xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision ab55c050)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
60 	{0}
61 };
62 
63 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
64 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
65 	 * hacks. ath10k doesn't have them and these devices crash horribly
66 	 * because of that.
67 	 */
68 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
69 
70 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
71 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
72 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
75 
76 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
83 
84 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
85 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
86 };
87 
88 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
89 static int ath10k_pci_cold_reset(struct ath10k *ar);
90 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
91 static int ath10k_pci_init_irq(struct ath10k *ar);
92 static int ath10k_pci_deinit_irq(struct ath10k *ar);
93 static int ath10k_pci_request_irq(struct ath10k *ar);
94 static void ath10k_pci_free_irq(struct ath10k *ar);
95 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
96 			       struct ath10k_ce_pipe *rx_pipe,
97 			       struct bmi_xfer *xfer);
98 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
99 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
100 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
101 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
102 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
103 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
104 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
105 
106 static struct ce_attr host_ce_config_wlan[] = {
107 	/* CE0: host->target HTC control and raw streams */
108 	{
109 		.flags = CE_ATTR_FLAGS,
110 		.src_nentries = 16,
111 		.src_sz_max = 256,
112 		.dest_nentries = 0,
113 		.send_cb = ath10k_pci_htc_tx_cb,
114 	},
115 
116 	/* CE1: target->host HTT + HTC control */
117 	{
118 		.flags = CE_ATTR_FLAGS,
119 		.src_nentries = 0,
120 		.src_sz_max = 2048,
121 		.dest_nentries = 512,
122 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
123 	},
124 
125 	/* CE2: target->host WMI */
126 	{
127 		.flags = CE_ATTR_FLAGS,
128 		.src_nentries = 0,
129 		.src_sz_max = 2048,
130 		.dest_nentries = 128,
131 		.recv_cb = ath10k_pci_htc_rx_cb,
132 	},
133 
134 	/* CE3: host->target WMI */
135 	{
136 		.flags = CE_ATTR_FLAGS,
137 		.src_nentries = 32,
138 		.src_sz_max = 2048,
139 		.dest_nentries = 0,
140 		.send_cb = ath10k_pci_htc_tx_cb,
141 	},
142 
143 	/* CE4: host->target HTT */
144 	{
145 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
146 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
147 		.src_sz_max = 256,
148 		.dest_nentries = 0,
149 		.send_cb = ath10k_pci_htt_tx_cb,
150 	},
151 
152 	/* CE5: target->host HTT (HIF->HTT) */
153 	{
154 		.flags = CE_ATTR_FLAGS,
155 		.src_nentries = 0,
156 		.src_sz_max = 512,
157 		.dest_nentries = 512,
158 		.recv_cb = ath10k_pci_htt_rx_cb,
159 	},
160 
161 	/* CE6: target autonomous hif_memcpy */
162 	{
163 		.flags = CE_ATTR_FLAGS,
164 		.src_nentries = 0,
165 		.src_sz_max = 0,
166 		.dest_nentries = 0,
167 	},
168 
169 	/* CE7: ce_diag, the Diagnostic Window */
170 	{
171 		.flags = CE_ATTR_FLAGS,
172 		.src_nentries = 2,
173 		.src_sz_max = DIAG_TRANSFER_LIMIT,
174 		.dest_nentries = 2,
175 	},
176 
177 	/* CE8: target->host pktlog */
178 	{
179 		.flags = CE_ATTR_FLAGS,
180 		.src_nentries = 0,
181 		.src_sz_max = 2048,
182 		.dest_nentries = 128,
183 		.recv_cb = ath10k_pci_pktlog_rx_cb,
184 	},
185 
186 	/* CE9 target autonomous qcache memcpy */
187 	{
188 		.flags = CE_ATTR_FLAGS,
189 		.src_nentries = 0,
190 		.src_sz_max = 0,
191 		.dest_nentries = 0,
192 	},
193 
194 	/* CE10: target autonomous hif memcpy */
195 	{
196 		.flags = CE_ATTR_FLAGS,
197 		.src_nentries = 0,
198 		.src_sz_max = 0,
199 		.dest_nentries = 0,
200 	},
201 
202 	/* CE11: target autonomous hif memcpy */
203 	{
204 		.flags = CE_ATTR_FLAGS,
205 		.src_nentries = 0,
206 		.src_sz_max = 0,
207 		.dest_nentries = 0,
208 	},
209 };
210 
211 /* Target firmware's Copy Engine configuration. */
212 static struct ce_pipe_config target_ce_config_wlan[] = {
213 	/* CE0: host->target HTC control and raw streams */
214 	{
215 		.pipenum = __cpu_to_le32(0),
216 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
217 		.nentries = __cpu_to_le32(32),
218 		.nbytes_max = __cpu_to_le32(256),
219 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
220 		.reserved = __cpu_to_le32(0),
221 	},
222 
223 	/* CE1: target->host HTT + HTC control */
224 	{
225 		.pipenum = __cpu_to_le32(1),
226 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
227 		.nentries = __cpu_to_le32(32),
228 		.nbytes_max = __cpu_to_le32(2048),
229 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
230 		.reserved = __cpu_to_le32(0),
231 	},
232 
233 	/* CE2: target->host WMI */
234 	{
235 		.pipenum = __cpu_to_le32(2),
236 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
237 		.nentries = __cpu_to_le32(64),
238 		.nbytes_max = __cpu_to_le32(2048),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE3: host->target WMI */
244 	{
245 		.pipenum = __cpu_to_le32(3),
246 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE4: host->target HTT */
254 	{
255 		.pipenum = __cpu_to_le32(4),
256 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
257 		.nentries = __cpu_to_le32(256),
258 		.nbytes_max = __cpu_to_le32(256),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* NB: 50% of src nentries, since tx has 2 frags */
264 
265 	/* CE5: target->host HTT (HIF->HTT) */
266 	{
267 		.pipenum = __cpu_to_le32(5),
268 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
269 		.nentries = __cpu_to_le32(32),
270 		.nbytes_max = __cpu_to_le32(512),
271 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
272 		.reserved = __cpu_to_le32(0),
273 	},
274 
275 	/* CE6: Reserved for target autonomous hif_memcpy */
276 	{
277 		.pipenum = __cpu_to_le32(6),
278 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
279 		.nentries = __cpu_to_le32(32),
280 		.nbytes_max = __cpu_to_le32(4096),
281 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
282 		.reserved = __cpu_to_le32(0),
283 	},
284 
285 	/* CE7 used only by Host */
286 	{
287 		.pipenum = __cpu_to_le32(7),
288 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
289 		.nentries = __cpu_to_le32(0),
290 		.nbytes_max = __cpu_to_le32(0),
291 		.flags = __cpu_to_le32(0),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE8 target->host packtlog */
296 	{
297 		.pipenum = __cpu_to_le32(8),
298 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
299 		.nentries = __cpu_to_le32(64),
300 		.nbytes_max = __cpu_to_le32(2048),
301 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE9 target autonomous qcache memcpy */
306 	{
307 		.pipenum = __cpu_to_le32(9),
308 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
309 		.nentries = __cpu_to_le32(32),
310 		.nbytes_max = __cpu_to_le32(2048),
311 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* It not necessary to send target wlan configuration for CE10 & CE11
316 	 * as these CEs are not actively used in target.
317 	 */
318 };
319 
320 /*
321  * Map from service/endpoint to Copy Engine.
322  * This table is derived from the CE_PCI TABLE, above.
323  * It is passed to the Target at startup for use by firmware.
