_pci_htc_tx_cb,
165 	},
166 
167 	/* CE4: host->target HTT */
168 	{
169 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
170 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
171 		.src_sz_max = 256,
172 		.dest_nentries = 0,
173 		.send_cb = ath10k_pci_htt_tx_cb,
174 	},
175 
176 	/* CE5: target->host HTT (HIF->HTT) */
177 	{
178 		.flags = CE_ATTR_FLAGS,
179 		.src_nentries = 0,
180 		.src_sz_max = 512,
181 		.dest_nentries = 512,
182 		.recv_cb = ath10k_pci_htt_rx_cb,
183 	},
184 
185 	/* CE6: target autonomous hif_memcpy */
186 	{
187 		.flags = CE_ATTR_FLAGS,
188 		.src_nentries = 0,
189 		.src_sz_max = 0,
190 		.dest_nentries = 0,
191 	},
192 
193 	/* CE7: ce_diag, the Diagnostic Window */
194 	{
195 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
196 		.src_nentries = 2,
197 		.src_sz_max = DIAG_TRANSFER_LIMIT,
198 		.dest_nentries = 2,
199 	},
200 
201 	/* CE8: target->host pktlog */
202 	{
203 		.flags = CE_ATTR_FLAGS,
204 		.src_nentries = 0,
205 		.src_sz_max = 2048,
206 		.dest_nentries = 128,
207 		.recv_cb = ath10k_pci_pktlog_rx_cb,
208 	},
209 
210 	/* CE9 target autonomous qcache memcpy */
211 	{
212 		.flags = CE_ATTR_FLAGS,
213 		.src_nentries = 0,
214 		.src_sz_max = 0,
215 		.dest_nentries = 0,
216 	},
217 
218 	/* CE10: target autonomous hif memcpy */
219 	{
220 		.flags = CE_ATTR_FLAGS,
221 		.src_nentries = 0,
222 		.src_sz_max = 0,
223 		.dest_nentries = 0,
224 	},
225 
226 	/* CE11: target autonomous hif memcpy */
227 	{
228 		.flags = CE_ATTR_FLAGS,
229 		.src_nentries = 0,
230 		.src_sz_max = 0,
231 		.dest_nentries = 0,
232 	},
233 };
234 
235 /* Target firmware's Copy Engine configuration. */
236 static struct ce_pipe_config target_ce_config_wlan[] = {
237 	/* CE0: host->target HTC control and raw streams */
238 	{
239 		.pipenum = __cpu_to_le32(0),
240 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
241 		.nentries = __cpu_to_le32(32),
242 		.nbytes_max = __cpu_to_le32(256),
243 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 		.reserved = __cpu_to_le32(0),
245 	},
246 
247 	/* CE1: target->host HTT + HTC control */
248 	{
249 		.pipenum = __cpu_to_le32(1),
250 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
251 		.nentries = __cpu_to_le32(32),
252 		.nbytes_max = __cpu_to_le32(2048),
253 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 		.reserved = __cpu_to_le32(0),
255 	},
256 
257 	/* CE2: target->host WMI */
258 	{
259 		.pipenum = __cpu_to_le32(2),
260 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
261 		.nentries = __cpu_to_le32(64),
262 		.nbytes_max = __cpu_to_le32(2048),
263 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 		.reserved = __cpu_to_le32(0),
265 	},
266 
267 	/* CE3: host->target WMI */
268 	{
269 		.pipenum = __cpu_to_le32(3),
270 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 		.nentries = __cpu_to_le32(32),
272 		.nbytes_max = __cpu_to_le32(2048),
273 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 		.reserved = __cpu_to_le32(0),
275 	},
276 
277 	/* CE4: host->target HTT */
278 	{
279 		.pipenum = __cpu_to_le32(4),
280 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
281 		.nentries = __cpu_to_le32(256),
282 		.nbytes_max = __cpu_to_le32(256),
283 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
284 		.reserved = __cpu_to_le32(0),
285 	},
286 
287 	/* NB: 50% of src nentries, since tx has 2 frags */
288 
289 	/* CE5: target->host HTT (HIF->HTT) */
290 	{
291 		.pipenum = __cpu_to_le32(5),
292 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
293 		.nentries = __cpu_to_le32(32),
294 		.nbytes_max = __cpu_to_le32(512),
295 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 		.reserved = __cpu_to_le32(0),
297 	},
298 
299 	/* CE6: Reserved for target autonomous hif_memcpy */
300 	{
301 		.pipenum = __cpu_to_le32(6),
302 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 		.nentries = __cpu_to_le32(32),
304 		.nbytes_max = __cpu_to_le32(4096),
305 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
306 		.reserved = __cpu_to_le32(0),
307 	},
308 
309 	/* CE7 used only by Host */
310 	{
311 		.pipenum = __cpu_to_le32(7),
312 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
313 		.nentries = __cpu_to_le32(0),
314 		.nbytes_max = __cpu_to_le32(0),
315 		.flags = __cpu_to_le32(0),
316 		.reserved = __cpu_to_le32(0),
317 	},
318 
319 	/* CE8 target->host packtlog */
320 	{
321 		.pipenum = __cpu_to_le32(8),
322 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
323 		.nentries = __cpu_to_le32(64),
324 		.nbytes_max = __cpu_to_le32(2048),
325 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 		.reserved = __cpu_to_le32(0),
327 	},
328 
329 	/* CE9 target autonomous qcache memcpy */
330 	{
331 		.pipenum = __cpu_to_le32(9),
332 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
333 		.nentries = __cpu_to_le32(32),
334 		.nbytes_max = __cpu_to_le32(2048),
335 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
336 		.reserved = __cpu_to_le32(0),
337 	},
338 
339 	/* It not necessary to send target wlan configuration for CE10 & CE11
340 	 * as these CEs are not actively used in target.
341 	 */
342 };
343 
344 /*
345  * Map from service/endpoint to Copy Engine.
346  * This table is derived from the CE_PCI TABLE, above.
347  * It is passed to the Target at startup for use by firmware.
348  */
349 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
352 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
353 		__cpu_to_le32(3),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
357 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
358 		__cpu_to_le32(2),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
362 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
363 		__cpu_to_le32(3),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
367 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
368 		__cpu_to_le32(2),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
372 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
373 		__cpu_to_le32(3),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
377 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
378 		__cpu_to_le32(2),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
382 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
383 		__cpu_to_le32(3),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
387 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
388 		__cpu_to_le32(2),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
392 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
393 		__cpu_to_le32(3),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
397 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
398 		__cpu_to_le32(2),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
402 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
403 		__cpu_to_le32(0),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
407 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
408 		__cpu_to_le32(1),
409 	},
410 	{ /* not used */
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
412 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
413 		__cpu_to_le32(0),
414 	},
415 	{ /* not used */
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
417 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
418 		__cpu_to_le32(1),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
422 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
423 		__cpu_to_le32(4),
424 	},
425 	{
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
427 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
428 		__cpu_to_le32(5),
429 	},
430 
431 	/* (Additions here) */
432 
433 	{ /* must be last */
434 		__cpu_to_le32(0),
435 		__cpu_to_le32(0),
436 		__cpu_to_le32(0),
437 	},
438 };
439 
440 static bool ath10k_pci_is_awake(struct ath10k *ar)
441 {
442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 
446 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
447 }
448 
449 static void __ath10k_pci_wake(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_V_MASK,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 }
462 
463 static void __ath10k_pci_sleep(struct ath10k *ar)
464 {
465 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
466 
467 	lockdep_assert_held(&ar_pci->ps_lock);
468 
469 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
470 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
471 
472 	iowrite32(PCIE_SOC_WAKE_RESET,
473 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
474 		  PCIE_SOC_WAKE_ADDRESS);
475 	ar_pci->ps_awake = false;
476 }
477 
478 static int ath10k_pci_wake_wait(struct ath10k *ar)
479 {
480 	int tot_delay = 0;
481 	int curr_delay = 5;
482 
483 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
484 		if (ath10k_pci_is_awake(ar)) {
485 			if (tot_delay > PCIE_WAKE_LATE_US)
486 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
487 					    tot_delay / 1000);
488 			return 0;
489 		}
490 
491 		udelay(curr_delay);
492 		tot_delay += curr_delay;
493 
494 		if (curr_delay < 50)
495 			curr_delay += 5;
496 	}
497 
498 	return -ETIMEDOUT;
499 }
500 
501 static int ath10k_pci_force_wake(struct ath10k *ar)
502 {
503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
504 	unsigned long flags;
505 	int ret = 0;
506 
507 	if (ar_pci->pci_ps)
508 		return ret;
509 
510 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
511 
512 	if (!ar_pci->ps_awake) {
513 		iowrite32(PCIE_SOC_WAKE_V_MASK,
514 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
515 			  PCIE_SOC_WAKE_ADDRESS);
516 
517 		ret = ath10k_pci_wake_wait(ar);
518 		if (ret == 0)
519 			ar_pci->ps_awake = true;
520 	}
521 
522 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
523 
524 	return ret;
525 }
526 
527 static void ath10k_pci_force_sleep(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
533 
534 	iowrite32(PCIE_SOC_WAKE_RESET,
535 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
536 		  PCIE_SOC_WAKE_ADDRESS);
537 	ar_pci->ps_awake = false;
538 
539 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
540 }
541 
542 static int ath10k_pci_wake(struct ath10k *ar)
543 {
544 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
545 	unsigned long flags;
546 	int ret = 0;
547 
548 	if (ar_pci->pci_ps == 0)
549 		return ret;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
554 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
555 
556 	/* This function can be called very frequently. To avoid excessive
557 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
558 	 */
559 	if (!ar_pci->ps_awake) {
560 		__ath10k_pci_wake(ar);
561 
562 		ret = ath10k_pci_wake_wait(ar);
563 		if (ret == 0)
564 			ar_pci->ps_awake = true;
565 	}
566 
567 	if (ret == 0) {
568 		ar_pci->ps_wake_refcount++;
569 		WARN_ON(ar_pci->ps_wake_refcount == 0);
570 	}
571 
572 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
573 
574 	return ret;
575 }
576 
577 static void ath10k_pci_sleep(struct ath10k *ar)
578 {
579 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
580 	unsigned long flags;
581 
582 	if (ar_pci->pci_ps == 0)
583 		return;
584 
585 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
586 
587 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
588 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
589 
590 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
591 		goto skip;
592 
593 	ar_pci->ps_wake_refcount--;
594 
595 	mod_timer(&ar_pci->ps_timer, jiffies +
596 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
597 
598 skip:
599 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
600 }
601 
602 static void ath10k_pci_ps_timer(struct timer_list *t)
603 {
604 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
605 	struct ath10k *ar = ar_pci->ar;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
609 
610 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
611 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
612 
613 	if (ar_pci->ps_wake_refcount > 0)
614 		goto skip;
615 
616 	__ath10k_pci_sleep(ar);
617 
618 skip:
619 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
620 }
621 
622 static void ath10k_pci_sleep_sync(struct ath10k *ar)
623 {
624 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
625 	unsigned long flags;
626 
627 	if (ar_pci->pci_ps == 0) {
628 		ath10k_pci_force_sleep(ar);
629 		return;
630 	}
631 
632 	del_timer_sync(&ar_pci->ps_timer);
633 
634 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
635 	WARN_ON(ar_pci->ps_wake_refcount > 0);
636 	__ath10k_pci_sleep(ar);
637 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
638 }
639 
640 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
641 {
642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 	int ret;
644 
645 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
646 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
647 			    offset, offset + sizeof(value), ar_pci->mem_len);
648 		return;
649 	}
650 
651 	ret = ath10k_pci_wake(ar);
652 	if (ret) {
653 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
654 			    value, offset, ret);
655 		return;
656 	}
657 
658 	iowrite32(value, ar_pci->mem + offset);
659 	ath10k_pci_sleep(ar);
660 }
661 
662 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
663 {
664 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
665 	u32 val;
666 	int ret;
667 
668 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
669 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
670 			    offset, offset + sizeof(val), ar_pci->mem_len);
671 		return 0;
672 	}
673 
674 	ret = ath10k_pci_wake(ar);
675 	if (ret) {
676 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
677 			    offset, ret);
678 		return 0xffffffff;
679 	}
680 
681 	val = ioread32(ar_pci->mem + offset);
682 	ath10k_pci_sleep(ar);
683 
684 	return val;
685 }
686 
687 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
688 {
689 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 
691 	ce->bus_ops->write32(ar, offset, value);
692 }
693 
694 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
695 {
696 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
697 
698 	return ce->bus_ops->read32(ar, offset);
699 }
700 
701 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
702 {
703 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
704 }
705 
706 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
707 {
708 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
709 }
710 
711 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
712 {
713 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
714 }
715 
716 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
717 {
718 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
719 }
720 
721 bool ath10k_pci_irq_pending(struct ath10k *ar)
722 {
723 	u32 cause;
724 
725 	/* Check if the shared legacy irq is for us */
726 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
727 				  PCIE_INTR_CAUSE_ADDRESS);
728 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
729 		return true;
730 
731 	return false;
732 }
733 
734 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
735 {
736 	/* IMPORTANT: INTR_CLR register has to be set after
737 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
738 	 * really cleared.
