xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision 8cb5d748)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_reset_mode {
37 	ATH10K_PCI_RESET_AUTO = 0,
38 	ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40 
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43 
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46 
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49 
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 	{0}
64 };
65 
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
68 	 * hacks. ath10k doesn't have them and these devices crash horribly
69 	 * because of that.
70 	 */
71 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72 
73 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78 
79 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88 
89 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93 
94 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96 
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k *ar,
105 			       struct ath10k_ce_pipe *tx_pipe,
106 			       struct ath10k_ce_pipe *rx_pipe,
107 			       struct bmi_xfer *xfer);
108 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
109 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
115 
116 static struct ce_attr host_ce_config_wlan[] = {
117 	/* CE0: host->target HTC control and raw streams */
118 	{
119 		.flags = CE_ATTR_FLAGS,
120 		.src_nentries = 16,
121 		.src_sz_max = 256,
122 		.dest_nentries = 0,
123 		.send_cb = ath10k_pci_htc_tx_cb,
124 	},
125 
126 	/* CE1: target->host HTT + HTC control */
127 	{
128 		.flags = CE_ATTR_FLAGS,
129 		.src_nentries = 0,
130 		.src_sz_max = 2048,
131 		.dest_nentries = 512,
132 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
133 	},
134 
135 	/* CE2: target->host WMI */
136 	{
137 		.flags = CE_ATTR_FLAGS,
138 		.src_nentries = 0,
139 		.src_sz_max = 2048,
140 		.dest_nentries = 128,
141 		.recv_cb = ath10k_pci_htc_rx_cb,
142 	},
143 
144 	/* CE3: host->target WMI */
145 	{
146 		.flags = CE_ATTR_FLAGS,
147 		.src_nentries = 32,
148 		.src_sz_max = 2048,
149 		.dest_nentries = 0,
150 		.send_cb = ath10k_pci_htc_tx_cb,
151 	},
152 
153 	/* CE4: host->target HTT */
154 	{
155 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
156 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
157 		.src_sz_max = 256,
158 		.dest_nentries = 0,
159 		.send_cb = ath10k_pci_htt_tx_cb,
160 	},
161 
162 	/* CE5: target->host HTT (HIF->HTT) */
163 	{
164 		.flags = CE_ATTR_FLAGS,
165 		.src_nentries = 0,
166 		.src_sz_max = 512,
167 		.dest_nentries = 512,
168 		.recv_cb = ath10k_pci_htt_rx_cb,
169 	},
170 
171 	/* CE6: target autonomous hif_memcpy */
172 	{
173 		.flags = CE_ATTR_FLAGS,
174 		.src_nentries = 0,
175 		.src_sz_max = 0,
176 		.dest_nentries = 0,
177 	},
178 
179 	/* CE7: ce_diag, the Diagnostic Window */
180 	{
181 		.flags = CE_ATTR_FLAGS,
182 		.src_nentries = 2,
183 		.src_sz_max = DIAG_TRANSFER_LIMIT,
184 		.dest_nentries = 2,
185 	},
186 
187 	/* CE8: target->host pktlog */
188 	{
189 		.flags = CE_ATTR_FLAGS,
190 		.src_nentries = 0,
191 		.src_sz_max = 2048,
192 		.dest_nentries = 128,
193 		.recv_cb = ath10k_pci_pktlog_rx_cb,
194 	},
195 
196 	/* CE9 target autonomous qcache memcpy */
197 	{
198 		.flags = CE_ATTR_FLAGS,
199 		.src_nentries = 0,
200 		.src_sz_max = 0,
201 		.dest_nentries = 0,
202 	},
203 
204 	/* CE10: target autonomous hif memcpy */
205 	{
206 		.flags = CE_ATTR_FLAGS,
207 		.src_nentries = 0,
208 		.src_sz_max = 0,
209 		.dest_nentries = 0,
210 	},
211 
212 	/* CE11: target autonomous hif memcpy */
213 	{
214 		.flags = CE_ATTR_FLAGS,
215 		.src_nentries = 0,
216 		.src_sz_max = 0,
217 		.dest_nentries = 0,
218 	},
219 };
220 
221 /* Target firmware's Copy Engine configuration. */
222 static struct ce_pipe_config target_ce_config_wlan[] = {
223 	/* CE0: host->target HTC control and raw streams */
224 	{
225 		.pipenum = __cpu_to_le32(0),
226 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
227 		.nentries = __cpu_to_le32(32),
228 		.nbytes_max = __cpu_to_le32(256),
229 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
230 		.reserved = __cpu_to_le32(0),
231 	},
232 
233 	/* CE1: target->host HTT + HTC control */
234 	{
235 		.pipenum = __cpu_to_le32(1),
236 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(2048),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE2: target->host WMI */
244 	{
245 		.pipenum = __cpu_to_le32(2),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(64),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE3: host->target WMI */
254 	{
255 		.pipenum = __cpu_to_le32(3),
256 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
257 		.nentries = __cpu_to_le32(32),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE4: host->target HTT */
264 	{
265 		.pipenum = __cpu_to_le32(4),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(256),
268 		.nbytes_max = __cpu_to_le32(256),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* NB: 50% of src nentries, since tx has 2 frags */
274 
275 	/* CE5: target->host HTT (HIF->HTT) */
276 	{
277 		.pipenum = __cpu_to_le32(5),
278 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
279 		.nentries = __cpu_to_le32(32),
280 		.nbytes_max = __cpu_to_le32(512),
281 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
282 		.reserved = __cpu_to_le32(0),
283 	},
284 
285 	/* CE6: Reserved for target autonomous hif_memcpy */
286 	{
287 		.pipenum = __cpu_to_le32(6),
288 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(4096),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE7 used only by Host */
296 	{
297 		.pipenum = __cpu_to_le32(7),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(0),
300 		.nbytes_max = __cpu_to_le32(0),
301 		.flags = __cpu_to_le32(0),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE8 target->host packtlog */
306 	{
307 		.pipenum = __cpu_to_le32(8),
308 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
309 		.nentries = __cpu_to_le32(64),
310 		.nbytes_max = __cpu_to_le32(2048),
311 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE9 target autonomous qcache memcpy */
316 	{
317 		.pipenum = __cpu_to_le32(9),
318 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
319 		.nentries = __cpu_to_le32(32),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* It not necessary to send target wlan configuration for CE10 & CE11
326 	 * as these CEs are not actively used in target.
327 	 */
328 };
329 
330 /*
331  * Map from service/endpoint to Copy Engine.
332  * This table is derived from the CE_PCI TABLE, above.
333  * It is passed to the Target at startup for use by firmware.
