xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision a36954f5)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 			       struct ath10k_ce_pipe *rx_pipe,
106 			       struct bmi_xfer *xfer);
107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
114 
115 static struct ce_attr host_ce_config_wlan[] = {
116 	/* CE0: host->target HTC control and raw streams */
117 	{
118 		.flags = CE_ATTR_FLAGS,
119 		.src_nentries = 16,
120 		.src_sz_max = 256,
121 		.dest_nentries = 0,
122 		.send_cb = ath10k_pci_htc_tx_cb,
123 	},
124 
125 	/* CE1: target->host HTT + HTC control */
126 	{
127 		.flags = CE_ATTR_FLAGS,
128 		.src_nentries = 0,
129 		.src_sz_max = 2048,
130 		.dest_nentries = 512,
131 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
132 	},
133 
134 	/* CE2: target->host WMI */
135 	{
136 		.flags = CE_ATTR_FLAGS,
137 		.src_nentries = 0,
138 		.src_sz_max = 2048,
139 		.dest_nentries = 128,
140 		.recv_cb = ath10k_pci_htc_rx_cb,
141 	},
142 
143 	/* CE3: host->target WMI */
144 	{
145 		.flags = CE_ATTR_FLAGS,
146 		.src_nentries = 32,
147 		.src_sz_max = 2048,
148 		.dest_nentries = 0,
149 		.send_cb = ath10k_pci_htc_tx_cb,
150 	},
151 
152 	/* CE4: host->target HTT */
153 	{
154 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 		.src_sz_max = 256,
157 		.dest_nentries = 0,
158 		.send_cb = ath10k_pci_htt_tx_cb,
159 	},
160 
161 	/* CE5: target->host HTT (HIF->HTT) */
162 	{
163 		.flags = CE_ATTR_FLAGS,
164 		.src_nentries = 0,
165 		.src_sz_max = 512,
166 		.dest_nentries = 512,
167 		.recv_cb = ath10k_pci_htt_rx_cb,
168 	},
169 
170 	/* CE6: target autonomous hif_memcpy */
171 	{
172 		.flags = CE_ATTR_FLAGS,
173 		.src_nentries = 0,
174 		.src_sz_max = 0,
175 		.dest_nentries = 0,
176 	},
177 
178 	/* CE7: ce_diag, the Diagnostic Window */
179 	{
180 		.flags = CE_ATTR_FLAGS,
181 		.src_nentries = 2,
182 		.src_sz_max = DIAG_TRANSFER_LIMIT,
183 		.dest_nentries = 2,
184 	},
185 
186 	/* CE8: target->host pktlog */
187 	{
188 		.flags = CE_ATTR_FLAGS,
189 		.src_nentries = 0,
190 		.src_sz_max = 2048,
191 		.dest_nentries = 128,
192 		.recv_cb = ath10k_pci_pktlog_rx_cb,
193 	},
194 
195 	/* CE9 target autonomous qcache memcpy */
196 	{
197 		.flags = CE_ATTR_FLAGS,
198 		.src_nentries = 0,
199 		.src_sz_max = 0,
200 		.dest_nentries = 0,
201 	},
202 
203 	/* CE10: target autonomous hif memcpy */
204 	{
205 		.flags = CE_ATTR_FLAGS,
206 		.src_nentries = 0,
207 		.src_sz_max = 0,
208 		.dest_nentries = 0,
209 	},
210 
211 	/* CE11: target autonomous hif memcpy */
212 	{
213 		.flags = CE_ATTR_FLAGS,
214 		.src_nentries = 0,
215 		.src_sz_max = 0,
216 		.dest_nentries = 0,
217 	},
218 };
219 
220 /* Target firmware's Copy Engine configuration. */
221 static struct ce_pipe_config target_ce_config_wlan[] = {
222 	/* CE0: host->target HTC control and raw streams */
223 	{
224 		.pipenum = __cpu_to_le32(0),
225 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 		.nentries = __cpu_to_le32(32),
227 		.nbytes_max = __cpu_to_le32(256),
228 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 		.reserved = __cpu_to_le32(0),
230 	},
231 
232 	/* CE1: target->host HTT + HTC control */
233 	{
234 		.pipenum = __cpu_to_le32(1),
235 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
236 		.nentries = __cpu_to_le32(32),
237 		.nbytes_max = __cpu_to_le32(2048),
238 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 		.reserved = __cpu_to_le32(0),
240 	},
241 
242 	/* CE2: target->host WMI */
243 	{
244 		.pipenum = __cpu_to_le32(2),
245 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
246 		.nentries = __cpu_to_le32(64),
247 		.nbytes_max = __cpu_to_le32(2048),
248 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 		.reserved = __cpu_to_le32(0),
250 	},
251 
252 	/* CE3: host->target WMI */
253 	{
254 		.pipenum = __cpu_to_le32(3),
255 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 		.nentries = __cpu_to_le32(32),
257 		.nbytes_max = __cpu_to_le32(2048),
258 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 		.reserved = __cpu_to_le32(0),
260 	},
261 
262 	/* CE4: host->target HTT */
263 	{
264 		.pipenum = __cpu_to_le32(4),
265 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 		.nentries = __cpu_to_le32(256),
267 		.nbytes_max = __cpu_to_le32(256),
268 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 		.reserved = __cpu_to_le32(0),
270 	},
271 
272 	/* NB: 50% of src nentries, since tx has 2 frags */
273 
274 	/* CE5: target->host HTT (HIF->HTT) */
275 	{
276 		.pipenum = __cpu_to_le32(5),
277 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
278 		.nentries = __cpu_to_le32(32),
279 		.nbytes_max = __cpu_to_le32(512),
280 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 		.reserved = __cpu_to_le32(0),
282 	},
283 
284 	/* CE6: Reserved for target autonomous hif_memcpy */
285 	{
286 		.pipenum = __cpu_to_le32(6),
287 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 		.nentries = __cpu_to_le32(32),
289 		.nbytes_max = __cpu_to_le32(4096),
290 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 		.reserved = __cpu_to_le32(0),
292 	},
293 
294 	/* CE7 used only by Host */
295 	{
296 		.pipenum = __cpu_to_le32(7),
297 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 		.nentries = __cpu_to_le32(0),
299 		.nbytes_max = __cpu_to_le32(0),
300 		.flags = __cpu_to_le32(0),
301 		.reserved = __cpu_to_le32(0),
302 	},
303 
304 	/* CE8 target->host packtlog */
305 	{
306 		.pipenum = __cpu_to_le32(8),
307 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
308 		.nentries = __cpu_to_le32(64),
309 		.nbytes_max = __cpu_to_le32(2048),
310 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 		.reserved = __cpu_to_le32(0),
312 	},
313 
314 	/* CE9 target autonomous qcache memcpy */
315 	{
316 		.pipenum = __cpu_to_le32(9),
317 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 		.nentries = __cpu_to_le32(32),
319 		.nbytes_max = __cpu_to_le32(2048),
320 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 		.reserved = __cpu_to_le32(0),
322 	},
323 
324 	/* It not necessary to send target wlan configuration for CE10 & CE11
325 	 * as these CEs are not actively used in target.
326 	 */
327 };
328 
329 /*
330  * Map from service/endpoint to Copy Engine.
331  * This table is derived from the CE_PCI TABLE, above.
332  * It is passed to the Target at startup for use by firmware.
333  */
334 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
335 	{
336 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
338 		__cpu_to_le32(3),
339 	},
340 	{
341 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
343 		__cpu_to_le32(2),
344 	},
345 	{
346 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
348 		__cpu_to_le32(3),
349 	},
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
353 		__cpu_to_le32(2),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
358 		__cpu_to_le32(3),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
363 		__cpu_to_le32(2),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
368 		__cpu_to_le32(3),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
373 		__cpu_to_le32(2),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
378 		__cpu_to_le32(3),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
383 		__cpu_to_le32(2),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
388 		__cpu_to_le32(0),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
393 		__cpu_to_le32(1),
394 	},
395 	{ /* not used */
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
398 		__cpu_to_le32(0),
399 	},
400 	{ /* not used */
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
403 		__cpu_to_le32(1),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
408 		__cpu_to_le32(4),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
413 		__cpu_to_le32(5),
414 	},
415 
416 	/* (Additions here) */
417 
418 	{ /* must be last */
419 		__cpu_to_le32(0),
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 	},
423 };
424 
425 static bool ath10k_pci_is_awake(struct ath10k *ar)
426 {
427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 			   RTC_STATE_ADDRESS);
430 
431 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
432 }
433 
434 static void __ath10k_pci_wake(struct ath10k *ar)
435 {
436 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
437 
438 	lockdep_assert_held(&ar_pci->ps_lock);
439 
440 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
442 
443 	iowrite32(PCIE_SOC_WAKE_V_MASK,
444 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 		  PCIE_SOC_WAKE_ADDRESS);
446 }
447 
448 static void __ath10k_pci_sleep(struct ath10k *ar)
449 {
450 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
451 
452 	lockdep_assert_held(&ar_pci->ps_lock);
453 
454 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
456 
457 	iowrite32(PCIE_SOC_WAKE_RESET,
458 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 		  PCIE_SOC_WAKE_ADDRESS);
460 	ar_pci->ps_awake = false;
461 }
462 
463 static int ath10k_pci_wake_wait(struct ath10k *ar)
464 {
465 	int tot_delay = 0;
466 	int curr_delay = 5;
467 
468 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 		if (ath10k_pci_is_awake(ar)) {
470 			if (tot_delay > PCIE_WAKE_LATE_US)
471 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 					    tot_delay / 1000);
473 			return 0;
474 		}
475 
476 		udelay(curr_delay);
477 		tot_delay += curr_delay;
478 
479 		if (curr_delay < 50)
480 			curr_delay += 5;
481 	}
482 
483 	return -ETIMEDOUT;
484 }
485 
486 static int ath10k_pci_force_wake(struct ath10k *ar)
487 {
488 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 	unsigned long flags;
490 	int ret = 0;
491 
492 	if (ar_pci->pci_ps)
493 		return ret;
494 
495 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
496 
497 	if (!ar_pci->ps_awake) {
498 		iowrite32(PCIE_SOC_WAKE_V_MASK,
499 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 			  PCIE_SOC_WAKE_ADDRESS);
501 
502 		ret = ath10k_pci_wake_wait(ar);
503 		if (ret == 0)
504 			ar_pci->ps_awake = true;
505 	}
506 
507 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
508 
509 	return ret;
510 }
511 
512 static void ath10k_pci_force_sleep(struct ath10k *ar)
513 {
514 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
518 
519 	iowrite32(PCIE_SOC_WAKE_RESET,
520 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 		  PCIE_SOC_WAKE_ADDRESS);
522 	ar_pci->ps_awake = false;
523 
524 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
525 }
526 
527 static int ath10k_pci_wake(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 	int ret = 0;
532 
533 	if (ar_pci->pci_ps == 0)
534 		return ret;
535 
536 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
537 
538 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
540 
541 	/* This function can be called very frequently. To avoid excessive
542 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
543 	 */
544 	if (!ar_pci->ps_awake) {
545 		__ath10k_pci_wake(ar);
546 
547 		ret = ath10k_pci_wake_wait(ar);
548 		if (ret == 0)
549 			ar_pci->ps_awake = true;
550 	}
551 
552 	if (ret == 0) {
553 		ar_pci->ps_wake_refcount++;
554 		WARN_ON(ar_pci->ps_wake_refcount == 0);
555 	}
556 
557 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
558 
559 	return ret;
560 }
561 
562 static void ath10k_pci_sleep(struct ath10k *ar)
563 {
564 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 	unsigned long flags;
566 
567 	if (ar_pci->pci_ps == 0)
568 		return;
569 
570 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
571 
572 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
574 
575 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 		goto skip;
577 
578 	ar_pci->ps_wake_refcount--;
579 
580 	mod_timer(&ar_pci->ps_timer, jiffies +
581 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
582 
583 skip:
584 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
585 }
586 
587 static void ath10k_pci_ps_timer(unsigned long ptr)
588 {
589 	struct ath10k *ar = (void *)ptr;
590 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 	unsigned long flags;
592 
593 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
594 
595 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
597 
598 	if (ar_pci->ps_wake_refcount > 0)
599 		goto skip;
600 
601 	__ath10k_pci_sleep(ar);
602 
603 skip:
604 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