324  */
325 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
326 	{
327 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
328 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
329 		__cpu_to_le32(3),
330 	},
331 	{
332 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
333 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
334 		__cpu_to_le32(2),
335 	},
336 	{
337 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
338 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
339 		__cpu_to_le32(3),
340 	},
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
343 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
344 		__cpu_to_le32(2),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(0),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(1),
385 	},
386 	{ /* not used */
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(0),
390 	},
391 	{ /* not used */
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(1),
395 	},
396 	{
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(4),
400 	},
401 	{
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(5),
405 	},
406 
407 	/* (Additions here) */
408 
409 	{ /* must be last */
410 		__cpu_to_le32(0),
411 		__cpu_to_le32(0),
412 		__cpu_to_le32(0),
413 	},
414 };
415 
416 static bool ath10k_pci_is_awake(struct ath10k *ar)
417 {
418 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
419 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
420 			   RTC_STATE_ADDRESS);
421 
422 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
423 }
424 
425 static void __ath10k_pci_wake(struct ath10k *ar)
426 {
427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 
429 	lockdep_assert_held(&ar_pci->ps_lock);
430 
431 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
432 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
433 
434 	iowrite32(PCIE_SOC_WAKE_V_MASK,
435 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
436 		  PCIE_SOC_WAKE_ADDRESS);
437 }
438 
439 static void __ath10k_pci_sleep(struct ath10k *ar)
440 {
441 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442 
443 	lockdep_assert_held(&ar_pci->ps_lock);
444 
445 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
446 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
447 
448 	iowrite32(PCIE_SOC_WAKE_RESET,
449 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
450 		  PCIE_SOC_WAKE_ADDRESS);
451 	ar_pci->ps_awake = false;
452 }
453 
454 static int ath10k_pci_wake_wait(struct ath10k *ar)
455 {
456 	int tot_delay = 0;
457 	int curr_delay = 5;
458 
459 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
460 		if (ath10k_pci_is_awake(ar)) {
461 			if (tot_delay > PCIE_WAKE_LATE_US)
462 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
463 					    tot_delay / 1000);
464 			return 0;
465 		}
466 
467 		udelay(curr_delay);
468 		tot_delay += curr_delay;
469 
470 		if (curr_delay < 50)
471 			curr_delay += 5;
472 	}
473 
474 	return -ETIMEDOUT;
475 }
476 
477 static int ath10k_pci_force_wake(struct ath10k *ar)
478 {
479 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
480 	unsigned long flags;
481 	int ret = 0;
482 
483 	if (ar_pci->pci_ps)
484 		return ret;
485 
486 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
487 
488 	if (!ar_pci->ps_awake) {
489 		iowrite32(PCIE_SOC_WAKE_V_MASK,
490 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
491 			  PCIE_SOC_WAKE_ADDRESS);
492 
493 		ret = ath10k_pci_wake_wait(ar);
494 		if (ret == 0)
495 			ar_pci->ps_awake = true;
496 	}
497 
498 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
499 
500 	return ret;
501 }
502 
503 static void ath10k_pci_force_sleep(struct ath10k *ar)
504 {
505 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
509 
510 	iowrite32(PCIE_SOC_WAKE_RESET,
511 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
512 		  PCIE_SOC_WAKE_ADDRESS);
513 	ar_pci->ps_awake = false;
514 
515 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
516 }
517 
518 static int ath10k_pci_wake(struct ath10k *ar)
519 {
520 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
521 	unsigned long flags;
522 	int ret = 0;
523 
524 	if (ar_pci->pci_ps == 0)
525 		return ret;
526 
527 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
528 
529 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
530 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
531 
532 	/* This function can be called very frequently. To avoid excessive
533 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
534 	 */
535 	if (!ar_pci->ps_awake) {
536 		__ath10k_pci_wake(ar);
537 
538 		ret = ath10k_pci_wake_wait(ar);
539 		if (ret == 0)
540 			ar_pci->ps_awake = true;
541 	}
542 
543 	if (ret == 0) {
544 		ar_pci->ps_wake_refcount++;
545 		WARN_ON(ar_pci->ps_wake_refcount == 0);
546 	}
547 
548 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
549 
550 	return ret;
551 }
552 
553 static void ath10k_pci_sleep(struct ath10k *ar)
554 {
555 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
556 	unsigned long flags;
557 
558 	if (ar_pci->pci_ps == 0)
559 		return;
560 
561 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
562 
563 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
564 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
565 
566 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
567 		goto skip;
568 
569 	ar_pci->ps_wake_refcount--;
570 
571 	mod_timer(&ar_pci->ps_timer, jiffies +
572 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
573 
574 skip:
575 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
576 }
577 
578 static void ath10k_pci_ps_timer(unsigned long ptr)
579 {
580 	struct ath10k *ar = (void *)ptr;
581 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
582 	unsigned long flags;
583 
584 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
585 
586 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
587 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
588 
589 	if (ar_pci->ps_wake_refcount > 0)
590 		goto skip;
591 
592 	__ath10k_pci_sleep(ar);
593 
594 skip:
595 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
596 }
597 
598 static void ath10k_pci_sleep_sync(struct ath10k *ar)
599 {
600 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
601 	unsigned long flags;
602 
603 	if (ar_pci->pci_ps == 0) {
604 		ath10k_pci_force_sleep(ar);
605 		return;
606 	}
607 
608 	del_timer_sync(&ar_pci->ps_timer);
609 
610 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
611 	WARN_ON(ar_pci->ps_wake_refcount > 0);
612 	__ath10k_pci_sleep(ar);
613 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
614 }
615 
616 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
617 {
618 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
619 	int ret;
620 
621 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
622 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
623 			    offset, offset + sizeof(value), ar_pci->mem_len);
624 		return;
625 	}
626 
627 	ret = ath10k_pci_wake(ar);
628 	if (ret) {
629 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
630 			    value, offset, ret);
631 		return;
632 	}
633 
634 	iowrite32(value, ar_pci->mem + offset);
635 	ath10k_pci_sleep(ar);
636 }
637 
638 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
639 {
640 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
641 	u32 val;
642 	int ret;
643 
644 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
645 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
646 			    offset, offset + sizeof(val), ar_pci->mem_len);
647 		return 0;
648 	}
649 
650 	ret = ath10k_pci_wake(ar);
651 	if (ret) {
652 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
653 			    offset, ret);
654 		return 0xffffffff;
655 	}
656 
657 	val = ioread32(ar_pci->mem + offset);
658 	ath10k_pci_sleep(ar);
659 
660 	return val;
661 }
662 
663 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
664 {
665 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
666 
667 	ar_pci->bus_ops->write32(ar, offset, value);
668 }
669 
670 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
671 {
672 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
673 
674 	return ar_pci->bus_ops->read32(ar, offset);
675 }
676 
677 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
678 {
679 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
680 }
681 
682 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
683 {
684 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
685 }
686 
687 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
688 {
689 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
690 }
691 
692 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
693 {
694 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
695 }
696 
697 bool ath10k_pci_irq_pending(struct ath10k *ar)
698 {
699 	u32 cause;
700 
701 	/* Check if the shared legacy irq is for us */
702 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
703 				  PCIE_INTR_CAUSE_ADDRESS);
704 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
705 		return true;
706 
707 	return false;
708 }
709 
710 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
711 {
712 	/* IMPORTANT: INTR_CLR register has to be set after
713 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
714 	 * really cleared. */
715 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
716 			   0);
717 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
718 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
719 
720 	/* IMPORTANT: this extra read transaction is required to
721 	 * flush the posted write buffer. */
722 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
723 				PCIE_INTR_ENABLE_ADDRESS);
724 }
725 
726 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
727 {
728 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
729 			   PCIE_INTR_ENABLE_ADDRESS,
730 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
731 
732 	/* IMPORTANT: this extra read transaction is required to
733 	 * flush the posted write buffer. */
734 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
735 				PCIE_INTR_ENABLE_ADDRESS);
736 }
737 
738 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
739 {
740 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
741 
742 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
743 		return "msi";
744 
745 	return "legacy";
746 }
747 
748 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
749 {
750 	struct ath10k *ar = pipe->hif_ce_state;
751 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
752 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
753 	struct sk_buff *skb;
754 	dma_addr_t paddr;
755 	int ret;
756 
757 	skb = dev_alloc_skb(pipe->buf_sz);
758 	if (!skb)
759 		return -ENOMEM;
760 
761 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
762 
763 	paddr = dma_map_single(ar->dev, skb->data,
764 			       skb->len + skb_tailroom(skb),
765 			       DMA_FROM_DEVICE);
766 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
767 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
768 		dev_kfree_skb_any(skb);
769 		return -EIO;
770 	}
771 
772 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
773 
774 	spin_lock_bh(&ar_pci->ce_lock);
775 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
776 	spin_unlock_bh(&ar_pci->ce_lock);
777 	if (ret) {
778 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
779 				 DMA_FROM_DEVICE);
780 		dev_kfree_skb_any(skb);
781 		return ret;
782 	}
783 
784 	return 0;
785 }
786 
787 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
788 {
789 	struct ath10k *ar = pipe->hif_ce_state;
790 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
791 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
792 	int ret, num;
793 
794 	if (pipe->buf_sz == 0)
795 		return;
796 
797 	if (!ce_pipe->dest_ring)
798 		return;
799 
800 	spin_lock_bh(&ar_pci->ce_lock);
801 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
802 	spin_unlock_bh(&ar_pci->ce_lock);
803 
804 	while (num >= 0) {
805 		ret = __ath10k_pci_rx_post_buf(pipe);
806 		if (ret) {
807 			if (ret == -ENOSPC)
808 				break;
809 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
810 			mod_timer(&ar_pci->rx_post_retry, jiffies +
811 				  ATH10K_PCI_RX_POST_RETRY_MS);
812 			break;
813 		}
814 		num--;
815 	}
816 }
817 
818 void ath10k_pci_rx_post(struct ath10k *ar)
819 {
820 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
821 	int i;
822 
823 	for (i = 0; i < CE_COUNT; i++)
824 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
825 }
826 
827 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
828 {
829 	struct ath10k *ar = (void *)ptr;
830 
831 	ath10k_pci_rx_post(ar);
832 }
833 
834 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
835 {
836 	u32 val = 0;
837 
838 	switch (ar->hw_rev) {
839 	case ATH10K_HW_QCA988X:
840 	case ATH10K_HW_QCA6174:
841 	case ATH10K_HW_QCA9377:
842 		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
843 					  CORE_CTRL_ADDRESS) &
844 		       0x7ff) << 21;
845 		break;
846 	case ATH10K_HW_QCA99X0:
847 	case ATH10K_HW_QCA4019:
848 		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
849 		break;
850 	}
851 
852 	val |= 0x100000 | (addr & 0xfffff);
853 	return val;
854 }
855 
856 /*
857  * Diagnostic read/write access is provided for startup/config/debug usage.
858  * Caller must guarantee proper alignment, when applicable, and single user
859  * at any moment.
860  */
861 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
862 				    int nbytes)
863 {
864 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
865 	int ret = 0;
866 	u32 *buf;
867 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
868 	struct ath10k_ce_pipe *ce_diag;
869 	/* Host buffer address in CE space */
870 	u32 ce_data;
871 	dma_addr_t ce_data_base = 0;
872 	void *data_buf = NULL;
873 	int i;
874 
875 	spin_lock_bh(&ar_pci->ce_lock);
876 
877 	ce_diag = ar_pci->ce_diag;
878 
879 	/*
880 	 * Allocate a temporary bounce buffer to hold caller's data
881 	 * to be DMA'ed from Target. This guarantees
882 	 *   1) 4-byte alignment
883 	 *   2) Buffer in DMA-able space
884 	 */
885 	orig_nbytes = nbytes;
886 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
887 						       orig_nbytes,
888 						       &ce_data_base,
889 						       GFP_ATOMIC);
890 
891 	if (!data_buf) {
892 		ret = -ENOMEM;
893 		goto done;
894 	}
895 	memset(data_buf, 0, orig_nbytes);
896 
897 	remaining_bytes = orig_nbytes;
898 	ce_data = ce_data_base;
899 	while (remaining_bytes) {
900 		nbytes = min_t(unsigned int, remaining_bytes,
901 			       DIAG_TRANSFER_LIMIT);
902 
903 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
904 		if (ret != 0)
905 			goto done;
906 
907 		/* Request CE to send from Target(!) address to Host buffer */
908 		/*
909 		 * The address supplied by the caller is in the
910 		 * Target CPU virtual address space.
