xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision 92a2c6b2)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_irq_mode {
37 	ATH10K_PCI_IRQ_AUTO = 0,
38 	ATH10K_PCI_IRQ_LEGACY = 1,
39 	ATH10K_PCI_IRQ_MSI = 2,
40 };
41 
42 enum ath10k_pci_reset_mode {
43 	ATH10K_PCI_RESET_AUTO = 0,
44 	ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46 
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49 
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52 
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55 
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59 
60 #define QCA988X_2_0_DEVICE_ID	(0x003c)
61 #define QCA6174_2_1_DEVICE_ID	(0x003e)
62 
63 static const struct pci_device_id ath10k_pci_id_table[] = {
64 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
66 	{0}
67 };
68 
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
71 	 * hacks. ath10k doesn't have them and these devices crash horribly
72 	 * because of that.
73 	 */
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
76 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
77 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
78 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
80 };
81 
82 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
83 static int ath10k_pci_cold_reset(struct ath10k *ar);
84 static int ath10k_pci_warm_reset(struct ath10k *ar);
85 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
86 static int ath10k_pci_init_irq(struct ath10k *ar);
87 static int ath10k_pci_deinit_irq(struct ath10k *ar);
88 static int ath10k_pci_request_irq(struct ath10k *ar);
89 static void ath10k_pci_free_irq(struct ath10k *ar);
90 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
91 			       struct ath10k_ce_pipe *rx_pipe,
92 			       struct bmi_xfer *xfer);
93 
94 static const struct ce_attr host_ce_config_wlan[] = {
95 	/* CE0: host->target HTC control and raw streams */
96 	{
97 		.flags = CE_ATTR_FLAGS,
98 		.src_nentries = 16,
99 		.src_sz_max = 256,
100 		.dest_nentries = 0,
101 	},
102 
103 	/* CE1: target->host HTT + HTC control */
104 	{
105 		.flags = CE_ATTR_FLAGS,
106 		.src_nentries = 0,
107 		.src_sz_max = 512,
108 		.dest_nentries = 512,
109 	},
110 
111 	/* CE2: target->host WMI */
112 	{
113 		.flags = CE_ATTR_FLAGS,
114 		.src_nentries = 0,
115 		.src_sz_max = 2048,
116 		.dest_nentries = 32,
117 	},
118 
119 	/* CE3: host->target WMI */
120 	{
121 		.flags = CE_ATTR_FLAGS,
122 		.src_nentries = 32,
123 		.src_sz_max = 2048,
124 		.dest_nentries = 0,
125 	},
126 
127 	/* CE4: host->target HTT */
128 	{
129 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
130 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
131 		.src_sz_max = 256,
132 		.dest_nentries = 0,
133 	},
134 
135 	/* CE5: unused */
136 	{
137 		.flags = CE_ATTR_FLAGS,
138 		.src_nentries = 0,
139 		.src_sz_max = 0,
140 		.dest_nentries = 0,
141 	},
142 
143 	/* CE6: target autonomous hif_memcpy */
144 	{
145 		.flags = CE_ATTR_FLAGS,
146 		.src_nentries = 0,
147 		.src_sz_max = 0,
148 		.dest_nentries = 0,
149 	},
150 
151 	/* CE7: ce_diag, the Diagnostic Window */
152 	{
153 		.flags = CE_ATTR_FLAGS,
154 		.src_nentries = 2,
155 		.src_sz_max = DIAG_TRANSFER_LIMIT,
156 		.dest_nentries = 2,
157 	},
158 };
159 
160 /* Target firmware's Copy Engine configuration. */
161 static const struct ce_pipe_config target_ce_config_wlan[] = {
162 	/* CE0: host->target HTC control and raw streams */
163 	{
164 		.pipenum = __cpu_to_le32(0),
165 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
166 		.nentries = __cpu_to_le32(32),
167 		.nbytes_max = __cpu_to_le32(256),
168 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
169 		.reserved = __cpu_to_le32(0),
170 	},
171 
172 	/* CE1: target->host HTT + HTC control */
173 	{
174 		.pipenum = __cpu_to_le32(1),
175 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
176 		.nentries = __cpu_to_le32(32),
177 		.nbytes_max = __cpu_to_le32(512),
178 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
179 		.reserved = __cpu_to_le32(0),
180 	},
181 
182 	/* CE2: target->host WMI */
183 	{
184 		.pipenum = __cpu_to_le32(2),
185 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
186 		.nentries = __cpu_to_le32(32),
187 		.nbytes_max = __cpu_to_le32(2048),
188 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
189 		.reserved = __cpu_to_le32(0),
190 	},
191 
192 	/* CE3: host->target WMI */
193 	{
194 		.pipenum = __cpu_to_le32(3),
195 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
196 		.nentries = __cpu_to_le32(32),
197 		.nbytes_max = __cpu_to_le32(2048),
198 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
199 		.reserved = __cpu_to_le32(0),
200 	},
201 
202 	/* CE4: host->target HTT */
203 	{
204 		.pipenum = __cpu_to_le32(4),
205 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
206 		.nentries = __cpu_to_le32(256),
207 		.nbytes_max = __cpu_to_le32(256),
208 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
209 		.reserved = __cpu_to_le32(0),
210 	},
211 
212 	/* NB: 50% of src nentries, since tx has 2 frags */
213 
214 	/* CE5: unused */
215 	{
216 		.pipenum = __cpu_to_le32(5),
217 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
218 		.nentries = __cpu_to_le32(32),
219 		.nbytes_max = __cpu_to_le32(2048),
220 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
221 		.reserved = __cpu_to_le32(0),
222 	},
223 
224 	/* CE6: Reserved for target autonomous hif_memcpy */
225 	{
226 		.pipenum = __cpu_to_le32(6),
227 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
228 		.nentries = __cpu_to_le32(32),
229 		.nbytes_max = __cpu_to_le32(4096),
230 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
231 		.reserved = __cpu_to_le32(0),
232 	},
233 
234 	/* CE7 used only by Host */
235 };
236 
237 /*
238  * Map from service/endpoint to Copy Engine.
239  * This table is derived from the CE_PCI TABLE, above.
240  * It is passed to the Target at startup for use by firmware.
241  */
242 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
243 	{
244 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
245 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
246 		__cpu_to_le32(3),
247 	},
248 	{
249 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
250 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
251 		__cpu_to_le32(2),
252 	},
253 	{
254 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
255 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
256 		__cpu_to_le32(3),
257 	},
258 	{
259 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
260 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
261 		__cpu_to_le32(2),
262 	},
263 	{
264 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
265 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
266 		__cpu_to_le32(3),
267 	},
268 	{
269 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
270 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
271 		__cpu_to_le32(2),
272 	},
273 	{
274 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
275 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
276 		__cpu_to_le32(3),
277 	},
278 	{
279 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
280 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
281 		__cpu_to_le32(2),
282 	},
283 	{
284 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
285 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
286 		__cpu_to_le32(3),
287 	},
288 	{
289 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
290 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
291 		__cpu_to_le32(2),
292 	},
293 	{
294 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
295 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
296 		__cpu_to_le32(0),
297 	},
298 	{
299 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
300 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
301 		__cpu_to_le32(1),
302 	},
303 	{ /* not used */
304 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
305 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
306 		__cpu_to_le32(0),
307 	},
308 	{ /* not used */
309 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
310 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
311 		__cpu_to_le32(1),
312 	},
313 	{
314 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
315 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
316 		__cpu_to_le32(4),
317 	},
318 	{
319 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
320 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
321 		__cpu_to_le32(1),
322 	},
323 
324 	/* (Additions here) */
325 
326 	{ /* must be last */
327 		__cpu_to_le32(0),
328 		__cpu_to_le32(0),
329 		__cpu_to_le32(0),
330 	},
331 };
332 
333 static bool ath10k_pci_irq_pending(struct ath10k *ar)
334 {
335 	u32 cause;
336 
337 	/* Check if the shared legacy irq is for us */
338 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
339 				  PCIE_INTR_CAUSE_ADDRESS);
340 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
341 		return true;
342 
343 	return false;
344 }
345 
346 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
347 {
348 	/* IMPORTANT: INTR_CLR register has to be set after
349 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
350 	 * really cleared. */
351 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
352 			   0);
353 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
354 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
355 
356 	/* IMPORTANT: this extra read transaction is required to
357 	 * flush the posted write buffer. */
358 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
359 				PCIE_INTR_ENABLE_ADDRESS);
360 }
361 
362 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
363 {
364 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
365 			   PCIE_INTR_ENABLE_ADDRESS,
366 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
367 
368 	/* IMPORTANT: this extra read transaction is required to
369 	 * flush the posted write buffer. */
370 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
371 				PCIE_INTR_ENABLE_ADDRESS);
372 }
373 
374 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
375 {
376 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377 
378 	if (ar_pci->num_msi_intrs > 1)
379 		return "msi-x";
380 
381 	if (ar_pci->num_msi_intrs == 1)
382 		return "msi";
383 
384 	return "legacy";
385 }
386 
387 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
388 {
389 	struct ath10k *ar = pipe->hif_ce_state;
390 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
392 	struct sk_buff *skb;
393 	dma_addr_t paddr;
394 	int ret;
395 
396 	lockdep_assert_held(&ar_pci->ce_lock);
397 
398 	skb = dev_alloc_skb(pipe->buf_sz);
399 	if (!skb)
400 		return -ENOMEM;
401 
402 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
403 
404 	paddr = dma_map_single(ar->dev, skb->data,
405 			       skb->len + skb_tailroom(skb),
406 			       DMA_FROM_DEVICE);
407 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
408 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
409 		dev_kfree_skb_any(skb);
410 		return -EIO;
411 	}
412 
413 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
414 
415 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
416 	if (ret) {
417 		ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
418 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
419 				 DMA_FROM_DEVICE);
420 		dev_kfree_skb_any(skb);
421 		return ret;
422 	}
423 
424 	return 0;
425 }
426 
427 static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
428 {
429 	struct ath10k *ar = pipe->hif_ce_state;
430 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
431 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
432 	int ret, num;
433 
434 	lockdep_assert_held(&ar_pci->ce_lock);
435 
436 	if (pipe->buf_sz == 0)
437 		return;
438 
439 	if (!ce_pipe->dest_ring)
440 		return;
441 
442 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
443 	while (num--) {
444 		ret = __ath10k_pci_rx_post_buf(pipe);
445 		if (ret) {
446 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
447 			mod_timer(&ar_pci->rx_post_retry, jiffies +
448 				  ATH10K_PCI_RX_POST_RETRY_MS);
449 			break;
450 		}
451 	}
452 }
453 
454 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
455 {
456 	struct ath10k *ar = pipe->hif_ce_state;
457 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
458 
459 	spin_lock_bh(&ar_pci->ce_lock);
460 	__ath10k_pci_rx_post_pipe(pipe);
461 	spin_unlock_bh(&ar_pci->ce_lock);
462 }
463 
464 static void ath10k_pci_rx_post(struct ath10k *ar)
465 {
466 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
467 	int i;
468 
469 	spin_lock_bh(&ar_pci->ce_lock);
470 	for (i = 0; i < CE_COUNT; i++)
471 		__ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
472 	spin_unlock_bh(&ar_pci->ce_lock);
473 }
474 
475 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
476 {
477 	struct ath10k *ar = (void *)ptr;
478 
479 	ath10k_pci_rx_post(ar);
480 }
481 
482 /*
483  * Diagnostic read/write access is provided for startup/config/debug usage.