605 }
606 
607 static void ath10k_pci_sleep_sync(struct ath10k *ar)
608 {
609 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 	unsigned long flags;
611 
612 	if (ar_pci->pci_ps == 0) {
613 		ath10k_pci_force_sleep(ar);
614 		return;
615 	}
616 
617 	del_timer_sync(&ar_pci->ps_timer);
618 
619 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 	WARN_ON(ar_pci->ps_wake_refcount > 0);
621 	__ath10k_pci_sleep(ar);
622 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
623 }
624 
625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
626 {
627 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 	int ret;
629 
630 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 			    offset, offset + sizeof(value), ar_pci->mem_len);
633 		return;
634 	}
635 
636 	ret = ath10k_pci_wake(ar);
637 	if (ret) {
638 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 			    value, offset, ret);
640 		return;
641 	}
642 
643 	iowrite32(value, ar_pci->mem + offset);
644 	ath10k_pci_sleep(ar);
645 }
646 
647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
648 {
649 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 	u32 val;
651 	int ret;
652 
653 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 			    offset, offset + sizeof(val), ar_pci->mem_len);
656 		return 0;
657 	}
658 
659 	ret = ath10k_pci_wake(ar);
660 	if (ret) {
661 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 			    offset, ret);
663 		return 0xffffffff;
664 	}
665 
666 	val = ioread32(ar_pci->mem + offset);
667 	ath10k_pci_sleep(ar);
668 
669 	return val;
670 }
671 
672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
673 {
674 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
675 
676 	ar_pci->bus_ops->write32(ar, offset, value);
677 }
678 
679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
680 {
681 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
682 
683 	return ar_pci->bus_ops->read32(ar, offset);
684 }
685 
686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
687 {
688 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
689 }
690 
691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
692 {
693 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
694 }
695 
696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
697 {
698 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
699 }
700 
701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
702 {
703 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
704 }
705 
706 bool ath10k_pci_irq_pending(struct ath10k *ar)
707 {
708 	u32 cause;
709 
710 	/* Check if the shared legacy irq is for us */
711 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 				  PCIE_INTR_CAUSE_ADDRESS);
713 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 		return true;
715 
716 	return false;
717 }
718 
719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
720 {
721 	/* IMPORTANT: INTR_CLR register has to be set after
722 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 	 * really cleared.
724 	 */
725 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
726 			   0);
727 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
728 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
729 
730 	/* IMPORTANT: this extra read transaction is required to
731 	 * flush the posted write buffer.
732 	 */
733 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
734 				PCIE_INTR_ENABLE_ADDRESS);
735 }
736 
737 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
738 {
739 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
740 			   PCIE_INTR_ENABLE_ADDRESS,
741 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
742 
743 	/* IMPORTANT: this extra read transaction is required to
744 	 * flush the posted write buffer.
745 	 */
746 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
747 				PCIE_INTR_ENABLE_ADDRESS);
748 }
749 
750 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
751 {
752 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
753 
754 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
755 		return "msi";
756 
757 	return "legacy";
758 }
759 
760 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
761 {
762 	struct ath10k *ar = pipe->hif_ce_state;
763 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
764 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
765 	struct sk_buff *skb;
766 	dma_addr_t paddr;
767 	int ret;
768 
769 	skb = dev_alloc_skb(pipe->buf_sz);
770 	if (!skb)
771 		return -ENOMEM;
772 
773 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
774 
775 	paddr = dma_map_single(ar->dev, skb->data,
776 			       skb->len + skb_tailroom(skb),
777 			       DMA_FROM_DEVICE);
778 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
779 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
780 		dev_kfree_skb_any(skb);
781 		return -EIO;
782 	}
783 
784 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
785 
786 	spin_lock_bh(&ar_pci->ce_lock);
787 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
788 	spin_unlock_bh(&ar_pci->ce_lock);
789 	if (ret) {
790 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
791 				 DMA_FROM_DEVICE);
792 		dev_kfree_skb_any(skb);
793 		return ret;
794 	}
795 
796 	return 0;
797 }
798 
799 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
800 {
801 	struct ath10k *ar = pipe->hif_ce_state;
802 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
803 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
804 	int ret, num;
805 
806 	if (pipe->buf_sz == 0)
807 		return;
808 
809 	if (!ce_pipe->dest_ring)
810 		return;
811 
812 	spin_lock_bh(&ar_pci->ce_lock);
813 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
814 	spin_unlock_bh(&ar_pci->ce_lock);
815 
816 	while (num >= 0) {
817 		ret = __ath10k_pci_rx_post_buf(pipe);
818 		if (ret) {
819 			if (ret == -ENOSPC)
820 				break;
821 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
822 			mod_timer(&ar_pci->rx_post_retry, jiffies +
823 				  ATH10K_PCI_RX_POST_RETRY_MS);
824 			break;
825 		}
826 		num--;
827 	}
828 }
829 
830 void ath10k_pci_rx_post(struct ath10k *ar)
831 {
832 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
833 	int i;
834 
835 	for (i = 0; i < CE_COUNT; i++)
836 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
837 }
838 
839 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
840 {
841 	struct ath10k *ar = (void *)ptr;
842 
843 	ath10k_pci_rx_post(ar);
844 }
845 
846 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
847 {
848 	u32 val = 0, region = addr & 0xfffff;
849 
850 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
851 				 & 0x7ff) << 21;
852 	val |= 0x100000 | region;
853 	return val;
854 }
855 
856 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
857 {
858 	u32 val = 0, region = addr & 0xfffff;
859 
860 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
861 	val |= 0x100000 | region;
862 	return val;
863 }
864 
865 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
866 {
867 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
868 
869 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
870 		return -ENOTSUPP;
871 
872 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
873 }
874 
875 /*
876  * Diagnostic read/write access is provided for startup/config/debug usage.
877  * Caller must guarantee proper alignment, when applicable, and single user
878  * at any moment.
879  */
880 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
881 				    int nbytes)
882 {
883 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
884 	int ret = 0;
885 	u32 *buf;
886 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
887 	struct ath10k_ce_pipe *ce_diag;
888 	/* Host buffer address in CE space */
889 	u32 ce_data;
890 	dma_addr_t ce_data_base = 0;
891 	void *data_buf = NULL;
892 	int i;
893 
894 	spin_lock_bh(&ar_pci->ce_lock);
895 
896 	ce_diag = ar_pci->ce_diag;
897 
898 	/*
899 	 * Allocate a temporary bounce buffer to hold caller's data
900 	 * to be DMA'ed from Target. This guarantees
901 	 *   1) 4-byte alignment
902 	 *   2) Buffer in DMA-able space
903 	 */
904 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
905 
906 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
907 						       alloc_nbytes,
908 						       &ce_data_base,
909 						       GFP_ATOMIC);
910 
911 	if (!data_buf) {
912 		ret = -ENOMEM;
913 		goto done;
914 	}
915 
916 	remaining_bytes = nbytes;
917 	ce_data = ce_data_base;
918 	while (remaining_bytes) {
919 		nbytes = min_t(unsigned int, remaining_bytes,
920 			       DIAG_TRANSFER_LIMIT);
921 
922 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
923 		if (ret != 0)
924 			goto done;
925 
926 		/* Request CE to send from Target(!) address to Host buffer */
927 		/*
928 		 * The address supplied by the caller is in the
929 		 * Target CPU virtual address space.
930 		 *
931 		 * In order to use this address with the diagnostic CE,
932 		 * convert it from Target CPU virtual address space
933 		 * to CE address space
934 		 */
935 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
936 
937 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
938 					    0);
939 		if (ret)
940 			goto done;
941 
942 		i = 0;
943 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
944 							    NULL) != 0) {
945 			mdelay(1);
946 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
947 				ret = -EBUSY;
948 				goto done;
949 			}
950 		}
951 
952 		i = 0;
953 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
954 							    (void **)&buf,
955 							    &completed_nbytes)
956 								!= 0) {
957 			mdelay(1);
958 
959 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
960 				ret = -EBUSY;
961 				goto done;
962 			}
963 		}
964 
965 		if (nbytes != completed_nbytes) {
966 			ret = -EIO;
967 			goto done;
968 		}
969 
970 		if (*buf != ce_data) {
971 			ret = -EIO;
972 			goto done;
973 		}
974 
975 		remaining_bytes -= nbytes;
976 		memcpy(data, data_buf, nbytes);
977 
978 		address += nbytes;
979 		data += nbytes;
980 	}
981 
982 done:
983 
984 	if (data_buf)
985 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
986 				  ce_data_base);
987 
988 	spin_unlock_bh(&ar_pci->ce_lock);
989 
990 	return ret;
991 }
992 
993 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
994 {
995 	__le32 val = 0;
996 	int ret;
997 
998 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
999 	*value = __le32_to_cpu(val);
1000 
1001 	return ret;
1002 }
1003 
1004 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1005 				     u32 src, u32 len)
1006 {
1007 	u32 host_addr, addr;
1008 	int ret;
1009 
1010 	host_addr = host_interest_item_address(src);
1011 
1012 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1013 	if (ret != 0) {
1014 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1015 			    src, ret);
1016 		return ret;
1017 	}
1018 
1019 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1020 	if (ret != 0) {
1021 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1022 			    addr, len, ret);
1023 		return ret;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1030 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1031 
1032 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1033 			      const void *data, int nbytes)
1034 {
1035 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1036 	int ret = 0;
1037 	u32 *buf;
1038 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1039 	struct ath10k_ce_pipe *ce_diag;
1040 	void *data_buf = NULL;
1041 	u32 ce_data;	/* Host buffer address in CE space */
1042 	dma_addr_t ce_data_base = 0;
1043 	int i;
1044 
1045 	spin_lock_bh(&ar_pci->ce_lock);
1046 
1047 	ce_diag = ar_pci->ce_diag;
1048 
1049 	/*
1050 	 * Allocate a temporary bounce buffer to hold caller's data
1051 	 * to be DMA'ed to Target. This guarantees
1052 	 *   1) 4-byte alignment
1053 	 *   2) Buffer in DMA-able space
1054 	 */
1055 	orig_nbytes = nbytes;
1056 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1057 						       orig_nbytes,
1058 						       &ce_data_base,
1059 						       GFP_ATOMIC);
1060 	if (!data_buf) {
1061 		ret = -ENOMEM;
1062 		goto done;
1063 	}
1064 
1065 	/* Copy caller's data to allocated DMA buf */
1066 	memcpy(data_buf, data, orig_nbytes);
1067 
1068 	/*
1069 	 * The address supplied by the caller is in the
1070 	 * Target CPU virtual address space.