334  */
335 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
336 	{
337 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
339 		__cpu_to_le32(3),
340 	},
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
343 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
344 		__cpu_to_le32(2),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(0),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(1),
395 	},
396 	{ /* not used */
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{ /* not used */
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(4),
410 	},
411 	{
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(5),
415 	},
416 
417 	/* (Additions here) */
418 
419 	{ /* must be last */
420 		__cpu_to_le32(0),
421 		__cpu_to_le32(0),
422 		__cpu_to_le32(0),
423 	},
424 };
425 
426 static bool ath10k_pci_is_awake(struct ath10k *ar)
427 {
428 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
429 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
430 			   RTC_STATE_ADDRESS);
431 
432 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
433 }
434 
435 static void __ath10k_pci_wake(struct ath10k *ar)
436 {
437 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
438 
439 	lockdep_assert_held(&ar_pci->ps_lock);
440 
441 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
442 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
443 
444 	iowrite32(PCIE_SOC_WAKE_V_MASK,
445 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
446 		  PCIE_SOC_WAKE_ADDRESS);
447 }
448 
449 static void __ath10k_pci_sleep(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_RESET,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 	ar_pci->ps_awake = false;
462 }
463 
464 static int ath10k_pci_wake_wait(struct ath10k *ar)
465 {
466 	int tot_delay = 0;
467 	int curr_delay = 5;
468 
469 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
470 		if (ath10k_pci_is_awake(ar)) {
471 			if (tot_delay > PCIE_WAKE_LATE_US)
472 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
473 					    tot_delay / 1000);
474 			return 0;
475 		}
476 
477 		udelay(curr_delay);
478 		tot_delay += curr_delay;
479 
480 		if (curr_delay < 50)
481 			curr_delay += 5;
482 	}
483 
484 	return -ETIMEDOUT;
485 }
486 
487 static int ath10k_pci_force_wake(struct ath10k *ar)
488 {
489 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
490 	unsigned long flags;
491 	int ret = 0;
492 
493 	if (ar_pci->pci_ps)
494 		return ret;
495 
496 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
497 
498 	if (!ar_pci->ps_awake) {
499 		iowrite32(PCIE_SOC_WAKE_V_MASK,
500 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
501 			  PCIE_SOC_WAKE_ADDRESS);
502 
503 		ret = ath10k_pci_wake_wait(ar);
504 		if (ret == 0)
505 			ar_pci->ps_awake = true;
506 	}
507 
508 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
509 
510 	return ret;
511 }
512 
513 static void ath10k_pci_force_sleep(struct ath10k *ar)
514 {
515 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
519 
520 	iowrite32(PCIE_SOC_WAKE_RESET,
521 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
522 		  PCIE_SOC_WAKE_ADDRESS);
523 	ar_pci->ps_awake = false;
524 
525 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
526 }
527 
528 static int ath10k_pci_wake(struct ath10k *ar)
529 {
530 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
531 	unsigned long flags;
532 	int ret = 0;
533 
534 	if (ar_pci->pci_ps == 0)
535 		return ret;
536 
537 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
538 
539 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
540 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
541 
542 	/* This function can be called very frequently. To avoid excessive
543 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
544 	 */
545 	if (!ar_pci->ps_awake) {
546 		__ath10k_pci_wake(ar);
547 
548 		ret = ath10k_pci_wake_wait(ar);
549 		if (ret == 0)
550 			ar_pci->ps_awake = true;
551 	}
552 
553 	if (ret == 0) {
554 		ar_pci->ps_wake_refcount++;
555 		WARN_ON(ar_pci->ps_wake_refcount == 0);
556 	}
557 
558 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
559 
560 	return ret;
561 }
562 
563 static void ath10k_pci_sleep(struct ath10k *ar)
564 {
565 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
566 	unsigned long flags;
567 
568 	if (ar_pci->pci_ps == 0)
569 		return;
570 
571 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
572 
573 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
574 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
575 
576 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
577 		goto skip;
578 
579 	ar_pci->ps_wake_refcount--;
580 
581 	mod_timer(&ar_pci->ps_timer, jiffies +
582 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
583 
584 skip:
585 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
586 }
587 
588 static void ath10k_pci_ps_timer(unsigned long ptr)
589 {
590 	struct ath10k *ar = (void *)ptr;
591 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
592 	unsigned long flags;
593 
594 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
595 
596 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
597 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
598 
599 	if (ar_pci->ps_wake_refcount > 0)
600 		goto skip;
601 
602 	__ath10k_pci_sleep(ar);
603 
604 skip:
605 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
606 }
607 
608 static void ath10k_pci_sleep_sync(struct ath10k *ar)
609 {
610 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
611 	unsigned long flags;
612 
613 	if (ar_pci->pci_ps == 0) {
614 		ath10k_pci_force_sleep(ar);
615 		return;
616 	}
617 
618 	del_timer_sync(&ar_pci->ps_timer);
619 
620 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
621 	WARN_ON(ar_pci->ps_wake_refcount > 0);
622 	__ath10k_pci_sleep(ar);
623 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
624 }
625 
626 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
627 {
628 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
629 	int ret;
630 
631 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
632 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
633 			    offset, offset + sizeof(value), ar_pci->mem_len);
634 		return;
635 	}
636 
637 	ret = ath10k_pci_wake(ar);
638 	if (ret) {
639 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
640 			    value, offset, ret);
641 		return;
642 	}
643 
644 	iowrite32(value, ar_pci->mem + offset);
645 	ath10k_pci_sleep(ar);
646 }
647 
648 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
649 {
650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
651 	u32 val;
652 	int ret;
653 
654 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
655 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
656 			    offset, offset + sizeof(val), ar_pci->mem_len);
657 		return 0;
658 	}
659 
660 	ret = ath10k_pci_wake(ar);
661 	if (ret) {
662 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
663 			    offset, ret);
664 		return 0xffffffff;
665 	}
666 
667 	val = ioread32(ar_pci->mem + offset);
668 	ath10k_pci_sleep(ar);
669 
670 	return val;
671 }
672 
673 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
674 {
675 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
676 
677 	ce->bus_ops->write32(ar, offset, value);
678 }
679 
680 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
681 {
682 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
683 
684 	return ce->bus_ops->read32(ar, offset);
685 }
686 
687 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
688 {
689 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
690 }
691 
692 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
693 {
694 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
695 }
696 
697 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
698 {
699 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
700 }
701 
702 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
703 {
704 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
705 }
706 
707 bool ath10k_pci_irq_pending(struct ath10k *ar)
708 {
709 	u32 cause;
710 
711 	/* Check if the shared legacy irq is for us */
712 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
713 				  PCIE_INTR_CAUSE_ADDRESS);
714 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
715 		return true;
716 
717 	return false;
718 }
719 
720 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
721 {
722 	/* IMPORTANT: INTR_CLR register has to be set after
723 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
724 	 * really cleared.
725 	 */
726 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
727 			   0);
728 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
729 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
730 
731 	/* IMPORTANT: this extra read transaction is required to
732 	 * flush the posted write buffer.
733 	 */
734 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
735 				PCIE_INTR_ENABLE_ADDRESS);
736 }
737 
738 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
739 {
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
741 			   PCIE_INTR_ENABLE_ADDRESS,
742 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
743 
744 	/* IMPORTANT: this extra read transaction is required to
745 	 * flush the posted write buffer.
746 	 */
747 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
748 				PCIE_INTR_ENABLE_ADDRESS);
749 }
750 
751 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
752 {
753 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
754 
755 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
756 		return "msi";
757 
758 	return "legacy";
759 }
760 
761 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
762 {
763 	struct ath10k *ar = pipe->hif_ce_state;
764 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
765 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
766 	struct sk_buff *skb;
767 	dma_addr_t paddr;
768 	int ret;
769 
770 	skb = dev_alloc_skb(pipe->buf_sz);
771 	if (!skb)
772 		return -ENOMEM;
773 
774 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
775 
776 	paddr = dma_map_single(ar->dev, skb->data,
777 			       skb->len + skb_tailroom(skb),
778 			       DMA_FROM_DEVICE);
779 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
780 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
781 		dev_kfree_skb_any(skb);
782 		return -EIO;
783 	}
784 
785 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
786 
787 	spin_lock_bh(&ce->ce_lock);
788 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
789 	spin_unlock_bh(&ce->ce_lock);
790 	if (ret) {
791 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
792 				 DMA_FROM_DEVICE);
793 		dev_kfree_skb_any(skb);
794 		return ret;
795 	}
796 
797 	return 0;
798 }
799 
800 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
801 {
802 	struct ath10k *ar = pipe->hif_ce_state;
803 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
804 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
805 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
806 	int ret, num;
807 
808 	if (pipe->buf_sz == 0)
809 		return;
810 
811 	if (!ce_pipe->dest_ring)
812 		return;
813 
814 	spin_lock_bh(&ce->ce_lock);
815 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
816 	spin_unlock_bh(&ce->ce_lock);
817 
818 	while (num >= 0) {
819 		ret = __ath10k_pci_rx_post_buf(pipe);
820 		if (ret) {
821 			if (ret == -ENOSPC)
822 				break;
823 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
824 			mod_timer(&ar_pci->rx_post_retry, jiffies +
825 				  ATH10K_PCI_RX_POST_RETRY_MS);
826 			break;
827 		}
828 		num--;
829 	}
830 }
831 
832 void ath10k_pci_rx_post(struct ath10k *ar)
833 {
834 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
835 	int i;
836 
837 	for (i = 0; i < CE_COUNT; i++)
838 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
839 }
840 
841 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
842 {
843 	struct ath10k *ar = (void *)ptr;
844 
845 	ath10k_pci_rx_post(ar);
846 }
847 
848 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
849 {
850 	u32 val = 0, region = addr & 0xfffff;
851 
852 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
853 				 & 0x7ff) << 21;
854 	val |= 0x100000 | region;
855 	return val;
856 }
857 
858 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
859 {
860 	u32 val = 0, region = addr & 0xfffff;
861 
862 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
863 	val |= 0x100000 | region;
864 	return val;
865 }
866 
867 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868 {
869 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
870 
871 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
872 		return -ENOTSUPP;
873 
874 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
875 }
876 
877 /*
878  * Diagnostic read/write access is provided for startup/config/debug usage.