484  * Caller must guarantee proper alignment, when applicable, and single user
485  * at any moment.
486  */
487 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
488 				    int nbytes)
489 {
490 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
491 	int ret = 0;
492 	u32 buf;
493 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
494 	unsigned int id;
495 	unsigned int flags;
496 	struct ath10k_ce_pipe *ce_diag;
497 	/* Host buffer address in CE space */
498 	u32 ce_data;
499 	dma_addr_t ce_data_base = 0;
500 	void *data_buf = NULL;
501 	int i;
502 
503 	spin_lock_bh(&ar_pci->ce_lock);
504 
505 	ce_diag = ar_pci->ce_diag;
506 
507 	/*
508 	 * Allocate a temporary bounce buffer to hold caller's data
509 	 * to be DMA'ed from Target. This guarantees
510 	 *   1) 4-byte alignment
511 	 *   2) Buffer in DMA-able space
512 	 */
513 	orig_nbytes = nbytes;
514 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
515 						       orig_nbytes,
516 						       &ce_data_base,
517 						       GFP_ATOMIC);
518 
519 	if (!data_buf) {
520 		ret = -ENOMEM;
521 		goto done;
522 	}
523 	memset(data_buf, 0, orig_nbytes);
524 
525 	remaining_bytes = orig_nbytes;
526 	ce_data = ce_data_base;
527 	while (remaining_bytes) {
528 		nbytes = min_t(unsigned int, remaining_bytes,
529 			       DIAG_TRANSFER_LIMIT);
530 
531 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
532 		if (ret != 0)
533 			goto done;
534 
535 		/* Request CE to send from Target(!) address to Host buffer */
536 		/*
537 		 * The address supplied by the caller is in the
538 		 * Target CPU virtual address space.
539 		 *
540 		 * In order to use this address with the diagnostic CE,
541 		 * convert it from Target CPU virtual address space
542 		 * to CE address space
543 		 */
544 		address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
545 						     address);
546 
547 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
548 					    0);
549 		if (ret)
550 			goto done;
551 
552 		i = 0;
553 		while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
554 							    &completed_nbytes,
555 							    &id) != 0) {
556 			mdelay(1);
557 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
558 				ret = -EBUSY;
559 				goto done;
560 			}
561 		}
562 
563 		if (nbytes != completed_nbytes) {
564 			ret = -EIO;
565 			goto done;
566 		}
567 
568 		if (buf != (u32)address) {
569 			ret = -EIO;
570 			goto done;
571 		}
572 
573 		i = 0;
574 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
575 							    &completed_nbytes,
576 							    &id, &flags) != 0) {
577 			mdelay(1);
578 
579 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
580 				ret = -EBUSY;
581 				goto done;
582 			}
583 		}
584 
585 		if (nbytes != completed_nbytes) {
586 			ret = -EIO;
587 			goto done;
588 		}
589 
590 		if (buf != ce_data) {
591 			ret = -EIO;
592 			goto done;
593 		}
594 
595 		remaining_bytes -= nbytes;
596 		address += nbytes;
597 		ce_data += nbytes;
598 	}
599 
600 done:
601 	if (ret == 0)
602 		memcpy(data, data_buf, orig_nbytes);
603 	else
604 		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
605 			    address, ret);
606 
607 	if (data_buf)
608 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
609 				  ce_data_base);
610 
611 	spin_unlock_bh(&ar_pci->ce_lock);
612 
613 	return ret;
614 }
615 
616 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
617 {
618 	__le32 val = 0;
619 	int ret;
620 
621 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
622 	*value = __le32_to_cpu(val);
623 
624 	return ret;
625 }
626 
627 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
628 				     u32 src, u32 len)
629 {
630 	u32 host_addr, addr;
631 	int ret;
632 
633 	host_addr = host_interest_item_address(src);
634 
635 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
636 	if (ret != 0) {
637 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
638 			    src, ret);
639 		return ret;
640 	}
641 
642 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
643 	if (ret != 0) {
644 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
645 			    addr, len, ret);
646 		return ret;
647 	}
648 
649 	return 0;
650 }
651 
652 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
653 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
654 
655 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
656 				     const void *data, int nbytes)
657 {
658 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
659 	int ret = 0;
660 	u32 buf;
661 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
662 	unsigned int id;
663 	unsigned int flags;
664 	struct ath10k_ce_pipe *ce_diag;
665 	void *data_buf = NULL;
666 	u32 ce_data;	/* Host buffer address in CE space */
667 	dma_addr_t ce_data_base = 0;
668 	int i;
669 
670 	spin_lock_bh(&ar_pci->ce_lock);
671 
672 	ce_diag = ar_pci->ce_diag;
673 
674 	/*
675 	 * Allocate a temporary bounce buffer to hold caller's data
676 	 * to be DMA'ed to Target. This guarantees
677 	 *   1) 4-byte alignment
678 	 *   2) Buffer in DMA-able space
679 	 */
680 	orig_nbytes = nbytes;
681 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
682 						       orig_nbytes,
683 						       &ce_data_base,
684 						       GFP_ATOMIC);
685 	if (!data_buf) {
686 		ret = -ENOMEM;
687 		goto done;
688 	}
689 
690 	/* Copy caller's data to allocated DMA buf */
691 	memcpy(data_buf, data, orig_nbytes);
692 
693 	/*
694 	 * The address supplied by the caller is in the
695 	 * Target CPU virtual address space.
696 	 *
697 	 * In order to use this address with the diagnostic CE,
698 	 * convert it from
699 	 *    Target CPU virtual address space
700 	 * to
701 	 *    CE address space
702 	 */
703 	address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
704 
705 	remaining_bytes = orig_nbytes;
706 	ce_data = ce_data_base;
707 	while (remaining_bytes) {
708 		/* FIXME: check cast */
709 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
710 
711 		/* Set up to receive directly into Target(!) address */
712 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
713 		if (ret != 0)
714 			goto done;
715 
716 		/*
717 		 * Request CE to send caller-supplied data that
718 		 * was copied to bounce buffer to Target(!) address.