911 		 *
912 		 * In order to use this address with the diagnostic CE,
913 		 * convert it from Target CPU virtual address space
914 		 * to CE address space
915 		 */
916 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
917 
918 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
919 					    0);
920 		if (ret)
921 			goto done;
922 
923 		i = 0;
924 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
925 							    NULL) != 0) {
926 			mdelay(1);
927 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
928 				ret = -EBUSY;
929 				goto done;
930 			}
931 		}
932 
933 		i = 0;
934 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
935 							    (void **)&buf,
936 							    &completed_nbytes)
937 								!= 0) {
938 			mdelay(1);
939 
940 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
941 				ret = -EBUSY;
942 				goto done;
943 			}
944 		}
945 
946 		if (nbytes != completed_nbytes) {
947 			ret = -EIO;
948 			goto done;
949 		}
950 
951 		if (*buf != ce_data) {
952 			ret = -EIO;
953 			goto done;
954 		}
955 
956 		remaining_bytes -= nbytes;
957 		address += nbytes;
958 		ce_data += nbytes;
959 	}
960 
961 done:
962 	if (ret == 0)
963 		memcpy(data, data_buf, orig_nbytes);
964 	else
965 		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
966 			    address, ret);
967 
968 	if (data_buf)
969 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
970 				  ce_data_base);
971 
972 	spin_unlock_bh(&ar_pci->ce_lock);
973 
974 	return ret;
975 }
976 
977 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
978 {
979 	__le32 val = 0;
980 	int ret;
981 
982 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
983 	*value = __le32_to_cpu(val);
984 
985 	return ret;
986 }
987 
988 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
989 				     u32 src, u32 len)
990 {
991 	u32 host_addr, addr;
992 	int ret;
993 
994 	host_addr = host_interest_item_address(src);
995 
996 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
997 	if (ret != 0) {
998 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
999 			    src, ret);
1000 		return ret;
1001 	}
1002 
1003 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1004 	if (ret != 0) {
1005 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1006 			    addr, len, ret);
1007 		return ret;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1014 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1015 
1016 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1017 			      const void *data, int nbytes)
1018 {
1019 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1020 	int ret = 0;
1021 	u32 *buf;
1022 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1023 	struct ath10k_ce_pipe *ce_diag;
1024 	void *data_buf = NULL;
1025 	u32 ce_data;	/* Host buffer address in CE space */
1026 	dma_addr_t ce_data_base = 0;
1027 	int i;
1028 
1029 	spin_lock_bh(&ar_pci->ce_lock);
1030 
1031 	ce_diag = ar_pci->ce_diag;
1032 
1033 	/*
1034 	 * Allocate a temporary bounce buffer to hold caller's data
1035 	 * to be DMA'ed to Target. This guarantees
1036 	 *   1) 4-byte alignment
1037 	 *   2) Buffer in DMA-able space
1038 	 */
1039 	orig_nbytes = nbytes;
1040 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1041 						       orig_nbytes,
1042 						       &ce_data_base,
1043 						       GFP_ATOMIC);
1044 	if (!data_buf) {
1045 		ret = -ENOMEM;
1046 		goto done;
1047 	}
1048 
1049 	/* Copy caller's data to allocated DMA buf */
1050 	memcpy(data_buf, data, orig_nbytes);
1051 
1052 	/*
1053 	 * The address supplied by the caller is in the
1054 	 * Target CPU virtual address space.
1055 	 *
1056 	 * In order to use this address with the diagnostic CE,
1057 	 * convert it from
1058 	 *    Target CPU virtual address space
1059 	 * to
1060 	 *    CE address space
1061 	 */
1062 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1063 
1064 	remaining_bytes = orig_nbytes;
1065 	ce_data = ce_data_base;
1066 	while (remaining_bytes) {
1067 		/* FIXME: check cast */
1068 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1069 
1070 		/* Set up to receive directly into Target(!) address */
1071 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1072 		if (ret != 0)
1073 			goto done;
1074 
1075 		/*
1076 		 * Request CE to send caller-supplied data that
1077 		 * was copied to bounce buffer to Target(!) address.
1078 		 */
1079 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1080 					    nbytes, 0, 0);
1081 		if (ret != 0)
1082 			goto done;
1083 
1084 		i = 0;
1085 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1086 							    NULL) != 0) {
1087 			mdelay(1);
1088 
1089 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1090 				ret = -EBUSY;
1091 				goto done;
1092 			}
1093 		}
1094 
1095 		i = 0;
1096 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1097 							    (void **)&buf,
1098 							    &completed_nbytes)
1099 								!= 0) {
1100 			mdelay(1);
1101 
1102 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1103 				ret = -EBUSY;
1104 				goto done;
1105 			}
1106 		}
1107 
1108 		if (nbytes != completed_nbytes) {
1109 			ret = -EIO;
1110 			goto done;
1111 		}
1112 
1113 		if (*buf != address) {
1114 			ret = -EIO;
1115 			goto done;
1116 		}
1117 
1118 		remaining_bytes -= nbytes;
1119 		address += nbytes;
1120 		ce_data += nbytes;
1121 	}
1122 
1123 done:
1124 	if (data_buf) {
1125 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1126 				  ce_data_base);
1127 	}
1128 
1129 	if (ret != 0)
1130 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1131 			    address, ret);
1132 
1133 	spin_unlock_bh(&ar_pci->ce_lock);
1134 
1135 	return ret;
1136 }
1137 
1138 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1139 {
1140 	__le32 val = __cpu_to_le32(value);
1141 
1142 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1143 }
1144 
1145 /* Called by lower (CE) layer when a send to Target completes. */
1146 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1147 {
1148 	struct ath10k *ar = ce_state->ar;
1149 	struct sk_buff_head list;
1150 	struct sk_buff *skb;
1151 
1152 	__skb_queue_head_init(&list);
1153 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1154 		/* no need to call tx completion for NULL pointers */
1155 		if (skb == NULL)
1156 			continue;
1157 
1158 		__skb_queue_tail(&list, skb);
1159 	}
1160 
1161 	while ((skb = __skb_dequeue(&list)))
1162 		ath10k_htc_tx_completion_handler(ar, skb);
1163 }
1164 
1165 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1166 				     void (*callback)(struct ath10k *ar,
1167 						      struct sk_buff *skb))
1168 {
1169 	struct ath10k *ar = ce_state->ar;
1170 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1171 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1172 	struct sk_buff *skb;
1173 	struct sk_buff_head list;
1174 	void *transfer_context;
1175 	unsigned int nbytes, max_nbytes;
1176 
1177 	__skb_queue_head_init(&list);
1178 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1179 					     &nbytes) == 0) {
1180 		skb = transfer_context;
1181 		max_nbytes = skb->len + skb_tailroom(skb);
1182 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1183 				 max_nbytes, DMA_FROM_DEVICE);
1184 
1185 		if (unlikely(max_nbytes < nbytes)) {
1186 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1187 				    nbytes, max_nbytes);
1188 			dev_kfree_skb_any(skb);
1189 			continue;
1190 		}
1191 
1192 		skb_put(skb, nbytes);
1193 		__skb_queue_tail(&list, skb);
1194 	}
1195 
1196 	while ((skb = __skb_dequeue(&list))) {
1197 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1198 			   ce_state->id, skb->len);
1199 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1200 				skb->data, skb->len);
1201 
1202 		callback(ar, skb);
1203 	}
1204 
1205 	ath10k_pci_rx_post_pipe(pipe_info);
1206 }
1207 
1208 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1209 					 void (*callback)(struct ath10k *ar,
1210 							  struct sk_buff *skb))
1211 {
1212 	struct ath10k *ar = ce_state->ar;
1213 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1214 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1215 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1216 	struct sk_buff *skb;
1217 	struct sk_buff_head list;
1218 	void *transfer_context;
1219 	unsigned int nbytes, max_nbytes, nentries;
1220 	int orig_len;
1221 
1222 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1223 	 * is processed other than init and deinit. Before releasing CE5
1224 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1225 	 */
1226 	__skb_queue_head_init(&list);
1227 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1228 						    &nbytes) == 0) {
1229 		skb = transfer_context;
1230 		max_nbytes = skb->len + skb_tailroom(skb);
1231 
1232 		if (unlikely(max_nbytes < nbytes)) {
1233 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1234 				    nbytes, max_nbytes);
1235 			continue;
1236 		}
1237 
1238 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1239 					max_nbytes, DMA_FROM_DEVICE);
1240 		skb_put(skb, nbytes);
1241 		__skb_queue_tail(&list, skb);
1242 	}
1243 
1244 	nentries = skb_queue_len(&list);
1245 	while ((skb = __skb_dequeue(&list))) {
1246 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1247 			   ce_state->id, skb->len);
1248 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1249 				skb->data, skb->len);
1250 
1251 		orig_len = skb->len;
1252 		callback(ar, skb);
1253 		skb_push(skb, orig_len - skb->len);
1254 		skb_reset_tail_pointer(skb);
1255 		skb_trim(skb, 0);
1256 
1257 		/*let device gain the buffer again*/
1258 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1259 					   skb->len + skb_tailroom(skb),
1260 					   DMA_FROM_DEVICE);
1261 	}
1262 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1263 }
1264 
1265 /* Called by lower (CE) layer when data is received from the Target. */
1266 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1267 {
1268 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1269 }
1270 
1271 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1272 {
1273 	/* CE4 polling needs to be done whenever CE pipe which transports
1274 	 * HTT Rx (target->host) is processed.
1275 	 */
1276 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1277 
1278 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1279 }
1280 
1281 /* Called by lower (CE) layer when data is received from the Target.
1282  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1283  */
1284 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1285 {
1286 	ath10k_pci_process_rx_cb(ce_state,
1287 				 ath10k_htt_rx_pktlog_completion_handler);
1288 }
1289 
1290 /* Called by lower (CE) layer when a send to HTT Target completes. */
1291 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1292 {
1293 	struct ath10k *ar = ce_state->ar;
1294 	struct sk_buff *skb;
1295 
1296 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1297 		/* no need to call tx completion for NULL pointers */
1298 		if (!skb)
1299 			continue;
1300 
1301 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1302 				 skb->len, DMA_TO_DEVICE);
1303 		ath10k_htt_hif_tx_complete(ar, skb);
1304 	}
1305 }
1306 
1307 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1308 {
1309 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1310 	ath10k_htt_t2h_msg_handler(ar, skb);
1311 }
1312 
1313 /* Called by lower (CE) layer when HTT data is received from the Target. */
1314 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1315 {
1316 	/* CE4 polling needs to be done whenever CE pipe which transports
1317 	 * HTT Rx (target->host) is processed.