739 	 */
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
741 			   0);
742 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
743 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
744 
745 	/* IMPORTANT: this extra read transaction is required to
746 	 * flush the posted write buffer.
747 	 */
748 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
749 				PCIE_INTR_ENABLE_ADDRESS);
750 }
751 
752 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
753 {
754 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
755 			   PCIE_INTR_ENABLE_ADDRESS,
756 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
757 
758 	/* IMPORTANT: this extra read transaction is required to
759 	 * flush the posted write buffer.
760 	 */
761 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
762 				PCIE_INTR_ENABLE_ADDRESS);
763 }
764 
765 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
766 {
767 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
768 
769 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
770 		return "msi";
771 
772 	return "legacy";
773 }
774 
775 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
776 {
777 	struct ath10k *ar = pipe->hif_ce_state;
778 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
779 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
780 	struct sk_buff *skb;
781 	dma_addr_t paddr;
782 	int ret;
783 
784 	skb = dev_alloc_skb(pipe->buf_sz);
785 	if (!skb)
786 		return -ENOMEM;
787 
788 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
789 
790 	paddr = dma_map_single(ar->dev, skb->data,
791 			       skb->len + skb_tailroom(skb),
792 			       DMA_FROM_DEVICE);
793 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
794 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
795 		dev_kfree_skb_any(skb);
796 		return -EIO;
797 	}
798 
799 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
800 
801 	spin_lock_bh(&ce->ce_lock);
802 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
803 	spin_unlock_bh(&ce->ce_lock);
804 	if (ret) {
805 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
806 				 DMA_FROM_DEVICE);
807 		dev_kfree_skb_any(skb);
808 		return ret;
809 	}
810 
811 	return 0;
812 }
813 
814 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
815 {
816 	struct ath10k *ar = pipe->hif_ce_state;
817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
819 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
820 	int ret, num;
821 
822 	if (pipe->buf_sz == 0)
823 		return;
824 
825 	if (!ce_pipe->dest_ring)
826 		return;
827 
828 	spin_lock_bh(&ce->ce_lock);
829 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
830 	spin_unlock_bh(&ce->ce_lock);
831 
832 	while (num >= 0) {
833 		ret = __ath10k_pci_rx_post_buf(pipe);
834 		if (ret) {
835 			if (ret == -ENOSPC)
836 				break;
837 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
838 			mod_timer(&ar_pci->rx_post_retry, jiffies +
839 				  ATH10K_PCI_RX_POST_RETRY_MS);
840 			break;
841 		}
842 		num--;
843 	}
844 }
845 
846 void ath10k_pci_rx_post(struct ath10k *ar)
847 {
848 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
849 	int i;
850 
851 	for (i = 0; i < CE_COUNT; i++)
852 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
853 }
854 
855 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
856 {
857 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
858 	struct ath10k *ar = ar_pci->ar;
859 
860 	ath10k_pci_rx_post(ar);
861 }
862 
863 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
864 {
865 	u32 val = 0, region = addr & 0xfffff;
866 
867 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
868 				 & 0x7ff) << 21;
869 	val |= 0x100000 | region;
870 	return val;
871 }
872 
873 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
874  * Support to access target space below 1M for qca6174 and qca9377.
875  * If target space is below 1M, the bit[20] of converted CE addr is 0.
876  * Otherwise bit[20] of converted CE addr is 1.
877  */
878 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879 {
880 	u32 val = 0, region = addr & 0xfffff;
881 
882 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
883 				 & 0x7ff) << 21;
884 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
885 	return val;
886 }
887 
888 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
889 {
890 	u32 val = 0, region = addr & 0xfffff;
891 
892 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
893 	val |= 0x100000 | region;
894 	return val;
895 }
896 
897 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
898 {
899 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
900 
901 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
902 		return -ENOTSUPP;
903 
904 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
905 }
906 
907 /*
908  * Diagnostic read/write access is provided for startup/config/debug usage.
909  * Caller must guarantee proper alignment, when applicable, and single user
910  * at any moment.
911  */
912 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
913 				    int nbytes)
914 {
915 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
916 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
917 	int ret = 0;
918 	u32 *buf;
919 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
920 	struct ath10k_ce_pipe *ce_diag;
921 	/* Host buffer address in CE space */
922 	u32 ce_data;
923 	dma_addr_t ce_data_base = 0;
924 	void *data_buf = NULL;
925 	int i;
926 
927 	spin_lock_bh(&ce->ce_lock);
928 
929 	ce_diag = ar_pci->ce_diag;
930 
931 	/*
932 	 * Allocate a temporary bounce buffer to hold caller's data
933 	 * to be DMA'ed from Target. This guarantees
934 	 *   1) 4-byte alignment
935 	 *   2) Buffer in DMA-able space
936 	 */
937 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
938 
939 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
940 						       alloc_nbytes,
941 						       &ce_data_base,
942 						       GFP_ATOMIC);
943 
944 	if (!data_buf) {
945 		ret = -ENOMEM;
946 		goto done;
947 	}
948 
949 	/* The address supplied by the caller is in the
950 	 * Target CPU virtual address space.
951 	 *
952 	 * In order to use this address with the diagnostic CE,
953 	 * convert it from Target CPU virtual address space
954 	 * to CE address space
955 	 */
956 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
957 
958 	remaining_bytes = nbytes;
959 	ce_data = ce_data_base;
960 	while (remaining_bytes) {
961 		nbytes = min_t(unsigned int, remaining_bytes,
962 			       DIAG_TRANSFER_LIMIT);
963 
964 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
965 		if (ret != 0)
966 			goto done;
967 
968 		/* Request CE to send from Target(!) address to Host buffer */
969 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
970 					    0);
971 		if (ret)
972 			goto done;
973 
974 		i = 0;
975 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
976 							    NULL) != 0) {
977 			udelay(DIAG_ACCESS_CE_WAIT_US);
978 			i += DIAG_ACCESS_CE_WAIT_US;
979 
980 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
981 				ret = -EBUSY;
982 				goto done;
983 			}
984 		}
985 
986 		i = 0;
987 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
988 							    (void **)&buf,
989 							    &completed_nbytes)
990 								!= 0) {
991 			udelay(DIAG_ACCESS_CE_WAIT_US);
992 			i += DIAG_ACCESS_CE_WAIT_US;
993 
994 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
995 				ret = -EBUSY;
996 				goto done;
997 			}
998 		}
999 
1000 		if (nbytes != completed_nbytes) {
1001 			ret = -EIO;
1002 			goto done;
1003 		}
1004 
1005 		if (*buf != ce_data) {
1006 			ret = -EIO;
1007 			goto done;
1008 		}
1009 
1010 		remaining_bytes -= nbytes;
1011 		memcpy(data, data_buf, nbytes);
1012 
1013 		address += nbytes;
1014 		data += nbytes;
1015 	}
1016 
1017 done:
1018 
1019 	if (data_buf)
1020 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1021 				  ce_data_base);
1022 
1023 	spin_unlock_bh(&ce->ce_lock);
1024 
1025 	return ret;
1026 }
1027 
1028 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1029 {
1030 	__le32 val = 0;
1031 	int ret;
1032 
1033 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1034 	*value = __le32_to_cpu(val);
1035 
1036 	return ret;
1037 }
1038 
1039 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1040 				     u32 src, u32 len)
1041 {
1042 	u32 host_addr, addr;
1043 	int ret;
1044 
1045 	host_addr = host_interest_item_address(src);
1046 
1047 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1048 	if (ret != 0) {
1049 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1050 			    src, ret);
1051 		return ret;
1052 	}
1053 
1054 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1055 	if (ret != 0) {
1056 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1057 			    addr, len, ret);
1058 		return ret;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1065 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1066 
1067 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1068 			      const void *data, int nbytes)
1069 {
1070 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1071 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1072 	int ret = 0;
1073 	u32 *buf;
1074 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1075 	struct ath10k_ce_pipe *ce_diag;
1076 	void *data_buf = NULL;
1077 	dma_addr_t ce_data_base = 0;
1078 	int i;
1079 
1080 	spin_lock_bh(&ce->ce_lock);
1081 
1082 	ce_diag = ar_pci->ce_diag;
1083 
1084 	/*
1085 	 * Allocate a temporary bounce buffer to hold caller's data
1086 	 * to be DMA'ed to Target. This guarantees
1087 	 *   1) 4-byte alignment
1088 	 *   2) Buffer in DMA-able space
1089 	 */
1090 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1091 
1092 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1093 						       alloc_nbytes,
1094 						       &ce_data_base,
1095 						       GFP_ATOMIC);
1096 	if (!data_buf) {
1097 		ret = -ENOMEM;
1098 		goto done;
1099 	}
1100 
1101 	/*
1102 	 * The address supplied by the caller is in the
1103 	 * Target CPU virtual address space.
1104 	 *
1105 	 * In order to use this address with the diagnostic CE,
1106 	 * convert it from
1107 	 *    Target CPU virtual address space
1108 	 * to
1109 	 *    CE address space
1110 	 */
1111 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1112 
1113 	remaining_bytes = nbytes;
1114 	while (remaining_bytes) {
1115 		/* FIXME: check cast */
1116 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1117 
1118 		/* Copy caller's data to allocated DMA buf */
1119 		memcpy(data_buf, data, nbytes);
1120 
1121 		/* Set up to receive directly into Target(!) address */
1122 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1123 		if (ret != 0)
1124 			goto done;
1125 
1126 		/*
1127 		 * Request CE to send caller-supplied data that
1128 		 * was copied to bounce buffer to Target(!) address.