1071 	 *
1072 	 * In order to use this address with the diagnostic CE,
1073 	 * convert it from
1074 	 *    Target CPU virtual address space
1075 	 * to
1076 	 *    CE address space
1077 	 */
1078 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1079 
1080 	remaining_bytes = orig_nbytes;
1081 	ce_data = ce_data_base;
1082 	while (remaining_bytes) {
1083 		/* FIXME: check cast */
1084 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1085 
1086 		/* Set up to receive directly into Target(!) address */
1087 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1088 		if (ret != 0)
1089 			goto done;
1090 
1091 		/*
1092 		 * Request CE to send caller-supplied data that
1093 		 * was copied to bounce buffer to Target(!) address.
1094 		 */
1095 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1096 					    nbytes, 0, 0);
1097 		if (ret != 0)
1098 			goto done;
1099 
1100 		i = 0;
1101 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1102 							    NULL) != 0) {
1103 			mdelay(1);
1104 
1105 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1106 				ret = -EBUSY;
1107 				goto done;
1108 			}
1109 		}
1110 
1111 		i = 0;
1112 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1113 							    (void **)&buf,
1114 							    &completed_nbytes)
1115 								!= 0) {
1116 			mdelay(1);
1117 
1118 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1119 				ret = -EBUSY;
1120 				goto done;
1121 			}
1122 		}
1123 
1124 		if (nbytes != completed_nbytes) {
1125 			ret = -EIO;
1126 			goto done;
1127 		}
1128 
1129 		if (*buf != address) {
1130 			ret = -EIO;
1131 			goto done;
1132 		}
1133 
1134 		remaining_bytes -= nbytes;
1135 		address += nbytes;
1136 		ce_data += nbytes;
1137 	}
1138 
1139 done:
1140 	if (data_buf) {
1141 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1142 				  ce_data_base);
1143 	}
1144 
1145 	if (ret != 0)
1146 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1147 			    address, ret);
1148 
1149 	spin_unlock_bh(&ar_pci->ce_lock);
1150 
1151 	return ret;
1152 }
1153 
1154 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1155 {
1156 	__le32 val = __cpu_to_le32(value);
1157 
1158 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1159 }
1160 
1161 /* Called by lower (CE) layer when a send to Target completes. */
1162 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1163 {
1164 	struct ath10k *ar = ce_state->ar;
1165 	struct sk_buff_head list;
1166 	struct sk_buff *skb;
1167 
1168 	__skb_queue_head_init(&list);
1169 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1170 		/* no need to call tx completion for NULL pointers */
1171 		if (skb == NULL)
1172 			continue;
1173 
1174 		__skb_queue_tail(&list, skb);
1175 	}
1176 
1177 	while ((skb = __skb_dequeue(&list)))
1178 		ath10k_htc_tx_completion_handler(ar, skb);
1179 }
1180 
1181 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1182 				     void (*callback)(struct ath10k *ar,
1183 						      struct sk_buff *skb))
1184 {
1185 	struct ath10k *ar = ce_state->ar;
1186 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1187 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1188 	struct sk_buff *skb;
1189 	struct sk_buff_head list;
1190 	void *transfer_context;
1191 	unsigned int nbytes, max_nbytes;
1192 
1193 	__skb_queue_head_init(&list);
1194 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1195 					     &nbytes) == 0) {
1196 		skb = transfer_context;
1197 		max_nbytes = skb->len + skb_tailroom(skb);
1198 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1199 				 max_nbytes, DMA_FROM_DEVICE);
1200 
1201 		if (unlikely(max_nbytes < nbytes)) {
1202 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1203 				    nbytes, max_nbytes);
1204 			dev_kfree_skb_any(skb);
1205 			continue;
1206 		}
1207 
1208 		skb_put(skb, nbytes);
1209 		__skb_queue_tail(&list, skb);
1210 	}
1211 
1212 	while ((skb = __skb_dequeue(&list))) {
1213 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1214 			   ce_state->id, skb->len);
1215 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1216 				skb->data, skb->len);
1217 
1218 		callback(ar, skb);
1219 	}
1220 
1221 	ath10k_pci_rx_post_pipe(pipe_info);
1222 }
1223 
1224 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1225 					 void (*callback)(struct ath10k *ar,
1226 							  struct sk_buff *skb))
1227 {
1228 	struct ath10k *ar = ce_state->ar;
1229 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1230 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1231 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1232 	struct sk_buff *skb;
1233 	struct sk_buff_head list;
1234 	void *transfer_context;
1235 	unsigned int nbytes, max_nbytes, nentries;
1236 	int orig_len;
1237 
1238 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1239 	 * is processed other than init and deinit. Before releasing CE5
1240 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1241 	 */
1242 	__skb_queue_head_init(&list);
1243 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1244 						    &nbytes) == 0) {
1245 		skb = transfer_context;
1246 		max_nbytes = skb->len + skb_tailroom(skb);
1247 
1248 		if (unlikely(max_nbytes < nbytes)) {
1249 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1250 				    nbytes, max_nbytes);
1251 			continue;
1252 		}
1253 
1254 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1255 					max_nbytes, DMA_FROM_DEVICE);
1256 		skb_put(skb, nbytes);
1257 		__skb_queue_tail(&list, skb);
1258 	}
1259 
1260 	nentries = skb_queue_len(&list);
1261 	while ((skb = __skb_dequeue(&list))) {
1262 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1263 			   ce_state->id, skb->len);
1264 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1265 				skb->data, skb->len);
1266 
1267 		orig_len = skb->len;
1268 		callback(ar, skb);
1269 		skb_push(skb, orig_len - skb->len);
1270 		skb_reset_tail_pointer(skb);
1271 		skb_trim(skb, 0);
1272 
1273 		/*let device gain the buffer again*/
1274 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1275 					   skb->len + skb_tailroom(skb),
1276 					   DMA_FROM_DEVICE);
1277 	}
1278 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1279 }
1280 
1281 /* Called by lower (CE) layer when data is received from the Target. */
1282 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1283 {
1284 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1285 }
1286 
1287 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1288 {
1289 	/* CE4 polling needs to be done whenever CE pipe which transports
1290 	 * HTT Rx (target->host) is processed.
1291 	 */
1292 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1293 
1294 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295 }
1296 
1297 /* Called by lower (CE) layer when data is received from the Target.
1298  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1299  */
1300 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1301 {
1302 	ath10k_pci_process_rx_cb(ce_state,
1303 				 ath10k_htt_rx_pktlog_completion_handler);
1304 }
1305 
1306 /* Called by lower (CE) layer when a send to HTT Target completes. */
1307 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1308 {
1309 	struct ath10k *ar = ce_state->ar;
1310 	struct sk_buff *skb;
1311 
1312 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1313 		/* no need to call tx completion for NULL pointers */
1314 		if (!skb)
1315 			continue;
1316 
1317 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1318 				 skb->len, DMA_TO_DEVICE);
1319 		ath10k_htt_hif_tx_complete(ar, skb);
1320 	}
1321 }
1322 
1323 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1324 {
1325 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1326 	ath10k_htt_t2h_msg_handler(ar, skb);
1327 }
1328 
1329 /* Called by lower (CE) layer when HTT data is received from the Target. */
1330 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1331 {
1332 	/* CE4 polling needs to be done whenever CE pipe which transports
1333 	 * HTT Rx (target->host) is processed.
1334 	 */
1335 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1336 
1337 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1338 }
1339 
1340 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1341 			 struct ath10k_hif_sg_item *items, int n_items)
1342 {
1343 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1344 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1345 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1346 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1347 	unsigned int nentries_mask;
1348 	unsigned int sw_index;
1349 	unsigned int write_index;
1350 	int err, i = 0;
1351 
1352 	spin_lock_bh(&ar_pci->ce_lock);
1353 
1354 	nentries_mask = src_ring->nentries_mask;
1355 	sw_index = src_ring->sw_index;
1356 	write_index = src_ring->write_index;
1357 
1358 	if (unlikely(CE_RING_DELTA(nentries_mask,
1359 				   write_index, sw_index - 1) < n_items)) {
1360 		err = -ENOBUFS;
1361 		goto err;
1362 	}
1363 
1364 	for (i = 0; i < n_items - 1; i++) {
1365 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1366 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1367 			   i, items[i].paddr, items[i].len, n_items);
1368 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1369 				items[i].vaddr, items[i].len);
1370 
1371 		err = ath10k_ce_send_nolock(ce_pipe,
1372 					    items[i].transfer_context,
1373 					    items[i].paddr,
1374 					    items[i].len,
1375 					    items[i].transfer_id,
1376 					    CE_SEND_FLAG_GATHER);
1377 		if (err)
1378 			goto err;
1379 	}
1380 
1381 	/* `i` is equal to `n_items -1` after for() */
1382 
1383 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1384 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1385 		   i, items[i].paddr, items[i].len, n_items);
1386 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1387 			items[i].vaddr, items[i].len);
1388 
1389 	err = ath10k_ce_send_nolock(ce_pipe,
1390 				    items[i].transfer_context,
1391 				    items[i].paddr,
1392 				    items[i].len,
1393 				    items[i].transfer_id,
1394 				    0);
1395 	if (err)
1396 		goto err;
1397 
1398 	spin_unlock_bh(&ar_pci->ce_lock);
1399 	return 0;
1400 
1401 err:
1402 	for (; i > 0; i--)
1403 		__ath10k_ce_send_revert(ce_pipe);
1404 
1405 	spin_unlock_bh(&ar_pci->ce_lock);
1406 	return err;
1407 }
1408 
1409 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1410 			     size_t buf_len)
1411 {
1412 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1413 }
1414 
1415 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1416 {
1417 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1418 
1419 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1420 
1421 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1422 }
1423 
1424 static void ath10k_pci_dump_registers(struct ath10k *ar,
1425 				      struct ath10k_fw_crash_data *crash_data)
1426 {
1427 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1428 	int i, ret;
1429 
1430 	lockdep_assert_held(&ar->data_lock);
1431 
1432 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1433 				      hi_failure_state,
1434 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1435 	if (ret) {
1436 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1437 		return;
1438 	}
1439 
1440 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1441 
1442 	ath10k_err(ar, "firmware register dump:\n");
1443 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1444 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1445 			   i,
1446 			   __le32_to_cpu(reg_dump_values[i]),
1447 			   __le32_to_cpu(reg_dump_values[i + 1]),
1448 			   __le32_to_cpu(reg_dump_values[i + 2]),
1449 			   __le32_to_cpu(reg_dump_values[i + 3]));
1450 
1451 	if (!crash_data)
1452 		return;
1453 
1454 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1455 		crash_data->registers[i] = reg_dump_values[i];
1456 }
1457 
1458 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1459 {
1460 	struct ath10k_fw_crash_data *crash_data;
1461 	char uuid[50];
1462 
1463 	spin_lock_bh(&ar->data_lock);
1464 
1465 	ar->stats.fw_crash_counter++;
1466 
1467 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1468 
1469 	if (crash_data)
1470 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1471 	else
1472 		scnprintf(uuid, sizeof(uuid), "n/a");
1473 
1474 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1475 	ath10k_print_driver_info(ar);
1476 	ath10k_pci_dump_registers(ar, crash_data);
1477 	ath10k_ce_dump_registers(ar, crash_data);
1478 
1479 	spin_unlock_bh(&ar->data_lock);
1480 
1481 	queue_work(ar->workqueue, &ar->restart_work);
1482 }
1483 
1484 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1485 					int force)
1486 {
1487 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1488 
1489 	if (!force) {
1490 		int resources;
1491 		/*
1492 		 * Decide whether to actually poll for completions, or just
1493 		 * wait for a later chance.