1318 	 */
1319 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1320 
1321 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1322 }
1323 
1324 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1325 			 struct ath10k_hif_sg_item *items, int n_items)
1326 {
1327 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1328 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1329 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1330 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1331 	unsigned int nentries_mask;
1332 	unsigned int sw_index;
1333 	unsigned int write_index;
1334 	int err, i = 0;
1335 
1336 	spin_lock_bh(&ar_pci->ce_lock);
1337 
1338 	nentries_mask = src_ring->nentries_mask;
1339 	sw_index = src_ring->sw_index;
1340 	write_index = src_ring->write_index;
1341 
1342 	if (unlikely(CE_RING_DELTA(nentries_mask,
1343 				   write_index, sw_index - 1) < n_items)) {
1344 		err = -ENOBUFS;
1345 		goto err;
1346 	}
1347 
1348 	for (i = 0; i < n_items - 1; i++) {
1349 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1350 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1351 			   i, items[i].paddr, items[i].len, n_items);
1352 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1353 				items[i].vaddr, items[i].len);
1354 
1355 		err = ath10k_ce_send_nolock(ce_pipe,
1356 					    items[i].transfer_context,
1357 					    items[i].paddr,
1358 					    items[i].len,
1359 					    items[i].transfer_id,
1360 					    CE_SEND_FLAG_GATHER);
1361 		if (err)
1362 			goto err;
1363 	}
1364 
1365 	/* `i` is equal to `n_items -1` after for() */
1366 
1367 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1368 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1369 		   i, items[i].paddr, items[i].len, n_items);
1370 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1371 			items[i].vaddr, items[i].len);
1372 
1373 	err = ath10k_ce_send_nolock(ce_pipe,
1374 				    items[i].transfer_context,
1375 				    items[i].paddr,
1376 				    items[i].len,
1377 				    items[i].transfer_id,
1378 				    0);
1379 	if (err)
1380 		goto err;
1381 
1382 	spin_unlock_bh(&ar_pci->ce_lock);
1383 	return 0;
1384 
1385 err:
1386 	for (; i > 0; i--)
1387 		__ath10k_ce_send_revert(ce_pipe);
1388 
1389 	spin_unlock_bh(&ar_pci->ce_lock);
1390 	return err;
1391 }
1392 
1393 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1394 			     size_t buf_len)
1395 {
1396 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1397 }
1398 
1399 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1400 {
1401 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1402 
1403 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1404 
1405 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1406 }
1407 
1408 static void ath10k_pci_dump_registers(struct ath10k *ar,
1409 				      struct ath10k_fw_crash_data *crash_data)
1410 {
1411 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1412 	int i, ret;
1413 
1414 	lockdep_assert_held(&ar->data_lock);
1415 
1416 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1417 				      hi_failure_state,
1418 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1419 	if (ret) {
1420 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1421 		return;
1422 	}
1423 
1424 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1425 
1426 	ath10k_err(ar, "firmware register dump:\n");
1427 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1428 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1429 			   i,
1430 			   __le32_to_cpu(reg_dump_values[i]),
1431 			   __le32_to_cpu(reg_dump_values[i + 1]),
1432 			   __le32_to_cpu(reg_dump_values[i + 2]),
1433 			   __le32_to_cpu(reg_dump_values[i + 3]));
1434 
1435 	if (!crash_data)
1436 		return;
1437 
1438 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1439 		crash_data->registers[i] = reg_dump_values[i];
1440 }
1441 
1442 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1443 {
1444 	struct ath10k_fw_crash_data *crash_data;
1445 	char uuid[50];
1446 
1447 	spin_lock_bh(&ar->data_lock);
1448 
1449 	ar->stats.fw_crash_counter++;
1450 
1451 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1452 
1453 	if (crash_data)
1454 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1455 	else
1456 		scnprintf(uuid, sizeof(uuid), "n/a");
1457 
1458 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1459 	ath10k_print_driver_info(ar);
1460 	ath10k_pci_dump_registers(ar, crash_data);
1461 
1462 	spin_unlock_bh(&ar->data_lock);
1463 
1464 	queue_work(ar->workqueue, &ar->restart_work);
1465 }
1466 
1467 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1468 					int force)
1469 {
1470 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1471 
1472 	if (!force) {
1473 		int resources;
1474 		/*
1475 		 * Decide whether to actually poll for completions, or just
1476 		 * wait for a later chance.
1477 		 * If there seem to be plenty of resources left, then just wait
1478 		 * since checking involves reading a CE register, which is a
1479 		 * relatively expensive operation.
1480 		 */
1481 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1482 
1483 		/*
1484 		 * If at least 50% of the total resources are still available,
1485 		 * don't bother checking again yet.
1486 		 */
1487 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1488 			return;
1489 	}
1490 	ath10k_ce_per_engine_service(ar, pipe);
1491 }
1492 
1493 void ath10k_pci_kill_tasklet(struct ath10k *ar)
1494 {
1495 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1496 
1497 	tasklet_kill(&ar_pci->intr_tq);
1498 
1499 	del_timer_sync(&ar_pci->rx_post_retry);
1500 }
1501 
1502 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1503 				       u8 *ul_pipe, u8 *dl_pipe)
1504 {
1505 	const struct service_to_pipe *entry;
1506 	bool ul_set = false, dl_set = false;
1507 	int i;
1508 
1509 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1510 
1511 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1512 		entry = &target_service_to_ce_map_wlan[i];
1513 
1514 		if (__le32_to_cpu(entry->service_id) != service_id)
1515 			continue;
1516 
1517 		switch (__le32_to_cpu(entry->pipedir)) {
1518 		case PIPEDIR_NONE:
1519 			break;
1520 		case PIPEDIR_IN:
1521 			WARN_ON(dl_set);
1522 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1523 			dl_set = true;
1524 			break;
1525 		case PIPEDIR_OUT:
1526 			WARN_ON(ul_set);
1527 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1528 			ul_set = true;
1529 			break;
1530 		case PIPEDIR_INOUT:
1531 			WARN_ON(dl_set);
1532 			WARN_ON(ul_set);
1533 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1534 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1535 			dl_set = true;
1536 			ul_set = true;
1537 			break;
1538 		}
1539 	}
1540 
1541 	if (WARN_ON(!ul_set || !dl_set))
1542 		return -ENOENT;
1543 
1544 	return 0;
1545 }
1546 
1547 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1548 				     u8 *ul_pipe, u8 *dl_pipe)
1549 {
1550 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1551 
1552 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1553 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1554 						 ul_pipe, dl_pipe);
1555 }
1556 
1557 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1558 {
1559 	u32 val;
1560 
1561 	switch (ar->hw_rev) {
1562 	case ATH10K_HW_QCA988X:
1563 	case ATH10K_HW_QCA6174:
1564 	case ATH10K_HW_QCA9377:
1565 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1566 					CORE_CTRL_ADDRESS);
1567 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1568 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1569 				   CORE_CTRL_ADDRESS, val);
1570 		break;
1571 	case ATH10K_HW_QCA99X0:
1572 	case ATH10K_HW_QCA4019:
1573 		/* TODO: Find appropriate register configuration for QCA99X0
1574 		 *  to mask irq/MSI.
1575 		 */
1576 		 break;
1577 	}
1578 }
1579 
1580 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1581 {
1582 	u32 val;
1583 
1584 	switch (ar->hw_rev) {
1585 	case ATH10K_HW_QCA988X:
1586 	case ATH10K_HW_QCA6174:
1587 	case ATH10K_HW_QCA9377:
1588 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1589 					CORE_CTRL_ADDRESS);
1590 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1591 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1592 				   CORE_CTRL_ADDRESS, val);
1593 		break;
1594 	case ATH10K_HW_QCA99X0:
1595 	case ATH10K_HW_QCA4019:
1596 		/* TODO: Find appropriate register configuration for QCA99X0
1597 		 *  to unmask irq/MSI.
1598 		 */
1599 		break;
1600 	}
1601 }
1602 
1603 static void ath10k_pci_irq_disable(struct ath10k *ar)
1604 {
1605 	ath10k_ce_disable_interrupts(ar);
1606 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1607 	ath10k_pci_irq_msi_fw_mask(ar);
1608 }
1609 
1610 static void ath10k_pci_irq_sync(struct ath10k *ar)
1611 {
1612 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1613 
1614 	synchronize_irq(ar_pci->pdev->irq);
1615 }
1616 
1617 static void ath10k_pci_irq_enable(struct ath10k *ar)
1618 {
1619 	ath10k_ce_enable_interrupts(ar);
1620 	ath10k_pci_enable_legacy_irq(ar);
1621 	ath10k_pci_irq_msi_fw_unmask(ar);
1622 }
1623 
1624 static int ath10k_pci_hif_start(struct ath10k *ar)
1625 {
1626 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1627 
1628 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1629 
1630 	ath10k_pci_irq_enable(ar);
1631 	ath10k_pci_rx_post(ar);
1632 
1633 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1634 				   ar_pci->link_ctl);
1635 
1636 	return 0;
1637 }
1638 
1639 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1640 {
1641 	struct ath10k *ar;
1642 	struct ath10k_ce_pipe *ce_pipe;
1643 	struct ath10k_ce_ring *ce_ring;
1644 	struct sk_buff *skb;
1645 	int i;
1646 
1647 	ar = pci_pipe->hif_ce_state;
1648 	ce_pipe = pci_pipe->ce_hdl;
1649 	ce_ring = ce_pipe->dest_ring;
1650 
1651 	if (!ce_ring)
1652 		return;
1653 
1654 	if (!pci_pipe->buf_sz)
1655 		return;
1656 
1657 	for (i = 0; i < ce_ring->nentries; i++) {
1658 		skb = ce_ring->per_transfer_context[i];
1659 		if (!skb)
1660 			continue;
1661 
1662 		ce_ring->per_transfer_context[i] = NULL;
1663 
1664 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1665 				 skb->len + skb_tailroom(skb),
1666 				 DMA_FROM_DEVICE);
1667 		dev_kfree_skb_any(skb);
1668 	}
1669 }
1670 
1671 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1672 {
1673 	struct ath10k *ar;
1674 	struct ath10k_pci *ar_pci;
1675 	struct ath10k_ce_pipe *ce_pipe;
1676 	struct ath10k_ce_ring *ce_ring;
1677 	struct sk_buff *skb;
1678 	int i;
1679 
1680 	ar = pci_pipe->hif_ce_state;
1681 	ar_pci = ath10k_pci_priv(ar);
1682 	ce_pipe = pci_pipe->ce_hdl;
1683 	ce_ring = ce_pipe->src_ring;
1684 
1685 	if (!ce_ring)
1686 		return;
1687 
1688 	if (!pci_pipe->buf_sz)
1689 		return;
1690 
1691 	for (i = 0; i < ce_ring->nentries; i++) {
1692 		skb = ce_ring->per_transfer_context[i];
1693 		if (!skb)
1694 			continue;
1695 
1696 		ce_ring->per_transfer_context[i] = NULL;
1697 
1698 		ath10k_htc_tx_completion_handler(ar, skb);
1699 	}
1700 }
1701 
1702 /*
1703  * Cleanup residual buffers for device shutdown:
1704  *    buffers that were enqueued for receive
1705  *    buffers that were to be sent
1706  * Note: Buffers that had completed but which were
1707  * not yet processed are on a completion queue. They
1708  * are handled when the completion thread shuts down.