719 		 */
720 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
721 					    nbytes, 0, 0);
722 		if (ret != 0)
723 			goto done;
724 
725 		i = 0;
726 		while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
727 							    &completed_nbytes,
728 							    &id) != 0) {
729 			mdelay(1);
730 
731 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
732 				ret = -EBUSY;
733 				goto done;
734 			}
735 		}
736 
737 		if (nbytes != completed_nbytes) {
738 			ret = -EIO;
739 			goto done;
740 		}
741 
742 		if (buf != ce_data) {
743 			ret = -EIO;
744 			goto done;
745 		}
746 
747 		i = 0;
748 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
749 							    &completed_nbytes,
750 							    &id, &flags) != 0) {
751 			mdelay(1);
752 
753 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
754 				ret = -EBUSY;
755 				goto done;
756 			}
757 		}
758 
759 		if (nbytes != completed_nbytes) {
760 			ret = -EIO;
761 			goto done;
762 		}
763 
764 		if (buf != address) {
765 			ret = -EIO;
766 			goto done;
767 		}
768 
769 		remaining_bytes -= nbytes;
770 		address += nbytes;
771 		ce_data += nbytes;
772 	}
773 
774 done:
775 	if (data_buf) {
776 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
777 				  ce_data_base);
778 	}
779 
780 	if (ret != 0)
781 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
782 			    address, ret);
783 
784 	spin_unlock_bh(&ar_pci->ce_lock);
785 
786 	return ret;
787 }
788 
789 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
790 {
791 	__le32 val = __cpu_to_le32(value);
792 
793 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
794 }
795 
796 static bool ath10k_pci_is_awake(struct ath10k *ar)
797 {
798 	u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
799 
800 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
801 }
802 
803 static int ath10k_pci_wake_wait(struct ath10k *ar)
804 {
805 	int tot_delay = 0;
806 	int curr_delay = 5;
807 
808 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
809 		if (ath10k_pci_is_awake(ar))
810 			return 0;
811 
812 		udelay(curr_delay);
813 		tot_delay += curr_delay;
814 
815 		if (curr_delay < 50)
816 			curr_delay += 5;
817 	}
818 
819 	return -ETIMEDOUT;
820 }
821 
822 static int ath10k_pci_wake(struct ath10k *ar)
823 {
824 	ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
825 			       PCIE_SOC_WAKE_V_MASK);
826 	return ath10k_pci_wake_wait(ar);
827 }
828 
829 static void ath10k_pci_sleep(struct ath10k *ar)
830 {
831 	ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
832 			       PCIE_SOC_WAKE_RESET);
833 }
834 
835 /* Called by lower (CE) layer when a send to Target completes. */
836 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
837 {
838 	struct ath10k *ar = ce_state->ar;
839 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
840 	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
841 	struct sk_buff_head list;
842 	struct sk_buff *skb;
843 	u32 ce_data;
844 	unsigned int nbytes;
845 	unsigned int transfer_id;
846 
847 	__skb_queue_head_init(&list);
848 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb, &ce_data,
849 					     &nbytes, &transfer_id) == 0) {
850 		/* no need to call tx completion for NULL pointers */
851 		if (skb == NULL)
852 			continue;
853 
854 		__skb_queue_tail(&list, skb);
855 	}
856 
857 	while ((skb = __skb_dequeue(&list)))
858 		cb->tx_completion(ar, skb);
859 }
860 
861 /* Called by lower (CE) layer when data is received from the Target. */
862 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
863 {
864 	struct ath10k *ar = ce_state->ar;
865 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
866 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
867 	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
868 	struct sk_buff *skb;
869 	struct sk_buff_head list;
870 	void *transfer_context;
871 	u32 ce_data;
872 	unsigned int nbytes, max_nbytes;
873 	unsigned int transfer_id;
874 	unsigned int flags;
875 
876 	__skb_queue_head_init(&list);
877 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
878 					     &ce_data, &nbytes, &transfer_id,
879 					     &flags) == 0) {
880 		skb = transfer_context;
881 		max_nbytes = skb->len + skb_tailroom(skb);
882 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
883 				 max_nbytes, DMA_FROM_DEVICE);
884 
885 		if (unlikely(max_nbytes < nbytes)) {
886 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
887 				    nbytes, max_nbytes);
888 			dev_kfree_skb_any(skb);
889 			continue;
890 		}
891 
892 		skb_put(skb, nbytes);
893 		__skb_queue_tail(&list, skb);
894 	}
895 
896 	while ((skb = __skb_dequeue(&list))) {
897 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
898 			   ce_state->id, skb->len);
899 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
900 				skb->data, skb->len);
901 
902 		cb->rx_completion(ar, skb);
903 	}
904 
905 	ath10k_pci_rx_post_pipe(pipe_info);
906 }
907 
908 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
909 				struct ath10k_hif_sg_item *items, int n_items)
910 {
911 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
912 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
913 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
914 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
915 	unsigned int nentries_mask;
916 	unsigned int sw_index;
917 	unsigned int write_index;
918 	int err, i = 0;
919 
920 	spin_lock_bh(&ar_pci->ce_lock);
921 
922 	nentries_mask = src_ring->nentries_mask;
923 	sw_index = src_ring->sw_index;
924 	write_index = src_ring->write_index;
925 
926 	if (unlikely(CE_RING_DELTA(nentries_mask,
927 				   write_index, sw_index - 1) < n_items)) {
928 		err = -ENOBUFS;
929 		goto err;
930 	}
931 
932 	for (i = 0; i < n_items - 1; i++) {
933 		ath10k_dbg(ar, ATH10K_DBG_PCI,
934 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
935 			   i, items[i].paddr, items[i].len, n_items);
936 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
937 				items[i].vaddr, items[i].len);
938 
939 		err = ath10k_ce_send_nolock(ce_pipe,
940 					    items[i].transfer_context,
941 					    items[i].paddr,
942 					    items[i].len,
943 					    items[i].transfer_id,
944 					    CE_SEND_FLAG_GATHER);
945 		if (err)
946 			goto err;
947 	}
948 
949 	/* `i` is equal to `n_items -1` after for() */
950 
951 	ath10k_dbg(ar, ATH10K_DBG_PCI,
952 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
953 		   i, items[i].paddr, items[i].len, n_items);
954 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
955 			items[i].vaddr, items[i].len);
956 
957 	err = ath10k_ce_send_nolock(ce_pipe,
958 				    items[i].transfer_context,
959 				    items[i].paddr,
960 				    items[i].len,
961 				    items[i].transfer_id,
962 				    0);
963 	if (err)
964 		goto err;
965 
966 	spin_unlock_bh(&ar_pci->ce_lock);
967 	return 0;
968 
969 err:
970 	for (; i > 0; i--)
971 		__ath10k_ce_send_revert(ce_pipe);
972 
973 	spin_unlock_bh(&ar_pci->ce_lock);
974 	return err;
975 }
976 
977 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
978 				    size_t buf_len)
979 {
980 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
981 }
982 
983 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
984 {
985 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
986 
987 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
988 
989 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
990 }
991 
992 static void ath10k_pci_dump_registers(struct ath10k *ar,
993 				      struct ath10k_fw_crash_data *crash_data)
994 {
995 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
996 	int i, ret;
997 
998 	lockdep_assert_held(&ar->data_lock);
999 
1000 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1001 				      hi_failure_state,
1002 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1003 	if (ret) {
1004 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1005 		return;
1006 	}
1007 
1008 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1009 
1010 	ath10k_err(ar, "firmware register dump:\n");
1011 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1012 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1013 			   i,
1014 			   __le32_to_cpu(reg_dump_values[i]),
1015 			   __le32_to_cpu(reg_dump_values[i + 1]),
1016 			   __le32_to_cpu(reg_dump_values[i + 2]),
1017 			   __le32_to_cpu(reg_dump_values[i + 3]));
1018 
1019 	if (!crash_data)
1020 		return;
1021 
1022 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1023 		crash_data->registers[i] = reg_dump_values[i];
1024 }
1025 
1026 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1027 {
1028 	struct ath10k_fw_crash_data *crash_data;
1029 	char uuid[50];
1030 
1031 	spin_lock_bh(&ar->data_lock);
1032 
1033 	ar->stats.fw_crash_counter++;
1034 
1035 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1036 
1037 	if (crash_data)
1038 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1039 	else
1040 		scnprintf(uuid, sizeof(uuid), "n/a");
1041 
1042 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1043 	ath10k_print_driver_info(ar);
1044 	ath10k_pci_dump_registers(ar, crash_data);
1045 
1046 	spin_unlock_bh(&ar->data_lock);
1047 
1048 	queue_work(ar->workqueue, &ar->restart_work);
1049 }
1050 
1051 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1052 					       int force)
1053 {
1054 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1055 
1056 	if (!force) {
1057 		int resources;
1058 		/*
1059 		 * Decide whether to actually poll for completions, or just
1060 		 * wait for a later chance.
1061 		 * If there seem to be plenty of resources left, then just wait
1062 		 * since checking involves reading a CE register, which is a
1063 		 * relatively expensive operation.
1064 		 */
1065 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1066 
1067 		/*
1068 		 * If at least 50% of the total resources are still available,
1069 		 * don't bother checking again yet.