1129 		 */
1130 		ret = ath10k_ce_send_nolock(ce_diag, NULL, ce_data_base,
1131 					    nbytes, 0, 0);
1132 		if (ret != 0)
1133 			goto done;
1134 
1135 		i = 0;
1136 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1137 							    NULL) != 0) {
1138 			udelay(DIAG_ACCESS_CE_WAIT_US);
1139 			i += DIAG_ACCESS_CE_WAIT_US;
1140 
1141 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1142 				ret = -EBUSY;
1143 				goto done;
1144 			}
1145 		}
1146 
1147 		i = 0;
1148 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1149 							    (void **)&buf,
1150 							    &completed_nbytes)
1151 								!= 0) {
1152 			udelay(DIAG_ACCESS_CE_WAIT_US);
1153 			i += DIAG_ACCESS_CE_WAIT_US;
1154 
1155 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1156 				ret = -EBUSY;
1157 				goto done;
1158 			}
1159 		}
1160 
1161 		if (nbytes != completed_nbytes) {
1162 			ret = -EIO;
1163 			goto done;
1164 		}
1165 
1166 		if (*buf != address) {
1167 			ret = -EIO;
1168 			goto done;
1169 		}
1170 
1171 		remaining_bytes -= nbytes;
1172 		address += nbytes;
1173 		data += nbytes;
1174 	}
1175 
1176 done:
1177 	if (data_buf) {
1178 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1179 				  ce_data_base);
1180 	}
1181 
1182 	if (ret != 0)
1183 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1184 			    address, ret);
1185 
1186 	spin_unlock_bh(&ce->ce_lock);
1187 
1188 	return ret;
1189 }
1190 
1191 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1192 {
1193 	__le32 val = __cpu_to_le32(value);
1194 
1195 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1196 }
1197 
1198 /* Called by lower (CE) layer when a send to Target completes. */
1199 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1200 {
1201 	struct ath10k *ar = ce_state->ar;
1202 	struct sk_buff_head list;
1203 	struct sk_buff *skb;
1204 
1205 	__skb_queue_head_init(&list);
1206 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1207 		/* no need to call tx completion for NULL pointers */
1208 		if (skb == NULL)
1209 			continue;
1210 
1211 		__skb_queue_tail(&list, skb);
1212 	}
1213 
1214 	while ((skb = __skb_dequeue(&list)))
1215 		ath10k_htc_tx_completion_handler(ar, skb);
1216 }
1217 
1218 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1219 				     void (*callback)(struct ath10k *ar,
1220 						      struct sk_buff *skb))
1221 {
1222 	struct ath10k *ar = ce_state->ar;
1223 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1224 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1225 	struct sk_buff *skb;
1226 	struct sk_buff_head list;
1227 	void *transfer_context;
1228 	unsigned int nbytes, max_nbytes;
1229 
1230 	__skb_queue_head_init(&list);
1231 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1232 					     &nbytes) == 0) {
1233 		skb = transfer_context;
1234 		max_nbytes = skb->len + skb_tailroom(skb);
1235 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1236 				 max_nbytes, DMA_FROM_DEVICE);
1237 
1238 		if (unlikely(max_nbytes < nbytes)) {
1239 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1240 				    nbytes, max_nbytes);
1241 			dev_kfree_skb_any(skb);
1242 			continue;
1243 		}
1244 
1245 		skb_put(skb, nbytes);
1246 		__skb_queue_tail(&list, skb);
1247 	}
1248 
1249 	while ((skb = __skb_dequeue(&list))) {
1250 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1251 			   ce_state->id, skb->len);
1252 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1253 				skb->data, skb->len);
1254 
1255 		callback(ar, skb);
1256 	}
1257 
1258 	ath10k_pci_rx_post_pipe(pipe_info);
1259 }
1260 
1261 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1262 					 void (*callback)(struct ath10k *ar,
1263 							  struct sk_buff *skb))
1264 {
1265 	struct ath10k *ar = ce_state->ar;
1266 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1267 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1268 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1269 	struct sk_buff *skb;
1270 	struct sk_buff_head list;
1271 	void *transfer_context;
1272 	unsigned int nbytes, max_nbytes, nentries;
1273 	int orig_len;
1274 
1275 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1276 	 * is processed other than init and deinit. Before releasing CE5
1277 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1278 	 */
1279 	__skb_queue_head_init(&list);
1280 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1281 						    &nbytes) == 0) {
1282 		skb = transfer_context;
1283 		max_nbytes = skb->len + skb_tailroom(skb);
1284 
1285 		if (unlikely(max_nbytes < nbytes)) {
1286 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1287 				    nbytes, max_nbytes);
1288 			continue;
1289 		}
1290 
1291 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1292 					max_nbytes, DMA_FROM_DEVICE);
1293 		skb_put(skb, nbytes);
1294 		__skb_queue_tail(&list, skb);
1295 	}
1296 
1297 	nentries = skb_queue_len(&list);
1298 	while ((skb = __skb_dequeue(&list))) {
1299 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1300 			   ce_state->id, skb->len);
1301 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1302 				skb->data, skb->len);
1303 
1304 		orig_len = skb->len;
1305 		callback(ar, skb);
1306 		skb_push(skb, orig_len - skb->len);
1307 		skb_reset_tail_pointer(skb);
1308 		skb_trim(skb, 0);
1309 
1310 		/*let device gain the buffer again*/
1311 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1312 					   skb->len + skb_tailroom(skb),
1313 					   DMA_FROM_DEVICE);
1314 	}
1315 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1316 }
1317 
1318 /* Called by lower (CE) layer when data is received from the Target. */
1319 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1320 {
1321 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1322 }
1323 
1324 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1325 {
1326 	/* CE4 polling needs to be done whenever CE pipe which transports
1327 	 * HTT Rx (target->host) is processed.
1328 	 */
1329 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1330 
1331 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1332 }
1333 
1334 /* Called by lower (CE) layer when data is received from the Target.
1335  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1336  */
1337 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1338 {
1339 	ath10k_pci_process_rx_cb(ce_state,
1340 				 ath10k_htt_rx_pktlog_completion_handler);
1341 }
1342 
1343 /* Called by lower (CE) layer when a send to HTT Target completes. */
1344 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1345 {
1346 	struct ath10k *ar = ce_state->ar;
1347 	struct sk_buff *skb;
1348 
1349 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1350 		/* no need to call tx completion for NULL pointers */
1351 		if (!skb)
1352 			continue;
1353 
1354 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1355 				 skb->len, DMA_TO_DEVICE);
1356 		ath10k_htt_hif_tx_complete(ar, skb);
1357 	}
1358 }
1359 
1360 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1361 {
1362 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1363 	ath10k_htt_t2h_msg_handler(ar, skb);
1364 }
1365 
1366 /* Called by lower (CE) layer when HTT data is received from the Target. */
1367 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1368 {
1369 	/* CE4 polling needs to be done whenever CE pipe which transports
1370 	 * HTT Rx (target->host) is processed.
1371 	 */
1372 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1373 
1374 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1375 }
1376 
1377 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1378 			 struct ath10k_hif_sg_item *items, int n_items)
1379 {
1380 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1381 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1382 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1383 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1384 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1385 	unsigned int nentries_mask;
1386 	unsigned int sw_index;
1387 	unsigned int write_index;
1388 	int err, i = 0;
1389 
1390 	spin_lock_bh(&ce->ce_lock);
1391 
1392 	nentries_mask = src_ring->nentries_mask;
1393 	sw_index = src_ring->sw_index;
1394 	write_index = src_ring->write_index;
1395 
1396 	if (unlikely(CE_RING_DELTA(nentries_mask,
1397 				   write_index, sw_index - 1) < n_items)) {
1398 		err = -ENOBUFS;
1399 		goto err;
1400 	}
1401 
1402 	for (i = 0; i < n_items - 1; i++) {
1403 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1404 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1405 			   i, &items[i].paddr, items[i].len, n_items);
1406 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1407 				items[i].vaddr, items[i].len);
1408 
1409 		err = ath10k_ce_send_nolock(ce_pipe,
1410 					    items[i].transfer_context,
1411 					    items[i].paddr,
1412 					    items[i].len,
1413 					    items[i].transfer_id,
1414 					    CE_SEND_FLAG_GATHER);
1415 		if (err)
1416 			goto err;
1417 	}
1418 
1419 	/* `i` is equal to `n_items -1` after for() */
1420 
1421 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1422 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1423 		   i, &items[i].paddr, items[i].len, n_items);
1424 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1425 			items[i].vaddr, items[i].len);
1426 
1427 	err = ath10k_ce_send_nolock(ce_pipe,
1428 				    items[i].transfer_context,
1429 				    items[i].paddr,
1430 				    items[i].len,
1431 				    items[i].transfer_id,
1432 				    0);
1433 	if (err)
1434 		goto err;
1435 
1436 	spin_unlock_bh(&ce->ce_lock);
1437 	return 0;
1438 
1439 err:
1440 	for (; i > 0; i--)
1441 		__ath10k_ce_send_revert(ce_pipe);
1442 
1443 	spin_unlock_bh(&ce->ce_lock);
1444 	return err;
1445 }
1446 
1447 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1448 			     size_t buf_len)
1449 {
1450 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1451 }
1452 
1453 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1454 {
1455 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1456 
1457 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1458 
1459 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1460 }
1461 
1462 static void ath10k_pci_dump_registers(struct ath10k *ar,
1463 				      struct ath10k_fw_crash_data *crash_data)
1464 {
1465 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1466 	int i, ret;
1467 
1468 	lockdep_assert_held(&ar->data_lock);
1469 
1470 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1471 				      hi_failure_state,
1472 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1473 	if (ret) {
1474 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1475 		return;
1476 	}
1477 
1478 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1479 
1480 	ath10k_err(ar, "firmware register dump:\n");
1481 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1482 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1483 			   i,
1484 			   __le32_to_cpu(reg_dump_values[i]),
1485 			   __le32_to_cpu(reg_dump_values[i + 1]),
1486 			   __le32_to_cpu(reg_dump_values[i + 2]),
1487 			   __le32_to_cpu(reg_dump_values[i + 3]));
1488 
1489 	if (!crash_data)
1490 		return;
1491 
1492 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1493 		crash_data->registers[i] = reg_dump_values[i];
1494 }
1495 
1496 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1497 					  const struct ath10k_mem_region *mem_region,
1498 					  u8 *buf, size_t buf_len)
1499 {
1500 	const struct ath10k_mem_section *cur_section, *next_section;
1501 	unsigned int count, section_size, skip_size;
1502 	int ret, i, j;
1503 
1504 	if (!mem_region || !buf)
1505 		return 0;
1506 
1507 	cur_section = &mem_region->section_table.sections[0];
1508 
1509 	if (mem_region->start > cur_section->start) {
1510 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1511 			    mem_region->start, cur_section->start);
1512 		return 0;
1513 	}
1514 
1515 	skip_size = cur_section->start - mem_region->start;
1516 
1517 	/* fill the gap between the first register section and register
1518 	 * start address
1519 	 */
1520 	for (i = 0; i < skip_size; i++) {
1521 		*buf = ATH10K_MAGIC_NOT_COPIED;
1522 		buf++;
1523 	}
1524 
1525 	count = 0;
1526 
1527 	for (i = 0; cur_section != NULL; i++) {
1528 		section_size = cur_section->end - cur_section->start;
1529 
1530 		if (section_size <= 0) {
1531 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1532 				    cur_section->start,
1533 				    cur_section->end);
1534 			break;
1535 		}
1536 
1537 		if ((i + 1) == mem_region->section_table.size) {
1538 			/* last section */
1539 			next_section = NULL;
1540 			skip_size = 0;
1541 		} else {
1542 			next_section = cur_section + 1;
1543 
1544 			if (cur_section->end > next_section->start) {
1545 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1546 					    next_section->start,
1547 					    cur_section->end);
1548 				break;
1549 			}
1550 
1551 			skip_size = next_section->start - cur_section->end;
1552 		}
1553 
1554 		if (buf_len < (skip_size + section_size)) {
1555 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1556 			break;
1557 		}
1558 
1559 		buf_len -= skip_size + section_size;
1560 
1561 		/* read section to dest memory */
1562 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1563 					       buf, section_size);
1564 		if (ret) {
1565 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1566 				    cur_section->start, ret);
1567 			break;
1568 		}
1569 
1570 		buf += section_size;
1571 		count += section_size;
1572 
1573 		/* fill in the gap between this section and the next */
1574 		for (j = 0; j < skip_size; j++) {
1575 			*buf = ATH10K_MAGIC_NOT_COPIED;
1576 			buf++;
1577 		}
1578 
1579 		count += skip_size;
1580 
1581 		if (!next_section)
1582 			/* this was the last section */
1583 			break;
1584 
1585 		cur_section = next_section;
1586 	}
1587 
1588 	return count;
1589 }
1590 
1591 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1592 {
1593 	u32 val;
1594 
1595 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1596 			   FW_RAM_CONFIG_ADDRESS, config);
1597 
1598 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1599 				FW_RAM_CONFIG_ADDRESS);
1600 	if (val != config) {
1601 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1602 			    val, config);
1603 		return -EIO;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 /* if an error happened returns < 0, otherwise the length */
1610 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1611 				       const struct ath10k_mem_region *region,
1612 				       u8 *buf)
1613 {
1614 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1615 	u32 base_addr, i;
1616 
1617 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1618 	base_addr += region->start;
1619 
1620 	for (i = 0; i < region->len; i += 4) {
1621 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1622 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1623 	}
1624 
1625 	return region->len;
1626 }
1627 
1628 /* if an error happened returns < 0, otherwise the length */
1629 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1630 				      const struct ath10k_mem_region *region,
1631 				      u8 *buf)
1632 {
1633 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1634 	u32 i;
1635 
1636 	for (i = 0; i < region->len; i += 4)
1637 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1638 
1639 	return region->len;
1640 }
1641 
1642 /* if an error happened returns < 0, otherwise the length */
1643 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1644 					  const struct ath10k_mem_region *current_region,
1645 					  u8 *buf)
1646 {
1647 	int ret;
1648 
1649 	if (current_region->section_table.size > 0)
1650 		/* Copy each section individually. */
1651 		return ath10k_pci_dump_memory_section(ar,
1652 						      current_region,
1653 						      buf,
1654 						      current_region->len);
1655 
1656 	/* No individiual memory sections defined so we can
1657 	 * copy the entire memory region.