1709  */
1710 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1711 {
1712 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1713 	int pipe_num;
1714 
1715 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1716 		struct ath10k_pci_pipe *pipe_info;
1717 
1718 		pipe_info = &ar_pci->pipe_info[pipe_num];
1719 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1720 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1721 	}
1722 }
1723 
1724 void ath10k_pci_ce_deinit(struct ath10k *ar)
1725 {
1726 	int i;
1727 
1728 	for (i = 0; i < CE_COUNT; i++)
1729 		ath10k_ce_deinit_pipe(ar, i);
1730 }
1731 
1732 void ath10k_pci_flush(struct ath10k *ar)
1733 {
1734 	ath10k_pci_kill_tasklet(ar);
1735 	ath10k_pci_buffer_cleanup(ar);
1736 }
1737 
1738 static void ath10k_pci_hif_stop(struct ath10k *ar)
1739 {
1740 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1741 	unsigned long flags;
1742 
1743 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1744 
1745 	/* Most likely the device has HTT Rx ring configured. The only way to
1746 	 * prevent the device from accessing (and possible corrupting) host
1747 	 * memory is to reset the chip now.
1748 	 *
1749 	 * There's also no known way of masking MSI interrupts on the device.
1750 	 * For ranged MSI the CE-related interrupts can be masked. However
1751 	 * regardless how many MSI interrupts are assigned the first one
1752 	 * is always used for firmware indications (crashes) and cannot be
1753 	 * masked. To prevent the device from asserting the interrupt reset it
1754 	 * before proceeding with cleanup.
1755 	 */
1756 	ath10k_pci_safe_chip_reset(ar);
1757 
1758 	ath10k_pci_irq_disable(ar);
1759 	ath10k_pci_irq_sync(ar);
1760 	ath10k_pci_flush(ar);
1761 
1762 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1763 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1764 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1765 }
1766 
1767 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1768 				    void *req, u32 req_len,
1769 				    void *resp, u32 *resp_len)
1770 {
1771 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1772 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1773 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1774 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1775 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1776 	dma_addr_t req_paddr = 0;
1777 	dma_addr_t resp_paddr = 0;
1778 	struct bmi_xfer xfer = {};
1779 	void *treq, *tresp = NULL;
1780 	int ret = 0;
1781 
1782 	might_sleep();
1783 
1784 	if (resp && !resp_len)
1785 		return -EINVAL;
1786 
1787 	if (resp && resp_len && *resp_len == 0)
1788 		return -EINVAL;
1789 
1790 	treq = kmemdup(req, req_len, GFP_KERNEL);
1791 	if (!treq)
1792 		return -ENOMEM;
1793 
1794 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1795 	ret = dma_mapping_error(ar->dev, req_paddr);
1796 	if (ret) {
1797 		ret = -EIO;
1798 		goto err_dma;
1799 	}
1800 
1801 	if (resp && resp_len) {
1802 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1803 		if (!tresp) {
1804 			ret = -ENOMEM;
1805 			goto err_req;
1806 		}
1807 
1808 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1809 					    DMA_FROM_DEVICE);
1810 		ret = dma_mapping_error(ar->dev, resp_paddr);
1811 		if (ret) {
1812 			ret = -EIO;
1813 			goto err_req;
1814 		}
1815 
1816 		xfer.wait_for_resp = true;
1817 		xfer.resp_len = 0;
1818 
1819 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1820 	}
1821 
1822 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1823 	if (ret)
1824 		goto err_resp;
1825 
1826 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1827 	if (ret) {
1828 		u32 unused_buffer;
1829 		unsigned int unused_nbytes;
1830 		unsigned int unused_id;
1831 
1832 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1833 					   &unused_nbytes, &unused_id);
1834 	} else {
1835 		/* non-zero means we did not time out */
1836 		ret = 0;
1837 	}
1838 
1839 err_resp:
1840 	if (resp) {
1841 		u32 unused_buffer;
1842 
1843 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1844 		dma_unmap_single(ar->dev, resp_paddr,
1845 				 *resp_len, DMA_FROM_DEVICE);
1846 	}
1847 err_req:
1848 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1849 
1850 	if (ret == 0 && resp_len) {
1851 		*resp_len = min(*resp_len, xfer.resp_len);
1852 		memcpy(resp, tresp, xfer.resp_len);
1853 	}
1854 err_dma:
1855 	kfree(treq);
1856 	kfree(tresp);
1857 
1858 	return ret;
1859 }
1860 
1861 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1862 {
1863 	struct bmi_xfer *xfer;
1864 
1865 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1866 		return;
1867 
1868 	xfer->tx_done = true;
1869 }
1870 
1871 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1872 {
1873 	struct ath10k *ar = ce_state->ar;
1874 	struct bmi_xfer *xfer;
1875 	unsigned int nbytes;
1876 
1877 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1878 					  &nbytes))
1879 		return;
1880 
1881 	if (WARN_ON_ONCE(!xfer))
1882 		return;
1883 
1884 	if (!xfer->wait_for_resp) {
1885 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1886 		return;
1887 	}
1888 
1889 	xfer->resp_len = nbytes;
1890 	xfer->rx_done = true;
1891 }
1892 
1893 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1894 			       struct ath10k_ce_pipe *rx_pipe,
1895 			       struct bmi_xfer *xfer)
1896 {
1897 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1898 
1899 	while (time_before_eq(jiffies, timeout)) {
1900 		ath10k_pci_bmi_send_done(tx_pipe);
1901 		ath10k_pci_bmi_recv_data(rx_pipe);
1902 
1903 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1904 			return 0;
1905 
1906 		schedule();
1907 	}
1908 
1909 	return -ETIMEDOUT;
1910 }
1911 
1912 /*
1913  * Send an interrupt to the device to wake up the Target CPU
1914  * so it has an opportunity to notice any changed state.
1915  */
1916 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1917 {
1918 	u32 addr, val;
1919 
1920 	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1921 	val = ath10k_pci_read32(ar, addr);
1922 	val |= CORE_CTRL_CPU_INTR_MASK;
1923 	ath10k_pci_write32(ar, addr, val);
1924 
1925 	return 0;
1926 }
1927 
1928 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1929 {
1930 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1931 
1932 	switch (ar_pci->pdev->device) {
1933 	case QCA988X_2_0_DEVICE_ID:
1934 	case QCA99X0_2_0_DEVICE_ID:
1935 		return 1;
1936 	case QCA6164_2_1_DEVICE_ID:
1937 	case QCA6174_2_1_DEVICE_ID:
1938 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1939 		case QCA6174_HW_1_0_CHIP_ID_REV:
1940 		case QCA6174_HW_1_1_CHIP_ID_REV:
1941 		case QCA6174_HW_2_1_CHIP_ID_REV:
1942 		case QCA6174_HW_2_2_CHIP_ID_REV:
1943 			return 3;
1944 		case QCA6174_HW_1_3_CHIP_ID_REV:
1945 			return 2;
1946 		case QCA6174_HW_3_0_CHIP_ID_REV:
1947 		case QCA6174_HW_3_1_CHIP_ID_REV:
1948 		case QCA6174_HW_3_2_CHIP_ID_REV:
1949 			return 9;
1950 		}
1951 		break;
1952 	case QCA9377_1_0_DEVICE_ID:
1953 		return 2;
1954 	}
1955 
1956 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1957 	return 1;
1958 }
1959 
1960 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1961 {
1962 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1963 
1964 	return ar_pci->bus_ops->get_num_banks(ar);
1965 }
1966 
1967 int ath10k_pci_init_config(struct ath10k *ar)
1968 {
1969 	u32 interconnect_targ_addr;
1970 	u32 pcie_state_targ_addr = 0;
1971 	u32 pipe_cfg_targ_addr = 0;
1972 	u32 svc_to_pipe_map = 0;
1973 	u32 pcie_config_flags = 0;
1974 	u32 ealloc_value;
1975 	u32 ealloc_targ_addr;
1976 	u32 flag2_value;
1977 	u32 flag2_targ_addr;
1978 	int ret = 0;
1979 
1980 	/* Download to Target the CE Config and the service-to-CE map */
1981 	interconnect_targ_addr =
1982 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1983 
1984 	/* Supply Target-side CE configuration */
1985 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1986 				     &pcie_state_targ_addr);
1987 	if (ret != 0) {
1988 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1989 		return ret;
1990 	}
1991 
1992 	if (pcie_state_targ_addr == 0) {
1993 		ret = -EIO;
1994 		ath10k_err(ar, "Invalid pcie state addr\n");
1995 		return ret;
1996 	}
1997 
1998 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1999 					  offsetof(struct pcie_state,
2000 						   pipe_cfg_addr)),
2001 				     &pipe_cfg_targ_addr);
2002 	if (ret != 0) {
2003 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2004 		return ret;
2005 	}
2006 
2007 	if (pipe_cfg_targ_addr == 0) {
2008 		ret = -EIO;
2009 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2010 		return ret;
2011 	}
2012 
2013 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2014 					target_ce_config_wlan,
2015 					sizeof(struct ce_pipe_config) *
2016 					NUM_TARGET_CE_CONFIG_WLAN);
2017 
2018 	if (ret != 0) {
2019 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2020 		return ret;
2021 	}
2022 
2023 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2024 					  offsetof(struct pcie_state,
2025 						   svc_to_pipe_map)),
2026 				     &svc_to_pipe_map);
2027 	if (ret != 0) {
2028 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2029 		return ret;
2030 	}
2031 
2032 	if (svc_to_pipe_map == 0) {
2033 		ret = -EIO;
2034 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2035 		return ret;
2036 	}
2037 
2038 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2039 					target_service_to_ce_map_wlan,
2040 					sizeof(target_service_to_ce_map_wlan));
2041 	if (ret != 0) {
2042 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2043 		return ret;
2044 	}
2045 
2046 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2047 					  offsetof(struct pcie_state,
2048 						   config_flags)),
2049 				     &pcie_config_flags);
2050 	if (ret != 0) {
2051 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2052 		return ret;
2053 	}
2054 
2055 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2056 
2057 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2058 					   offsetof(struct pcie_state,
2059 						    config_flags)),
2060 				      pcie_config_flags);
2061 	if (ret != 0) {
2062 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2063 		return ret;
2064 	}
2065 
2066 	/* configure early allocation */
2067 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2068 
2069 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2070 	if (ret != 0) {
2071 		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2072 		return ret;
2073 	}
2074 
2075 	/* first bank is switched to IRAM */
2076 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2077 			 HI_EARLY_ALLOC_MAGIC_MASK);
2078 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2079 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2080 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2081 
2082 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2083 	if (ret != 0) {
2084 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2085 		return ret;
2086 	}
2087 
2088 	/* Tell Target to proceed with initialization */
2089 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2090 
2091 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2092 	if (ret != 0) {
2093 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2094 		return ret;
2095 	}
2096 
2097 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2098 
2099 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2100 	if (ret != 0) {
2101 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2102 		return ret;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2109 {
2110 	struct ce_attr *attr;
2111 	struct ce_pipe_config *config;
2112 
2113 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2114 	 * since it is currently used for other feature.