879  * Caller must guarantee proper alignment, when applicable, and single user
880  * at any moment.
881  */
882 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
883 				    int nbytes)
884 {
885 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
886 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
887 	int ret = 0;
888 	u32 *buf;
889 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
890 	struct ath10k_ce_pipe *ce_diag;
891 	/* Host buffer address in CE space */
892 	u32 ce_data;
893 	dma_addr_t ce_data_base = 0;
894 	void *data_buf = NULL;
895 	int i;
896 
897 	spin_lock_bh(&ce->ce_lock);
898 
899 	ce_diag = ar_pci->ce_diag;
900 
901 	/*
902 	 * Allocate a temporary bounce buffer to hold caller's data
903 	 * to be DMA'ed from Target. This guarantees
904 	 *   1) 4-byte alignment
905 	 *   2) Buffer in DMA-able space
906 	 */
907 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
908 
909 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
910 						       alloc_nbytes,
911 						       &ce_data_base,
912 						       GFP_ATOMIC);
913 
914 	if (!data_buf) {
915 		ret = -ENOMEM;
916 		goto done;
917 	}
918 
919 	remaining_bytes = nbytes;
920 	ce_data = ce_data_base;
921 	while (remaining_bytes) {
922 		nbytes = min_t(unsigned int, remaining_bytes,
923 			       DIAG_TRANSFER_LIMIT);
924 
925 		ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
926 		if (ret != 0)
927 			goto done;
928 
929 		/* Request CE to send from Target(!) address to Host buffer */
930 		/*
931 		 * The address supplied by the caller is in the
932 		 * Target CPU virtual address space.
933 		 *
934 		 * In order to use this address with the diagnostic CE,
935 		 * convert it from Target CPU virtual address space
936 		 * to CE address space
937 		 */
938 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
939 
940 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
941 					    0);
942 		if (ret)
943 			goto done;
944 
945 		i = 0;
946 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
947 							    NULL) != 0) {
948 			mdelay(1);
949 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
950 				ret = -EBUSY;
951 				goto done;
952 			}
953 		}
954 
955 		i = 0;
956 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
957 							    (void **)&buf,
958 							    &completed_nbytes)
959 								!= 0) {
960 			mdelay(1);
961 
962 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
963 				ret = -EBUSY;
964 				goto done;
965 			}
966 		}
967 
968 		if (nbytes != completed_nbytes) {
969 			ret = -EIO;
970 			goto done;
971 		}
972 
973 		if (*buf != ce_data) {
974 			ret = -EIO;
975 			goto done;
976 		}
977 
978 		remaining_bytes -= nbytes;
979 		memcpy(data, data_buf, nbytes);
980 
981 		address += nbytes;
982 		data += nbytes;
983 	}
984 
985 done:
986 
987 	if (data_buf)
988 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
989 				  ce_data_base);
990 
991 	spin_unlock_bh(&ce->ce_lock);
992 
993 	return ret;
994 }
995 
996 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
997 {
998 	__le32 val = 0;
999 	int ret;
1000 
1001 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1002 	*value = __le32_to_cpu(val);
1003 
1004 	return ret;
1005 }
1006 
1007 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1008 				     u32 src, u32 len)
1009 {
1010 	u32 host_addr, addr;
1011 	int ret;
1012 
1013 	host_addr = host_interest_item_address(src);
1014 
1015 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1016 	if (ret != 0) {
1017 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1018 			    src, ret);
1019 		return ret;
1020 	}
1021 
1022 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1023 	if (ret != 0) {
1024 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1025 			    addr, len, ret);
1026 		return ret;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1033 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1034 
1035 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1036 			      const void *data, int nbytes)
1037 {
1038 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1039 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1040 	int ret = 0;
1041 	u32 *buf;
1042 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1043 	struct ath10k_ce_pipe *ce_diag;
1044 	void *data_buf = NULL;
1045 	u32 ce_data;	/* Host buffer address in CE space */
1046 	dma_addr_t ce_data_base = 0;
1047 	int i;
1048 
1049 	spin_lock_bh(&ce->ce_lock);
1050 
1051 	ce_diag = ar_pci->ce_diag;
1052 
1053 	/*
1054 	 * Allocate a temporary bounce buffer to hold caller's data
1055 	 * to be DMA'ed to Target. This guarantees
1056 	 *   1) 4-byte alignment
1057 	 *   2) Buffer in DMA-able space
1058 	 */
1059 	orig_nbytes = nbytes;
1060 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1061 						       orig_nbytes,
1062 						       &ce_data_base,
1063 						       GFP_ATOMIC);
1064 	if (!data_buf) {
1065 		ret = -ENOMEM;
1066 		goto done;
1067 	}
1068 
1069 	/* Copy caller's data to allocated DMA buf */
1070 	memcpy(data_buf, data, orig_nbytes);
1071 
1072 	/*
1073 	 * The address supplied by the caller is in the
1074 	 * Target CPU virtual address space.
1075 	 *
1076 	 * In order to use this address with the diagnostic CE,
1077 	 * convert it from
1078 	 *    Target CPU virtual address space
1079 	 * to
1080 	 *    CE address space
1081 	 */
1082 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1083 
1084 	remaining_bytes = orig_nbytes;
1085 	ce_data = ce_data_base;
1086 	while (remaining_bytes) {
1087 		/* FIXME: check cast */
1088 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1089 
1090 		/* Set up to receive directly into Target(!) address */
1091 		ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1092 		if (ret != 0)
1093 			goto done;
1094 
1095 		/*
1096 		 * Request CE to send caller-supplied data that
1097 		 * was copied to bounce buffer to Target(!) address.