1070 		 */
1071 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1072 			return;
1073 	}
1074 	ath10k_ce_per_engine_service(ar, pipe);
1075 }
1076 
1077 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1078 					 struct ath10k_hif_cb *callbacks)
1079 {
1080 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1081 
1082 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1083 
1084 	memcpy(&ar_pci->msg_callbacks_current, callbacks,
1085 	       sizeof(ar_pci->msg_callbacks_current));
1086 }
1087 
1088 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1089 {
1090 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1091 	int i;
1092 
1093 	tasklet_kill(&ar_pci->intr_tq);
1094 	tasklet_kill(&ar_pci->msi_fw_err);
1095 
1096 	for (i = 0; i < CE_COUNT; i++)
1097 		tasklet_kill(&ar_pci->pipe_info[i].intr);
1098 
1099 	del_timer_sync(&ar_pci->rx_post_retry);
1100 }
1101 
1102 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1103 					      u16 service_id, u8 *ul_pipe,
1104 					      u8 *dl_pipe, int *ul_is_polled,
1105 					      int *dl_is_polled)
1106 {
1107 	const struct service_to_pipe *entry;
1108 	bool ul_set = false, dl_set = false;
1109 	int i;
1110 
1111 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1112 
1113 	/* polling for received messages not supported */
1114 	*dl_is_polled = 0;
1115 
1116 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1117 		entry = &target_service_to_ce_map_wlan[i];
1118 
1119 		if (__le32_to_cpu(entry->service_id) != service_id)
1120 			continue;
1121 
1122 		switch (__le32_to_cpu(entry->pipedir)) {
1123 		case PIPEDIR_NONE:
1124 			break;
1125 		case PIPEDIR_IN:
1126 			WARN_ON(dl_set);
1127 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1128 			dl_set = true;
1129 			break;
1130 		case PIPEDIR_OUT:
1131 			WARN_ON(ul_set);
1132 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1133 			ul_set = true;
1134 			break;
1135 		case PIPEDIR_INOUT:
1136 			WARN_ON(dl_set);
1137 			WARN_ON(ul_set);
1138 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1139 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1140 			dl_set = true;
1141 			ul_set = true;
1142 			break;
1143 		}
1144 	}
1145 
1146 	if (WARN_ON(!ul_set || !dl_set))
1147 		return -ENOENT;
1148 
1149 	*ul_is_polled =
1150 		(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1151 
1152 	return 0;
1153 }
1154 
1155 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1156 					    u8 *ul_pipe, u8 *dl_pipe)
1157 {
1158 	int ul_is_polled, dl_is_polled;
1159 
1160 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1161 
1162 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1163 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1164 						 ul_pipe,
1165 						 dl_pipe,
1166 						 &ul_is_polled,
1167 						 &dl_is_polled);
1168 }
1169 
1170 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1171 {
1172 	u32 val;
1173 
1174 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1175 	val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1176 
1177 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1178 }
1179 
1180 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1181 {
1182 	u32 val;
1183 
1184 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1185 	val |= CORE_CTRL_PCIE_REG_31_MASK;
1186 
1187 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1188 }
1189 
1190 static void ath10k_pci_irq_disable(struct ath10k *ar)
1191 {
1192 	ath10k_ce_disable_interrupts(ar);
1193 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1194 	ath10k_pci_irq_msi_fw_mask(ar);
1195 }
1196 
1197 static void ath10k_pci_irq_sync(struct ath10k *ar)
1198 {
1199 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1200 	int i;
1201 
1202 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1203 		synchronize_irq(ar_pci->pdev->irq + i);
1204 }
1205 
1206 static void ath10k_pci_irq_enable(struct ath10k *ar)
1207 {
1208 	ath10k_ce_enable_interrupts(ar);
1209 	ath10k_pci_enable_legacy_irq(ar);
1210 	ath10k_pci_irq_msi_fw_unmask(ar);
1211 }
1212 
1213 static int ath10k_pci_hif_start(struct ath10k *ar)
1214 {
1215 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1216 
1217 	ath10k_pci_irq_enable(ar);
1218 	ath10k_pci_rx_post(ar);
1219 
1220 	return 0;
1221 }
1222 
1223 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1224 {
1225 	struct ath10k *ar;
1226 	struct ath10k_ce_pipe *ce_pipe;
1227 	struct ath10k_ce_ring *ce_ring;
1228 	struct sk_buff *skb;
1229 	int i;
1230 
1231 	ar = pci_pipe->hif_ce_state;
1232 	ce_pipe = pci_pipe->ce_hdl;
1233 	ce_ring = ce_pipe->dest_ring;
1234 
1235 	if (!ce_ring)
1236 		return;
1237 
1238 	if (!pci_pipe->buf_sz)
1239 		return;
1240 
1241 	for (i = 0; i < ce_ring->nentries; i++) {
1242 		skb = ce_ring->per_transfer_context[i];
1243 		if (!skb)
1244 			continue;
1245 
1246 		ce_ring->per_transfer_context[i] = NULL;
1247 
1248 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1249 				 skb->len + skb_tailroom(skb),
1250 				 DMA_FROM_DEVICE);
1251 		dev_kfree_skb_any(skb);
1252 	}
1253 }
1254 
1255 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1256 {
1257 	struct ath10k *ar;
1258 	struct ath10k_pci *ar_pci;
1259 	struct ath10k_ce_pipe *ce_pipe;
1260 	struct ath10k_ce_ring *ce_ring;
1261 	struct ce_desc *ce_desc;
1262 	struct sk_buff *skb;
1263 	unsigned int id;
1264 	int i;
1265 
1266 	ar = pci_pipe->hif_ce_state;
1267 	ar_pci = ath10k_pci_priv(ar);
1268 	ce_pipe = pci_pipe->ce_hdl;
1269 	ce_ring = ce_pipe->src_ring;
1270 
1271 	if (!ce_ring)
1272 		return;
1273 
1274 	if (!pci_pipe->buf_sz)
1275 		return;
1276 
1277 	ce_desc = ce_ring->shadow_base;
1278 	if (WARN_ON(!ce_desc))
1279 		return;
1280 
1281 	for (i = 0; i < ce_ring->nentries; i++) {
1282 		skb = ce_ring->per_transfer_context[i];
1283 		if (!skb)
1284 			continue;
1285 
1286 		ce_ring->per_transfer_context[i] = NULL;
1287 		id = MS(__le16_to_cpu(ce_desc[i].flags),
1288 			CE_DESC_FLAGS_META_DATA);
1289 
1290 		ar_pci->msg_callbacks_current.tx_completion(ar, skb);
1291 	}
1292 }
1293 
1294 /*
1295  * Cleanup residual buffers for device shutdown:
1296  *    buffers that were enqueued for receive
1297  *    buffers that were to be sent
1298  * Note: Buffers that had completed but which were
1299  * not yet processed are on a completion queue. They
1300  * are handled when the completion thread shuts down.
1301  */
1302 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1303 {
1304 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1305 	int pipe_num;
1306 
1307 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1308 		struct ath10k_pci_pipe *pipe_info;
1309 
1310 		pipe_info = &ar_pci->pipe_info[pipe_num];
1311 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1312 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1313 	}
1314 }
1315 
1316 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1317 {
1318 	int i;
1319 
1320 	for (i = 0; i < CE_COUNT; i++)
1321 		ath10k_ce_deinit_pipe(ar, i);
1322 }
1323 
1324 static void ath10k_pci_flush(struct ath10k *ar)
1325 {
1326 	ath10k_pci_kill_tasklet(ar);
1327 	ath10k_pci_buffer_cleanup(ar);
1328 }
1329 
1330 static void ath10k_pci_hif_stop(struct ath10k *ar)
1331 {
1332 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1333 
1334 	/* Most likely the device has HTT Rx ring configured. The only way to
1335 	 * prevent the device from accessing (and possible corrupting) host
1336 	 * memory is to reset the chip now.
1337 	 *
1338 	 * There's also no known way of masking MSI interrupts on the device.
1339 	 * For ranged MSI the CE-related interrupts can be masked. However
1340 	 * regardless how many MSI interrupts are assigned the first one
1341 	 * is always used for firmware indications (crashes) and cannot be
1342 	 * masked. To prevent the device from asserting the interrupt reset it
1343 	 * before proceeding with cleanup.