1658 	 */
1659 	ret = ath10k_pci_diag_read_mem(ar,
1660 				       current_region->start,
1661 				       buf,
1662 				       current_region->len);
1663 	if (ret) {
1664 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1665 			    current_region->name, ret);
1666 		return ret;
1667 	}
1668 
1669 	return current_region->len;
1670 }
1671 
1672 static void ath10k_pci_dump_memory(struct ath10k *ar,
1673 				   struct ath10k_fw_crash_data *crash_data)
1674 {
1675 	const struct ath10k_hw_mem_layout *mem_layout;
1676 	const struct ath10k_mem_region *current_region;
1677 	struct ath10k_dump_ram_data_hdr *hdr;
1678 	u32 count, shift;
1679 	size_t buf_len;
1680 	int ret, i;
1681 	u8 *buf;
1682 
1683 	lockdep_assert_held(&ar->data_lock);
1684 
1685 	if (!crash_data)
1686 		return;
1687 
1688 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1689 	if (!mem_layout)
1690 		return;
1691 
1692 	current_region = &mem_layout->region_table.regions[0];
1693 
1694 	buf = crash_data->ramdump_buf;
1695 	buf_len = crash_data->ramdump_buf_len;
1696 
1697 	memset(buf, 0, buf_len);
1698 
1699 	for (i = 0; i < mem_layout->region_table.size; i++) {
1700 		count = 0;
1701 
1702 		if (current_region->len > buf_len) {
1703 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1704 				    current_region->name,
1705 				    current_region->len,
1706 				    buf_len);
1707 			break;
1708 		}
1709 
1710 		/* To get IRAM dump, the host driver needs to switch target
1711 		 * ram config from DRAM to IRAM.
1712 		 */
1713 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1714 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1715 			shift = current_region->start >> 20;
1716 
1717 			ret = ath10k_pci_set_ram_config(ar, shift);
1718 			if (ret) {
1719 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1720 					    current_region->name, ret);
1721 				break;
1722 			}
1723 		}
1724 
1725 		/* Reserve space for the header. */
1726 		hdr = (void *)buf;
1727 		buf += sizeof(*hdr);
1728 		buf_len -= sizeof(*hdr);
1729 
1730 		switch (current_region->type) {
1731 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1732 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1733 			break;
1734 		case ATH10K_MEM_REGION_TYPE_IOREG:
1735 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1736 			break;
1737 		default:
1738 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1739 			if (ret < 0)
1740 				break;
1741 
1742 			count = ret;
1743 			break;
1744 		}
1745 
1746 		hdr->region_type = cpu_to_le32(current_region->type);
1747 		hdr->start = cpu_to_le32(current_region->start);
1748 		hdr->length = cpu_to_le32(count);
1749 
1750 		if (count == 0)
1751 			/* Note: the header remains, just with zero length. */
1752 			break;
1753 
1754 		buf += count;
1755 		buf_len -= count;
1756 
1757 		current_region++;
1758 	}
1759 }
1760 
1761 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1762 {
1763 	struct ath10k_fw_crash_data *crash_data;
1764 	char guid[UUID_STRING_LEN + 1];
1765 
1766 	spin_lock_bh(&ar->data_lock);
1767 
1768 	ar->stats.fw_crash_counter++;
1769 
1770 	crash_data = ath10k_coredump_new(ar);
1771 
1772 	if (crash_data)
1773 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1774 	else
1775 		scnprintf(guid, sizeof(guid), "n/a");
1776 
1777 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1778 	ath10k_print_driver_info(ar);
1779 	ath10k_pci_dump_registers(ar, crash_data);
1780 	ath10k_ce_dump_registers(ar, crash_data);
1781 	ath10k_pci_dump_memory(ar, crash_data);
1782 
1783 	spin_unlock_bh(&ar->data_lock);
1784 
1785 	queue_work(ar->workqueue, &ar->restart_work);
1786 }
1787 
1788 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1789 					int force)
1790 {
1791 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1792 
1793 	if (!force) {
1794 		int resources;
1795 		/*
1796 		 * Decide whether to actually poll for completions, or just
1797 		 * wait for a later chance.
1798 		 * If there seem to be plenty of resources left, then just wait
1799 		 * since checking involves reading a CE register, which is a
1800 		 * relatively expensive operation.
1801 		 */
1802 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1803 
1804 		/*
1805 		 * If at least 50% of the total resources are still available,
1806 		 * don't bother checking again yet.
1807 		 */
1808 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1809 			return;
1810 	}
1811 	ath10k_ce_per_engine_service(ar, pipe);
1812 }
1813 
1814 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1815 {
1816 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1817 
1818 	del_timer_sync(&ar_pci->rx_post_retry);
1819 }
1820 
1821 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1822 				       u8 *ul_pipe, u8 *dl_pipe)
1823 {
1824 	const struct service_to_pipe *entry;
1825 	bool ul_set = false, dl_set = false;
1826 	int i;
1827 
1828 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1829 
1830 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1831 		entry = &target_service_to_ce_map_wlan[i];
1832 
1833 		if (__le32_to_cpu(entry->service_id) != service_id)
1834 			continue;
1835 
1836 		switch (__le32_to_cpu(entry->pipedir)) {
1837 		case PIPEDIR_NONE:
1838 			break;
1839 		case PIPEDIR_IN:
1840 			WARN_ON(dl_set);
1841 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1842 			dl_set = true;
1843 			break;
1844 		case PIPEDIR_OUT:
1845 			WARN_ON(ul_set);
1846 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1847 			ul_set = true;
1848 			break;
1849 		case PIPEDIR_INOUT:
1850 			WARN_ON(dl_set);
1851 			WARN_ON(ul_set);
1852 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1853 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1854 			dl_set = true;
1855 			ul_set = true;
1856 			break;
1857 		}
1858 	}
1859 
1860 	if (!ul_set || !dl_set)
1861 		return -ENOENT;
1862 
1863 	return 0;
1864 }
1865 
1866 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1867 				     u8 *ul_pipe, u8 *dl_pipe)
1868 {
1869 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1870 
1871 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1872 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1873 						 ul_pipe, dl_pipe);
1874 }
1875 
1876 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1877 {
1878 	u32 val;
1879 
1880 	switch (ar->hw_rev) {
1881 	case ATH10K_HW_QCA988X:
1882 	case ATH10K_HW_QCA9887:
1883 	case ATH10K_HW_QCA6174:
1884 	case ATH10K_HW_QCA9377:
1885 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1886 					CORE_CTRL_ADDRESS);
1887 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1888 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1889 				   CORE_CTRL_ADDRESS, val);
1890 		break;
1891 	case ATH10K_HW_QCA99X0:
1892 	case ATH10K_HW_QCA9984:
1893 	case ATH10K_HW_QCA9888:
1894 	case ATH10K_HW_QCA4019:
1895 		/* TODO: Find appropriate register configuration for QCA99X0
1896 		 *  to mask irq/MSI.
1897 		 */
1898 		break;
1899 	case ATH10K_HW_WCN3990:
1900 		break;
1901 	}
1902 }
1903 
1904 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1905 {
1906 	u32 val;
1907 
1908 	switch (ar->hw_rev) {
1909 	case ATH10K_HW_QCA988X:
1910 	case ATH10K_HW_QCA9887:
1911 	case ATH10K_HW_QCA6174:
1912 	case ATH10K_HW_QCA9377:
1913 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1914 					CORE_CTRL_ADDRESS);
1915 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1916 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1917 				   CORE_CTRL_ADDRESS, val);
1918 		break;
1919 	case ATH10K_HW_QCA99X0:
1920 	case ATH10K_HW_QCA9984:
1921 	case ATH10K_HW_QCA9888:
1922 	case ATH10K_HW_QCA4019:
1923 		/* TODO: Find appropriate register configuration for QCA99X0
1924 		 *  to unmask irq/MSI.
1925 		 */
1926 		break;
1927 	case ATH10K_HW_WCN3990:
1928 		break;
1929 	}
1930 }
1931 
1932 static void ath10k_pci_irq_disable(struct ath10k *ar)
1933 {
1934 	ath10k_ce_disable_interrupts(ar);
1935 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1936 	ath10k_pci_irq_msi_fw_mask(ar);
1937 }
1938 
1939 static void ath10k_pci_irq_sync(struct ath10k *ar)
1940 {
1941 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1942 
1943 	synchronize_irq(ar_pci->pdev->irq);
1944 }
1945 
1946 static void ath10k_pci_irq_enable(struct ath10k *ar)
1947 {
1948 	ath10k_ce_enable_interrupts(ar);
1949 	ath10k_pci_enable_legacy_irq(ar);
1950 	ath10k_pci_irq_msi_fw_unmask(ar);
1951 }
1952 
1953 static int ath10k_pci_hif_start(struct ath10k *ar)
1954 {
1955 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1956 
1957 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1958 
1959 	napi_enable(&ar->napi);
1960 
1961 	ath10k_pci_irq_enable(ar);
1962 	ath10k_pci_rx_post(ar);
1963 
1964 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1965 				   ar_pci->link_ctl);
1966 
1967 	return 0;
1968 }
1969 
1970 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1971 {
1972 	struct ath10k *ar;
1973 	struct ath10k_ce_pipe *ce_pipe;
1974 	struct ath10k_ce_ring *ce_ring;
1975 	struct sk_buff *skb;
1976 	int i;
1977 
1978 	ar = pci_pipe->hif_ce_state;
1979 	ce_pipe = pci_pipe->ce_hdl;
1980 	ce_ring = ce_pipe->dest_ring;
1981 
1982 	if (!ce_ring)
1983 		return;
1984 
1985 	if (!pci_pipe->buf_sz)
1986 		return;
1987 
1988 	for (i = 0; i < ce_ring->nentries; i++) {
1989 		skb = ce_ring->per_transfer_context[i];
1990 		if (!skb)
1991 			continue;
1992 
1993 		ce_ring->per_transfer_context[i] = NULL;
1994 
1995 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1996 				 skb->len + skb_tailroom(skb),
1997 				 DMA_FROM_DEVICE);
1998 		dev_kfree_skb_any(skb);
1999 	}
2000 }
2001 
2002 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2003 {
2004 	struct ath10k *ar;
2005 	struct ath10k_ce_pipe *ce_pipe;
2006 	struct ath10k_ce_ring *ce_ring;
2007 	struct sk_buff *skb;
2008 	int i;
2009 
2010 	ar = pci_pipe->hif_ce_state;
2011 	ce_pipe = pci_pipe->ce_hdl;
2012 	ce_ring = ce_pipe->src_ring;
2013 
2014 	if (!ce_ring)
2015 		return;
2016 
2017 	if (!pci_pipe->buf_sz)
2018 		return;
2019 
2020 	for (i = 0; i < ce_ring->nentries; i++) {
2021 		skb = ce_ring->per_transfer_context[i];
2022 		if (!skb)
2023 			continue;
2024 
2025 		ce_ring->per_transfer_context[i] = NULL;
2026 
2027 		ath10k_htc_tx_completion_handler(ar, skb);
2028 	}
2029 }
2030 
2031 /*
2032  * Cleanup residual buffers for device shutdown:
2033  *    buffers that were enqueued for receive
2034  *    buffers that were to be sent
2035  * Note: Buffers that had completed but which were
2036  * not yet processed are on a completion queue. They
2037  * are handled when the completion thread shuts down.