1098 		 */
1099 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1100 					    nbytes, 0, 0);
1101 		if (ret != 0)
1102 			goto done;
1103 
1104 		i = 0;
1105 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1106 							    NULL) != 0) {
1107 			mdelay(1);
1108 
1109 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1110 				ret = -EBUSY;
1111 				goto done;
1112 			}
1113 		}
1114 
1115 		i = 0;
1116 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1117 							    (void **)&buf,
1118 							    &completed_nbytes)
1119 								!= 0) {
1120 			mdelay(1);
1121 
1122 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1123 				ret = -EBUSY;
1124 				goto done;
1125 			}
1126 		}
1127 
1128 		if (nbytes != completed_nbytes) {
1129 			ret = -EIO;
1130 			goto done;
1131 		}
1132 
1133 		if (*buf != address) {
1134 			ret = -EIO;
1135 			goto done;
1136 		}
1137 
1138 		remaining_bytes -= nbytes;
1139 		address += nbytes;
1140 		ce_data += nbytes;
1141 	}
1142 
1143 done:
1144 	if (data_buf) {
1145 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1146 				  ce_data_base);
1147 	}
1148 
1149 	if (ret != 0)
1150 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1151 			    address, ret);
1152 
1153 	spin_unlock_bh(&ce->ce_lock);
1154 
1155 	return ret;
1156 }
1157 
1158 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1159 {
1160 	__le32 val = __cpu_to_le32(value);
1161 
1162 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1163 }
1164 
1165 /* Called by lower (CE) layer when a send to Target completes. */
1166 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1167 {
1168 	struct ath10k *ar = ce_state->ar;
1169 	struct sk_buff_head list;
1170 	struct sk_buff *skb;
1171 
1172 	__skb_queue_head_init(&list);
1173 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1174 		/* no need to call tx completion for NULL pointers */
1175 		if (skb == NULL)
1176 			continue;
1177 
1178 		__skb_queue_tail(&list, skb);
1179 	}
1180 
1181 	while ((skb = __skb_dequeue(&list)))
1182 		ath10k_htc_tx_completion_handler(ar, skb);
1183 }
1184 
1185 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1186 				     void (*callback)(struct ath10k *ar,
1187 						      struct sk_buff *skb))
1188 {
1189 	struct ath10k *ar = ce_state->ar;
1190 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1191 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1192 	struct sk_buff *skb;
1193 	struct sk_buff_head list;
1194 	void *transfer_context;
1195 	unsigned int nbytes, max_nbytes;
1196 
1197 	__skb_queue_head_init(&list);
1198 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1199 					     &nbytes) == 0) {
1200 		skb = transfer_context;
1201 		max_nbytes = skb->len + skb_tailroom(skb);
1202 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1203 				 max_nbytes, DMA_FROM_DEVICE);
1204 
1205 		if (unlikely(max_nbytes < nbytes)) {
1206 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1207 				    nbytes, max_nbytes);
1208 			dev_kfree_skb_any(skb);
1209 			continue;
1210 		}
1211 
1212 		skb_put(skb, nbytes);
1213 		__skb_queue_tail(&list, skb);
1214 	}
1215 
1216 	while ((skb = __skb_dequeue(&list))) {
1217 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1218 			   ce_state->id, skb->len);
1219 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1220 				skb->data, skb->len);
1221 
1222 		callback(ar, skb);
1223 	}
1224 
1225 	ath10k_pci_rx_post_pipe(pipe_info);
1226 }
1227 
1228 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1229 					 void (*callback)(struct ath10k *ar,
1230 							  struct sk_buff *skb))
1231 {
1232 	struct ath10k *ar = ce_state->ar;
1233 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1234 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1235 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1236 	struct sk_buff *skb;
1237 	struct sk_buff_head list;
1238 	void *transfer_context;
1239 	unsigned int nbytes, max_nbytes, nentries;
1240 	int orig_len;
1241 
1242 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1243 	 * is processed other than init and deinit. Before releasing CE5
1244 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1245 	 */
1246 	__skb_queue_head_init(&list);
1247 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1248 						    &nbytes) == 0) {
1249 		skb = transfer_context;
1250 		max_nbytes = skb->len + skb_tailroom(skb);
1251 
1252 		if (unlikely(max_nbytes < nbytes)) {
1253 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1254 				    nbytes, max_nbytes);
1255 			continue;
1256 		}
1257 
1258 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1259 					max_nbytes, DMA_FROM_DEVICE);
1260 		skb_put(skb, nbytes);
1261 		__skb_queue_tail(&list, skb);
1262 	}
1263 
1264 	nentries = skb_queue_len(&list);
1265 	while ((skb = __skb_dequeue(&list))) {
1266 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1267 			   ce_state->id, skb->len);
1268 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1269 				skb->data, skb->len);
1270 
1271 		orig_len = skb->len;
1272 		callback(ar, skb);
1273 		skb_push(skb, orig_len - skb->len);
1274 		skb_reset_tail_pointer(skb);
1275 		skb_trim(skb, 0);
1276 
1277 		/*let device gain the buffer again*/
1278 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1279 					   skb->len + skb_tailroom(skb),
1280 					   DMA_FROM_DEVICE);
1281 	}
1282 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1283 }
1284 
1285 /* Called by lower (CE) layer when data is received from the Target. */
1286 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1287 {
1288 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1289 }
1290 
1291 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292 {
1293 	/* CE4 polling needs to be done whenever CE pipe which transports
1294 	 * HTT Rx (target->host) is processed.
1295 	 */
1296 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1297 
1298 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1299 }
1300 
1301 /* Called by lower (CE) layer when data is received from the Target.
1302  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1303  */
1304 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1305 {
1306 	ath10k_pci_process_rx_cb(ce_state,
1307 				 ath10k_htt_rx_pktlog_completion_handler);
1308 }
1309 
1310 /* Called by lower (CE) layer when a send to HTT Target completes. */
1311 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1312 {
1313 	struct ath10k *ar = ce_state->ar;
1314 	struct sk_buff *skb;
1315 
1316 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1317 		/* no need to call tx completion for NULL pointers */
1318 		if (!skb)
1319 			continue;
1320 
1321 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1322 				 skb->len, DMA_TO_DEVICE);
1323 		ath10k_htt_hif_tx_complete(ar, skb);
1324 	}
1325 }
1326 
1327 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1328 {
1329 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1330 	ath10k_htt_t2h_msg_handler(ar, skb);
1331 }
1332 
1333 /* Called by lower (CE) layer when HTT data is received from the Target. */
1334 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1335 {
1336 	/* CE4 polling needs to be done whenever CE pipe which transports
1337 	 * HTT Rx (target->host) is processed.
1338 	 */
1339 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1340 
1341 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1342 }
1343 
1344 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1345 			 struct ath10k_hif_sg_item *items, int n_items)
1346 {
1347 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1348 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1349 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1350 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1351 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1352 	unsigned int nentries_mask;
1353 	unsigned int sw_index;
1354 	unsigned int write_index;
1355 	int err, i = 0;
1356 
1357 	spin_lock_bh(&ce->ce_lock);
1358 
1359 	nentries_mask = src_ring->nentries_mask;
1360 	sw_index = src_ring->sw_index;
1361 	write_index = src_ring->write_index;
1362 
1363 	if (unlikely(CE_RING_DELTA(nentries_mask,
1364 				   write_index, sw_index - 1) < n_items)) {
1365 		err = -ENOBUFS;
1366 		goto err;
1367 	}
1368 
1369 	for (i = 0; i < n_items - 1; i++) {
1370 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1371 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1372 			   i, items[i].paddr, items[i].len, n_items);
1373 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1374 				items[i].vaddr, items[i].len);
1375 
1376 		err = ath10k_ce_send_nolock(ce_pipe,
1377 					    items[i].transfer_context,
1378 					    items[i].paddr,
1379 					    items[i].len,
1380 					    items[i].transfer_id,
1381 					    CE_SEND_FLAG_GATHER);
1382 		if (err)
1383 			goto err;
1384 	}
1385 
1386 	/* `i` is equal to `n_items -1` after for() */
1387 
1388 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1389 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1390 		   i, items[i].paddr, items[i].len, n_items);
1391 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1392 			items[i].vaddr, items[i].len);
1393 
1394 	err = ath10k_ce_send_nolock(ce_pipe,
1395 				    items[i].transfer_context,
1396 				    items[i].paddr,
1397 				    items[i].len,
1398 				    items[i].transfer_id,
1399 				    0);
1400 	if (err)
1401 		goto err;
1402 
1403 	spin_unlock_bh(&ce->ce_lock);
1404 	return 0;
1405 
1406 err:
1407 	for (; i > 0; i--)
1408 		__ath10k_ce_send_revert(ce_pipe);
1409 
1410 	spin_unlock_bh(&ce->ce_lock);
1411 	return err;
1412 }
1413 
1414 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1415 			     size_t buf_len)
1416 {
1417 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1418 }
1419 
1420 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1421 {
1422 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1423 
1424 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1425 
1426 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1427 }
1428 
1429 static void ath10k_pci_dump_registers(struct ath10k *ar,
1430 				      struct ath10k_fw_crash_data *crash_data)
1431 {
1432 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1433 	int i, ret;
1434 
1435 	lockdep_assert_held(&ar->data_lock);
1436 
1437 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1438 				      hi_failure_state,
1439 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1440 	if (ret) {
1441 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1442 		return;
1443 	}
1444 
1445 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1446 
1447 	ath10k_err(ar, "firmware register dump:\n");
1448 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1449 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1450 			   i,
1451 			   __le32_to_cpu(reg_dump_values[i]),
1452 			   __le32_to_cpu(reg_dump_values[i + 1]),
1453 			   __le32_to_cpu(reg_dump_values[i + 2]),
1454 			   __le32_to_cpu(reg_dump_values[i + 3]));
1455 
1456 	if (!crash_data)
1457 		return;
1458 
1459 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1460 		crash_data->registers[i] = reg_dump_values[i];
1461 }
1462 
1463 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1464 {
1465 	struct ath10k_fw_crash_data *crash_data;
1466 	char guid[UUID_STRING_LEN + 1];
1467 
1468 	spin_lock_bh(&ar->data_lock);
1469 
1470 	ar->stats.fw_crash_counter++;
1471 
1472 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1473 
1474 	if (crash_data)
1475 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1476 	else
1477 		scnprintf(guid, sizeof(guid), "n/a");
1478 
1479 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1480 	ath10k_print_driver_info(ar);
1481 	ath10k_pci_dump_registers(ar, crash_data);
1482 	ath10k_ce_dump_registers(ar, crash_data);
1483 
1484 	spin_unlock_bh(&ar->data_lock);
1485 
1486 	queue_work(ar->workqueue, &ar->restart_work);
1487 }
1488 
1489 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1490 					int force)
1491 {
1492 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1493 
1494 	if (!force) {
1495 		int resources;
1496 		/*
1497 		 * Decide whether to actually poll for completions, or just
1498 		 * wait for a later chance.