1344 	 */
1345 	ath10k_pci_warm_reset(ar);
1346 
1347 	ath10k_pci_irq_disable(ar);
1348 	ath10k_pci_irq_sync(ar);
1349 	ath10k_pci_flush(ar);
1350 }
1351 
1352 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1353 					   void *req, u32 req_len,
1354 					   void *resp, u32 *resp_len)
1355 {
1356 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1357 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1358 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1359 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1360 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1361 	dma_addr_t req_paddr = 0;
1362 	dma_addr_t resp_paddr = 0;
1363 	struct bmi_xfer xfer = {};
1364 	void *treq, *tresp = NULL;
1365 	int ret = 0;
1366 
1367 	might_sleep();
1368 
1369 	if (resp && !resp_len)
1370 		return -EINVAL;
1371 
1372 	if (resp && resp_len && *resp_len == 0)
1373 		return -EINVAL;
1374 
1375 	treq = kmemdup(req, req_len, GFP_KERNEL);
1376 	if (!treq)
1377 		return -ENOMEM;
1378 
1379 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1380 	ret = dma_mapping_error(ar->dev, req_paddr);
1381 	if (ret)
1382 		goto err_dma;
1383 
1384 	if (resp && resp_len) {
1385 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1386 		if (!tresp) {
1387 			ret = -ENOMEM;
1388 			goto err_req;
1389 		}
1390 
1391 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1392 					    DMA_FROM_DEVICE);
1393 		ret = dma_mapping_error(ar->dev, resp_paddr);
1394 		if (ret)
1395 			goto err_req;
1396 
1397 		xfer.wait_for_resp = true;
1398 		xfer.resp_len = 0;
1399 
1400 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1401 	}
1402 
1403 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1404 	if (ret)
1405 		goto err_resp;
1406 
1407 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1408 	if (ret) {
1409 		u32 unused_buffer;
1410 		unsigned int unused_nbytes;
1411 		unsigned int unused_id;
1412 
1413 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1414 					   &unused_nbytes, &unused_id);
1415 	} else {
1416 		/* non-zero means we did not time out */
1417 		ret = 0;
1418 	}
1419 
1420 err_resp:
1421 	if (resp) {
1422 		u32 unused_buffer;
1423 
1424 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1425 		dma_unmap_single(ar->dev, resp_paddr,
1426 				 *resp_len, DMA_FROM_DEVICE);
1427 	}
1428 err_req:
1429 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1430 
1431 	if (ret == 0 && resp_len) {
1432 		*resp_len = min(*resp_len, xfer.resp_len);
1433 		memcpy(resp, tresp, xfer.resp_len);
1434 	}
1435 err_dma:
1436 	kfree(treq);
1437 	kfree(tresp);
1438 
1439 	return ret;
1440 }
1441 
1442 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1443 {
1444 	struct bmi_xfer *xfer;
1445 	u32 ce_data;
1446 	unsigned int nbytes;
1447 	unsigned int transfer_id;
1448 
1449 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1450 					  &nbytes, &transfer_id))
1451 		return;
1452 
1453 	xfer->tx_done = true;
1454 }
1455 
1456 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1457 {
1458 	struct ath10k *ar = ce_state->ar;
1459 	struct bmi_xfer *xfer;
1460 	u32 ce_data;
1461 	unsigned int nbytes;
1462 	unsigned int transfer_id;
1463 	unsigned int flags;
1464 
1465 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1466 					  &nbytes, &transfer_id, &flags))
1467 		return;
1468 
1469 	if (WARN_ON_ONCE(!xfer))
1470 		return;
1471 
1472 	if (!xfer->wait_for_resp) {
1473 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1474 		return;
1475 	}
1476 
1477 	xfer->resp_len = nbytes;
1478 	xfer->rx_done = true;
1479 }
1480 
1481 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1482 			       struct ath10k_ce_pipe *rx_pipe,
1483 			       struct bmi_xfer *xfer)
1484 {
1485 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1486 
1487 	while (time_before_eq(jiffies, timeout)) {
1488 		ath10k_pci_bmi_send_done(tx_pipe);
1489 		ath10k_pci_bmi_recv_data(rx_pipe);
1490 
1491 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1492 			return 0;
1493 
1494 		schedule();
1495 	}
1496 
1497 	return -ETIMEDOUT;
1498 }
1499 
1500 /*
1501  * Send an interrupt to the device to wake up the Target CPU
1502  * so it has an opportunity to notice any changed state.
1503  */
1504 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1505 {
1506 	u32 addr, val;
1507 
1508 	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1509 	val = ath10k_pci_read32(ar, addr);
1510 	val |= CORE_CTRL_CPU_INTR_MASK;
1511 	ath10k_pci_write32(ar, addr, val);
1512 
1513 	return 0;
1514 }
1515 
1516 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1517 {
1518 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1519 
1520 	switch (ar_pci->pdev->device) {
1521 	case QCA988X_2_0_DEVICE_ID:
1522 		return 1;
1523 	case QCA6174_2_1_DEVICE_ID:
1524 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1525 		case QCA6174_HW_1_0_CHIP_ID_REV:
1526 		case QCA6174_HW_1_1_CHIP_ID_REV:
1527 			return 3;
1528 		case QCA6174_HW_1_3_CHIP_ID_REV:
1529 			return 2;
1530 		case QCA6174_HW_2_1_CHIP_ID_REV:
1531 		case QCA6174_HW_2_2_CHIP_ID_REV:
1532 			return 6;
1533 		case QCA6174_HW_3_0_CHIP_ID_REV:
1534 		case QCA6174_HW_3_1_CHIP_ID_REV:
1535 		case QCA6174_HW_3_2_CHIP_ID_REV:
1536 			return 9;
1537 		}
1538 		break;
1539 	}
1540 
1541 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1542 	return 1;
1543 }
1544 
1545 static int ath10k_pci_init_config(struct ath10k *ar)
1546 {
1547 	u32 interconnect_targ_addr;
1548 	u32 pcie_state_targ_addr = 0;
1549 	u32 pipe_cfg_targ_addr = 0;
1550 	u32 svc_to_pipe_map = 0;
1551 	u32 pcie_config_flags = 0;
1552 	u32 ealloc_value;
1553 	u32 ealloc_targ_addr;
1554 	u32 flag2_value;
1555 	u32 flag2_targ_addr;
1556 	int ret = 0;
1557 
1558 	/* Download to Target the CE Config and the service-to-CE map */
1559 	interconnect_targ_addr =
1560 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1561 
1562 	/* Supply Target-side CE configuration */
1563 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1564 				     &pcie_state_targ_addr);
1565 	if (ret != 0) {
1566 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1567 		return ret;
1568 	}
1569 
1570 	if (pcie_state_targ_addr == 0) {
1571 		ret = -EIO;
1572 		ath10k_err(ar, "Invalid pcie state addr\n");
1573 		return ret;
1574 	}
1575 
1576 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1577 					  offsetof(struct pcie_state,
1578 						   pipe_cfg_addr)),
1579 				     &pipe_cfg_targ_addr);
1580 	if (ret != 0) {
1581 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1582 		return ret;
1583 	}
1584 
1585 	if (pipe_cfg_targ_addr == 0) {
1586 		ret = -EIO;
1587 		ath10k_err(ar, "Invalid pipe cfg addr\n");
1588 		return ret;
1589 	}
1590 
1591 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1592 					target_ce_config_wlan,
1593 					sizeof(target_ce_config_wlan));
1594 
1595 	if (ret != 0) {
1596 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1597 		return ret;
1598 	}
1599 
1600 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1601 					  offsetof(struct pcie_state,
1602 						   svc_to_pipe_map)),
1603 				     &svc_to_pipe_map);
1604 	if (ret != 0) {
1605 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1606 		return ret;
1607 	}
1608 
1609 	if (svc_to_pipe_map == 0) {
1610 		ret = -EIO;
1611 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
1612 		return ret;
1613 	}
1614 
1615 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1616 					target_service_to_ce_map_wlan,
1617 					sizeof(target_service_to_ce_map_wlan));
1618 	if (ret != 0) {
1619 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1620 		return ret;
1621 	}
1622 
1623 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1624 					  offsetof(struct pcie_state,
1625 						   config_flags)),
1626 				     &pcie_config_flags);
1627 	if (ret != 0) {
1628 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1629 		return ret;
1630 	}
1631 
1632 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1633 
1634 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1635 					   offsetof(struct pcie_state,
1636 						    config_flags)),
1637 				      pcie_config_flags);
1638 	if (ret != 0) {
1639 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1640 		return ret;
1641 	}
1642 
1643 	/* configure early allocation */
1644 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1645 
1646 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1647 	if (ret != 0) {
1648 		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1649 		return ret;
1650 	}
1651 
1652 	/* first bank is switched to IRAM */
1653 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1654 			 HI_EARLY_ALLOC_MAGIC_MASK);
1655 	ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
1656 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1657 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1658 
1659 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
1660 	if (ret != 0) {
1661 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1662 		return ret;
1663 	}
1664 
1665 	/* Tell Target to proceed with initialization */
1666 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1667 
1668 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
1669 	if (ret != 0) {
1670 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
1671 		return ret;
1672 	}
1673 
1674 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1675 
1676 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
1677 	if (ret != 0) {
1678 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
1679 		return ret;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
1686 {
1687 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1688 	struct ath10k_pci_pipe *pipe;
1689 	int i, ret;
1690 
1691 	for (i = 0; i < CE_COUNT; i++) {
1692 		pipe = &ar_pci->pipe_info[i];
1693 		pipe->ce_hdl = &ar_pci->ce_states[i];
1694 		pipe->pipe_num = i;
1695 		pipe->hif_ce_state = ar;
1696 
1697 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i],
1698 					   ath10k_pci_ce_send_done,
1699 					   ath10k_pci_ce_recv_data);
1700 		if (ret) {
1701 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1702 				   i, ret);
1703 			return ret;
1704 		}
1705 
1706 		/* Last CE is Diagnostic Window */
1707 		if (i == CE_COUNT - 1) {
1708 			ar_pci->ce_diag = pipe->ce_hdl;
1709 			continue;
1710 		}
1711 
1712 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static void ath10k_pci_free_pipes(struct ath10k *ar)
1719 {
1720 	int i;
1721 
1722 	for (i = 0; i < CE_COUNT; i++)
1723 		ath10k_ce_free_pipe(ar, i);
1724 }
1725 
1726 static int ath10k_pci_init_pipes(struct ath10k *ar)
1727 {
1728 	int i, ret;
1729 
1730 	for (i = 0; i < CE_COUNT; i++) {
1731 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
1732 		if (ret) {
1733 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1734 				   i, ret);
1735 			return ret;
1736 		}
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1743 {
1744 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1745 	       FW_IND_EVENT_PENDING;
1746 }
1747 
1748 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1749 {
1750 	u32 val;
1751 
1752 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1753 	val &= ~FW_IND_EVENT_PENDING;
1754 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1755 }
1756 
1757 /* this function effectively clears target memory controller assert line */
1758 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1759 {
1760 	u32 val;
1761 
1762 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1763 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1764 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
1765 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1766 
1767 	msleep(10);
1768 
1769 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1770 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1771 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1772 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1773 
1774 	msleep(10);
1775 }
1776 
1777 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
1778 {
1779 	u32 val;
1780 
1781 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1782 
1783 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1784 				SOC_RESET_CONTROL_ADDRESS);
1785 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1786 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1787 }
1788 
1789 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
1790 {
1791 	u32 val;
1792 
1793 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1794 				SOC_RESET_CONTROL_ADDRESS);
1795 
1796 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1797 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
1798 	msleep(10);
1799 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1800 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1801 }
1802 
1803 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
1804 {
1805 	u32 val;
1806 
1807 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1808 				SOC_LF_TIMER_CONTROL0_ADDRESS);
1809 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1810 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
1811 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1812 }
1813 
1814 static int ath10k_pci_warm_reset(struct ath10k *ar)
1815 {
1816 	int ret;
1817 
1818 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1819 
1820 	spin_lock_bh(&ar->data_lock);
1821 	ar->stats.fw_warm_reset_counter++;
1822 	spin_unlock_bh(&ar->data_lock);
1823 
1824 	ath10k_pci_irq_disable(ar);
1825 
1826 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
1827 	 * were to access copy engine while host performs copy engine reset
1828 	 * then it is possible for the device to confuse pci-e controller to
1829 	 * the point of bringing host system to a complete stop (i.e. hang).