2115 	 */
2116 
2117 	/* Override Host's Copy Engine 5 configuration */
2118 	attr = &host_ce_config_wlan[5];
2119 	attr->src_sz_max = 0;
2120 	attr->dest_nentries = 0;
2121 
2122 	/* Override Target firmware's Copy Engine configuration */
2123 	config = &target_ce_config_wlan[5];
2124 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2125 	config->nbytes_max = __cpu_to_le32(2048);
2126 
2127 	/* Map from service/endpoint to Copy Engine */
2128 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2129 }
2130 
2131 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2132 {
2133 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2134 	struct ath10k_pci_pipe *pipe;
2135 	int i, ret;
2136 
2137 	for (i = 0; i < CE_COUNT; i++) {
2138 		pipe = &ar_pci->pipe_info[i];
2139 		pipe->ce_hdl = &ar_pci->ce_states[i];
2140 		pipe->pipe_num = i;
2141 		pipe->hif_ce_state = ar;
2142 
2143 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2144 		if (ret) {
2145 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2146 				   i, ret);
2147 			return ret;
2148 		}
2149 
2150 		/* Last CE is Diagnostic Window */
2151 		if (i == CE_DIAG_PIPE) {
2152 			ar_pci->ce_diag = pipe->ce_hdl;
2153 			continue;
2154 		}
2155 
2156 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 void ath10k_pci_free_pipes(struct ath10k *ar)
2163 {
2164 	int i;
2165 
2166 	for (i = 0; i < CE_COUNT; i++)
2167 		ath10k_ce_free_pipe(ar, i);
2168 }
2169 
2170 int ath10k_pci_init_pipes(struct ath10k *ar)
2171 {
2172 	int i, ret;
2173 
2174 	for (i = 0; i < CE_COUNT; i++) {
2175 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2176 		if (ret) {
2177 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2178 				   i, ret);
2179 			return ret;
2180 		}
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2187 {
2188 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2189 	       FW_IND_EVENT_PENDING;
2190 }
2191 
2192 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2193 {
2194 	u32 val;
2195 
2196 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2197 	val &= ~FW_IND_EVENT_PENDING;
2198 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2199 }
2200 
2201 /* this function effectively clears target memory controller assert line */
2202 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2203 {
2204 	u32 val;
2205 
2206 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2207 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2208 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2209 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2210 
2211 	msleep(10);
2212 
2213 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2214 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2215 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2216 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2217 
2218 	msleep(10);
2219 }
2220 
2221 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2222 {
2223 	u32 val;
2224 
2225 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2226 
2227 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2228 				SOC_RESET_CONTROL_ADDRESS);
2229 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2230 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2231 }
2232 
2233 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2234 {
2235 	u32 val;
2236 
2237 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2238 				SOC_RESET_CONTROL_ADDRESS);
2239 
2240 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2241 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2242 	msleep(10);
2243 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2244 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2245 }
2246 
2247 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2248 {
2249 	u32 val;
2250 
2251 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2252 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2253 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2254 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2255 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2256 }
2257 
2258 static int ath10k_pci_warm_reset(struct ath10k *ar)
2259 {
2260 	int ret;
2261 
2262 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2263 
2264 	spin_lock_bh(&ar->data_lock);
2265 	ar->stats.fw_warm_reset_counter++;
2266 	spin_unlock_bh(&ar->data_lock);
2267 
2268 	ath10k_pci_irq_disable(ar);
2269 
2270 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2271 	 * were to access copy engine while host performs copy engine reset
2272 	 * then it is possible for the device to confuse pci-e controller to
2273 	 * the point of bringing host system to a complete stop (i.e. hang).
2274 	 */
2275 	ath10k_pci_warm_reset_si0(ar);
2276 	ath10k_pci_warm_reset_cpu(ar);
2277 	ath10k_pci_init_pipes(ar);
2278 	ath10k_pci_wait_for_target_init(ar);
2279 
2280 	ath10k_pci_warm_reset_clear_lf(ar);
2281 	ath10k_pci_warm_reset_ce(ar);
2282 	ath10k_pci_warm_reset_cpu(ar);
2283 	ath10k_pci_init_pipes(ar);
2284 
2285 	ret = ath10k_pci_wait_for_target_init(ar);
2286 	if (ret) {
2287 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2288 		return ret;
2289 	}
2290 
2291 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2292 
2293 	return 0;
2294 }
2295 
2296 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2297 {
2298 	if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
2299 		return ath10k_pci_warm_reset(ar);
2300 	} else if (QCA_REV_99X0(ar)) {
2301 		ath10k_pci_irq_disable(ar);
2302 		return ath10k_pci_qca99x0_chip_reset(ar);
2303 	} else {
2304 		return -ENOTSUPP;
2305 	}
2306 }
2307 
2308 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2309 {
2310 	int i, ret;
2311 	u32 val;
2312 
2313 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2314 
2315 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2316 	 * It is thus preferred to use warm reset which is safer but may not be
2317 	 * able to recover the device from all possible fail scenarios.
2318 	 *
2319 	 * Warm reset doesn't always work on first try so attempt it a few
2320 	 * times before giving up.
2321 	 */
2322 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2323 		ret = ath10k_pci_warm_reset(ar);
2324 		if (ret) {
2325 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2326 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2327 				    ret);
2328 			continue;
2329 		}
2330 
2331 		/* FIXME: Sometimes copy engine doesn't recover after warm
2332 		 * reset. In most cases this needs cold reset. In some of these
2333 		 * cases the device is in such a state that a cold reset may
2334 		 * lock up the host.
2335 		 *
2336 		 * Reading any host interest register via copy engine is
2337 		 * sufficient to verify if device is capable of booting
2338 		 * firmware blob.
2339 		 */
2340 		ret = ath10k_pci_init_pipes(ar);
2341 		if (ret) {
2342 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2343 				    ret);
2344 			continue;
2345 		}
2346 
2347 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2348 					     &val);
2349 		if (ret) {
2350 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2351 				    ret);
2352 			continue;
2353 		}
2354 
2355 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2356 		return 0;
2357 	}
2358 
2359 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2360 		ath10k_warn(ar, "refusing cold reset as requested\n");
2361 		return -EPERM;
2362 	}
2363 
2364 	ret = ath10k_pci_cold_reset(ar);
2365 	if (ret) {
2366 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2367 		return ret;
2368 	}
2369 
2370 	ret = ath10k_pci_wait_for_target_init(ar);
2371 	if (ret) {
2372 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2373 			    ret);
2374 		return ret;
2375 	}
2376 
2377 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2378 
2379 	return 0;
2380 }
2381 
2382 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2383 {
2384 	int ret;
2385 
2386 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2387 
2388 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2389 
2390 	ret = ath10k_pci_cold_reset(ar);
2391 	if (ret) {
2392 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2393 		return ret;
2394 	}
2395 
2396 	ret = ath10k_pci_wait_for_target_init(ar);
2397 	if (ret) {
2398 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2399 			    ret);
2400 		return ret;
2401 	}
2402 
2403 	ret = ath10k_pci_warm_reset(ar);
2404 	if (ret) {
2405 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2406 		return ret;
2407 	}
2408 
2409 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2410 
2411 	return 0;
2412 }
2413 
2414 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2415 {
2416 	int ret;
2417 
2418 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2419 
2420 	ret = ath10k_pci_cold_reset(ar);
2421 	if (ret) {
2422 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2423 		return ret;
2424 	}
2425 
2426 	ret = ath10k_pci_wait_for_target_init(ar);
2427 	if (ret) {
2428 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2429 			    ret);
2430 		return ret;
2431 	}
2432 
2433 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2434 
2435 	return 0;
2436 }
2437 
2438 static int ath10k_pci_chip_reset(struct ath10k *ar)
2439 {
2440 	if (QCA_REV_988X(ar))
2441 		return ath10k_pci_qca988x_chip_reset(ar);
2442 	else if (QCA_REV_6174(ar))
2443 		return ath10k_pci_qca6174_chip_reset(ar);
2444 	else if (QCA_REV_9377(ar))
2445 		return ath10k_pci_qca6174_chip_reset(ar);
2446 	else if (QCA_REV_99X0(ar))
2447 		return ath10k_pci_qca99x0_chip_reset(ar);
2448 	else
2449 		return -ENOTSUPP;
2450 }
2451 
2452 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2453 {
2454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2455 	int ret;
2456 
2457 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2458 
2459 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2460 				  &ar_pci->link_ctl);
2461 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2462 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2463 
2464 	/*
2465 	 * Bring the target up cleanly.
2466 	 *
2467 	 * The target may be in an undefined state with an AUX-powered Target
2468 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2469 	 * restarted (without unloading the driver) then the Target is left
2470 	 * (aux) powered and running. On a subsequent driver load, the Target
2471 	 * is in an unexpected state. We try to catch that here in order to
2472 	 * reset the Target and retry the probe.