1499 		 * If there seem to be plenty of resources left, then just wait
1500 		 * since checking involves reading a CE register, which is a
1501 		 * relatively expensive operation.
1502 		 */
1503 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1504 
1505 		/*
1506 		 * If at least 50% of the total resources are still available,
1507 		 * don't bother checking again yet.
1508 		 */
1509 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1510 			return;
1511 	}
1512 	ath10k_ce_per_engine_service(ar, pipe);
1513 }
1514 
1515 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1516 {
1517 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1518 
1519 	del_timer_sync(&ar_pci->rx_post_retry);
1520 }
1521 
1522 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1523 				       u8 *ul_pipe, u8 *dl_pipe)
1524 {
1525 	const struct service_to_pipe *entry;
1526 	bool ul_set = false, dl_set = false;
1527 	int i;
1528 
1529 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1530 
1531 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1532 		entry = &target_service_to_ce_map_wlan[i];
1533 
1534 		if (__le32_to_cpu(entry->service_id) != service_id)
1535 			continue;
1536 
1537 		switch (__le32_to_cpu(entry->pipedir)) {
1538 		case PIPEDIR_NONE:
1539 			break;
1540 		case PIPEDIR_IN:
1541 			WARN_ON(dl_set);
1542 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1543 			dl_set = true;
1544 			break;
1545 		case PIPEDIR_OUT:
1546 			WARN_ON(ul_set);
1547 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1548 			ul_set = true;
1549 			break;
1550 		case PIPEDIR_INOUT:
1551 			WARN_ON(dl_set);
1552 			WARN_ON(ul_set);
1553 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1554 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1555 			dl_set = true;
1556 			ul_set = true;
1557 			break;
1558 		}
1559 	}
1560 
1561 	if (WARN_ON(!ul_set || !dl_set))
1562 		return -ENOENT;
1563 
1564 	return 0;
1565 }
1566 
1567 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1568 				     u8 *ul_pipe, u8 *dl_pipe)
1569 {
1570 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1571 
1572 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1573 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1574 						 ul_pipe, dl_pipe);
1575 }
1576 
1577 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1578 {
1579 	u32 val;
1580 
1581 	switch (ar->hw_rev) {
1582 	case ATH10K_HW_QCA988X:
1583 	case ATH10K_HW_QCA9887:
1584 	case ATH10K_HW_QCA6174:
1585 	case ATH10K_HW_QCA9377:
1586 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1587 					CORE_CTRL_ADDRESS);
1588 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1589 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1590 				   CORE_CTRL_ADDRESS, val);
1591 		break;
1592 	case ATH10K_HW_QCA99X0:
1593 	case ATH10K_HW_QCA9984:
1594 	case ATH10K_HW_QCA9888:
1595 	case ATH10K_HW_QCA4019:
1596 		/* TODO: Find appropriate register configuration for QCA99X0
1597 		 *  to mask irq/MSI.
1598 		 */
1599 		break;
1600 	case ATH10K_HW_WCN3990:
1601 		break;
1602 	}
1603 }
1604 
1605 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1606 {
1607 	u32 val;
1608 
1609 	switch (ar->hw_rev) {
1610 	case ATH10K_HW_QCA988X:
1611 	case ATH10K_HW_QCA9887:
1612 	case ATH10K_HW_QCA6174:
1613 	case ATH10K_HW_QCA9377:
1614 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1615 					CORE_CTRL_ADDRESS);
1616 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1617 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1618 				   CORE_CTRL_ADDRESS, val);
1619 		break;
1620 	case ATH10K_HW_QCA99X0:
1621 	case ATH10K_HW_QCA9984:
1622 	case ATH10K_HW_QCA9888:
1623 	case ATH10K_HW_QCA4019:
1624 		/* TODO: Find appropriate register configuration for QCA99X0
1625 		 *  to unmask irq/MSI.
1626 		 */
1627 		break;
1628 	case ATH10K_HW_WCN3990:
1629 		break;
1630 	}
1631 }
1632 
1633 static void ath10k_pci_irq_disable(struct ath10k *ar)
1634 {
1635 	ath10k_ce_disable_interrupts(ar);
1636 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1637 	ath10k_pci_irq_msi_fw_mask(ar);
1638 }
1639 
1640 static void ath10k_pci_irq_sync(struct ath10k *ar)
1641 {
1642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1643 
1644 	synchronize_irq(ar_pci->pdev->irq);
1645 }
1646 
1647 static void ath10k_pci_irq_enable(struct ath10k *ar)
1648 {
1649 	ath10k_ce_enable_interrupts(ar);
1650 	ath10k_pci_enable_legacy_irq(ar);
1651 	ath10k_pci_irq_msi_fw_unmask(ar);
1652 }
1653 
1654 static int ath10k_pci_hif_start(struct ath10k *ar)
1655 {
1656 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1657 
1658 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1659 
1660 	napi_enable(&ar->napi);
1661 
1662 	ath10k_pci_irq_enable(ar);
1663 	ath10k_pci_rx_post(ar);
1664 
1665 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1666 				   ar_pci->link_ctl);
1667 
1668 	return 0;
1669 }
1670 
1671 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1672 {
1673 	struct ath10k *ar;
1674 	struct ath10k_ce_pipe *ce_pipe;
1675 	struct ath10k_ce_ring *ce_ring;
1676 	struct sk_buff *skb;
1677 	int i;
1678 
1679 	ar = pci_pipe->hif_ce_state;
1680 	ce_pipe = pci_pipe->ce_hdl;
1681 	ce_ring = ce_pipe->dest_ring;
1682 
1683 	if (!ce_ring)
1684 		return;
1685 
1686 	if (!pci_pipe->buf_sz)
1687 		return;
1688 
1689 	for (i = 0; i < ce_ring->nentries; i++) {
1690 		skb = ce_ring->per_transfer_context[i];
1691 		if (!skb)
1692 			continue;
1693 
1694 		ce_ring->per_transfer_context[i] = NULL;
1695 
1696 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1697 				 skb->len + skb_tailroom(skb),
1698 				 DMA_FROM_DEVICE);
1699 		dev_kfree_skb_any(skb);
1700 	}
1701 }
1702 
1703 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1704 {
1705 	struct ath10k *ar;
1706 	struct ath10k_ce_pipe *ce_pipe;
1707 	struct ath10k_ce_ring *ce_ring;
1708 	struct sk_buff *skb;
1709 	int i;
1710 
1711 	ar = pci_pipe->hif_ce_state;
1712 	ce_pipe = pci_pipe->ce_hdl;
1713 	ce_ring = ce_pipe->src_ring;
1714 
1715 	if (!ce_ring)
1716 		return;
1717 
1718 	if (!pci_pipe->buf_sz)
1719 		return;
1720 
1721 	for (i = 0; i < ce_ring->nentries; i++) {
1722 		skb = ce_ring->per_transfer_context[i];
1723 		if (!skb)
1724 			continue;
1725 
1726 		ce_ring->per_transfer_context[i] = NULL;
1727 
1728 		ath10k_htc_tx_completion_handler(ar, skb);
1729 	}
1730 }
1731 
1732 /*
1733  * Cleanup residual buffers for device shutdown:
1734  *    buffers that were enqueued for receive
1735  *    buffers that were to be sent
1736  * Note: Buffers that had completed but which were
1737  * not yet processed are on a completion queue. They
1738  * are handled when the completion thread shuts down.