1830 	 */
1831 	ath10k_pci_warm_reset_si0(ar);
1832 	ath10k_pci_warm_reset_cpu(ar);
1833 	ath10k_pci_init_pipes(ar);
1834 	ath10k_pci_wait_for_target_init(ar);
1835 
1836 	ath10k_pci_warm_reset_clear_lf(ar);
1837 	ath10k_pci_warm_reset_ce(ar);
1838 	ath10k_pci_warm_reset_cpu(ar);
1839 	ath10k_pci_init_pipes(ar);
1840 
1841 	ret = ath10k_pci_wait_for_target_init(ar);
1842 	if (ret) {
1843 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
1844 		return ret;
1845 	}
1846 
1847 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
1848 
1849 	return 0;
1850 }
1851 
1852 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
1853 {
1854 	int i, ret;
1855 	u32 val;
1856 
1857 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
1858 
1859 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
1860 	 * It is thus preferred to use warm reset which is safer but may not be
1861 	 * able to recover the device from all possible fail scenarios.
1862 	 *
1863 	 * Warm reset doesn't always work on first try so attempt it a few
1864 	 * times before giving up.
1865 	 */
1866 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
1867 		ret = ath10k_pci_warm_reset(ar);
1868 		if (ret) {
1869 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
1870 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
1871 				    ret);
1872 			continue;
1873 		}
1874 
1875 		/* FIXME: Sometimes copy engine doesn't recover after warm
1876 		 * reset. In most cases this needs cold reset. In some of these
1877 		 * cases the device is in such a state that a cold reset may
1878 		 * lock up the host.
1879 		 *
1880 		 * Reading any host interest register via copy engine is
1881 		 * sufficient to verify if device is capable of booting
1882 		 * firmware blob.
1883 		 */
1884 		ret = ath10k_pci_init_pipes(ar);
1885 		if (ret) {
1886 			ath10k_warn(ar, "failed to init copy engine: %d\n",
1887 				    ret);
1888 			continue;
1889 		}
1890 
1891 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
1892 					     &val);
1893 		if (ret) {
1894 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
1895 				    ret);
1896 			continue;
1897 		}
1898 
1899 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
1900 		return 0;
1901 	}
1902 
1903 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
1904 		ath10k_warn(ar, "refusing cold reset as requested\n");
1905 		return -EPERM;
1906 	}
1907 
1908 	ret = ath10k_pci_cold_reset(ar);
1909 	if (ret) {
1910 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1911 		return ret;
1912 	}
1913 
1914 	ret = ath10k_pci_wait_for_target_init(ar);
1915 	if (ret) {
1916 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1917 			    ret);
1918 		return ret;
1919 	}
1920 
1921 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
1922 
1923 	return 0;
1924 }
1925 
1926 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
1927 {
1928 	int ret;
1929 
1930 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
1931 
1932 	/* FIXME: QCA6174 requires cold + warm reset to work. */
1933 
1934 	ret = ath10k_pci_cold_reset(ar);
1935 	if (ret) {
1936 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1937 		return ret;
1938 	}
1939 
1940 	ret = ath10k_pci_wait_for_target_init(ar);
1941 	if (ret) {
1942 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1943 				ret);
1944 		return ret;
1945 	}
1946 
1947 	ret = ath10k_pci_warm_reset(ar);
1948 	if (ret) {
1949 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
1950 		return ret;
1951 	}
1952 
1953 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
1954 
1955 	return 0;
1956 }
1957 
1958 static int ath10k_pci_chip_reset(struct ath10k *ar)
1959 {
1960 	if (QCA_REV_988X(ar))
1961 		return ath10k_pci_qca988x_chip_reset(ar);
1962 	else if (QCA_REV_6174(ar))
1963 		return ath10k_pci_qca6174_chip_reset(ar);
1964 	else
1965 		return -ENOTSUPP;
1966 }
1967 
1968 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1969 {
1970 	int ret;
1971 
1972 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
1973 
1974 	ret = ath10k_pci_wake(ar);
1975 	if (ret) {
1976 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
1977 		return ret;
1978 	}
1979 
1980 	/*
1981 	 * Bring the target up cleanly.
1982 	 *
1983 	 * The target may be in an undefined state with an AUX-powered Target
1984 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
1985 	 * restarted (without unloading the driver) then the Target is left
1986 	 * (aux) powered and running. On a subsequent driver load, the Target
1987 	 * is in an unexpected state. We try to catch that here in order to
1988 	 * reset the Target and retry the probe.
1989 	 */
1990 	ret = ath10k_pci_chip_reset(ar);
1991 	if (ret) {
1992 		if (ath10k_pci_has_fw_crashed(ar)) {
1993 			ath10k_warn(ar, "firmware crashed during chip reset\n");
1994 			ath10k_pci_fw_crashed_clear(ar);
1995 			ath10k_pci_fw_crashed_dump(ar);
1996 		}
1997 
1998 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
1999 		goto err_sleep;
2000 	}
2001 
2002 	ret = ath10k_pci_init_pipes(ar);
2003 	if (ret) {
2004 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2005 		goto err_sleep;
2006 	}
2007 
2008 	ret = ath10k_pci_init_config(ar);
2009 	if (ret) {
2010 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2011 		goto err_ce;
2012 	}
2013 
2014 	ret = ath10k_pci_wake_target_cpu(ar);
2015 	if (ret) {
2016 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2017 		goto err_ce;
2018 	}
2019 
2020 	return 0;
2021 
2022 err_ce:
2023 	ath10k_pci_ce_deinit(ar);
2024 
2025 err_sleep:
2026 	ath10k_pci_sleep(ar);
2027 	return ret;
2028 }
2029 
2030 static void ath10k_pci_hif_power_down(struct ath10k *ar)
2031 {
2032 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2033 
2034 	/* Currently hif_power_up performs effectively a reset and hif_stop
2035 	 * resets the chip as well so there's no point in resetting here.
2036 	 */
2037 
2038 	ath10k_pci_sleep(ar);
2039 }
2040 
2041 #ifdef CONFIG_PM
2042 
2043 #define ATH10K_PCI_PM_CONTROL 0x44
2044 
2045 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2046 {
2047 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2048 	struct pci_dev *pdev = ar_pci->pdev;
2049 	u32 val;
2050 
2051 	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2052 
2053 	if ((val & 0x000000ff) != 0x3) {
2054 		pci_save_state(pdev);
2055 		pci_disable_device(pdev);
2056 		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2057 				       (val & 0xffffff00) | 0x03);
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static int ath10k_pci_hif_resume(struct ath10k *ar)
2064 {
2065 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2066 	struct pci_dev *pdev = ar_pci->pdev;
2067 	u32 val;
2068 
2069 	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2070 
2071 	if ((val & 0x000000ff) != 0) {
2072 		pci_restore_state(pdev);
2073 		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2074 				       val & 0xffffff00);
2075 		/*
2076 		 * Suspend/Resume resets the PCI configuration space,
2077 		 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
2078 		 * to keep PCI Tx retries from interfering with C3 CPU state
2079 		 */
2080 		pci_read_config_dword(pdev, 0x40, &val);
2081 
2082 		if ((val & 0x0000ff00) != 0)
2083 			pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2084 	}
2085 
2086 	return 0;
2087 }
2088 #endif
2089 
2090 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2091 	.tx_sg			= ath10k_pci_hif_tx_sg,
2092 	.diag_read		= ath10k_pci_hif_diag_read,
2093 	.diag_write		= ath10k_pci_diag_write_mem,
2094 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2095 	.start			= ath10k_pci_hif_start,
2096 	.stop			= ath10k_pci_hif_stop,
2097 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2098 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2099 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2100 	.set_callbacks		= ath10k_pci_hif_set_callbacks,
2101 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2102 	.power_up		= ath10k_pci_hif_power_up,
2103 	.power_down		= ath10k_pci_hif_power_down,
2104 	.read32			= ath10k_pci_read32,
2105 	.write32		= ath10k_pci_write32,
2106 #ifdef CONFIG_PM
2107 	.suspend		= ath10k_pci_hif_suspend,
2108 	.resume			= ath10k_pci_hif_resume,
2109 #endif
2110 };
2111 
2112 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2113 {
2114 	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2115 	struct ath10k_pci *ar_pci = pipe->ar_pci;
2116 
2117 	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2118 }
2119 
2120 static void ath10k_msi_err_tasklet(unsigned long data)
2121 {
2122 	struct ath10k *ar = (struct ath10k *)data;
2123 
2124 	if (!ath10k_pci_has_fw_crashed(ar)) {
2125 		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2126 		return;
2127 	}
2128 
2129 	ath10k_pci_irq_disable(ar);
2130 	ath10k_pci_fw_crashed_clear(ar);
2131 	ath10k_pci_fw_crashed_dump(ar);
2132 }
2133 
2134 /*
2135  * Handler for a per-engine interrupt on a PARTICULAR CE.