1494 		 * If there seem to be plenty of resources left, then just wait
1495 		 * since checking involves reading a CE register, which is a
1496 		 * relatively expensive operation.
1497 		 */
1498 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1499 
1500 		/*
1501 		 * If at least 50% of the total resources are still available,
1502 		 * don't bother checking again yet.
1503 		 */
1504 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1505 			return;
1506 	}
1507 	ath10k_ce_per_engine_service(ar, pipe);
1508 }
1509 
1510 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1511 {
1512 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1513 
1514 	del_timer_sync(&ar_pci->rx_post_retry);
1515 }
1516 
1517 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1518 				       u8 *ul_pipe, u8 *dl_pipe)
1519 {
1520 	const struct service_to_pipe *entry;
1521 	bool ul_set = false, dl_set = false;
1522 	int i;
1523 
1524 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1525 
1526 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1527 		entry = &target_service_to_ce_map_wlan[i];
1528 
1529 		if (__le32_to_cpu(entry->service_id) != service_id)
1530 			continue;
1531 
1532 		switch (__le32_to_cpu(entry->pipedir)) {
1533 		case PIPEDIR_NONE:
1534 			break;
1535 		case PIPEDIR_IN:
1536 			WARN_ON(dl_set);
1537 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1538 			dl_set = true;
1539 			break;
1540 		case PIPEDIR_OUT:
1541 			WARN_ON(ul_set);
1542 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1543 			ul_set = true;
1544 			break;
1545 		case PIPEDIR_INOUT:
1546 			WARN_ON(dl_set);
1547 			WARN_ON(ul_set);
1548 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1549 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1550 			dl_set = true;
1551 			ul_set = true;
1552 			break;
1553 		}
1554 	}
1555 
1556 	if (WARN_ON(!ul_set || !dl_set))
1557 		return -ENOENT;
1558 
1559 	return 0;
1560 }
1561 
1562 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1563 				     u8 *ul_pipe, u8 *dl_pipe)
1564 {
1565 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1566 
1567 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1568 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1569 						 ul_pipe, dl_pipe);
1570 }
1571 
1572 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1573 {
1574 	u32 val;
1575 
1576 	switch (ar->hw_rev) {
1577 	case ATH10K_HW_QCA988X:
1578 	case ATH10K_HW_QCA9887:
1579 	case ATH10K_HW_QCA6174:
1580 	case ATH10K_HW_QCA9377:
1581 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1582 					CORE_CTRL_ADDRESS);
1583 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1584 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1585 				   CORE_CTRL_ADDRESS, val);
1586 		break;
1587 	case ATH10K_HW_QCA99X0:
1588 	case ATH10K_HW_QCA9984:
1589 	case ATH10K_HW_QCA9888:
1590 	case ATH10K_HW_QCA4019:
1591 		/* TODO: Find appropriate register configuration for QCA99X0
1592 		 *  to mask irq/MSI.
1593 		 */
1594 		break;
1595 	}
1596 }
1597 
1598 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1599 {
1600 	u32 val;
1601 
1602 	switch (ar->hw_rev) {
1603 	case ATH10K_HW_QCA988X:
1604 	case ATH10K_HW_QCA9887:
1605 	case ATH10K_HW_QCA6174:
1606 	case ATH10K_HW_QCA9377:
1607 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1608 					CORE_CTRL_ADDRESS);
1609 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1610 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1611 				   CORE_CTRL_ADDRESS, val);
1612 		break;
1613 	case ATH10K_HW_QCA99X0:
1614 	case ATH10K_HW_QCA9984:
1615 	case ATH10K_HW_QCA9888:
1616 	case ATH10K_HW_QCA4019:
1617 		/* TODO: Find appropriate register configuration for QCA99X0
1618 		 *  to unmask irq/MSI.
1619 		 */
1620 		break;
1621 	}
1622 }
1623 
1624 static void ath10k_pci_irq_disable(struct ath10k *ar)
1625 {
1626 	ath10k_ce_disable_interrupts(ar);
1627 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1628 	ath10k_pci_irq_msi_fw_mask(ar);
1629 }
1630 
1631 static void ath10k_pci_irq_sync(struct ath10k *ar)
1632 {
1633 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1634 
1635 	synchronize_irq(ar_pci->pdev->irq);
1636 }
1637 
1638 static void ath10k_pci_irq_enable(struct ath10k *ar)
1639 {
1640 	ath10k_ce_enable_interrupts(ar);
1641 	ath10k_pci_enable_legacy_irq(ar);
1642 	ath10k_pci_irq_msi_fw_unmask(ar);
1643 }
1644 
1645 static int ath10k_pci_hif_start(struct ath10k *ar)
1646 {
1647 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1648 
1649 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1650 
1651 	napi_enable(&ar->napi);
1652 
1653 	ath10k_pci_irq_enable(ar);
1654 	ath10k_pci_rx_post(ar);
1655 
1656 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1657 				   ar_pci->link_ctl);
1658 
1659 	return 0;
1660 }
1661 
1662 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1663 {
1664 	struct ath10k *ar;
1665 	struct ath10k_ce_pipe *ce_pipe;
1666 	struct ath10k_ce_ring *ce_ring;
1667 	struct sk_buff *skb;
1668 	int i;
1669 
1670 	ar = pci_pipe->hif_ce_state;
1671 	ce_pipe = pci_pipe->ce_hdl;
1672 	ce_ring = ce_pipe->dest_ring;
1673 
1674 	if (!ce_ring)
1675 		return;
1676 
1677 	if (!pci_pipe->buf_sz)
1678 		return;
1679 
1680 	for (i = 0; i < ce_ring->nentries; i++) {
1681 		skb = ce_ring->per_transfer_context[i];
1682 		if (!skb)
1683 			continue;
1684 
1685 		ce_ring->per_transfer_context[i] = NULL;
1686 
1687 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1688 				 skb->len + skb_tailroom(skb),
1689 				 DMA_FROM_DEVICE);
1690 		dev_kfree_skb_any(skb);
1691 	}
1692 }
1693 
1694 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1695 {
1696 	struct ath10k *ar;
1697 	struct ath10k_ce_pipe *ce_pipe;
1698 	struct ath10k_ce_ring *ce_ring;
1699 	struct sk_buff *skb;
1700 	int i;
1701 
1702 	ar = pci_pipe->hif_ce_state;
1703 	ce_pipe = pci_pipe->ce_hdl;
1704 	ce_ring = ce_pipe->src_ring;
1705 
1706 	if (!ce_ring)
1707 		return;
1708 
1709 	if (!pci_pipe->buf_sz)
1710 		return;
1711 
1712 	for (i = 0; i < ce_ring->nentries; i++) {
1713 		skb = ce_ring->per_transfer_context[i];
1714 		if (!skb)
1715 			continue;
1716 
1717 		ce_ring->per_transfer_context[i] = NULL;
1718 
1719 		ath10k_htc_tx_completion_handler(ar, skb);
1720 	}
1721 }
1722 
1723 /*
1724  * Cleanup residual buffers for device shutdown:
1725  *    buffers that were enqueued for receive
1726  *    buffers that were to be sent
1727  * Note: Buffers that had completed but which were
1728  * not yet processed are on a completion queue. They
1729  * are handled when the completion thread shuts down.
1730  */
1731 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1732 {
1733 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1734 	int pipe_num;
1735 
1736 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1737 		struct ath10k_pci_pipe *pipe_info;
1738 
1739 		pipe_info = &ar_pci->pipe_info[pipe_num];
1740 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1741 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1742 	}
1743 }
1744 
1745 void ath10k_pci_ce_deinit(struct ath10k *ar)
1746 {
1747 	int i;
1748 
1749 	for (i = 0; i < CE_COUNT; i++)
1750 		ath10k_ce_deinit_pipe(ar, i);
1751 }
1752 
1753 void ath10k_pci_flush(struct ath10k *ar)
1754 {
1755 	ath10k_pci_rx_retry_sync(ar);
1756 	ath10k_pci_buffer_cleanup(ar);
1757 }
1758 
1759 static void ath10k_pci_hif_stop(struct ath10k *ar)
1760 {
1761 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1762 	unsigned long flags;
1763 
1764 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1765 
1766 	/* Most likely the device has HTT Rx ring configured. The only way to
1767 	 * prevent the device from accessing (and possible corrupting) host
1768 	 * memory is to reset the chip now.
1769 	 *
1770 	 * There's also no known way of masking MSI interrupts on the device.
1771 	 * For ranged MSI the CE-related interrupts can be masked. However
1772 	 * regardless how many MSI interrupts are assigned the first one
1773 	 * is always used for firmware indications (crashes) and cannot be
1774 	 * masked. To prevent the device from asserting the interrupt reset it
1775 	 * before proceeding with cleanup.