1739  */
1740 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1741 {
1742 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1743 	int pipe_num;
1744 
1745 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1746 		struct ath10k_pci_pipe *pipe_info;
1747 
1748 		pipe_info = &ar_pci->pipe_info[pipe_num];
1749 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1750 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1751 	}
1752 }
1753 
1754 void ath10k_pci_ce_deinit(struct ath10k *ar)
1755 {
1756 	int i;
1757 
1758 	for (i = 0; i < CE_COUNT; i++)
1759 		ath10k_ce_deinit_pipe(ar, i);
1760 }
1761 
1762 void ath10k_pci_flush(struct ath10k *ar)
1763 {
1764 	ath10k_pci_rx_retry_sync(ar);
1765 	ath10k_pci_buffer_cleanup(ar);
1766 }
1767 
1768 static void ath10k_pci_hif_stop(struct ath10k *ar)
1769 {
1770 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1771 	unsigned long flags;
1772 
1773 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1774 
1775 	/* Most likely the device has HTT Rx ring configured. The only way to
1776 	 * prevent the device from accessing (and possible corrupting) host
1777 	 * memory is to reset the chip now.
1778 	 *
1779 	 * There's also no known way of masking MSI interrupts on the device.
1780 	 * For ranged MSI the CE-related interrupts can be masked. However
1781 	 * regardless how many MSI interrupts are assigned the first one
1782 	 * is always used for firmware indications (crashes) and cannot be
1783 	 * masked. To prevent the device from asserting the interrupt reset it
1784 	 * before proceeding with cleanup.
1785 	 */
1786 	ath10k_pci_safe_chip_reset(ar);
1787 
1788 	ath10k_pci_irq_disable(ar);
1789 	ath10k_pci_irq_sync(ar);
1790 	ath10k_pci_flush(ar);
1791 	napi_synchronize(&ar->napi);
1792 	napi_disable(&ar->napi);
1793 
1794 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1795 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1796 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1797 }
1798 
1799 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1800 				    void *req, u32 req_len,
1801 				    void *resp, u32 *resp_len)
1802 {
1803 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1804 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1805 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1806 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1807 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1808 	dma_addr_t req_paddr = 0;
1809 	dma_addr_t resp_paddr = 0;
1810 	struct bmi_xfer xfer = {};
1811 	void *treq, *tresp = NULL;
1812 	int ret = 0;
1813 
1814 	might_sleep();
1815 
1816 	if (resp && !resp_len)
1817 		return -EINVAL;
1818 
1819 	if (resp && resp_len && *resp_len == 0)
1820 		return -EINVAL;
1821 
1822 	treq = kmemdup(req, req_len, GFP_KERNEL);
1823 	if (!treq)
1824 		return -ENOMEM;
1825 
1826 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1827 	ret = dma_mapping_error(ar->dev, req_paddr);
1828 	if (ret) {
1829 		ret = -EIO;
1830 		goto err_dma;
1831 	}
1832 
1833 	if (resp && resp_len) {
1834 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1835 		if (!tresp) {
1836 			ret = -ENOMEM;
1837 			goto err_req;
1838 		}
1839 
1840 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1841 					    DMA_FROM_DEVICE);
1842 		ret = dma_mapping_error(ar->dev, resp_paddr);
1843 		if (ret) {
1844 			ret = -EIO;
1845 			goto err_req;
1846 		}
1847 
1848 		xfer.wait_for_resp = true;
1849 		xfer.resp_len = 0;
1850 
1851 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1852 	}
1853 
1854 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1855 	if (ret)
1856 		goto err_resp;
1857 
1858 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
1859 	if (ret) {
1860 		u32 unused_buffer;
1861 		unsigned int unused_nbytes;
1862 		unsigned int unused_id;
1863 
1864 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1865 					   &unused_nbytes, &unused_id);
1866 	} else {
1867 		/* non-zero means we did not time out */
1868 		ret = 0;
1869 	}
1870 
1871 err_resp:
1872 	if (resp) {
1873 		u32 unused_buffer;
1874 
1875 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1876 		dma_unmap_single(ar->dev, resp_paddr,
1877 				 *resp_len, DMA_FROM_DEVICE);
1878 	}
1879 err_req:
1880 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1881 
1882 	if (ret == 0 && resp_len) {
1883 		*resp_len = min(*resp_len, xfer.resp_len);
1884 		memcpy(resp, tresp, xfer.resp_len);
1885 	}
1886 err_dma:
1887 	kfree(treq);
1888 	kfree(tresp);
1889 
1890 	return ret;
1891 }
1892 
1893 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1894 {
1895 	struct bmi_xfer *xfer;
1896 
1897 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1898 		return;
1899 
1900 	xfer->tx_done = true;
1901 }
1902 
1903 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1904 {
1905 	struct ath10k *ar = ce_state->ar;
1906 	struct bmi_xfer *xfer;
1907 	unsigned int nbytes;
1908 
1909 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1910 					  &nbytes))
1911 		return;
1912 
1913 	if (WARN_ON_ONCE(!xfer))
1914 		return;
1915 
1916 	if (!xfer->wait_for_resp) {
1917 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1918 		return;
1919 	}
1920 
1921 	xfer->resp_len = nbytes;
1922 	xfer->rx_done = true;
1923 }
1924 
1925 static int ath10k_pci_bmi_wait(struct ath10k *ar,
1926 			       struct ath10k_ce_pipe *tx_pipe,
1927 			       struct ath10k_ce_pipe *rx_pipe,
1928 			       struct bmi_xfer *xfer)
1929 {
1930 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1931 	unsigned long started = jiffies;
1932 	unsigned long dur;
1933 	int ret;
1934 
1935 	while (time_before_eq(jiffies, timeout)) {
1936 		ath10k_pci_bmi_send_done(tx_pipe);
1937 		ath10k_pci_bmi_recv_data(rx_pipe);
1938 
1939 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
1940 			ret = 0;
1941 			goto out;
1942 		}
1943 
1944 		schedule();
1945 	}
1946 
1947 	ret = -ETIMEDOUT;
1948 
1949 out:
1950 	dur = jiffies - started;
1951 	if (dur > HZ)
1952 		ath10k_dbg(ar, ATH10K_DBG_BMI,
1953 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
1954 			   dur, HZ, ret);
1955 	return ret;
1956 }
1957 
1958 /*
1959  * Send an interrupt to the device to wake up the Target CPU
1960  * so it has an opportunity to notice any changed state.