2136  * This is used in cases where each CE has a private MSI interrupt.
2137  */
2138 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2139 {
2140 	struct ath10k *ar = arg;
2141 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2142 	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2143 
2144 	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2145 		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2146 			    ce_id);
2147 		return IRQ_HANDLED;
2148 	}
2149 
2150 	/*
2151 	 * NOTE: We are able to derive ce_id from irq because we
2152 	 * use a one-to-one mapping for CE's 0..5.
2153 	 * CE's 6 & 7 do not use interrupts at all.
2154 	 *
2155 	 * This mapping must be kept in sync with the mapping
2156 	 * used by firmware.
2157 	 */
2158 	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2159 	return IRQ_HANDLED;
2160 }
2161 
2162 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2163 {
2164 	struct ath10k *ar = arg;
2165 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2166 
2167 	tasklet_schedule(&ar_pci->msi_fw_err);
2168 	return IRQ_HANDLED;
2169 }
2170 
2171 /*
2172  * Top-level interrupt handler for all PCI interrupts from a Target.
2173  * When a block of MSI interrupts is allocated, this top-level handler
2174  * is not used; instead, we directly call the correct sub-handler.
2175  */
2176 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2177 {
2178 	struct ath10k *ar = arg;
2179 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2180 
2181 	if (ar_pci->num_msi_intrs == 0) {
2182 		if (!ath10k_pci_irq_pending(ar))
2183 			return IRQ_NONE;
2184 
2185 		ath10k_pci_disable_and_clear_legacy_irq(ar);
2186 	}
2187 
2188 	tasklet_schedule(&ar_pci->intr_tq);
2189 
2190 	return IRQ_HANDLED;
2191 }
2192 
2193 static void ath10k_pci_tasklet(unsigned long data)
2194 {
2195 	struct ath10k *ar = (struct ath10k *)data;
2196 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2197 
2198 	if (ath10k_pci_has_fw_crashed(ar)) {
2199 		ath10k_pci_irq_disable(ar);
2200 		ath10k_pci_fw_crashed_clear(ar);
2201 		ath10k_pci_fw_crashed_dump(ar);
2202 		return;
2203 	}
2204 
2205 	ath10k_ce_per_engine_service_any(ar);
2206 
2207 	/* Re-enable legacy irq that was disabled in the irq handler */
2208 	if (ar_pci->num_msi_intrs == 0)
2209 		ath10k_pci_enable_legacy_irq(ar);
2210 }
2211 
2212 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2213 {
2214 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2215 	int ret, i;
2216 
2217 	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2218 			  ath10k_pci_msi_fw_handler,
2219 			  IRQF_SHARED, "ath10k_pci", ar);
2220 	if (ret) {
2221 		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2222 			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2223 		return ret;
2224 	}
2225 
2226 	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2227 		ret = request_irq(ar_pci->pdev->irq + i,
2228 				  ath10k_pci_per_engine_handler,
2229 				  IRQF_SHARED, "ath10k_pci", ar);
2230 		if (ret) {
2231 			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2232 				    ar_pci->pdev->irq + i, ret);
2233 
2234 			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2235 				free_irq(ar_pci->pdev->irq + i, ar);
2236 
2237 			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2238 			return ret;
2239 		}
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2246 {
2247 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2248 	int ret;
2249 
2250 	ret = request_irq(ar_pci->pdev->irq,
2251 			  ath10k_pci_interrupt_handler,
2252 			  IRQF_SHARED, "ath10k_pci", ar);
2253 	if (ret) {
2254 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2255 			    ar_pci->pdev->irq, ret);
2256 		return ret;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2263 {
2264 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2265 	int ret;
2266 
2267 	ret = request_irq(ar_pci->pdev->irq,
2268 			  ath10k_pci_interrupt_handler,
2269 			  IRQF_SHARED, "ath10k_pci", ar);
2270 	if (ret) {
2271 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2272 			    ar_pci->pdev->irq, ret);
2273 		return ret;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int ath10k_pci_request_irq(struct ath10k *ar)
2280 {
2281 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2282 
2283 	switch (ar_pci->num_msi_intrs) {
2284 	case 0:
2285 		return ath10k_pci_request_irq_legacy(ar);
2286 	case 1:
2287 		return ath10k_pci_request_irq_msi(ar);
2288 	case MSI_NUM_REQUEST:
2289 		return ath10k_pci_request_irq_msix(ar);
2290 	}
2291 
2292 	ath10k_warn(ar, "unknown irq configuration upon request\n");
2293 	return -EINVAL;
2294 }
2295 
2296 static void ath10k_pci_free_irq(struct ath10k *ar)
2297 {
2298 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2299 	int i;
2300 
2301 	/* There's at least one interrupt irregardless whether its legacy INTR
2302 	 * or MSI or MSI-X */
2303 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2304 		free_irq(ar_pci->pdev->irq + i, ar);
2305 }
2306 
2307 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2308 {
2309 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2310 	int i;
2311 
2312 	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2313 	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2314 		     (unsigned long)ar);
2315 
2316 	for (i = 0; i < CE_COUNT; i++) {
2317 		ar_pci->pipe_info[i].ar_pci = ar_pci;
2318 		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2319 			     (unsigned long)&ar_pci->pipe_info[i]);
2320 	}
2321 }
2322 
2323 static int ath10k_pci_init_irq(struct ath10k *ar)
2324 {
2325 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2326 	int ret;
2327 
2328 	ath10k_pci_init_irq_tasklets(ar);
2329 
2330 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2331 		ath10k_info(ar, "limiting irq mode to: %d\n",
2332 			    ath10k_pci_irq_mode);
2333 
2334 	/* Try MSI-X */
2335 	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2336 		ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2337 		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2338 					   ar_pci->num_msi_intrs);
2339 		if (ret > 0)
2340 			return 0;
2341 
2342 		/* fall-through */
2343 	}
2344 
2345 	/* Try MSI */
2346 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2347 		ar_pci->num_msi_intrs = 1;
2348 		ret = pci_enable_msi(ar_pci->pdev);
2349 		if (ret == 0)
2350 			return 0;
2351 
2352 		/* fall-through */
2353 	}
2354 
2355 	/* Try legacy irq
2356 	 *
2357 	 * A potential race occurs here: The CORE_BASE write
2358 	 * depends on target correctly decoding AXI address but
2359 	 * host won't know when target writes BAR to CORE_CTRL.
2360 	 * This write might get lost if target has NOT written BAR.