2038  */
2039 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2040 {
2041 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2042 	int pipe_num;
2043 
2044 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2045 		struct ath10k_pci_pipe *pipe_info;
2046 
2047 		pipe_info = &ar_pci->pipe_info[pipe_num];
2048 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2049 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2050 	}
2051 }
2052 
2053 void ath10k_pci_ce_deinit(struct ath10k *ar)
2054 {
2055 	int i;
2056 
2057 	for (i = 0; i < CE_COUNT; i++)
2058 		ath10k_ce_deinit_pipe(ar, i);
2059 }
2060 
2061 void ath10k_pci_flush(struct ath10k *ar)
2062 {
2063 	ath10k_pci_rx_retry_sync(ar);
2064 	ath10k_pci_buffer_cleanup(ar);
2065 }
2066 
2067 static void ath10k_pci_hif_stop(struct ath10k *ar)
2068 {
2069 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2070 	unsigned long flags;
2071 
2072 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2073 
2074 	/* Most likely the device has HTT Rx ring configured. The only way to
2075 	 * prevent the device from accessing (and possible corrupting) host
2076 	 * memory is to reset the chip now.
2077 	 *
2078 	 * There's also no known way of masking MSI interrupts on the device.
2079 	 * For ranged MSI the CE-related interrupts can be masked. However
2080 	 * regardless how many MSI interrupts are assigned the first one
2081 	 * is always used for firmware indications (crashes) and cannot be
2082 	 * masked. To prevent the device from asserting the interrupt reset it
2083 	 * before proceeding with cleanup.
2084 	 */
2085 	ath10k_pci_safe_chip_reset(ar);
2086 
2087 	ath10k_pci_irq_disable(ar);
2088 	ath10k_pci_irq_sync(ar);
2089 	napi_synchronize(&ar->napi);
2090 	napi_disable(&ar->napi);
2091 	ath10k_pci_flush(ar);
2092 
2093 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2094 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2095 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2096 }
2097 
2098 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2099 				    void *req, u32 req_len,
2100 				    void *resp, u32 *resp_len)
2101 {
2102 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2103 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2104 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2105 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2106 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2107 	dma_addr_t req_paddr = 0;
2108 	dma_addr_t resp_paddr = 0;
2109 	struct bmi_xfer xfer = {};
2110 	void *treq, *tresp = NULL;
2111 	int ret = 0;
2112 
2113 	might_sleep();
2114 
2115 	if (resp && !resp_len)
2116 		return -EINVAL;
2117 
2118 	if (resp && resp_len && *resp_len == 0)
2119 		return -EINVAL;
2120 
2121 	treq = kmemdup(req, req_len, GFP_KERNEL);
2122 	if (!treq)
2123 		return -ENOMEM;
2124 
2125 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2126 	ret = dma_mapping_error(ar->dev, req_paddr);
2127 	if (ret) {
2128 		ret = -EIO;
2129 		goto err_dma;
2130 	}
2131 
2132 	if (resp && resp_len) {
2133 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2134 		if (!tresp) {
2135 			ret = -ENOMEM;
2136 			goto err_req;
2137 		}
2138 
2139 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2140 					    DMA_FROM_DEVICE);
2141 		ret = dma_mapping_error(ar->dev, resp_paddr);
2142 		if (ret) {
2143 			ret = -EIO;
2144 			goto err_req;
2145 		}
2146 
2147 		xfer.wait_for_resp = true;
2148 		xfer.resp_len = 0;
2149 
2150 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2151 	}
2152 
2153 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2154 	if (ret)
2155 		goto err_resp;
2156 
2157 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2158 	if (ret) {
2159 		dma_addr_t unused_buffer;
2160 		unsigned int unused_nbytes;
2161 		unsigned int unused_id;
2162 
2163 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2164 					   &unused_nbytes, &unused_id);
2165 	} else {
2166 		/* non-zero means we did not time out */
2167 		ret = 0;
2168 	}
2169 
2170 err_resp:
2171 	if (resp) {
2172 		dma_addr_t unused_buffer;
2173 
2174 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2175 		dma_unmap_single(ar->dev, resp_paddr,
2176 				 *resp_len, DMA_FROM_DEVICE);
2177 	}
2178 err_req:
2179 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2180 
2181 	if (ret == 0 && resp_len) {
2182 		*resp_len = min(*resp_len, xfer.resp_len);
2183 		memcpy(resp, tresp, xfer.resp_len);
2184 	}
2185 err_dma:
2186 	kfree(treq);
2187 	kfree(tresp);
2188 
2189 	return ret;
2190 }
2191 
2192 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2193 {
2194 	struct bmi_xfer *xfer;
2195 
2196 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2197 		return;
2198 
2199 	xfer->tx_done = true;
2200 }
2201 
2202 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2203 {
2204 	struct ath10k *ar = ce_state->ar;
2205 	struct bmi_xfer *xfer;
2206 	unsigned int nbytes;
2207 
2208 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2209 					  &nbytes))
2210 		return;
2211 
2212 	if (WARN_ON_ONCE(!xfer))
2213 		return;
2214 
2215 	if (!xfer->wait_for_resp) {
2216 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2217 		return;
2218 	}
2219 
2220 	xfer->resp_len = nbytes;
2221 	xfer->rx_done = true;
2222 }
2223 
2224 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2225 			       struct ath10k_ce_pipe *tx_pipe,
2226 			       struct ath10k_ce_pipe *rx_pipe,
2227 			       struct bmi_xfer *xfer)
2228 {
2229 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2230 	unsigned long started = jiffies;
2231 	unsigned long dur;
2232 	int ret;
2233 
2234 	while (time_before_eq(jiffies, timeout)) {
2235 		ath10k_pci_bmi_send_done(tx_pipe);
2236 		ath10k_pci_bmi_recv_data(rx_pipe);
2237 
2238 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2239 			ret = 0;
2240 			goto out;
2241 		}
2242 
2243 		schedule();
2244 	}
2245 
2246 	ret = -ETIMEDOUT;
2247 
2248 out:
2249 	dur = jiffies - started;
2250 	if (dur > HZ)
2251 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2252 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2253 			   dur, HZ, ret);
2254 	return ret;
2255 }
2256 
2257 /*
2258  * Send an interrupt to the device to wake up the Target CPU
2259  * so it has an opportunity to notice any changed state.
2260  */
2261 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2262 {
2263 	u32 addr, val;
2264 
2265 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2266 	val = ath10k_pci_read32(ar, addr);
2267 	val |= CORE_CTRL_CPU_INTR_MASK;
2268 	ath10k_pci_write32(ar, addr, val);
2269 
2270 	return 0;
2271 }
2272 
2273 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2274 {
2275 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2276 
2277 	switch (ar_pci->pdev->device) {
2278 	case QCA988X_2_0_DEVICE_ID_UBNT:
2279 	case QCA988X_2_0_DEVICE_ID:
2280 	case QCA99X0_2_0_DEVICE_ID:
2281 	case QCA9888_2_0_DEVICE_ID:
2282 	case QCA9984_1_0_DEVICE_ID:
2283 	case QCA9887_1_0_DEVICE_ID:
2284 		return 1;
2285 	case QCA6164_2_1_DEVICE_ID:
2286 	case QCA6174_2_1_DEVICE_ID:
2287 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2288 		case QCA6174_HW_1_0_CHIP_ID_REV:
2289 		case QCA6174_HW_1_1_CHIP_ID_REV:
2290 		case QCA6174_HW_2_1_CHIP_ID_REV:
2291 		case QCA6174_HW_2_2_CHIP_ID_REV:
2292 			return 3;
2293 		case QCA6174_HW_1_3_CHIP_ID_REV:
2294 			return 2;
2295 		case QCA6174_HW_3_0_CHIP_ID_REV:
2296 		case QCA6174_HW_3_1_CHIP_ID_REV:
2297 		case QCA6174_HW_3_2_CHIP_ID_REV:
2298 			return 9;
2299 		}
2300 		break;
2301 	case QCA9377_1_0_DEVICE_ID:
2302 		return 9;
2303 	}
2304 
2305 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2306 	return 1;
2307 }
2308 
2309 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2310 {
2311 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2312 
2313 	return ce->bus_ops->get_num_banks(ar);
2314 }
2315 
2316 int ath10k_pci_init_config(struct ath10k *ar)
2317 {
2318 	u32 interconnect_targ_addr;
2319 	u32 pcie_state_targ_addr = 0;
2320 	u32 pipe_cfg_targ_addr = 0;
2321 	u32 svc_to_pipe_map = 0;
2322 	u32 pcie_config_flags = 0;
2323 	u32 ealloc_value;
2324 	u32 ealloc_targ_addr;
2325 	u32 flag2_value;
2326 	u32 flag2_targ_addr;
2327 	int ret = 0;
2328 
2329 	/* Download to Target the CE Config and the service-to-CE map */
2330 	interconnect_targ_addr =
2331 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2332 
2333 	/* Supply Target-side CE configuration */
2334 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2335 				     &pcie_state_targ_addr);
2336 	if (ret != 0) {
2337 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2338 		return ret;
2339 	}
2340 
2341 	if (pcie_state_targ_addr == 0) {
2342 		ret = -EIO;
2343 		ath10k_err(ar, "Invalid pcie state addr\n");
2344 		return ret;
2345 	}
2346 
2347 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2348 					  offsetof(struct pcie_state,
2349 						   pipe_cfg_addr)),
2350 				     &pipe_cfg_targ_addr);
2351 	if (ret != 0) {
2352 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2353 		return ret;
2354 	}
2355 
2356 	if (pipe_cfg_targ_addr == 0) {
2357 		ret = -EIO;
2358 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2359 		return ret;
2360 	}
2361 
2362 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2363 					target_ce_config_wlan,
2364 					sizeof(struct ce_pipe_config) *
2365 					NUM_TARGET_CE_CONFIG_WLAN);
2366 
2367 	if (ret != 0) {
2368 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2369 		return ret;
2370 	}
2371 
2372 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2373 					  offsetof(struct pcie_state,
2374 						   svc_to_pipe_map)),
2375 				     &svc_to_pipe_map);
2376 	if (ret != 0) {
2377 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2378 		return ret;
2379 	}
2380 
2381 	if (svc_to_pipe_map == 0) {
2382 		ret = -EIO;
2383 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2384 		return ret;
2385 	}
2386 
2387 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2388 					target_service_to_ce_map_wlan,
2389 					sizeof(target_service_to_ce_map_wlan));
2390 	if (ret != 0) {
2391 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2392 		return ret;
2393 	}
2394 
2395 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2396 					  offsetof(struct pcie_state,
2397 						   config_flags)),
2398 				     &pcie_config_flags);
2399 	if (ret != 0) {
2400 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2401 		return ret;
2402 	}
2403 
2404 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2405 
2406 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2407 					   offsetof(struct pcie_state,
2408 						    config_flags)),
2409 				      pcie_config_flags);
2410 	if (ret != 0) {
2411 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2412 		return ret;
2413 	}
2414 
2415 	/* configure early allocation */
2416 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2417 
2418 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2419 	if (ret != 0) {
2420 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2421 		return ret;
2422 	}
2423 
2424 	/* first bank is switched to IRAM */
2425 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2426 			 HI_EARLY_ALLOC_MAGIC_MASK);
2427 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2428 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2429 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2430 
2431 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2432 	if (ret != 0) {
2433 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2434 		return ret;
2435 	}
2436 
2437 	/* Tell Target to proceed with initialization */
2438 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2439 
2440 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2441 	if (ret != 0) {
2442 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2443 		return ret;
2444 	}
2445 
2446 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2447 
2448 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2449 	if (ret != 0) {
2450 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2451 		return ret;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2458 {
2459 	struct ce_attr *attr;
2460 	struct ce_pipe_config *config;
2461 
2462 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2463 	 * since it is currently used for other feature.