1961  */
1962 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1963 {
1964 	u32 addr, val;
1965 
1966 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1967 	val = ath10k_pci_read32(ar, addr);
1968 	val |= CORE_CTRL_CPU_INTR_MASK;
1969 	ath10k_pci_write32(ar, addr, val);
1970 
1971 	return 0;
1972 }
1973 
1974 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1975 {
1976 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1977 
1978 	switch (ar_pci->pdev->device) {
1979 	case QCA988X_2_0_DEVICE_ID:
1980 	case QCA99X0_2_0_DEVICE_ID:
1981 	case QCA9888_2_0_DEVICE_ID:
1982 	case QCA9984_1_0_DEVICE_ID:
1983 	case QCA9887_1_0_DEVICE_ID:
1984 		return 1;
1985 	case QCA6164_2_1_DEVICE_ID:
1986 	case QCA6174_2_1_DEVICE_ID:
1987 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1988 		case QCA6174_HW_1_0_CHIP_ID_REV:
1989 		case QCA6174_HW_1_1_CHIP_ID_REV:
1990 		case QCA6174_HW_2_1_CHIP_ID_REV:
1991 		case QCA6174_HW_2_2_CHIP_ID_REV:
1992 			return 3;
1993 		case QCA6174_HW_1_3_CHIP_ID_REV:
1994 			return 2;
1995 		case QCA6174_HW_3_0_CHIP_ID_REV:
1996 		case QCA6174_HW_3_1_CHIP_ID_REV:
1997 		case QCA6174_HW_3_2_CHIP_ID_REV:
1998 			return 9;
1999 		}
2000 		break;
2001 	case QCA9377_1_0_DEVICE_ID:
2002 		return 4;
2003 	}
2004 
2005 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2006 	return 1;
2007 }
2008 
2009 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2010 {
2011 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2012 
2013 	return ce->bus_ops->get_num_banks(ar);
2014 }
2015 
2016 int ath10k_pci_init_config(struct ath10k *ar)
2017 {
2018 	u32 interconnect_targ_addr;
2019 	u32 pcie_state_targ_addr = 0;
2020 	u32 pipe_cfg_targ_addr = 0;
2021 	u32 svc_to_pipe_map = 0;
2022 	u32 pcie_config_flags = 0;
2023 	u32 ealloc_value;
2024 	u32 ealloc_targ_addr;
2025 	u32 flag2_value;
2026 	u32 flag2_targ_addr;
2027 	int ret = 0;
2028 
2029 	/* Download to Target the CE Config and the service-to-CE map */
2030 	interconnect_targ_addr =
2031 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2032 
2033 	/* Supply Target-side CE configuration */
2034 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2035 				     &pcie_state_targ_addr);
2036 	if (ret != 0) {
2037 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2038 		return ret;
2039 	}
2040 
2041 	if (pcie_state_targ_addr == 0) {
2042 		ret = -EIO;
2043 		ath10k_err(ar, "Invalid pcie state addr\n");
2044 		return ret;
2045 	}
2046 
2047 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2048 					  offsetof(struct pcie_state,
2049 						   pipe_cfg_addr)),
2050 				     &pipe_cfg_targ_addr);
2051 	if (ret != 0) {
2052 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2053 		return ret;
2054 	}
2055 
2056 	if (pipe_cfg_targ_addr == 0) {
2057 		ret = -EIO;
2058 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2059 		return ret;
2060 	}
2061 
2062 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2063 					target_ce_config_wlan,
2064 					sizeof(struct ce_pipe_config) *
2065 					NUM_TARGET_CE_CONFIG_WLAN);
2066 
2067 	if (ret != 0) {
2068 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2069 		return ret;
2070 	}
2071 
2072 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2073 					  offsetof(struct pcie_state,
2074 						   svc_to_pipe_map)),
2075 				     &svc_to_pipe_map);
2076 	if (ret != 0) {
2077 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2078 		return ret;
2079 	}
2080 
2081 	if (svc_to_pipe_map == 0) {
2082 		ret = -EIO;
2083 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2084 		return ret;
2085 	}
2086 
2087 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2088 					target_service_to_ce_map_wlan,
2089 					sizeof(target_service_to_ce_map_wlan));
2090 	if (ret != 0) {
2091 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2092 		return ret;
2093 	}
2094 
2095 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2096 					  offsetof(struct pcie_state,
2097 						   config_flags)),
2098 				     &pcie_config_flags);
2099 	if (ret != 0) {
2100 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2101 		return ret;
2102 	}
2103 
2104 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2105 
2106 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2107 					   offsetof(struct pcie_state,
2108 						    config_flags)),
2109 				      pcie_config_flags);
2110 	if (ret != 0) {
2111 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2112 		return ret;
2113 	}
2114 
2115 	/* configure early allocation */
2116 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2117 
2118 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2119 	if (ret != 0) {
2120 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2121 		return ret;
2122 	}
2123 
2124 	/* first bank is switched to IRAM */
2125 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2126 			 HI_EARLY_ALLOC_MAGIC_MASK);
2127 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2128 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2129 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2130 
2131 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2132 	if (ret != 0) {
2133 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2134 		return ret;
2135 	}
2136 
2137 	/* Tell Target to proceed with initialization */
2138 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2139 
2140 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2141 	if (ret != 0) {
2142 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2143 		return ret;
2144 	}
2145 
2146 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2147 
2148 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2149 	if (ret != 0) {
2150 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2151 		return ret;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2158 {
2159 	struct ce_attr *attr;
2160 	struct ce_pipe_config *config;
2161 
2162 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2163 	 * since it is currently used for other feature.
2164 	 */
2165 
2166 	/* Override Host's Copy Engine 5 configuration */
2167 	attr = &host_ce_config_wlan[5];
2168 	attr->src_sz_max = 0;
2169 	attr->dest_nentries = 0;
2170 
2171 	/* Override Target firmware's Copy Engine configuration */
2172 	config = &target_ce_config_wlan[5];
2173 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2174 	config->nbytes_max = __cpu_to_le32(2048);
2175 
2176 	/* Map from service/endpoint to Copy Engine */
2177 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2178 }
2179 
2180 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2181 {
2182 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2183 	struct ath10k_pci_pipe *pipe;
2184 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2185 	int i, ret;
2186 
2187 	for (i = 0; i < CE_COUNT; i++) {
2188 		pipe = &ar_pci->pipe_info[i];
2189 		pipe->ce_hdl = &ce->ce_states[i];
2190 		pipe->pipe_num = i;
2191 		pipe->hif_ce_state = ar;
2192 
2193 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2194 		if (ret) {
2195 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2196 				   i, ret);
2197 			return ret;
2198 		}
2199 
2200 		/* Last CE is Diagnostic Window */
2201 		if (i == CE_DIAG_PIPE) {
2202 			ar_pci->ce_diag = pipe->ce_hdl;
2203 			continue;
2204 		}
2205 
2206 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 void ath10k_pci_free_pipes(struct ath10k *ar)
2213 {
2214 	int i;
2215 
2216 	for (i = 0; i < CE_COUNT; i++)
2217 		ath10k_ce_free_pipe(ar, i);
2218 }
2219 
2220 int ath10k_pci_init_pipes(struct ath10k *ar)
2221 {
2222 	int i, ret;
2223 
2224 	for (i = 0; i < CE_COUNT; i++) {
2225 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2226 		if (ret) {
2227 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2228 				   i, ret);
2229 			return ret;
2230 		}
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2237 {
2238 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2239 	       FW_IND_EVENT_PENDING;
2240 }
2241 
2242 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2243 {
2244 	u32 val;
2245 
2246 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2247 	val &= ~FW_IND_EVENT_PENDING;
2248 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2249 }
2250 
2251 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2252 {
2253 	u32 val;
2254 
2255 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2256 	return (val == 0xffffffff);
2257 }
2258 
2259 /* this function effectively clears target memory controller assert line */
2260 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2261 {
2262 	u32 val;
2263 
2264 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2265 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2266 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2267 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2268 
2269 	msleep(10);
2270 
2271 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2272 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2273 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2274 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2275 
2276 	msleep(10);
2277 }
2278 
2279 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2280 {
2281 	u32 val;
2282 
2283 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2284 
2285 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2286 				SOC_RESET_CONTROL_ADDRESS);
2287 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2288 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2289 }
2290 
2291 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2292 {
2293 	u32 val;
2294 
2295 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2296 				SOC_RESET_CONTROL_ADDRESS);
2297 
2298 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2299 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2300 	msleep(10);
2301 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2302 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2303 }
2304 
2305 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2306 {
2307 	u32 val;
2308 
2309 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2310 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2311 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2312 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2313 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2314 }
2315 
2316 static int ath10k_pci_warm_reset(struct ath10k *ar)
2317 {
2318 	int ret;
2319 
2320 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2321 
2322 	spin_lock_bh(&ar->data_lock);
2323 	ar->stats.fw_warm_reset_counter++;
2324 	spin_unlock_bh(&ar->data_lock);
2325 
2326 	ath10k_pci_irq_disable(ar);
2327 
2328 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2329 	 * were to access copy engine while host performs copy engine reset
2330 	 * then it is possible for the device to confuse pci-e controller to
2331 	 * the point of bringing host system to a complete stop (i.e. hang).
2332 	 */
2333 	ath10k_pci_warm_reset_si0(ar);
2334 	ath10k_pci_warm_reset_cpu(ar);
2335 	ath10k_pci_init_pipes(ar);
2336 	ath10k_pci_wait_for_target_init(ar);
2337 
2338 	ath10k_pci_warm_reset_clear_lf(ar);
2339 	ath10k_pci_warm_reset_ce(ar);
2340 	ath10k_pci_warm_reset_cpu(ar);
2341 	ath10k_pci_init_pipes(ar);
2342 
2343 	ret = ath10k_pci_wait_for_target_init(ar);
2344 	if (ret) {
2345 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2346 		return ret;
2347 	}
2348 
2349 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2350 
2351 	return 0;
2352 }
2353 
2354 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2355 {
2356 	ath10k_pci_irq_disable(ar);
2357 	return ath10k_pci_qca99x0_chip_reset(ar);
2358 }
2359 
2360 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2361 {
2362 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2363 
2364 	if (!ar_pci->pci_soft_reset)
2365 		return -ENOTSUPP;
2366 
2367 	return ar_pci->pci_soft_reset(ar);
2368 }
2369 
2370 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2371 {
2372 	int i, ret;
2373 	u32 val;
2374 
2375 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2376 
2377 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2378 	 * It is thus preferred to use warm reset which is safer but may not be
2379 	 * able to recover the device from all possible fail scenarios.