2473 	 */
2474 	ret = ath10k_pci_chip_reset(ar);
2475 	if (ret) {
2476 		if (ath10k_pci_has_fw_crashed(ar)) {
2477 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2478 			ath10k_pci_fw_crashed_clear(ar);
2479 			ath10k_pci_fw_crashed_dump(ar);
2480 		}
2481 
2482 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2483 		goto err_sleep;
2484 	}
2485 
2486 	ret = ath10k_pci_init_pipes(ar);
2487 	if (ret) {
2488 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2489 		goto err_sleep;
2490 	}
2491 
2492 	ret = ath10k_pci_init_config(ar);
2493 	if (ret) {
2494 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2495 		goto err_ce;
2496 	}
2497 
2498 	ret = ath10k_pci_wake_target_cpu(ar);
2499 	if (ret) {
2500 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2501 		goto err_ce;
2502 	}
2503 
2504 	return 0;
2505 
2506 err_ce:
2507 	ath10k_pci_ce_deinit(ar);
2508 
2509 err_sleep:
2510 	return ret;
2511 }
2512 
2513 void ath10k_pci_hif_power_down(struct ath10k *ar)
2514 {
2515 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2516 
2517 	/* Currently hif_power_up performs effectively a reset and hif_stop
2518 	 * resets the chip as well so there's no point in resetting here.
2519 	 */
2520 }
2521 
2522 #ifdef CONFIG_PM
2523 
2524 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2525 {
2526 	/* The grace timer can still be counting down and ar->ps_awake be true.
2527 	 * It is known that the device may be asleep after resuming regardless
2528 	 * of the SoC powersave state before suspending. Hence make sure the
2529 	 * device is asleep before proceeding.
2530 	 */
2531 	ath10k_pci_sleep_sync(ar);
2532 
2533 	return 0;
2534 }
2535 
2536 static int ath10k_pci_hif_resume(struct ath10k *ar)
2537 {
2538 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2539 	struct pci_dev *pdev = ar_pci->pdev;
2540 	u32 val;
2541 	int ret = 0;
2542 
2543 	ret = ath10k_pci_force_wake(ar);
2544 	if (ret) {
2545 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2546 		return ret;
2547 	}
2548 
2549 	/* Suspend/Resume resets the PCI configuration space, so we have to
2550 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2551 	 * from interfering with C3 CPU state. pci_restore_state won't help
2552 	 * here since it only restores the first 64 bytes pci config header.
2553 	 */
2554 	pci_read_config_dword(pdev, 0x40, &val);
2555 	if ((val & 0x0000ff00) != 0)
2556 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2557 
2558 	return ret;
2559 }
2560 #endif
2561 
2562 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2563 	.tx_sg			= ath10k_pci_hif_tx_sg,
2564 	.diag_read		= ath10k_pci_hif_diag_read,
2565 	.diag_write		= ath10k_pci_diag_write_mem,
2566 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2567 	.start			= ath10k_pci_hif_start,
2568 	.stop			= ath10k_pci_hif_stop,
2569 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2570 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2571 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2572 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2573 	.power_up		= ath10k_pci_hif_power_up,
2574 	.power_down		= ath10k_pci_hif_power_down,
2575 	.read32			= ath10k_pci_read32,
2576 	.write32		= ath10k_pci_write32,
2577 #ifdef CONFIG_PM
2578 	.suspend		= ath10k_pci_hif_suspend,
2579 	.resume			= ath10k_pci_hif_resume,
2580 #endif
2581 };
2582 
2583 /*
2584  * Top-level interrupt handler for all PCI interrupts from a Target.
2585  * When a block of MSI interrupts is allocated, this top-level handler
2586  * is not used; instead, we directly call the correct sub-handler.
2587  */
2588 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2589 {
2590 	struct ath10k *ar = arg;
2591 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2592 	int ret;
2593 
2594 	ret = ath10k_pci_force_wake(ar);
2595 	if (ret) {
2596 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2597 		return IRQ_NONE;
2598 	}
2599 
2600 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) {
2601 		if (!ath10k_pci_irq_pending(ar))
2602 			return IRQ_NONE;
2603 
2604 		ath10k_pci_disable_and_clear_legacy_irq(ar);
2605 	}
2606 
2607 	tasklet_schedule(&ar_pci->intr_tq);
2608 
2609 	return IRQ_HANDLED;
2610 }
2611 
2612 static void ath10k_pci_tasklet(unsigned long data)
2613 {
2614 	struct ath10k *ar = (struct ath10k *)data;
2615 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2616 
2617 	if (ath10k_pci_has_fw_crashed(ar)) {
2618 		ath10k_pci_irq_disable(ar);
2619 		ath10k_pci_fw_crashed_clear(ar);
2620 		ath10k_pci_fw_crashed_dump(ar);
2621 		return;
2622 	}
2623 
2624 	ath10k_ce_per_engine_service_any(ar);
2625 
2626 	/* Re-enable legacy irq that was disabled in the irq handler */
2627 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2628 		ath10k_pci_enable_legacy_irq(ar);
2629 }
2630 
2631 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2632 {
2633 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2634 	int ret;
2635 
2636 	ret = request_irq(ar_pci->pdev->irq,
2637 			  ath10k_pci_interrupt_handler,
2638 			  IRQF_SHARED, "ath10k_pci", ar);
2639 	if (ret) {
2640 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2641 			    ar_pci->pdev->irq, ret);
2642 		return ret;
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2649 {
2650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2651 	int ret;
2652 
2653 	ret = request_irq(ar_pci->pdev->irq,
2654 			  ath10k_pci_interrupt_handler,
2655 			  IRQF_SHARED, "ath10k_pci", ar);
2656 	if (ret) {
2657 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2658 			    ar_pci->pdev->irq, ret);
2659 		return ret;
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 static int ath10k_pci_request_irq(struct ath10k *ar)
2666 {
2667 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2668 
2669 	switch (ar_pci->oper_irq_mode) {
2670 	case ATH10K_PCI_IRQ_LEGACY:
2671 		return ath10k_pci_request_irq_legacy(ar);
2672 	case ATH10K_PCI_IRQ_MSI:
2673 		return ath10k_pci_request_irq_msi(ar);
2674 	default:
2675 		return -EINVAL;
2676 	}
2677 }
2678 
2679 static void ath10k_pci_free_irq(struct ath10k *ar)
2680 {
2681 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2682 
2683 	free_irq(ar_pci->pdev->irq, ar);
2684 }
2685 
2686 void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2687 {
2688 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2689 
2690 	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2691 }
2692 
2693 static int ath10k_pci_init_irq(struct ath10k *ar)
2694 {
2695 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2696 	int ret;
2697 
2698 	ath10k_pci_init_irq_tasklets(ar);
2699 
2700 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2701 		ath10k_info(ar, "limiting irq mode to: %d\n",
2702 			    ath10k_pci_irq_mode);
2703 
2704 	/* Try MSI */
2705 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2706 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2707 		ret = pci_enable_msi(ar_pci->pdev);
2708 		if (ret == 0)
2709 			return 0;
2710 
2711 		/* fall-through */
2712 	}
2713 
2714 	/* Try legacy irq
2715 	 *
2716 	 * A potential race occurs here: The CORE_BASE write
2717 	 * depends on target correctly decoding AXI address but
2718 	 * host won't know when target writes BAR to CORE_CTRL.
2719 	 * This write might get lost if target has NOT written BAR.
2720 	 * For now, fix the race by repeating the write in below
2721 	 * synchronization checking. */
2722 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2723 
2724 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2725 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2726 
2727 	return 0;
2728 }
2729 
2730 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2731 {
2732 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2733 			   0);
2734 }
2735 
2736 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2737 {
2738 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2739 
2740 	switch (ar_pci->oper_irq_mode) {
2741 	case ATH10K_PCI_IRQ_LEGACY:
2742 		ath10k_pci_deinit_irq_legacy(ar);
2743 		break;
2744 	default:
2745 		pci_disable_msi(ar_pci->pdev);
2746 		break;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2753 {
2754 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2755 	unsigned long timeout;
2756 	u32 val;
2757 
2758 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2759 
2760 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2761 
2762 	do {
2763 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2764 
2765 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2766 			   val);
2767 
2768 		/* target should never return this */
2769 		if (val == 0xffffffff)
2770 			continue;
2771 
2772 		/* the device has crashed so don't bother trying anymore */
2773 		if (val & FW_IND_EVENT_PENDING)
2774 			break;
2775 
2776 		if (val & FW_IND_INITIALIZED)
2777 			break;
2778 
2779 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2780 			/* Fix potential race by repeating CORE_BASE writes */
2781 			ath10k_pci_enable_legacy_irq(ar);
2782 
2783 		mdelay(10);
2784 	} while (time_before(jiffies, timeout));
2785 
2786 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2787 	ath10k_pci_irq_msi_fw_mask(ar);
2788 
2789 	if (val == 0xffffffff) {
2790 		ath10k_err(ar, "failed to read device register, device is gone\n");
2791 		return -EIO;
2792 	}
2793 
2794 	if (val & FW_IND_EVENT_PENDING) {
2795 		ath10k_warn(ar, "device has crashed during init\n");
2796 		return -ECOMM;
2797 	}
2798 
2799 	if (!(val & FW_IND_INITIALIZED)) {
2800 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2801 			   val);
2802 		return -ETIMEDOUT;
2803 	}
2804 
2805 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2806 	return 0;
2807 }
2808 
2809 static int ath10k_pci_cold_reset(struct ath10k *ar)
2810 {
2811 	u32 val;
2812 
2813 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2814 
2815 	spin_lock_bh(&ar->data_lock);
2816 
2817 	ar->stats.fw_cold_reset_counter++;
2818 
2819 	spin_unlock_bh(&ar->data_lock);
2820 
2821 	/* Put Target, including PCIe, into RESET. */
2822 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2823 	val |= 1;
2824 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2825 
2826 	/* After writing into SOC_GLOBAL_RESET to put device into
2827 	 * reset and pulling out of reset pcie may not be stable
2828 	 * for any immediate pcie register access and cause bus error,
2829 	 * add delay before any pcie access request to fix this issue.