1776 	 */
1777 	ath10k_pci_safe_chip_reset(ar);
1778 
1779 	ath10k_pci_irq_disable(ar);
1780 	ath10k_pci_irq_sync(ar);
1781 	ath10k_pci_flush(ar);
1782 	napi_synchronize(&ar->napi);
1783 	napi_disable(&ar->napi);
1784 
1785 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1786 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1787 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1788 }
1789 
1790 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1791 				    void *req, u32 req_len,
1792 				    void *resp, u32 *resp_len)
1793 {
1794 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1795 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1796 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1797 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1798 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1799 	dma_addr_t req_paddr = 0;
1800 	dma_addr_t resp_paddr = 0;
1801 	struct bmi_xfer xfer = {};
1802 	void *treq, *tresp = NULL;
1803 	int ret = 0;
1804 
1805 	might_sleep();
1806 
1807 	if (resp && !resp_len)
1808 		return -EINVAL;
1809 
1810 	if (resp && resp_len && *resp_len == 0)
1811 		return -EINVAL;
1812 
1813 	treq = kmemdup(req, req_len, GFP_KERNEL);
1814 	if (!treq)
1815 		return -ENOMEM;
1816 
1817 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1818 	ret = dma_mapping_error(ar->dev, req_paddr);
1819 	if (ret) {
1820 		ret = -EIO;
1821 		goto err_dma;
1822 	}
1823 
1824 	if (resp && resp_len) {
1825 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1826 		if (!tresp) {
1827 			ret = -ENOMEM;
1828 			goto err_req;
1829 		}
1830 
1831 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1832 					    DMA_FROM_DEVICE);
1833 		ret = dma_mapping_error(ar->dev, resp_paddr);
1834 		if (ret) {
1835 			ret = -EIO;
1836 			goto err_req;
1837 		}
1838 
1839 		xfer.wait_for_resp = true;
1840 		xfer.resp_len = 0;
1841 
1842 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1843 	}
1844 
1845 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1846 	if (ret)
1847 		goto err_resp;
1848 
1849 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1850 	if (ret) {
1851 		u32 unused_buffer;
1852 		unsigned int unused_nbytes;
1853 		unsigned int unused_id;
1854 
1855 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1856 					   &unused_nbytes, &unused_id);
1857 	} else {
1858 		/* non-zero means we did not time out */
1859 		ret = 0;
1860 	}
1861 
1862 err_resp:
1863 	if (resp) {
1864 		u32 unused_buffer;
1865 
1866 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1867 		dma_unmap_single(ar->dev, resp_paddr,
1868 				 *resp_len, DMA_FROM_DEVICE);
1869 	}
1870 err_req:
1871 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1872 
1873 	if (ret == 0 && resp_len) {
1874 		*resp_len = min(*resp_len, xfer.resp_len);
1875 		memcpy(resp, tresp, xfer.resp_len);
1876 	}
1877 err_dma:
1878 	kfree(treq);
1879 	kfree(tresp);
1880 
1881 	return ret;
1882 }
1883 
1884 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1885 {
1886 	struct bmi_xfer *xfer;
1887 
1888 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1889 		return;
1890 
1891 	xfer->tx_done = true;
1892 }
1893 
1894 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1895 {
1896 	struct ath10k *ar = ce_state->ar;
1897 	struct bmi_xfer *xfer;
1898 	unsigned int nbytes;
1899 
1900 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1901 					  &nbytes))
1902 		return;
1903 
1904 	if (WARN_ON_ONCE(!xfer))
1905 		return;
1906 
1907 	if (!xfer->wait_for_resp) {
1908 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1909 		return;
1910 	}
1911 
1912 	xfer->resp_len = nbytes;
1913 	xfer->rx_done = true;
1914 }
1915 
1916 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1917 			       struct ath10k_ce_pipe *rx_pipe,
1918 			       struct bmi_xfer *xfer)
1919 {
1920 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1921 
1922 	while (time_before_eq(jiffies, timeout)) {
1923 		ath10k_pci_bmi_send_done(tx_pipe);
1924 		ath10k_pci_bmi_recv_data(rx_pipe);
1925 
1926 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1927 			return 0;
1928 
1929 		schedule();
1930 	}
1931 
1932 	return -ETIMEDOUT;
1933 }
1934 
1935 /*
1936  * Send an interrupt to the device to wake up the Target CPU
1937  * so it has an opportunity to notice any changed state.
1938  */
1939 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1940 {
1941 	u32 addr, val;
1942 
1943 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1944 	val = ath10k_pci_read32(ar, addr);
1945 	val |= CORE_CTRL_CPU_INTR_MASK;
1946 	ath10k_pci_write32(ar, addr, val);
1947 
1948 	return 0;
1949 }
1950 
1951 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1952 {
1953 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1954 
1955 	switch (ar_pci->pdev->device) {
1956 	case QCA988X_2_0_DEVICE_ID:
1957 	case QCA99X0_2_0_DEVICE_ID:
1958 	case QCA9888_2_0_DEVICE_ID:
1959 	case QCA9984_1_0_DEVICE_ID:
1960 	case QCA9887_1_0_DEVICE_ID:
1961 		return 1;
1962 	case QCA6164_2_1_DEVICE_ID:
1963 	case QCA6174_2_1_DEVICE_ID:
1964 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1965 		case QCA6174_HW_1_0_CHIP_ID_REV:
1966 		case QCA6174_HW_1_1_CHIP_ID_REV:
1967 		case QCA6174_HW_2_1_CHIP_ID_REV:
1968 		case QCA6174_HW_2_2_CHIP_ID_REV:
1969 			return 3;
1970 		case QCA6174_HW_1_3_CHIP_ID_REV:
1971 			return 2;
1972 		case QCA6174_HW_3_0_CHIP_ID_REV:
1973 		case QCA6174_HW_3_1_CHIP_ID_REV:
1974 		case QCA6174_HW_3_2_CHIP_ID_REV:
1975 			return 9;
1976 		}
1977 		break;
1978 	case QCA9377_1_0_DEVICE_ID:
1979 		return 4;
1980 	}
1981 
1982 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1983 	return 1;
1984 }
1985 
1986 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1987 {
1988 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1989 
1990 	return ar_pci->bus_ops->get_num_banks(ar);
1991 }
1992 
1993 int ath10k_pci_init_config(struct ath10k *ar)
1994 {
1995 	u32 interconnect_targ_addr;
1996 	u32 pcie_state_targ_addr = 0;
1997 	u32 pipe_cfg_targ_addr = 0;
1998 	u32 svc_to_pipe_map = 0;
1999 	u32 pcie_config_flags = 0;
2000 	u32 ealloc_value;
2001 	u32 ealloc_targ_addr;
2002 	u32 flag2_value;
2003 	u32 flag2_targ_addr;
2004 	int ret = 0;
2005 
2006 	/* Download to Target the CE Config and the service-to-CE map */
2007 	interconnect_targ_addr =
2008 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2009 
2010 	/* Supply Target-side CE configuration */
2011 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2012 				     &pcie_state_targ_addr);
2013 	if (ret != 0) {
2014 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2015 		return ret;
2016 	}
2017 
2018 	if (pcie_state_targ_addr == 0) {
2019 		ret = -EIO;
2020 		ath10k_err(ar, "Invalid pcie state addr\n");
2021 		return ret;
2022 	}
2023 
2024 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2025 					  offsetof(struct pcie_state,
2026 						   pipe_cfg_addr)),
2027 				     &pipe_cfg_targ_addr);
2028 	if (ret != 0) {
2029 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2030 		return ret;
2031 	}
2032 
2033 	if (pipe_cfg_targ_addr == 0) {
2034 		ret = -EIO;
2035 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2036 		return ret;
2037 	}
2038 
2039 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2040 					target_ce_config_wlan,
2041 					sizeof(struct ce_pipe_config) *
2042 					NUM_TARGET_CE_CONFIG_WLAN);
2043 
2044 	if (ret != 0) {
2045 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2046 		return ret;
2047 	}
2048 
2049 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2050 					  offsetof(struct pcie_state,
2051 						   svc_to_pipe_map)),
2052 				     &svc_to_pipe_map);
2053 	if (ret != 0) {
2054 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2055 		return ret;
2056 	}
2057 
2058 	if (svc_to_pipe_map == 0) {
2059 		ret = -EIO;
2060 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2061 		return ret;
2062 	}
2063 
2064 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2065 					target_service_to_ce_map_wlan,
2066 					sizeof(target_service_to_ce_map_wlan));
2067 	if (ret != 0) {
2068 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2069 		return ret;
2070 	}
2071 
2072 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2073 					  offsetof(struct pcie_state,
2074 						   config_flags)),
2075 				     &pcie_config_flags);
2076 	if (ret != 0) {
2077 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2078 		return ret;
2079 	}
2080 
2081 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2082 
2083 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2084 					   offsetof(struct pcie_state,
2085 						    config_flags)),
2086 				      pcie_config_flags);
2087 	if (ret != 0) {
2088 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2089 		return ret;
2090 	}
2091 
2092 	/* configure early allocation */
2093 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2094 
2095 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2096 	if (ret != 0) {
2097 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2098 		return ret;
2099 	}
2100 
2101 	/* first bank is switched to IRAM */
2102 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2103 			 HI_EARLY_ALLOC_MAGIC_MASK);
2104 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2105 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2106 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2107 
2108 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2109 	if (ret != 0) {
2110 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2111 		return ret;
2112 	}
2113 
2114 	/* Tell Target to proceed with initialization */
2115 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2116 
2117 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2118 	if (ret != 0) {
2119 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2120 		return ret;
2121 	}
2122 
2123 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2124 
2125 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2126 	if (ret != 0) {
2127 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2128 		return ret;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2135 {
2136 	struct ce_attr *attr;
2137 	struct ce_pipe_config *config;
2138 
2139 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2140 	 * since it is currently used for other feature.
2141 	 */
2142 
2143 	/* Override Host's Copy Engine 5 configuration */
2144 	attr = &host_ce_config_wlan[5];
2145 	attr->src_sz_max = 0;
2146 	attr->dest_nentries = 0;
2147 
2148 	/* Override Target firmware's Copy Engine configuration */
2149 	config = &target_ce_config_wlan[5];
2150 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2151 	config->nbytes_max = __cpu_to_le32(2048);
2152 
2153 	/* Map from service/endpoint to Copy Engine */
2154 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2155 }
2156 
2157 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2158 {
2159 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2160 	struct ath10k_pci_pipe *pipe;
2161 	int i, ret;
2162 
2163 	for (i = 0; i < CE_COUNT; i++) {
2164 		pipe = &ar_pci->pipe_info[i];
2165 		pipe->ce_hdl = &ar_pci->ce_states[i];
2166 		pipe->pipe_num = i;
2167 		pipe->hif_ce_state = ar;
2168 
2169 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2170 		if (ret) {
2171 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2172 				   i, ret);
2173 			return ret;
2174 		}
2175 
2176 		/* Last CE is Diagnostic Window */
2177 		if (i == CE_DIAG_PIPE) {
2178 			ar_pci->ce_diag = pipe->ce_hdl;
2179 			continue;
2180 		}
2181 
2182 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 void ath10k_pci_free_pipes(struct ath10k *ar)
2189 {
2190 	int i;
2191 
2192 	for (i = 0; i < CE_COUNT; i++)
2193 		ath10k_ce_free_pipe(ar, i);
2194 }
2195 
2196 int ath10k_pci_init_pipes(struct ath10k *ar)
2197 {
2198 	int i, ret;
2199 
2200 	for (i = 0; i < CE_COUNT; i++) {
2201 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2202 		if (ret) {
2203 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2204 				   i, ret);
2205 			return ret;
2206 		}
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2213 {
2214 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2215 	       FW_IND_EVENT_PENDING;
2216 }
2217 
2218 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2219 {
2220 	u32 val;
2221 
2222 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2223 	val &= ~FW_IND_EVENT_PENDING;
2224 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2225 }
2226 
2227 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2228 {
2229 	u32 val;
2230 
2231 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2232 	return (val == 0xffffffff);
2233 }
2234 
2235 /* this function effectively clears target memory controller assert line */
2236 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2237 {
2238 	u32 val;
2239 
2240 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2241 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2242 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2243 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2244 
2245 	msleep(10);
2246 
2247 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2248 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2249 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2250 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2251 
2252 	msleep(10);
2253 }
2254 
2255 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2256 {
2257 	u32 val;
2258 
2259 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2260 
2261 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2262 				SOC_RESET_CONTROL_ADDRESS);
2263 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2264 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2265 }
2266 
2267 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2268 {
2269 	u32 val;
2270 
2271 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2272 				SOC_RESET_CONTROL_ADDRESS);
2273 
2274 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2275 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2276 	msleep(10);
2277 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2278 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2279 }
2280 
2281 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2282 {
2283 	u32 val;
2284 
2285 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2286 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2287 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2288 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2289 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2290 }
2291 
2292 static int ath10k_pci_warm_reset(struct ath10k *ar)
2293 {
2294 	int ret;
2295 
2296 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2297 
2298 	spin_lock_bh(&ar->data_lock);
2299 	ar->stats.fw_warm_reset_counter++;
2300 	spin_unlock_bh(&ar->data_lock);
2301 
2302 	ath10k_pci_irq_disable(ar);
2303 
2304 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2305 	 * were to access copy engine while host performs copy engine reset
2306 	 * then it is possible for the device to confuse pci-e controller to
2307 	 * the point of bringing host system to a complete stop (i.e. hang).