2464 	 */
2465 
2466 	/* Override Host's Copy Engine 5 configuration */
2467 	attr = &host_ce_config_wlan[5];
2468 	attr->src_sz_max = 0;
2469 	attr->dest_nentries = 0;
2470 
2471 	/* Override Target firmware's Copy Engine configuration */
2472 	config = &target_ce_config_wlan[5];
2473 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2474 	config->nbytes_max = __cpu_to_le32(2048);
2475 
2476 	/* Map from service/endpoint to Copy Engine */
2477 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2478 }
2479 
2480 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2481 {
2482 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2483 	struct ath10k_pci_pipe *pipe;
2484 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2485 	int i, ret;
2486 
2487 	for (i = 0; i < CE_COUNT; i++) {
2488 		pipe = &ar_pci->pipe_info[i];
2489 		pipe->ce_hdl = &ce->ce_states[i];
2490 		pipe->pipe_num = i;
2491 		pipe->hif_ce_state = ar;
2492 
2493 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2494 		if (ret) {
2495 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2496 				   i, ret);
2497 			return ret;
2498 		}
2499 
2500 		/* Last CE is Diagnostic Window */
2501 		if (i == CE_DIAG_PIPE) {
2502 			ar_pci->ce_diag = pipe->ce_hdl;
2503 			continue;
2504 		}
2505 
2506 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 void ath10k_pci_free_pipes(struct ath10k *ar)
2513 {
2514 	int i;
2515 
2516 	for (i = 0; i < CE_COUNT; i++)
2517 		ath10k_ce_free_pipe(ar, i);
2518 }
2519 
2520 int ath10k_pci_init_pipes(struct ath10k *ar)
2521 {
2522 	int i, ret;
2523 
2524 	for (i = 0; i < CE_COUNT; i++) {
2525 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2526 		if (ret) {
2527 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2528 				   i, ret);
2529 			return ret;
2530 		}
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2537 {
2538 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2539 	       FW_IND_EVENT_PENDING;
2540 }
2541 
2542 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2543 {
2544 	u32 val;
2545 
2546 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2547 	val &= ~FW_IND_EVENT_PENDING;
2548 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2549 }
2550 
2551 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2552 {
2553 	u32 val;
2554 
2555 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2556 	return (val == 0xffffffff);
2557 }
2558 
2559 /* this function effectively clears target memory controller assert line */
2560 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2561 {
2562 	u32 val;
2563 
2564 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2565 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2566 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2567 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2568 
2569 	msleep(10);
2570 
2571 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2572 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2573 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2574 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575 
2576 	msleep(10);
2577 }
2578 
2579 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2580 {
2581 	u32 val;
2582 
2583 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2584 
2585 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2586 				SOC_RESET_CONTROL_ADDRESS);
2587 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2588 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2589 }
2590 
2591 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2592 {
2593 	u32 val;
2594 
2595 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2596 				SOC_RESET_CONTROL_ADDRESS);
2597 
2598 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2599 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2600 	msleep(10);
2601 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2602 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2603 }
2604 
2605 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2606 {
2607 	u32 val;
2608 
2609 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2610 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2611 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2612 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2613 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2614 }
2615 
2616 static int ath10k_pci_warm_reset(struct ath10k *ar)
2617 {
2618 	int ret;
2619 
2620 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2621 
2622 	spin_lock_bh(&ar->data_lock);
2623 	ar->stats.fw_warm_reset_counter++;
2624 	spin_unlock_bh(&ar->data_lock);
2625 
2626 	ath10k_pci_irq_disable(ar);
2627 
2628 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2629 	 * were to access copy engine while host performs copy engine reset
2630 	 * then it is possible for the device to confuse pci-e controller to
2631 	 * the point of bringing host system to a complete stop (i.e. hang).
2632 	 */
2633 	ath10k_pci_warm_reset_si0(ar);
2634 	ath10k_pci_warm_reset_cpu(ar);
2635 	ath10k_pci_init_pipes(ar);
2636 	ath10k_pci_wait_for_target_init(ar);
2637 
2638 	ath10k_pci_warm_reset_clear_lf(ar);
2639 	ath10k_pci_warm_reset_ce(ar);
2640 	ath10k_pci_warm_reset_cpu(ar);
2641 	ath10k_pci_init_pipes(ar);
2642 
2643 	ret = ath10k_pci_wait_for_target_init(ar);
2644 	if (ret) {
2645 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2646 		return ret;
2647 	}
2648 
2649 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2650 
2651 	return 0;
2652 }
2653 
2654 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2655 {
2656 	ath10k_pci_irq_disable(ar);
2657 	return ath10k_pci_qca99x0_chip_reset(ar);
2658 }
2659 
2660 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2661 {
2662 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2663 
2664 	if (!ar_pci->pci_soft_reset)
2665 		return -ENOTSUPP;
2666 
2667 	return ar_pci->pci_soft_reset(ar);
2668 }
2669 
2670 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2671 {
2672 	int i, ret;
2673 	u32 val;
2674 
2675 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2676 
2677 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2678 	 * It is thus preferred to use warm reset which is safer but may not be
2679 	 * able to recover the device from all possible fail scenarios.
2680 	 *
2681 	 * Warm reset doesn't always work on first try so attempt it a few
2682 	 * times before giving up.
2683 	 */
2684 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2685 		ret = ath10k_pci_warm_reset(ar);
2686 		if (ret) {
2687 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2688 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2689 				    ret);
2690 			continue;
2691 		}
2692 
2693 		/* FIXME: Sometimes copy engine doesn't recover after warm
2694 		 * reset. In most cases this needs cold reset. In some of these
2695 		 * cases the device is in such a state that a cold reset may
2696 		 * lock up the host.
2697 		 *
2698 		 * Reading any host interest register via copy engine is
2699 		 * sufficient to verify if device is capable of booting
2700 		 * firmware blob.
2701 		 */
2702 		ret = ath10k_pci_init_pipes(ar);
2703 		if (ret) {
2704 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2705 				    ret);
2706 			continue;
2707 		}
2708 
2709 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2710 					     &val);
2711 		if (ret) {
2712 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2713 				    ret);
2714 			continue;
2715 		}
2716 
2717 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2718 		return 0;
2719 	}
2720 
2721 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2722 		ath10k_warn(ar, "refusing cold reset as requested\n");
2723 		return -EPERM;
2724 	}
2725 
2726 	ret = ath10k_pci_cold_reset(ar);
2727 	if (ret) {
2728 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2729 		return ret;
2730 	}
2731 
2732 	ret = ath10k_pci_wait_for_target_init(ar);
2733 	if (ret) {
2734 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2735 			    ret);
2736 		return ret;
2737 	}
2738 
2739 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2740 
2741 	return 0;
2742 }
2743 
2744 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2745 {
2746 	int ret;
2747 
2748 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2749 
2750 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2751 
2752 	ret = ath10k_pci_cold_reset(ar);
2753 	if (ret) {
2754 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2755 		return ret;
2756 	}
2757 
2758 	ret = ath10k_pci_wait_for_target_init(ar);
2759 	if (ret) {
2760 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2761 			    ret);
2762 		return ret;
2763 	}
2764 
2765 	ret = ath10k_pci_warm_reset(ar);
2766 	if (ret) {
2767 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2768 		return ret;
2769 	}
2770 
2771 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2772 
2773 	return 0;
2774 }
2775 
2776 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2777 {
2778 	int ret;
2779 
2780 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2781 
2782 	ret = ath10k_pci_cold_reset(ar);
2783 	if (ret) {
2784 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2785 		return ret;
2786 	}
2787 
2788 	ret = ath10k_pci_wait_for_target_init(ar);
2789 	if (ret) {
2790 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2791 			    ret);
2792 		return ret;
2793 	}
2794 
2795 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2796 
2797 	return 0;
2798 }
2799 
2800 static int ath10k_pci_chip_reset(struct ath10k *ar)
2801 {
2802 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2803 
2804 	if (WARN_ON(!ar_pci->pci_hard_reset))
2805 		return -ENOTSUPP;
2806 
2807 	return ar_pci->pci_hard_reset(ar);
2808 }
2809 
2810 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2811 {
2812 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2813 	int ret;
2814 
2815 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2816 
2817 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2818 				  &ar_pci->link_ctl);
2819 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2820 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2821 
2822 	/*
2823 	 * Bring the target up cleanly.
2824 	 *
2825 	 * The target may be in an undefined state with an AUX-powered Target
2826 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2827 	 * restarted (without unloading the driver) then the Target is left
2828 	 * (aux) powered and running. On a subsequent driver load, the Target
2829 	 * is in an unexpected state. We try to catch that here in order to
2830 	 * reset the Target and retry the probe.
2831 	 */
2832 	ret = ath10k_pci_chip_reset(ar);
2833 	if (ret) {
2834 		if (ath10k_pci_has_fw_crashed(ar)) {
2835 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2836 			ath10k_pci_fw_crashed_clear(ar);
2837 			ath10k_pci_fw_crashed_dump(ar);
2838 		}
2839 
2840 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2841 		goto err_sleep;
2842 	}
2843 
2844 	ret = ath10k_pci_init_pipes(ar);
2845 	if (ret) {
2846 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2847 		goto err_sleep;
2848 	}
2849 
2850 	ret = ath10k_pci_init_config(ar);
2851 	if (ret) {
2852 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2853 		goto err_ce;
2854 	}
2855 
2856 	ret = ath10k_pci_wake_target_cpu(ar);
2857 	if (ret) {
2858 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2859 		goto err_ce;
2860 	}
2861 
2862 	return 0;
2863 
2864 err_ce:
2865 	ath10k_pci_ce_deinit(ar);
2866 
2867 err_sleep:
2868 	return ret;
2869 }
2870 
2871 void ath10k_pci_hif_power_down(struct ath10k *ar)
2872 {
2873 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2874 
2875 	/* Currently hif_power_up performs effectively a reset and hif_stop
2876 	 * resets the chip as well so there's no point in resetting here.
2877 	 */
2878 }
2879 
2880 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2881 {
2882 	/* Nothing to do; the important stuff is in the driver suspend. */
2883 	return 0;
2884 }
2885 
2886 static int ath10k_pci_suspend(struct ath10k *ar)
2887 {
2888 	/* The grace timer can still be counting down and ar->ps_awake be true.
2889 	 * It is known that the device may be asleep after resuming regardless
2890 	 * of the SoC powersave state before suspending. Hence make sure the
2891 	 * device is asleep before proceeding.
2892 	 */
2893 	ath10k_pci_sleep_sync(ar);
2894 
2895 	return 0;
2896 }
2897 
2898 static int ath10k_pci_hif_resume(struct ath10k *ar)
2899 {
2900 	/* Nothing to do; the important stuff is in the driver resume. */
2901 	return 0;
2902 }
2903 
2904 static int ath10k_pci_resume(struct ath10k *ar)
2905 {
2906 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2907 	struct pci_dev *pdev = ar_pci->pdev;
2908 	u32 val;
2909 	int ret = 0;
2910 
2911 	ret = ath10k_pci_force_wake(ar);
2912 	if (ret) {
2913 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2914 		return ret;
2915 	}
2916 
2917 	/* Suspend/Resume resets the PCI configuration space, so we have to
2918 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2919 	 * from interfering with C3 CPU state. pci_restore_state won't help
2920 	 * here since it only restores the first 64 bytes pci config header.