2830 	 */
2831 	msleep(20);
2832 
2833 	/* Pull Target, including PCIe, out of RESET. */
2834 	val &= ~1;
2835 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2836 
2837 	msleep(20);
2838 
2839 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2840 
2841 	return 0;
2842 }
2843 
2844 static int ath10k_pci_claim(struct ath10k *ar)
2845 {
2846 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2847 	struct pci_dev *pdev = ar_pci->pdev;
2848 	int ret;
2849 
2850 	pci_set_drvdata(pdev, ar);
2851 
2852 	ret = pci_enable_device(pdev);
2853 	if (ret) {
2854 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2855 		return ret;
2856 	}
2857 
2858 	ret = pci_request_region(pdev, BAR_NUM, "ath");
2859 	if (ret) {
2860 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2861 			   ret);
2862 		goto err_device;
2863 	}
2864 
2865 	/* Target expects 32 bit DMA. Enforce it. */
2866 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2867 	if (ret) {
2868 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2869 		goto err_region;
2870 	}
2871 
2872 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2873 	if (ret) {
2874 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2875 			   ret);
2876 		goto err_region;
2877 	}
2878 
2879 	pci_set_master(pdev);
2880 
2881 	/* Arrange for access to Target SoC registers. */
2882 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2883 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2884 	if (!ar_pci->mem) {
2885 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2886 		ret = -EIO;
2887 		goto err_master;
2888 	}
2889 
2890 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2891 	return 0;
2892 
2893 err_master:
2894 	pci_clear_master(pdev);
2895 
2896 err_region:
2897 	pci_release_region(pdev, BAR_NUM);
2898 
2899 err_device:
2900 	pci_disable_device(pdev);
2901 
2902 	return ret;
2903 }
2904 
2905 static void ath10k_pci_release(struct ath10k *ar)
2906 {
2907 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2908 	struct pci_dev *pdev = ar_pci->pdev;
2909 
2910 	pci_iounmap(pdev, ar_pci->mem);
2911 	pci_release_region(pdev, BAR_NUM);
2912 	pci_clear_master(pdev);
2913 	pci_disable_device(pdev);
2914 }
2915 
2916 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2917 {
2918 	const struct ath10k_pci_supp_chip *supp_chip;
2919 	int i;
2920 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2921 
2922 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2923 		supp_chip = &ath10k_pci_supp_chips[i];
2924 
2925 		if (supp_chip->dev_id == dev_id &&
2926 		    supp_chip->rev_id == rev_id)
2927 			return true;
2928 	}
2929 
2930 	return false;
2931 }
2932 
2933 int ath10k_pci_setup_resource(struct ath10k *ar)
2934 {
2935 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2936 	int ret;
2937 
2938 	spin_lock_init(&ar_pci->ce_lock);
2939 	spin_lock_init(&ar_pci->ps_lock);
2940 
2941 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2942 		    (unsigned long)ar);
2943 
2944 	if (QCA_REV_6174(ar))
2945 		ath10k_pci_override_ce_config(ar);
2946 
2947 	ret = ath10k_pci_alloc_pipes(ar);
2948 	if (ret) {
2949 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2950 			   ret);
2951 		return ret;
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 void ath10k_pci_release_resource(struct ath10k *ar)
2958 {
2959 	ath10k_pci_kill_tasklet(ar);
2960 	ath10k_pci_ce_deinit(ar);
2961 	ath10k_pci_free_pipes(ar);
2962 }
2963 
2964 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
2965 	.read32		= ath10k_bus_pci_read32,
2966 	.write32	= ath10k_bus_pci_write32,
2967 	.get_num_banks	= ath10k_pci_get_num_banks,
2968 };
2969 
2970 static int ath10k_pci_probe(struct pci_dev *pdev,
2971 			    const struct pci_device_id *pci_dev)
2972 {
2973 	int ret = 0;
2974 	struct ath10k *ar;
2975 	struct ath10k_pci *ar_pci;
2976 	enum ath10k_hw_rev hw_rev;
2977 	u32 chip_id;
2978 	bool pci_ps;
2979 
2980 	switch (pci_dev->device) {
2981 	case QCA988X_2_0_DEVICE_ID:
2982 		hw_rev = ATH10K_HW_QCA988X;
2983 		pci_ps = false;
2984 		break;
2985 	case QCA6164_2_1_DEVICE_ID:
2986 	case QCA6174_2_1_DEVICE_ID:
2987 		hw_rev = ATH10K_HW_QCA6174;
2988 		pci_ps = true;
2989 		break;
2990 	case QCA99X0_2_0_DEVICE_ID:
2991 		hw_rev = ATH10K_HW_QCA99X0;
2992 		pci_ps = false;
2993 		break;
2994 	case QCA9377_1_0_DEVICE_ID:
2995 		hw_rev = ATH10K_HW_QCA9377;
2996 		pci_ps = true;
2997 		break;
2998 	default:
2999 		WARN_ON(1);
3000 		return -ENOTSUPP;
3001 	}
3002 
3003 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3004 				hw_rev, &ath10k_pci_hif_ops);
3005 	if (!ar) {
3006 		dev_err(&pdev->dev, "failed to allocate core\n");
3007 		return -ENOMEM;
3008 	}
3009 
3010 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3011 		   pdev->vendor, pdev->device,
3012 		   pdev->subsystem_vendor, pdev->subsystem_device);
3013 
3014 	ar_pci = ath10k_pci_priv(ar);
3015 	ar_pci->pdev = pdev;
3016 	ar_pci->dev = &pdev->dev;
3017 	ar_pci->ar = ar;
3018 	ar->dev_id = pci_dev->device;
3019 	ar_pci->pci_ps = pci_ps;
3020 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3021 
3022 	ar->id.vendor = pdev->vendor;
3023 	ar->id.device = pdev->device;
3024 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3025 	ar->id.subsystem_device = pdev->subsystem_device;
3026 
3027 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3028 		    (unsigned long)ar);
3029 
3030 	ret = ath10k_pci_setup_resource(ar);
3031 	if (ret) {
3032 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3033 		goto err_core_destroy;
3034 	}
3035 
3036 	ret = ath10k_pci_claim(ar);
3037 	if (ret) {
3038 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3039 		goto err_free_pipes;
3040 	}
3041 
3042 	ret = ath10k_pci_force_wake(ar);
3043 	if (ret) {
3044 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3045 		goto err_sleep;
3046 	}
3047 
3048 	ath10k_pci_ce_deinit(ar);
3049 	ath10k_pci_irq_disable(ar);
3050 
3051 	ret = ath10k_pci_init_irq(ar);
3052 	if (ret) {
3053 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3054 		goto err_sleep;
3055 	}
3056 
3057 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3058 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3059 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3060 
3061 	ret = ath10k_pci_request_irq(ar);
3062 	if (ret) {
3063 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3064 		goto err_deinit_irq;
3065 	}
3066 
3067 	ret = ath10k_pci_chip_reset(ar);
3068 	if (ret) {
3069 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3070 		goto err_free_irq;
3071 	}
3072 
3073 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3074 	if (chip_id == 0xffffffff) {
3075 		ath10k_err(ar, "failed to get chip id\n");
3076 		goto err_free_irq;
3077 	}
3078 
3079 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3080 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3081 			   pdev->device, chip_id);
3082 		goto err_free_irq;
3083 	}
3084 
3085 	ret = ath10k_core_register(ar, chip_id);
3086 	if (ret) {
3087 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3088 		goto err_free_irq;
3089 	}
3090 
3091 	return 0;
3092 
3093 err_free_irq:
3094 	ath10k_pci_free_irq(ar);
3095 	ath10k_pci_kill_tasklet(ar);
3096 
3097 err_deinit_irq:
3098 	ath10k_pci_deinit_irq(ar);
3099 
3100 err_sleep:
3101 	ath10k_pci_sleep_sync(ar);
3102 	ath10k_pci_release(ar);
3103 
3104 err_free_pipes:
3105 	ath10k_pci_free_pipes(ar);
3106 
3107 err_core_destroy:
3108 	ath10k_core_destroy(ar);
3109 
3110 	return ret;
3111 }
3112 
3113 static void ath10k_pci_remove(struct pci_dev *pdev)
3114 {
3115 	struct ath10k *ar = pci_get_drvdata(pdev);
3116 	struct ath10k_pci *ar_pci;
3117 
3118 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3119 
3120 	if (!ar)
3121 		return;
3122 
3123 	ar_pci = ath10k_pci_priv(ar);
3124 
3125 	if (!ar_pci)
3126 		return;
3127 
3128 	ath10k_core_unregister(ar);
3129 	ath10k_pci_free_irq(ar);
3130 	ath10k_pci_deinit_irq(ar);
3131 	ath10k_pci_release_resource(ar);
3132 	ath10k_pci_sleep_sync(ar);
3133 	ath10k_pci_release(ar);
3134 	ath10k_core_destroy(ar);
3135 }
3136 
3137 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3138 
3139 static struct pci_driver ath10k_pci_driver = {
3140 	.name = "ath10k_pci",
3141 	.id_table = ath10k_pci_id_table,
3142 	.probe = ath10k_pci_probe,
3143 	.remove = ath10k_pci_remove,
3144 };
3145 
3146 static int __init ath10k_pci_init(void)
3147 {
3148 	int ret;
3149 
3150 	ret = pci_register_driver(&ath10k_pci_driver);
3151 	if (ret)
3152 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3153 		       ret);
3154 
3155 	ret = ath10k_ahb_init();
3156 	if (ret)
3157 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3158 
3159 	return ret;
3160 }
3161 module_init(ath10k_pci_init);
3162 
3163 static void __exit ath10k_pci_exit(void)
3164 {
3165 	pci_unregister_driver(&ath10k_pci_driver);
3166 	ath10k_ahb_exit();
3167 }
3168 
3169 module_exit(ath10k_pci_exit);
3170 
3171 MODULE_AUTHOR("Qualcomm Atheros");
3172 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
3173 MODULE_LICENSE("Dual BSD/GPL");
3174 
3175 /* QCA988x 2.0 firmware files */
3176 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3177 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3178 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3179 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3180 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3181 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3182 
3183 /* QCA6174 2.1 firmware files */
3184 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3185 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3186 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3187 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3188 
3189 /* QCA6174 3.1 firmware files */
3190 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3191 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3192 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3193 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3194 
3195 /* QCA9377 1.0 firmware files */
3196 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3197 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3198