2308 	 */
2309 	ath10k_pci_warm_reset_si0(ar);
2310 	ath10k_pci_warm_reset_cpu(ar);
2311 	ath10k_pci_init_pipes(ar);
2312 	ath10k_pci_wait_for_target_init(ar);
2313 
2314 	ath10k_pci_warm_reset_clear_lf(ar);
2315 	ath10k_pci_warm_reset_ce(ar);
2316 	ath10k_pci_warm_reset_cpu(ar);
2317 	ath10k_pci_init_pipes(ar);
2318 
2319 	ret = ath10k_pci_wait_for_target_init(ar);
2320 	if (ret) {
2321 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2322 		return ret;
2323 	}
2324 
2325 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2326 
2327 	return 0;
2328 }
2329 
2330 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2331 {
2332 	ath10k_pci_irq_disable(ar);
2333 	return ath10k_pci_qca99x0_chip_reset(ar);
2334 }
2335 
2336 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2337 {
2338 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2339 
2340 	if (!ar_pci->pci_soft_reset)
2341 		return -ENOTSUPP;
2342 
2343 	return ar_pci->pci_soft_reset(ar);
2344 }
2345 
2346 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2347 {
2348 	int i, ret;
2349 	u32 val;
2350 
2351 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2352 
2353 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2354 	 * It is thus preferred to use warm reset which is safer but may not be
2355 	 * able to recover the device from all possible fail scenarios.
2356 	 *
2357 	 * Warm reset doesn't always work on first try so attempt it a few
2358 	 * times before giving up.
2359 	 */
2360 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2361 		ret = ath10k_pci_warm_reset(ar);
2362 		if (ret) {
2363 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2364 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2365 				    ret);
2366 			continue;
2367 		}
2368 
2369 		/* FIXME: Sometimes copy engine doesn't recover after warm
2370 		 * reset. In most cases this needs cold reset. In some of these
2371 		 * cases the device is in such a state that a cold reset may
2372 		 * lock up the host.
2373 		 *
2374 		 * Reading any host interest register via copy engine is
2375 		 * sufficient to verify if device is capable of booting
2376 		 * firmware blob.
2377 		 */
2378 		ret = ath10k_pci_init_pipes(ar);
2379 		if (ret) {
2380 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2381 				    ret);
2382 			continue;
2383 		}
2384 
2385 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2386 					     &val);
2387 		if (ret) {
2388 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2389 				    ret);
2390 			continue;
2391 		}
2392 
2393 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2394 		return 0;
2395 	}
2396 
2397 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2398 		ath10k_warn(ar, "refusing cold reset as requested\n");
2399 		return -EPERM;
2400 	}
2401 
2402 	ret = ath10k_pci_cold_reset(ar);
2403 	if (ret) {
2404 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2405 		return ret;
2406 	}
2407 
2408 	ret = ath10k_pci_wait_for_target_init(ar);
2409 	if (ret) {
2410 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2411 			    ret);
2412 		return ret;
2413 	}
2414 
2415 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2416 
2417 	return 0;
2418 }
2419 
2420 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2421 {
2422 	int ret;
2423 
2424 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2425 
2426 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2427 
2428 	ret = ath10k_pci_cold_reset(ar);
2429 	if (ret) {
2430 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2431 		return ret;
2432 	}
2433 
2434 	ret = ath10k_pci_wait_for_target_init(ar);
2435 	if (ret) {
2436 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2437 			    ret);
2438 		return ret;
2439 	}
2440 
2441 	ret = ath10k_pci_warm_reset(ar);
2442 	if (ret) {
2443 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2444 		return ret;
2445 	}
2446 
2447 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2448 
2449 	return 0;
2450 }
2451 
2452 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2453 {
2454 	int ret;
2455 
2456 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2457 
2458 	ret = ath10k_pci_cold_reset(ar);
2459 	if (ret) {
2460 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2461 		return ret;
2462 	}
2463 
2464 	ret = ath10k_pci_wait_for_target_init(ar);
2465 	if (ret) {
2466 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2467 			    ret);
2468 		return ret;
2469 	}
2470 
2471 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2472 
2473 	return 0;
2474 }
2475 
2476 static int ath10k_pci_chip_reset(struct ath10k *ar)
2477 {
2478 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2479 
2480 	if (WARN_ON(!ar_pci->pci_hard_reset))
2481 		return -ENOTSUPP;
2482 
2483 	return ar_pci->pci_hard_reset(ar);
2484 }
2485 
2486 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2487 {
2488 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2489 	int ret;
2490 
2491 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2492 
2493 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2494 				  &ar_pci->link_ctl);
2495 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2496 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2497 
2498 	/*
2499 	 * Bring the target up cleanly.
2500 	 *
2501 	 * The target may be in an undefined state with an AUX-powered Target
2502 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2503 	 * restarted (without unloading the driver) then the Target is left
2504 	 * (aux) powered and running. On a subsequent driver load, the Target
2505 	 * is in an unexpected state. We try to catch that here in order to
2506 	 * reset the Target and retry the probe.
2507 	 */
2508 	ret = ath10k_pci_chip_reset(ar);
2509 	if (ret) {
2510 		if (ath10k_pci_has_fw_crashed(ar)) {
2511 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2512 			ath10k_pci_fw_crashed_clear(ar);
2513 			ath10k_pci_fw_crashed_dump(ar);
2514 		}
2515 
2516 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2517 		goto err_sleep;
2518 	}
2519 
2520 	ret = ath10k_pci_init_pipes(ar);
2521 	if (ret) {
2522 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2523 		goto err_sleep;
2524 	}
2525 
2526 	ret = ath10k_pci_init_config(ar);
2527 	if (ret) {
2528 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2529 		goto err_ce;
2530 	}
2531 
2532 	ret = ath10k_pci_wake_target_cpu(ar);
2533 	if (ret) {
2534 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2535 		goto err_ce;
2536 	}
2537 
2538 	return 0;
2539 
2540 err_ce:
2541 	ath10k_pci_ce_deinit(ar);
2542 
2543 err_sleep:
2544 	return ret;
2545 }
2546 
2547 void ath10k_pci_hif_power_down(struct ath10k *ar)
2548 {
2549 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2550 
2551 	/* Currently hif_power_up performs effectively a reset and hif_stop
2552 	 * resets the chip as well so there's no point in resetting here.
2553 	 */
2554 }
2555 
2556 #ifdef CONFIG_PM
2557 
2558 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2559 {
2560 	/* The grace timer can still be counting down and ar->ps_awake be true.
2561 	 * It is known that the device may be asleep after resuming regardless
2562 	 * of the SoC powersave state before suspending. Hence make sure the
2563 	 * device is asleep before proceeding.
2564 	 */
2565 	ath10k_pci_sleep_sync(ar);
2566 
2567 	return 0;
2568 }
2569 
2570 static int ath10k_pci_hif_resume(struct ath10k *ar)
2571 {
2572 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2573 	struct pci_dev *pdev = ar_pci->pdev;
2574 	u32 val;
2575 	int ret = 0;
2576 
2577 	ret = ath10k_pci_force_wake(ar);
2578 	if (ret) {
2579 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2580 		return ret;
2581 	}
2582 
2583 	/* Suspend/Resume resets the PCI configuration space, so we have to
2584 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2585 	 * from interfering with C3 CPU state. pci_restore_state won't help
2586 	 * here since it only restores the first 64 bytes pci config header.