2921 	 */
2922 	pci_read_config_dword(pdev, 0x40, &val);
2923 	if ((val & 0x0000ff00) != 0)
2924 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2925 
2926 	return ret;
2927 }
2928 
2929 static bool ath10k_pci_validate_cal(void *data, size_t size)
2930 {
2931 	__le16 *cal_words = data;
2932 	u16 checksum = 0;
2933 	size_t i;
2934 
2935 	if (size % 2 != 0)
2936 		return false;
2937 
2938 	for (i = 0; i < size / 2; i++)
2939 		checksum ^= le16_to_cpu(cal_words[i]);
2940 
2941 	return checksum == 0xffff;
2942 }
2943 
2944 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2945 {
2946 	/* Enable SI clock */
2947 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2948 
2949 	/* Configure GPIOs for I2C operation */
2950 	ath10k_pci_write32(ar,
2951 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2952 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2953 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2954 			      GPIO_PIN0_CONFIG) |
2955 			   SM(1, GPIO_PIN0_PAD_PULL));
2956 
2957 	ath10k_pci_write32(ar,
2958 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2959 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2960 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2961 			   SM(1, GPIO_PIN0_PAD_PULL));
2962 
2963 	ath10k_pci_write32(ar,
2964 			   GPIO_BASE_ADDRESS +
2965 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2966 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2967 
2968 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2969 	ath10k_pci_write32(ar,
2970 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2971 			   SM(1, SI_CONFIG_ERR_INT) |
2972 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2973 			   SM(1, SI_CONFIG_I2C) |
2974 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2975 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2976 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2977 			   SM(8, SI_CONFIG_DIVIDER));
2978 }
2979 
2980 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2981 {
2982 	u32 reg;
2983 	int wait_limit;
2984 
2985 	/* set device select byte and for the read operation */
2986 	reg = QCA9887_EEPROM_SELECT_READ |
2987 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2988 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2989 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2990 
2991 	/* write transmit data, transfer length, and START bit */
2992 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2993 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2994 			   SM(4, SI_CS_TX_CNT));
2995 
2996 	/* wait max 1 sec */
2997 	wait_limit = 100000;
2998 
2999 	/* wait for SI_CS_DONE_INT */
3000 	do {
3001 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3002 		if (MS(reg, SI_CS_DONE_INT))
3003 			break;
3004 
3005 		wait_limit--;
3006 		udelay(10);
3007 	} while (wait_limit > 0);
3008 
3009 	if (!MS(reg, SI_CS_DONE_INT)) {
3010 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3011 			   addr);
3012 		return -ETIMEDOUT;
3013 	}
3014 
3015 	/* clear SI_CS_DONE_INT */
3016 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3017 
3018 	if (MS(reg, SI_CS_DONE_ERR)) {
3019 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3020 		return -EIO;
3021 	}
3022 
3023 	/* extract receive data */
3024 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3025 	*out = reg;
3026 
3027 	return 0;
3028 }
3029 
3030 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3031 					   size_t *data_len)
3032 {
3033 	u8 *caldata = NULL;
3034 	size_t calsize, i;
3035 	int ret;
3036 
3037 	if (!QCA_REV_9887(ar))
3038 		return -EOPNOTSUPP;
3039 
3040 	calsize = ar->hw_params.cal_data_len;
3041 	caldata = kmalloc(calsize, GFP_KERNEL);
3042 	if (!caldata)
3043 		return -ENOMEM;
3044 
3045 	ath10k_pci_enable_eeprom(ar);
3046 
3047 	for (i = 0; i < calsize; i++) {
3048 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3049 		if (ret)
3050 			goto err_free;
3051 	}
3052 
3053 	if (!ath10k_pci_validate_cal(caldata, calsize))
3054 		goto err_free;
3055 
3056 	*data = caldata;
3057 	*data_len = calsize;
3058 
3059 	return 0;
3060 
3061 err_free:
3062 	kfree(caldata);
3063 
3064 	return -EINVAL;
3065 }
3066 
3067 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3068 	.tx_sg			= ath10k_pci_hif_tx_sg,
3069 	.diag_read		= ath10k_pci_hif_diag_read,
3070 	.diag_write		= ath10k_pci_diag_write_mem,
3071 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3072 	.start			= ath10k_pci_hif_start,
3073 	.stop			= ath10k_pci_hif_stop,
3074 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3075 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3076 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3077 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3078 	.power_up		= ath10k_pci_hif_power_up,
3079 	.power_down		= ath10k_pci_hif_power_down,
3080 	.read32			= ath10k_pci_read32,
3081 	.write32		= ath10k_pci_write32,
3082 	.suspend		= ath10k_pci_hif_suspend,
3083 	.resume			= ath10k_pci_hif_resume,
3084 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3085 };
3086 
3087 /*
3088  * Top-level interrupt handler for all PCI interrupts from a Target.
3089  * When a block of MSI interrupts is allocated, this top-level handler
3090  * is not used; instead, we directly call the correct sub-handler.
3091  */
3092 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3093 {
3094 	struct ath10k *ar = arg;
3095 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3096 	int ret;
3097 
3098 	if (ath10k_pci_has_device_gone(ar))
3099 		return IRQ_NONE;
3100 
3101 	ret = ath10k_pci_force_wake(ar);
3102 	if (ret) {
3103 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3104 		return IRQ_NONE;
3105 	}
3106 
3107 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3108 	    !ath10k_pci_irq_pending(ar))
3109 		return IRQ_NONE;
3110 
3111 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3112 	ath10k_pci_irq_msi_fw_mask(ar);
3113 	napi_schedule(&ar->napi);
3114 
3115 	return IRQ_HANDLED;
3116 }
3117 
3118 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3119 {
3120 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3121 	int done = 0;
3122 
3123 	if (ath10k_pci_has_fw_crashed(ar)) {
3124 		ath10k_pci_fw_crashed_clear(ar);
3125 		ath10k_pci_fw_crashed_dump(ar);
3126 		napi_complete(ctx);
3127 		return done;
3128 	}
3129 
3130 	ath10k_ce_per_engine_service_any(ar);
3131 
3132 	done = ath10k_htt_txrx_compl_task(ar, budget);
3133 
3134 	if (done < budget) {
3135 		napi_complete_done(ctx, done);
3136 		/* In case of MSI, it is possible that interrupts are received
3137 		 * while NAPI poll is inprogress. So pending interrupts that are
3138 		 * received after processing all copy engine pipes by NAPI poll
3139 		 * will not be handled again. This is causing failure to
3140 		 * complete boot sequence in x86 platform. So before enabling
3141 		 * interrupts safer to check for pending interrupts for
3142 		 * immediate servicing.
3143 		 */
3144 		if (ath10k_ce_interrupt_summary(ar)) {
3145 			napi_reschedule(ctx);
3146 			goto out;
3147 		}
3148 		ath10k_pci_enable_legacy_irq(ar);
3149 		ath10k_pci_irq_msi_fw_unmask(ar);
3150 	}
3151 
3152 out:
3153 	return done;
3154 }
3155 
3156 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3157 {
3158 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3159 	int ret;
3160 
3161 	ret = request_irq(ar_pci->pdev->irq,
3162 			  ath10k_pci_interrupt_handler,
3163 			  IRQF_SHARED, "ath10k_pci", ar);
3164 	if (ret) {
3165 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3166 			    ar_pci->pdev->irq, ret);
3167 		return ret;
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3174 {
3175 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3176 	int ret;
3177 
3178 	ret = request_irq(ar_pci->pdev->irq,
3179 			  ath10k_pci_interrupt_handler,
3180 			  IRQF_SHARED, "ath10k_pci", ar);
3181 	if (ret) {
3182 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3183 			    ar_pci->pdev->irq, ret);
3184 		return ret;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int ath10k_pci_request_irq(struct ath10k *ar)
3191 {
3192 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3193 
3194 	switch (ar_pci->oper_irq_mode) {
3195 	case ATH10K_PCI_IRQ_LEGACY:
3196 		return ath10k_pci_request_irq_legacy(ar);
3197 	case ATH10K_PCI_IRQ_MSI:
3198 		return ath10k_pci_request_irq_msi(ar);
3199 	default:
3200 		return -EINVAL;
3201 	}
3202 }
3203 
3204 static void ath10k_pci_free_irq(struct ath10k *ar)
3205 {
3206 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3207 
3208 	free_irq(ar_pci->pdev->irq, ar);
3209 }
3210 
3211 void ath10k_pci_init_napi(struct ath10k *ar)
3212 {
3213 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3214 		       ATH10K_NAPI_BUDGET);
3215 }
3216 
3217 static int ath10k_pci_init_irq(struct ath10k *ar)
3218 {
3219 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3220 	int ret;
3221 
3222 	ath10k_pci_init_napi(ar);
3223 
3224 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3225 		ath10k_info(ar, "limiting irq mode to: %d\n",
3226 			    ath10k_pci_irq_mode);
3227 
3228 	/* Try MSI */
3229 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3230 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3231 		ret = pci_enable_msi(ar_pci->pdev);
3232 		if (ret == 0)
3233 			return 0;
3234 
3235 		/* fall-through */
3236 	}
3237 
3238 	/* Try legacy irq
3239 	 *
3240 	 * A potential race occurs here: The CORE_BASE write
3241 	 * depends on target correctly decoding AXI address but
3242 	 * host won't know when target writes BAR to CORE_CTRL.
3243 	 * This write might get lost if target has NOT written BAR.
3244 	 * For now, fix the race by repeating the write in below
3245 	 * synchronization checking.
3246 	 */
3247 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3248 
3249 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3250 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3251 
3252 	return 0;
3253 }
3254 
3255 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3256 {
3257 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3258 			   0);
3259 }
3260 
3261 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3262 {
3263 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3264 
3265 	switch (ar_pci->oper_irq_mode) {
3266 	case ATH10K_PCI_IRQ_LEGACY:
3267 		ath10k_pci_deinit_irq_legacy(ar);
3268 		break;
3269 	default:
3270 		pci_disable_msi(ar_pci->pdev);
3271 		break;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3278 {
3279 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3280 	unsigned long timeout;
3281 	u32 val;
3282 
3283 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3284 
3285 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3286 
3287 	do {
3288 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3289 
3290 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3291 			   val);
3292 
3293 		/* target should never return this */
3294 		if (val == 0xffffffff)
3295 			continue;
3296 
3297 		/* the device has crashed so don't bother trying anymore */
3298 		if (val & FW_IND_EVENT_PENDING)
3299 			break;
3300 
3301 		if (val & FW_IND_INITIALIZED)
3302 			break;
3303 
3304 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3305 			/* Fix potential race by repeating CORE_BASE writes */
3306 			ath10k_pci_enable_legacy_irq(ar);
3307 
3308 		mdelay(10);
3309 	} while (time_before(jiffies, timeout));
3310 
3311 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3312 	ath10k_pci_irq_msi_fw_mask(ar);
3313 
3314 	if (val == 0xffffffff) {
3315 		ath10k_err(ar, "failed to read device register, device is gone\n");
3316 		return -EIO;
3317 	}
3318 
3319 	if (val & FW_IND_EVENT_PENDING) {
3320 		ath10k_warn(ar, "device has crashed during init\n");
3321 		return -ECOMM;
3322 	}
3323 
3324 	if (!(val & FW_IND_INITIALIZED)) {
3325 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3326 			   val);
3327 		return -ETIMEDOUT;
3328 	}
3329 
3330 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3331 	return 0;
3332 }
3333 
3334 static int ath10k_pci_cold_reset(struct ath10k *ar)
3335 {
3336 	u32 val;
3337 
3338 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3339 
3340 	spin_lock_bh(&ar->data_lock);
3341 
3342 	ar->stats.fw_cold_reset_counter++;
3343 
3344 	spin_unlock_bh(&ar->data_lock);
3345 
3346 	/* Put Target, including PCIe, into RESET. */
3347 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3348 	val |= 1;
3349 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3350 
3351 	/* After writing into SOC_GLOBAL_RESET to put device into
3352 	 * reset and pulling out of reset pcie may not be stable
3353 	 * for any immediate pcie register access and cause bus error,
3354 	 * add delay before any pcie access request to fix this issue.