2361 	 * For now, fix the race by repeating the write in below
2362 	 * synchronization checking. */
2363 	ar_pci->num_msi_intrs = 0;
2364 
2365 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2366 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2367 
2368 	return 0;
2369 }
2370 
2371 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2372 {
2373 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2374 			   0);
2375 }
2376 
2377 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2378 {
2379 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2380 
2381 	switch (ar_pci->num_msi_intrs) {
2382 	case 0:
2383 		ath10k_pci_deinit_irq_legacy(ar);
2384 		return 0;
2385 	case 1:
2386 		/* fall-through */
2387 	case MSI_NUM_REQUEST:
2388 		pci_disable_msi(ar_pci->pdev);
2389 		return 0;
2390 	default:
2391 		pci_disable_msi(ar_pci->pdev);
2392 	}
2393 
2394 	ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2395 	return -EINVAL;
2396 }
2397 
2398 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2399 {
2400 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2401 	unsigned long timeout;
2402 	u32 val;
2403 
2404 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2405 
2406 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2407 
2408 	do {
2409 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2410 
2411 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2412 			   val);
2413 
2414 		/* target should never return this */
2415 		if (val == 0xffffffff)
2416 			continue;
2417 
2418 		/* the device has crashed so don't bother trying anymore */
2419 		if (val & FW_IND_EVENT_PENDING)
2420 			break;
2421 
2422 		if (val & FW_IND_INITIALIZED)
2423 			break;
2424 
2425 		if (ar_pci->num_msi_intrs == 0)
2426 			/* Fix potential race by repeating CORE_BASE writes */
2427 			ath10k_pci_enable_legacy_irq(ar);
2428 
2429 		mdelay(10);
2430 	} while (time_before(jiffies, timeout));
2431 
2432 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2433 	ath10k_pci_irq_msi_fw_mask(ar);
2434 
2435 	if (val == 0xffffffff) {
2436 		ath10k_err(ar, "failed to read device register, device is gone\n");
2437 		return -EIO;
2438 	}
2439 
2440 	if (val & FW_IND_EVENT_PENDING) {
2441 		ath10k_warn(ar, "device has crashed during init\n");
2442 		return -ECOMM;
2443 	}
2444 
2445 	if (!(val & FW_IND_INITIALIZED)) {
2446 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2447 			   val);
2448 		return -ETIMEDOUT;
2449 	}
2450 
2451 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2452 	return 0;
2453 }
2454 
2455 static int ath10k_pci_cold_reset(struct ath10k *ar)
2456 {
2457 	int i;
2458 	u32 val;
2459 
2460 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2461 
2462 	spin_lock_bh(&ar->data_lock);
2463 
2464 	ar->stats.fw_cold_reset_counter++;
2465 
2466 	spin_unlock_bh(&ar->data_lock);
2467 
2468 	/* Put Target, including PCIe, into RESET. */
2469 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2470 	val |= 1;
2471 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2472 
2473 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2474 		if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2475 					  RTC_STATE_COLD_RESET_MASK)
2476 			break;
2477 		msleep(1);
2478 	}
2479 
2480 	/* Pull Target, including PCIe, out of RESET. */
2481 	val &= ~1;
2482 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2483 
2484 	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2485 		if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2486 					    RTC_STATE_COLD_RESET_MASK))
2487 			break;
2488 		msleep(1);
2489 	}
2490 
2491 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2492 
2493 	return 0;
2494 }
2495 
2496 static int ath10k_pci_claim(struct ath10k *ar)
2497 {
2498 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2499 	struct pci_dev *pdev = ar_pci->pdev;
2500 	u32 lcr_val;
2501 	int ret;
2502 
2503 	pci_set_drvdata(pdev, ar);
2504 
2505 	ret = pci_enable_device(pdev);
2506 	if (ret) {
2507 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2508 		return ret;
2509 	}
2510 
2511 	ret = pci_request_region(pdev, BAR_NUM, "ath");
2512 	if (ret) {
2513 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2514 			   ret);
2515 		goto err_device;
2516 	}
2517 
2518 	/* Target expects 32 bit DMA. Enforce it. */
2519 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2520 	if (ret) {
2521 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2522 		goto err_region;
2523 	}
2524 
2525 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2526 	if (ret) {
2527 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2528 			   ret);
2529 		goto err_region;
2530 	}
2531 
2532 	pci_set_master(pdev);
2533 
2534 	/* Workaround: Disable ASPM */
2535 	pci_read_config_dword(pdev, 0x80, &lcr_val);
2536 	pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2537 
2538 	/* Arrange for access to Target SoC registers. */
2539 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2540 	if (!ar_pci->mem) {
2541 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2542 		ret = -EIO;
2543 		goto err_master;
2544 	}
2545 
2546 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2547 	return 0;
2548 
2549 err_master:
2550 	pci_clear_master(pdev);
2551 
2552 err_region:
2553 	pci_release_region(pdev, BAR_NUM);
2554 
2555 err_device:
2556 	pci_disable_device(pdev);
2557 
2558 	return ret;
2559 }
2560 
2561 static void ath10k_pci_release(struct ath10k *ar)
2562 {
2563 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2564 	struct pci_dev *pdev = ar_pci->pdev;
2565 
2566 	pci_iounmap(pdev, ar_pci->mem);
2567 	pci_release_region(pdev, BAR_NUM);
2568 	pci_clear_master(pdev);
2569 	pci_disable_device(pdev);
2570 }
2571 
2572 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2573 {
2574 	const struct ath10k_pci_supp_chip *supp_chip;
2575 	int i;
2576 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2577 
2578 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2579 		supp_chip = &ath10k_pci_supp_chips[i];
2580 
2581 		if (supp_chip->dev_id == dev_id &&
2582 		    supp_chip->rev_id == rev_id)
2583 			return true;
2584 	}
2585 
2586 	return false;
2587 }
2588 
2589 static int ath10k_pci_probe(struct pci_dev *pdev,
2590 			    const struct pci_device_id *pci_dev)
2591 {
2592 	int ret = 0;
2593 	struct ath10k *ar;
2594 	struct ath10k_pci *ar_pci;
2595 	enum ath10k_hw_rev hw_rev;
2596 	u32 chip_id;
2597 
2598 	switch (pci_dev->device) {
2599 	case QCA988X_2_0_DEVICE_ID:
2600 		hw_rev = ATH10K_HW_QCA988X;
2601 		break;
2602 	case QCA6174_2_1_DEVICE_ID:
2603 		hw_rev = ATH10K_HW_QCA6174;
2604 		break;
2605 	default:
2606 		WARN_ON(1);
2607 		return -ENOTSUPP;
2608 	}
2609 
2610 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
2611 				hw_rev, &ath10k_pci_hif_ops);
2612 	if (!ar) {
2613 		dev_err(&pdev->dev, "failed to allocate core\n");
2614 		return -ENOMEM;
2615 	}
2616 
2617 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2618 
2619 	ar_pci = ath10k_pci_priv(ar);
2620 	ar_pci->pdev = pdev;
2621 	ar_pci->dev = &pdev->dev;
2622 	ar_pci->ar = ar;
2623 
2624 	spin_lock_init(&ar_pci->ce_lock);
2625 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2626 		    (unsigned long)ar);
2627 
2628 	ret = ath10k_pci_claim(ar);
2629 	if (ret) {
2630 		ath10k_err(ar, "failed to claim device: %d\n", ret);
2631 		goto err_core_destroy;
2632 	}
2633 
2634 	ret = ath10k_pci_wake(ar);
2635 	if (ret) {
2636 		ath10k_err(ar, "failed to wake up: %d\n", ret);
2637 		goto err_release;
2638 	}
2639 
2640 	ret = ath10k_pci_alloc_pipes(ar);
2641 	if (ret) {
2642 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2643 			   ret);
2644 		goto err_sleep;
2645 	}
2646 
2647 	ath10k_pci_ce_deinit(ar);
2648 	ath10k_pci_irq_disable(ar);
2649 
2650 	ret = ath10k_pci_init_irq(ar);
2651 	if (ret) {
2652 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
2653 		goto err_free_pipes;
2654 	}
2655 
2656 	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2657 		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2658 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2659 
2660 	ret = ath10k_pci_request_irq(ar);
2661 	if (ret) {
2662 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2663 		goto err_deinit_irq;
2664 	}
2665 
2666 	ret = ath10k_pci_chip_reset(ar);
2667 	if (ret) {
2668 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2669 		goto err_free_irq;
2670 	}
2671 
2672 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2673 	if (chip_id == 0xffffffff) {
2674 		ath10k_err(ar, "failed to get chip id\n");
2675 		goto err_free_irq;
2676 	}
2677 
2678 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
2679 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
2680 			   pdev->device, chip_id);
2681 		goto err_sleep;
2682 	}
2683 
2684 	ath10k_pci_sleep(ar);
2685 
2686 	ret = ath10k_core_register(ar, chip_id);
2687 	if (ret) {
2688 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
2689 		goto err_free_irq;
2690 	}
2691 
2692 	return 0;
2693 
2694 err_free_irq:
2695 	ath10k_pci_free_irq(ar);
2696 	ath10k_pci_kill_tasklet(ar);
2697 
2698 err_deinit_irq:
2699 	ath10k_pci_deinit_irq(ar);
2700 
2701 err_free_pipes:
2702 	ath10k_pci_free_pipes(ar);
2703 
2704 err_sleep:
2705 	ath10k_pci_sleep(ar);
2706 
2707 err_release:
2708 	ath10k_pci_release(ar);
2709 
2710 err_core_destroy:
2711 	ath10k_core_destroy(ar);
2712 
2713 	return ret;
2714 }
2715 
2716 static void ath10k_pci_remove(struct pci_dev *pdev)
2717 {
2718 	struct ath10k *ar = pci_get_drvdata(pdev);
2719 	struct ath10k_pci *ar_pci;
2720 
2721 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2722 
2723 	if (!ar)
2724 		return;
2725 
2726 	ar_pci = ath10k_pci_priv(ar);
2727 
2728 	if (!ar_pci)
2729 		return;
2730 
2731 	ath10k_core_unregister(ar);
2732 	ath10k_pci_free_irq(ar);
2733 	ath10k_pci_kill_tasklet(ar);
2734 	ath10k_pci_deinit_irq(ar);
2735 	ath10k_pci_ce_deinit(ar);
2736 	ath10k_pci_free_pipes(ar);
2737 	ath10k_pci_release(ar);
2738 	ath10k_core_destroy(ar);
2739 }
2740 
2741 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2742 
2743 static struct pci_driver ath10k_pci_driver = {
2744 	.name = "ath10k_pci",
2745 	.id_table = ath10k_pci_id_table,
2746 	.probe = ath10k_pci_probe,
2747 	.remove = ath10k_pci_remove,
2748 };
2749 
2750 static int __init ath10k_pci_init(void)
2751 {
2752 	int ret;
2753 
2754 	ret = pci_register_driver(&ath10k_pci_driver);
2755 	if (ret)
2756 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2757 		       ret);
2758 
2759 	return ret;
2760 }
2761 module_init(ath10k_pci_init);
2762 
2763 static void __exit ath10k_pci_exit(void)
2764 {
2765 	pci_unregister_driver(&ath10k_pci_driver);
2766 }
2767 
2768 module_exit(ath10k_pci_exit);
2769 
2770 MODULE_AUTHOR("Qualcomm Atheros");
2771 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2772 MODULE_LICENSE("Dual BSD/GPL");
2773 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2774 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
2775 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
2776 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
2777