2587 	 */
2588 	pci_read_config_dword(pdev, 0x40, &val);
2589 	if ((val & 0x0000ff00) != 0)
2590 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2591 
2592 	return ret;
2593 }
2594 #endif
2595 
2596 static bool ath10k_pci_validate_cal(void *data, size_t size)
2597 {
2598 	__le16 *cal_words = data;
2599 	u16 checksum = 0;
2600 	size_t i;
2601 
2602 	if (size % 2 != 0)
2603 		return false;
2604 
2605 	for (i = 0; i < size / 2; i++)
2606 		checksum ^= le16_to_cpu(cal_words[i]);
2607 
2608 	return checksum == 0xffff;
2609 }
2610 
2611 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2612 {
2613 	/* Enable SI clock */
2614 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2615 
2616 	/* Configure GPIOs for I2C operation */
2617 	ath10k_pci_write32(ar,
2618 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2619 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2620 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2621 			      GPIO_PIN0_CONFIG) |
2622 			   SM(1, GPIO_PIN0_PAD_PULL));
2623 
2624 	ath10k_pci_write32(ar,
2625 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2626 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2627 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2628 			   SM(1, GPIO_PIN0_PAD_PULL));
2629 
2630 	ath10k_pci_write32(ar,
2631 			   GPIO_BASE_ADDRESS +
2632 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2633 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2634 
2635 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2636 	ath10k_pci_write32(ar,
2637 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2638 			   SM(1, SI_CONFIG_ERR_INT) |
2639 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2640 			   SM(1, SI_CONFIG_I2C) |
2641 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2642 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2643 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2644 			   SM(8, SI_CONFIG_DIVIDER));
2645 }
2646 
2647 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2648 {
2649 	u32 reg;
2650 	int wait_limit;
2651 
2652 	/* set device select byte and for the read operation */
2653 	reg = QCA9887_EEPROM_SELECT_READ |
2654 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2655 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2656 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2657 
2658 	/* write transmit data, transfer length, and START bit */
2659 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2660 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2661 			   SM(4, SI_CS_TX_CNT));
2662 
2663 	/* wait max 1 sec */
2664 	wait_limit = 100000;
2665 
2666 	/* wait for SI_CS_DONE_INT */
2667 	do {
2668 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2669 		if (MS(reg, SI_CS_DONE_INT))
2670 			break;
2671 
2672 		wait_limit--;
2673 		udelay(10);
2674 	} while (wait_limit > 0);
2675 
2676 	if (!MS(reg, SI_CS_DONE_INT)) {
2677 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2678 			   addr);
2679 		return -ETIMEDOUT;
2680 	}
2681 
2682 	/* clear SI_CS_DONE_INT */
2683 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2684 
2685 	if (MS(reg, SI_CS_DONE_ERR)) {
2686 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2687 		return -EIO;
2688 	}
2689 
2690 	/* extract receive data */
2691 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2692 	*out = reg;
2693 
2694 	return 0;
2695 }
2696 
2697 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2698 					   size_t *data_len)
2699 {
2700 	u8 *caldata = NULL;
2701 	size_t calsize, i;
2702 	int ret;
2703 
2704 	if (!QCA_REV_9887(ar))
2705 		return -EOPNOTSUPP;
2706 
2707 	calsize = ar->hw_params.cal_data_len;
2708 	caldata = kmalloc(calsize, GFP_KERNEL);
2709 	if (!caldata)
2710 		return -ENOMEM;
2711 
2712 	ath10k_pci_enable_eeprom(ar);
2713 
2714 	for (i = 0; i < calsize; i++) {
2715 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2716 		if (ret)
2717 			goto err_free;
2718 	}
2719 
2720 	if (!ath10k_pci_validate_cal(caldata, calsize))
2721 		goto err_free;
2722 
2723 	*data = caldata;
2724 	*data_len = calsize;
2725 
2726 	return 0;
2727 
2728 err_free:
2729 	kfree(caldata);
2730 
2731 	return -EINVAL;
2732 }
2733 
2734 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2735 	.tx_sg			= ath10k_pci_hif_tx_sg,
2736 	.diag_read		= ath10k_pci_hif_diag_read,
2737 	.diag_write		= ath10k_pci_diag_write_mem,
2738 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2739 	.start			= ath10k_pci_hif_start,
2740 	.stop			= ath10k_pci_hif_stop,
2741 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2742 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2743 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2744 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2745 	.power_up		= ath10k_pci_hif_power_up,
2746 	.power_down		= ath10k_pci_hif_power_down,
2747 	.read32			= ath10k_pci_read32,
2748 	.write32		= ath10k_pci_write32,
2749 #ifdef CONFIG_PM
2750 	.suspend		= ath10k_pci_hif_suspend,
2751 	.resume			= ath10k_pci_hif_resume,
2752 #endif
2753 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2754 };
2755 
2756 /*
2757  * Top-level interrupt handler for all PCI interrupts from a Target.
2758  * When a block of MSI interrupts is allocated, this top-level handler
2759  * is not used; instead, we directly call the correct sub-handler.
2760  */
2761 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2762 {
2763 	struct ath10k *ar = arg;
2764 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2765 	int ret;
2766 
2767 	if (ath10k_pci_has_device_gone(ar))
2768 		return IRQ_NONE;
2769 
2770 	ret = ath10k_pci_force_wake(ar);
2771 	if (ret) {
2772 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2773 		return IRQ_NONE;
2774 	}
2775 
2776 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2777 	    !ath10k_pci_irq_pending(ar))
2778 		return IRQ_NONE;
2779 
2780 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2781 	ath10k_pci_irq_msi_fw_mask(ar);
2782 	napi_schedule(&ar->napi);
2783 
2784 	return IRQ_HANDLED;
2785 }
2786 
2787 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2788 {
2789 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2790 	int done = 0;
2791 
2792 	if (ath10k_pci_has_fw_crashed(ar)) {
2793 		ath10k_pci_fw_crashed_clear(ar);
2794 		ath10k_pci_fw_crashed_dump(ar);
2795 		napi_complete(ctx);
2796 		return done;
2797 	}
2798 
2799 	ath10k_ce_per_engine_service_any(ar);
2800 
2801 	done = ath10k_htt_txrx_compl_task(ar, budget);
2802 
2803 	if (done < budget) {
2804 		napi_complete_done(ctx, done);
2805 		/* In case of MSI, it is possible that interrupts are received
2806 		 * while NAPI poll is inprogress. So pending interrupts that are
2807 		 * received after processing all copy engine pipes by NAPI poll
2808 		 * will not be handled again. This is causing failure to
2809 		 * complete boot sequence in x86 platform. So before enabling
2810 		 * interrupts safer to check for pending interrupts for
2811 		 * immediate servicing.
2812 		 */
2813 		if (CE_INTERRUPT_SUMMARY(ar)) {
2814 			napi_reschedule(ctx);
2815 			goto out;
2816 		}
2817 		ath10k_pci_enable_legacy_irq(ar);
2818 		ath10k_pci_irq_msi_fw_unmask(ar);
2819 	}
2820 
2821 out:
2822 	return done;
2823 }
2824 
2825 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2826 {
2827 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2828 	int ret;
2829 
2830 	ret = request_irq(ar_pci->pdev->irq,
2831 			  ath10k_pci_interrupt_handler,
2832 			  IRQF_SHARED, "ath10k_pci", ar);
2833 	if (ret) {
2834 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2835 			    ar_pci->pdev->irq, ret);
2836 		return ret;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2843 {
2844 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2845 	int ret;
2846 
2847 	ret = request_irq(ar_pci->pdev->irq,
2848 			  ath10k_pci_interrupt_handler,
2849 			  IRQF_SHARED, "ath10k_pci", ar);
2850 	if (ret) {
2851 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2852 			    ar_pci->pdev->irq, ret);
2853 		return ret;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static int ath10k_pci_request_irq(struct ath10k *ar)
2860 {
2861 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2862 
2863 	switch (ar_pci->oper_irq_mode) {
2864 	case ATH10K_PCI_IRQ_LEGACY:
2865 		return ath10k_pci_request_irq_legacy(ar);
2866 	case ATH10K_PCI_IRQ_MSI:
2867 		return ath10k_pci_request_irq_msi(ar);
2868 	default:
2869 		return -EINVAL;
2870 	}
2871 }
2872 
2873 static void ath10k_pci_free_irq(struct ath10k *ar)
2874 {
2875 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2876 
2877 	free_irq(ar_pci->pdev->irq, ar);
2878 }
2879 
2880 void ath10k_pci_init_napi(struct ath10k *ar)
2881 {
2882 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2883 		       ATH10K_NAPI_BUDGET);
2884 }
2885 
2886 static int ath10k_pci_init_irq(struct ath10k *ar)
2887 {
2888 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2889 	int ret;
2890 
2891 	ath10k_pci_init_napi(ar);
2892 
2893 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2894 		ath10k_info(ar, "limiting irq mode to: %d\n",
2895 			    ath10k_pci_irq_mode);
2896 
2897 	/* Try MSI */
2898 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2899 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2900 		ret = pci_enable_msi(ar_pci->pdev);
2901 		if (ret == 0)
2902 			return 0;
2903 
2904 		/* fall-through */
2905 	}
2906 
2907 	/* Try legacy irq
2908 	 *
2909 	 * A potential race occurs here: The CORE_BASE write
2910 	 * depends on target correctly decoding AXI address but
2911 	 * host won't know when target writes BAR to CORE_CTRL.
2912 	 * This write might get lost if target has NOT written BAR.
2913 	 * For now, fix the race by repeating the write in below
2914 	 * synchronization checking.
2915 	 */
2916 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2917 
2918 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2919 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2920 
2921 	return 0;
2922 }
2923 
2924 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2925 {
2926 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2927 			   0);
2928 }
2929 
2930 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2931 {
2932 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2933 
2934 	switch (ar_pci->oper_irq_mode) {
2935 	case ATH10K_PCI_IRQ_LEGACY:
2936 		ath10k_pci_deinit_irq_legacy(ar);
2937 		break;
2938 	default:
2939 		pci_disable_msi(ar_pci->pdev);
2940 		break;
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2947 {
2948 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2949 	unsigned long timeout;
2950 	u32 val;
2951 
2952 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2953 
2954 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2955 
2956 	do {
2957 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2958 
2959 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2960 			   val);
2961 
2962 		/* target should never return this */
2963 		if (val == 0xffffffff)
2964 			continue;
2965 
2966 		/* the device has crashed so don't bother trying anymore */
2967 		if (val & FW_IND_EVENT_PENDING)
2968 			break;
2969 
2970 		if (val & FW_IND_INITIALIZED)
2971 			break;
2972 
2973 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2974 			/* Fix potential race by repeating CORE_BASE writes */
2975 			ath10k_pci_enable_legacy_irq(ar);
2976 
2977 		mdelay(10);
2978 	} while (time_before(jiffies, timeout));
2979 
2980 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2981 	ath10k_pci_irq_msi_fw_mask(ar);
2982 
2983 	if (val == 0xffffffff) {
2984 		ath10k_err(ar, "failed to read device register, device is gone\n");
2985 		return -EIO;
2986 	}
2987 
2988 	if (val & FW_IND_EVENT_PENDING) {
2989 		ath10k_warn(ar, "device has crashed during init\n");
2990 		return -ECOMM;
2991 	}
2992 
2993 	if (!(val & FW_IND_INITIALIZED)) {
2994 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2995 			   val);
2996 		return -ETIMEDOUT;
2997 	}
2998 
2999 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3000 	return 0;
3001 }
3002 
3003 static int ath10k_pci_cold_reset(struct ath10k *ar)
3004 {
3005 	u32 val;
3006 
3007 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3008 
3009 	spin_lock_bh(&ar->data_lock);
3010 
3011 	ar->stats.fw_cold_reset_counter++;
3012 
3013 	spin_unlock_bh(&ar->data_lock);
3014 
3015 	/* Put Target, including PCIe, into RESET. */
3016 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3017 	val |= 1;
3018 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3019 
3020 	/* After writing into SOC_GLOBAL_RESET to put device into
3021 	 * reset and pulling out of reset pcie may not be stable
3022 	 * for any immediate pcie register access and cause bus error,
3023 	 * add delay before any pcie access request to fix this issue.