3355 	 */
3356 	msleep(20);
3357 
3358 	/* Pull Target, including PCIe, out of RESET. */
3359 	val &= ~1;
3360 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3361 
3362 	msleep(20);
3363 
3364 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3365 
3366 	return 0;
3367 }
3368 
3369 static int ath10k_pci_claim(struct ath10k *ar)
3370 {
3371 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3372 	struct pci_dev *pdev = ar_pci->pdev;
3373 	int ret;
3374 
3375 	pci_set_drvdata(pdev, ar);
3376 
3377 	ret = pci_enable_device(pdev);
3378 	if (ret) {
3379 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3380 		return ret;
3381 	}
3382 
3383 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3384 	if (ret) {
3385 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3386 			   ret);
3387 		goto err_device;
3388 	}
3389 
3390 	/* Target expects 32 bit DMA. Enforce it. */
3391 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3392 	if (ret) {
3393 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3394 		goto err_region;
3395 	}
3396 
3397 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3398 	if (ret) {
3399 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3400 			   ret);
3401 		goto err_region;
3402 	}
3403 
3404 	pci_set_master(pdev);
3405 
3406 	/* Arrange for access to Target SoC registers. */
3407 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3408 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3409 	if (!ar_pci->mem) {
3410 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3411 		ret = -EIO;
3412 		goto err_master;
3413 	}
3414 
3415 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3416 	return 0;
3417 
3418 err_master:
3419 	pci_clear_master(pdev);
3420 
3421 err_region:
3422 	pci_release_region(pdev, BAR_NUM);
3423 
3424 err_device:
3425 	pci_disable_device(pdev);
3426 
3427 	return ret;
3428 }
3429 
3430 static void ath10k_pci_release(struct ath10k *ar)
3431 {
3432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3433 	struct pci_dev *pdev = ar_pci->pdev;
3434 
3435 	pci_iounmap(pdev, ar_pci->mem);
3436 	pci_release_region(pdev, BAR_NUM);
3437 	pci_clear_master(pdev);
3438 	pci_disable_device(pdev);
3439 }
3440 
3441 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3442 {
3443 	const struct ath10k_pci_supp_chip *supp_chip;
3444 	int i;
3445 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3446 
3447 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3448 		supp_chip = &ath10k_pci_supp_chips[i];
3449 
3450 		if (supp_chip->dev_id == dev_id &&
3451 		    supp_chip->rev_id == rev_id)
3452 			return true;
3453 	}
3454 
3455 	return false;
3456 }
3457 
3458 int ath10k_pci_setup_resource(struct ath10k *ar)
3459 {
3460 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3461 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3462 	int ret;
3463 
3464 	spin_lock_init(&ce->ce_lock);
3465 	spin_lock_init(&ar_pci->ps_lock);
3466 
3467 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3468 
3469 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3470 		ath10k_pci_override_ce_config(ar);
3471 
3472 	ret = ath10k_pci_alloc_pipes(ar);
3473 	if (ret) {
3474 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3475 			   ret);
3476 		return ret;
3477 	}
3478 
3479 	return 0;
3480 }
3481 
3482 void ath10k_pci_release_resource(struct ath10k *ar)
3483 {
3484 	ath10k_pci_rx_retry_sync(ar);
3485 	netif_napi_del(&ar->napi);
3486 	ath10k_pci_ce_deinit(ar);
3487 	ath10k_pci_free_pipes(ar);
3488 }
3489 
3490 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3491 	.read32		= ath10k_bus_pci_read32,
3492 	.write32	= ath10k_bus_pci_write32,
3493 	.get_num_banks	= ath10k_pci_get_num_banks,
3494 };
3495 
3496 static int ath10k_pci_probe(struct pci_dev *pdev,
3497 			    const struct pci_device_id *pci_dev)
3498 {
3499 	int ret = 0;
3500 	struct ath10k *ar;
3501 	struct ath10k_pci *ar_pci;
3502 	enum ath10k_hw_rev hw_rev;
3503 	struct ath10k_bus_params bus_params;
3504 	bool pci_ps;
3505 	int (*pci_soft_reset)(struct ath10k *ar);
3506 	int (*pci_hard_reset)(struct ath10k *ar);
3507 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3508 
3509 	switch (pci_dev->device) {
3510 	case QCA988X_2_0_DEVICE_ID_UBNT:
3511 	case QCA988X_2_0_DEVICE_ID:
3512 		hw_rev = ATH10K_HW_QCA988X;
3513 		pci_ps = false;
3514 		pci_soft_reset = ath10k_pci_warm_reset;
3515 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3516 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3517 		break;
3518 	case QCA9887_1_0_DEVICE_ID:
3519 		hw_rev = ATH10K_HW_QCA9887;
3520 		pci_ps = false;
3521 		pci_soft_reset = ath10k_pci_warm_reset;
3522 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3523 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3524 		break;
3525 	case QCA6164_2_1_DEVICE_ID:
3526 	case QCA6174_2_1_DEVICE_ID:
3527 		hw_rev = ATH10K_HW_QCA6174;
3528 		pci_ps = true;
3529 		pci_soft_reset = ath10k_pci_warm_reset;
3530 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3531 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3532 		break;
3533 	case QCA99X0_2_0_DEVICE_ID:
3534 		hw_rev = ATH10K_HW_QCA99X0;
3535 		pci_ps = false;
3536 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3537 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3538 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3539 		break;
3540 	case QCA9984_1_0_DEVICE_ID:
3541 		hw_rev = ATH10K_HW_QCA9984;
3542 		pci_ps = false;
3543 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3544 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3545 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3546 		break;
3547 	case QCA9888_2_0_DEVICE_ID:
3548 		hw_rev = ATH10K_HW_QCA9888;
3549 		pci_ps = false;
3550 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3551 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3552 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3553 		break;
3554 	case QCA9377_1_0_DEVICE_ID:
3555 		hw_rev = ATH10K_HW_QCA9377;
3556 		pci_ps = true;
3557 		pci_soft_reset = NULL;
3558 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3559 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3560 		break;
3561 	default:
3562 		WARN_ON(1);
3563 		return -ENOTSUPP;
3564 	}
3565 
3566 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3567 				hw_rev, &ath10k_pci_hif_ops);
3568 	if (!ar) {
3569 		dev_err(&pdev->dev, "failed to allocate core\n");
3570 		return -ENOMEM;
3571 	}
3572 
3573 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3574 		   pdev->vendor, pdev->device,
3575 		   pdev->subsystem_vendor, pdev->subsystem_device);
3576 
3577 	ar_pci = ath10k_pci_priv(ar);
3578 	ar_pci->pdev = pdev;
3579 	ar_pci->dev = &pdev->dev;
3580 	ar_pci->ar = ar;
3581 	ar->dev_id = pci_dev->device;
3582 	ar_pci->pci_ps = pci_ps;
3583 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3584 	ar_pci->pci_soft_reset = pci_soft_reset;
3585 	ar_pci->pci_hard_reset = pci_hard_reset;
3586 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3587 	ar->ce_priv = &ar_pci->ce;
3588 
3589 	ar->id.vendor = pdev->vendor;
3590 	ar->id.device = pdev->device;
3591 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3592 	ar->id.subsystem_device = pdev->subsystem_device;
3593 
3594 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3595 
3596 	ret = ath10k_pci_setup_resource(ar);
3597 	if (ret) {
3598 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3599 		goto err_core_destroy;
3600 	}
3601 
3602 	ret = ath10k_pci_claim(ar);
3603 	if (ret) {
3604 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3605 		goto err_free_pipes;
3606 	}
3607 
3608 	ret = ath10k_pci_force_wake(ar);
3609 	if (ret) {
3610 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3611 		goto err_sleep;
3612 	}
3613 
3614 	ath10k_pci_ce_deinit(ar);
3615 	ath10k_pci_irq_disable(ar);
3616 
3617 	ret = ath10k_pci_init_irq(ar);
3618 	if (ret) {
3619 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3620 		goto err_sleep;
3621 	}
3622 
3623 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3624 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3625 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3626 
3627 	ret = ath10k_pci_request_irq(ar);
3628 	if (ret) {
3629 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3630 		goto err_deinit_irq;
3631 	}
3632 
3633 	ret = ath10k_pci_chip_reset(ar);
3634 	if (ret) {
3635 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3636 		goto err_free_irq;
3637 	}
3638 
3639 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3640 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3641 	if (bus_params.chip_id == 0xffffffff) {
3642 		ath10k_err(ar, "failed to get chip id\n");
3643 		goto err_free_irq;
3644 	}
3645 
3646 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3647 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3648 			   pdev->device, bus_params.chip_id);
3649 		goto err_free_irq;
3650 	}
3651 
3652 	ret = ath10k_core_register(ar, &bus_params);
3653 	if (ret) {
3654 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3655 		goto err_free_irq;
3656 	}
3657 
3658 	return 0;
3659 
3660 err_free_irq:
3661 	ath10k_pci_free_irq(ar);
3662 	ath10k_pci_rx_retry_sync(ar);
3663 
3664 err_deinit_irq:
3665 	ath10k_pci_deinit_irq(ar);
3666 
3667 err_sleep:
3668 	ath10k_pci_sleep_sync(ar);
3669 	ath10k_pci_release(ar);
3670 
3671 err_free_pipes:
3672 	ath10k_pci_free_pipes(ar);
3673 
3674 err_core_destroy:
3675 	ath10k_core_destroy(ar);
3676 
3677 	return ret;
3678 }
3679 
3680 static void ath10k_pci_remove(struct pci_dev *pdev)
3681 {
3682 	struct ath10k *ar = pci_get_drvdata(pdev);
3683 	struct ath10k_pci *ar_pci;
3684 
3685 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3686 
3687 	if (!ar)
3688 		return;
3689 
3690 	ar_pci = ath10k_pci_priv(ar);
3691 
3692 	if (!ar_pci)
3693 		return;
3694 
3695 	ath10k_core_unregister(ar);
3696 	ath10k_pci_free_irq(ar);
3697 	ath10k_pci_deinit_irq(ar);
3698 	ath10k_pci_release_resource(ar);
3699 	ath10k_pci_sleep_sync(ar);
3700 	ath10k_pci_release(ar);
3701 	ath10k_core_destroy(ar);
3702 }
3703 
3704 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3705 
3706 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3707 {
3708 	struct ath10k *ar = dev_get_drvdata(dev);
3709 	int ret;
3710 
3711 	ret = ath10k_pci_suspend(ar);
3712 	if (ret)
3713 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3714 
3715 	return ret;
3716 }
3717 
3718 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3719 {
3720 	struct ath10k *ar = dev_get_drvdata(dev);
3721 	int ret;
3722 
3723 	ret = ath10k_pci_resume(ar);
3724 	if (ret)
3725 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3726 
3727 	return ret;
3728 }
3729 
3730 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3731 			 ath10k_pci_pm_suspend,
3732 			 ath10k_pci_pm_resume);
3733 
3734 static struct pci_driver ath10k_pci_driver = {
3735 	.name = "ath10k_pci",
3736 	.id_table = ath10k_pci_id_table,
3737 	.probe = ath10k_pci_probe,
3738 	.remove = ath10k_pci_remove,
3739 #ifdef CONFIG_PM
3740 	.driver.pm = &ath10k_pci_pm_ops,
3741 #endif
3742 };
3743 
3744 static int __init ath10k_pci_init(void)
3745 {
3746 	int ret;
3747 
3748 	ret = pci_register_driver(&ath10k_pci_driver);
3749 	if (ret)
3750 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3751 		       ret);
3752 
3753 	ret = ath10k_ahb_init();
3754 	if (ret)
3755 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3756 
3757 	return ret;
3758 }
3759 module_init(ath10k_pci_init);
3760 
3761 static void __exit ath10k_pci_exit(void)
3762 {
3763 	pci_unregister_driver(&ath10k_pci_driver);
3764 	ath10k_ahb_exit();
3765 }
3766 
3767 module_exit(ath10k_pci_exit);
3768 
3769 MODULE_AUTHOR("Qualcomm Atheros");
3770 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3771 MODULE_LICENSE("Dual BSD/GPL");
3772 
3773 /* QCA988x 2.0 firmware files */
3774 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3775 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3776 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3777 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3778 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3779 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3780 
3781 /* QCA9887 1.0 firmware files */
3782 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3783 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3784 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3785 
3786 /* QCA6174 2.1 firmware files */
3787 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3788 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3789 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3790 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3791 
3792 /* QCA6174 3.1 firmware files */
3793 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3794 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3795 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3796 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3797 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3798 
3799 /* QCA9377 1.0 firmware files */
3800 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3801 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3802 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3803