3024 	 */
3025 	msleep(20);
3026 
3027 	/* Pull Target, including PCIe, out of RESET. */
3028 	val &= ~1;
3029 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3030 
3031 	msleep(20);
3032 
3033 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3034 
3035 	return 0;
3036 }
3037 
3038 static int ath10k_pci_claim(struct ath10k *ar)
3039 {
3040 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3041 	struct pci_dev *pdev = ar_pci->pdev;
3042 	int ret;
3043 
3044 	pci_set_drvdata(pdev, ar);
3045 
3046 	ret = pci_enable_device(pdev);
3047 	if (ret) {
3048 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3049 		return ret;
3050 	}
3051 
3052 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3053 	if (ret) {
3054 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3055 			   ret);
3056 		goto err_device;
3057 	}
3058 
3059 	/* Target expects 32 bit DMA. Enforce it. */
3060 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3061 	if (ret) {
3062 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3063 		goto err_region;
3064 	}
3065 
3066 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3067 	if (ret) {
3068 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3069 			   ret);
3070 		goto err_region;
3071 	}
3072 
3073 	pci_set_master(pdev);
3074 
3075 	/* Arrange for access to Target SoC registers. */
3076 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3077 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3078 	if (!ar_pci->mem) {
3079 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3080 		ret = -EIO;
3081 		goto err_master;
3082 	}
3083 
3084 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3085 	return 0;
3086 
3087 err_master:
3088 	pci_clear_master(pdev);
3089 
3090 err_region:
3091 	pci_release_region(pdev, BAR_NUM);
3092 
3093 err_device:
3094 	pci_disable_device(pdev);
3095 
3096 	return ret;
3097 }
3098 
3099 static void ath10k_pci_release(struct ath10k *ar)
3100 {
3101 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3102 	struct pci_dev *pdev = ar_pci->pdev;
3103 
3104 	pci_iounmap(pdev, ar_pci->mem);
3105 	pci_release_region(pdev, BAR_NUM);
3106 	pci_clear_master(pdev);
3107 	pci_disable_device(pdev);
3108 }
3109 
3110 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3111 {
3112 	const struct ath10k_pci_supp_chip *supp_chip;
3113 	int i;
3114 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3115 
3116 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3117 		supp_chip = &ath10k_pci_supp_chips[i];
3118 
3119 		if (supp_chip->dev_id == dev_id &&
3120 		    supp_chip->rev_id == rev_id)
3121 			return true;
3122 	}
3123 
3124 	return false;
3125 }
3126 
3127 int ath10k_pci_setup_resource(struct ath10k *ar)
3128 {
3129 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3130 	int ret;
3131 
3132 	spin_lock_init(&ar_pci->ce_lock);
3133 	spin_lock_init(&ar_pci->ps_lock);
3134 
3135 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3136 		    (unsigned long)ar);
3137 
3138 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3139 		ath10k_pci_override_ce_config(ar);
3140 
3141 	ret = ath10k_pci_alloc_pipes(ar);
3142 	if (ret) {
3143 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3144 			   ret);
3145 		return ret;
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 void ath10k_pci_release_resource(struct ath10k *ar)
3152 {
3153 	ath10k_pci_rx_retry_sync(ar);
3154 	netif_napi_del(&ar->napi);
3155 	ath10k_pci_ce_deinit(ar);
3156 	ath10k_pci_free_pipes(ar);
3157 }
3158 
3159 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3160 	.read32		= ath10k_bus_pci_read32,
3161 	.write32	= ath10k_bus_pci_write32,
3162 	.get_num_banks	= ath10k_pci_get_num_banks,
3163 };
3164 
3165 static int ath10k_pci_probe(struct pci_dev *pdev,
3166 			    const struct pci_device_id *pci_dev)
3167 {
3168 	int ret = 0;
3169 	struct ath10k *ar;
3170 	struct ath10k_pci *ar_pci;
3171 	enum ath10k_hw_rev hw_rev;
3172 	u32 chip_id;
3173 	bool pci_ps;
3174 	int (*pci_soft_reset)(struct ath10k *ar);
3175 	int (*pci_hard_reset)(struct ath10k *ar);
3176 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3177 
3178 	switch (pci_dev->device) {
3179 	case QCA988X_2_0_DEVICE_ID:
3180 		hw_rev = ATH10K_HW_QCA988X;
3181 		pci_ps = false;
3182 		pci_soft_reset = ath10k_pci_warm_reset;
3183 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3184 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3185 		break;
3186 	case QCA9887_1_0_DEVICE_ID:
3187 		hw_rev = ATH10K_HW_QCA9887;
3188 		pci_ps = false;
3189 		pci_soft_reset = ath10k_pci_warm_reset;
3190 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3191 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3192 		break;
3193 	case QCA6164_2_1_DEVICE_ID:
3194 	case QCA6174_2_1_DEVICE_ID:
3195 		hw_rev = ATH10K_HW_QCA6174;
3196 		pci_ps = true;
3197 		pci_soft_reset = ath10k_pci_warm_reset;
3198 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3199 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3200 		break;
3201 	case QCA99X0_2_0_DEVICE_ID:
3202 		hw_rev = ATH10K_HW_QCA99X0;
3203 		pci_ps = false;
3204 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3205 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3206 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3207 		break;
3208 	case QCA9984_1_0_DEVICE_ID:
3209 		hw_rev = ATH10K_HW_QCA9984;
3210 		pci_ps = false;
3211 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3212 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3213 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3214 		break;
3215 	case QCA9888_2_0_DEVICE_ID:
3216 		hw_rev = ATH10K_HW_QCA9888;
3217 		pci_ps = false;
3218 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3219 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3220 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3221 		break;
3222 	case QCA9377_1_0_DEVICE_ID:
3223 		hw_rev = ATH10K_HW_QCA9377;
3224 		pci_ps = true;
3225 		pci_soft_reset = NULL;
3226 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3227 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3228 		break;
3229 	default:
3230 		WARN_ON(1);
3231 		return -ENOTSUPP;
3232 	}
3233 
3234 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3235 				hw_rev, &ath10k_pci_hif_ops);
3236 	if (!ar) {
3237 		dev_err(&pdev->dev, "failed to allocate core\n");
3238 		return -ENOMEM;
3239 	}
3240 
3241 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3242 		   pdev->vendor, pdev->device,
3243 		   pdev->subsystem_vendor, pdev->subsystem_device);
3244 
3245 	ar_pci = ath10k_pci_priv(ar);
3246 	ar_pci->pdev = pdev;
3247 	ar_pci->dev = &pdev->dev;
3248 	ar_pci->ar = ar;
3249 	ar->dev_id = pci_dev->device;
3250 	ar_pci->pci_ps = pci_ps;
3251 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3252 	ar_pci->pci_soft_reset = pci_soft_reset;
3253 	ar_pci->pci_hard_reset = pci_hard_reset;
3254 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3255 
3256 	ar->id.vendor = pdev->vendor;
3257 	ar->id.device = pdev->device;
3258 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3259 	ar->id.subsystem_device = pdev->subsystem_device;
3260 
3261 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3262 		    (unsigned long)ar);
3263 
3264 	ret = ath10k_pci_setup_resource(ar);
3265 	if (ret) {
3266 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3267 		goto err_core_destroy;
3268 	}
3269 
3270 	ret = ath10k_pci_claim(ar);
3271 	if (ret) {
3272 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3273 		goto err_free_pipes;
3274 	}
3275 
3276 	ret = ath10k_pci_force_wake(ar);
3277 	if (ret) {
3278 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3279 		goto err_sleep;
3280 	}
3281 
3282 	ath10k_pci_ce_deinit(ar);
3283 	ath10k_pci_irq_disable(ar);
3284 
3285 	ret = ath10k_pci_init_irq(ar);
3286 	if (ret) {
3287 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3288 		goto err_sleep;
3289 	}
3290 
3291 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3292 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3293 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3294 
3295 	ret = ath10k_pci_request_irq(ar);
3296 	if (ret) {
3297 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3298 		goto err_deinit_irq;
3299 	}
3300 
3301 	ret = ath10k_pci_chip_reset(ar);
3302 	if (ret) {
3303 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3304 		goto err_free_irq;
3305 	}
3306 
3307 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3308 	if (chip_id == 0xffffffff) {
3309 		ath10k_err(ar, "failed to get chip id\n");
3310 		goto err_free_irq;
3311 	}
3312 
3313 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3314 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3315 			   pdev->device, chip_id);
3316 		goto err_free_irq;
3317 	}
3318 
3319 	ret = ath10k_core_register(ar, chip_id);
3320 	if (ret) {
3321 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3322 		goto err_free_irq;
3323 	}
3324 
3325 	return 0;
3326 
3327 err_free_irq:
3328 	ath10k_pci_free_irq(ar);
3329 	ath10k_pci_rx_retry_sync(ar);
3330 
3331 err_deinit_irq:
3332 	ath10k_pci_deinit_irq(ar);
3333 
3334 err_sleep:
3335 	ath10k_pci_sleep_sync(ar);
3336 	ath10k_pci_release(ar);
3337 
3338 err_free_pipes:
3339 	ath10k_pci_free_pipes(ar);
3340 
3341 err_core_destroy:
3342 	ath10k_core_destroy(ar);
3343 
3344 	return ret;
3345 }
3346 
3347 static void ath10k_pci_remove(struct pci_dev *pdev)
3348 {
3349 	struct ath10k *ar = pci_get_drvdata(pdev);
3350 	struct ath10k_pci *ar_pci;
3351 
3352 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3353 
3354 	if (!ar)
3355 		return;
3356 
3357 	ar_pci = ath10k_pci_priv(ar);
3358 
3359 	if (!ar_pci)
3360 		return;
3361 
3362 	ath10k_core_unregister(ar);
3363 	ath10k_pci_free_irq(ar);
3364 	ath10k_pci_deinit_irq(ar);
3365 	ath10k_pci_release_resource(ar);
3366 	ath10k_pci_sleep_sync(ar);
3367 	ath10k_pci_release(ar);
3368 	ath10k_core_destroy(ar);
3369 }
3370 
3371 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3372 
3373 static struct pci_driver ath10k_pci_driver = {
3374 	.name = "ath10k_pci",
3375 	.id_table = ath10k_pci_id_table,
3376 	.probe = ath10k_pci_probe,
3377 	.remove = ath10k_pci_remove,
3378 };
3379 
3380 static int __init ath10k_pci_init(void)
3381 {
3382 	int ret;
3383 
3384 	ret = pci_register_driver(&ath10k_pci_driver);
3385 	if (ret)
3386 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3387 		       ret);
3388 
3389 	ret = ath10k_ahb_init();
3390 	if (ret)
3391 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3392 
3393 	return ret;
3394 }
3395 module_init(ath10k_pci_init);
3396 
3397 static void __exit ath10k_pci_exit(void)
3398 {
3399 	pci_unregister_driver(&ath10k_pci_driver);
3400 	ath10k_ahb_exit();
3401 }
3402 
3403 module_exit(ath10k_pci_exit);
3404 
3405 MODULE_AUTHOR("Qualcomm Atheros");
3406 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3407 MODULE_LICENSE("Dual BSD/GPL");
3408 
3409 /* QCA988x 2.0 firmware files */
3410 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3411 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3412 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3413 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3414 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3415 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3416 
3417 /* QCA9887 1.0 firmware files */
3418 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3419 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3420 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3421 
3422 /* QCA6174 2.1 firmware files */
3423 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3424 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3425 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3426 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3427 
3428 /* QCA6174 3.1 firmware files */
3429 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3430 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3431 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3432 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3433 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3434 
3435 /* QCA9377 1.0 firmware files */
3436 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3437 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3438