2380 	 *
2381 	 * Warm reset doesn't always work on first try so attempt it a few
2382 	 * times before giving up.
2383 	 */
2384 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2385 		ret = ath10k_pci_warm_reset(ar);
2386 		if (ret) {
2387 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2388 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2389 				    ret);
2390 			continue;
2391 		}
2392 
2393 		/* FIXME: Sometimes copy engine doesn't recover after warm
2394 		 * reset. In most cases this needs cold reset. In some of these
2395 		 * cases the device is in such a state that a cold reset may
2396 		 * lock up the host.
2397 		 *
2398 		 * Reading any host interest register via copy engine is
2399 		 * sufficient to verify if device is capable of booting
2400 		 * firmware blob.
2401 		 */
2402 		ret = ath10k_pci_init_pipes(ar);
2403 		if (ret) {
2404 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2405 				    ret);
2406 			continue;
2407 		}
2408 
2409 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2410 					     &val);
2411 		if (ret) {
2412 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2413 				    ret);
2414 			continue;
2415 		}
2416 
2417 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2418 		return 0;
2419 	}
2420 
2421 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2422 		ath10k_warn(ar, "refusing cold reset as requested\n");
2423 		return -EPERM;
2424 	}
2425 
2426 	ret = ath10k_pci_cold_reset(ar);
2427 	if (ret) {
2428 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2429 		return ret;
2430 	}
2431 
2432 	ret = ath10k_pci_wait_for_target_init(ar);
2433 	if (ret) {
2434 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2435 			    ret);
2436 		return ret;
2437 	}
2438 
2439 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2440 
2441 	return 0;
2442 }
2443 
2444 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2445 {
2446 	int ret;
2447 
2448 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2449 
2450 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2451 
2452 	ret = ath10k_pci_cold_reset(ar);
2453 	if (ret) {
2454 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2455 		return ret;
2456 	}
2457 
2458 	ret = ath10k_pci_wait_for_target_init(ar);
2459 	if (ret) {
2460 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2461 			    ret);
2462 		return ret;
2463 	}
2464 
2465 	ret = ath10k_pci_warm_reset(ar);
2466 	if (ret) {
2467 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2468 		return ret;
2469 	}
2470 
2471 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2472 
2473 	return 0;
2474 }
2475 
2476 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2477 {
2478 	int ret;
2479 
2480 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2481 
2482 	ret = ath10k_pci_cold_reset(ar);
2483 	if (ret) {
2484 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2485 		return ret;
2486 	}
2487 
2488 	ret = ath10k_pci_wait_for_target_init(ar);
2489 	if (ret) {
2490 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2491 			    ret);
2492 		return ret;
2493 	}
2494 
2495 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2496 
2497 	return 0;
2498 }
2499 
2500 static int ath10k_pci_chip_reset(struct ath10k *ar)
2501 {
2502 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2503 
2504 	if (WARN_ON(!ar_pci->pci_hard_reset))
2505 		return -ENOTSUPP;
2506 
2507 	return ar_pci->pci_hard_reset(ar);
2508 }
2509 
2510 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2511 {
2512 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2513 	int ret;
2514 
2515 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2516 
2517 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2518 				  &ar_pci->link_ctl);
2519 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2520 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2521 
2522 	/*
2523 	 * Bring the target up cleanly.
2524 	 *
2525 	 * The target may be in an undefined state with an AUX-powered Target
2526 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2527 	 * restarted (without unloading the driver) then the Target is left
2528 	 * (aux) powered and running. On a subsequent driver load, the Target
2529 	 * is in an unexpected state. We try to catch that here in order to
2530 	 * reset the Target and retry the probe.
2531 	 */
2532 	ret = ath10k_pci_chip_reset(ar);
2533 	if (ret) {
2534 		if (ath10k_pci_has_fw_crashed(ar)) {
2535 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2536 			ath10k_pci_fw_crashed_clear(ar);
2537 			ath10k_pci_fw_crashed_dump(ar);
2538 		}
2539 
2540 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2541 		goto err_sleep;
2542 	}
2543 
2544 	ret = ath10k_pci_init_pipes(ar);
2545 	if (ret) {
2546 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2547 		goto err_sleep;
2548 	}
2549 
2550 	ret = ath10k_pci_init_config(ar);
2551 	if (ret) {
2552 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2553 		goto err_ce;
2554 	}
2555 
2556 	ret = ath10k_pci_wake_target_cpu(ar);
2557 	if (ret) {
2558 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2559 		goto err_ce;
2560 	}
2561 
2562 	return 0;
2563 
2564 err_ce:
2565 	ath10k_pci_ce_deinit(ar);
2566 
2567 err_sleep:
2568 	return ret;
2569 }
2570 
2571 void ath10k_pci_hif_power_down(struct ath10k *ar)
2572 {
2573 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2574 
2575 	/* Currently hif_power_up performs effectively a reset and hif_stop
2576 	 * resets the chip as well so there's no point in resetting here.
2577 	 */
2578 }
2579 
2580 #ifdef CONFIG_PM
2581 
2582 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2583 {
2584 	/* The grace timer can still be counting down and ar->ps_awake be true.
2585 	 * It is known that the device may be asleep after resuming regardless
2586 	 * of the SoC powersave state before suspending. Hence make sure the
2587 	 * device is asleep before proceeding.
2588 	 */
2589 	ath10k_pci_sleep_sync(ar);
2590 
2591 	return 0;
2592 }
2593 
2594 static int ath10k_pci_hif_resume(struct ath10k *ar)
2595 {
2596 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2597 	struct pci_dev *pdev = ar_pci->pdev;
2598 	u32 val;
2599 	int ret = 0;
2600 
2601 	ret = ath10k_pci_force_wake(ar);
2602 	if (ret) {
2603 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2604 		return ret;
2605 	}
2606 
2607 	/* Suspend/Resume resets the PCI configuration space, so we have to
2608 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2609 	 * from interfering with C3 CPU state. pci_restore_state won't help
2610 	 * here since it only restores the first 64 bytes pci config header.
2611 	 */
2612 	pci_read_config_dword(pdev, 0x40, &val);
2613 	if ((val & 0x0000ff00) != 0)
2614 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2615 
2616 	return ret;
2617 }
2618 #endif
2619 
2620 static bool ath10k_pci_validate_cal(void *data, size_t size)
2621 {
2622 	__le16 *cal_words = data;
2623 	u16 checksum = 0;
2624 	size_t i;
2625 
2626 	if (size % 2 != 0)
2627 		return false;
2628 
2629 	for (i = 0; i < size / 2; i++)
2630 		checksum ^= le16_to_cpu(cal_words[i]);
2631 
2632 	return checksum == 0xffff;
2633 }
2634 
2635 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2636 {
2637 	/* Enable SI clock */
2638 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2639 
2640 	/* Configure GPIOs for I2C operation */
2641 	ath10k_pci_write32(ar,
2642 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2643 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2644 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2645 			      GPIO_PIN0_CONFIG) |
2646 			   SM(1, GPIO_PIN0_PAD_PULL));
2647 
2648 	ath10k_pci_write32(ar,
2649 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2650 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2651 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2652 			   SM(1, GPIO_PIN0_PAD_PULL));
2653 
2654 	ath10k_pci_write32(ar,
2655 			   GPIO_BASE_ADDRESS +
2656 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2657 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2658 
2659 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2660 	ath10k_pci_write32(ar,
2661 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2662 			   SM(1, SI_CONFIG_ERR_INT) |
2663 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2664 			   SM(1, SI_CONFIG_I2C) |
2665 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2666 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2667 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2668 			   SM(8, SI_CONFIG_DIVIDER));
2669 }
2670 
2671 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2672 {
2673 	u32 reg;
2674 	int wait_limit;
2675 
2676 	/* set device select byte and for the read operation */
2677 	reg = QCA9887_EEPROM_SELECT_READ |
2678 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2679 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2680 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2681 
2682 	/* write transmit data, transfer length, and START bit */
2683 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2684 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2685 			   SM(4, SI_CS_TX_CNT));
2686 
2687 	/* wait max 1 sec */
2688 	wait_limit = 100000;
2689 
2690 	/* wait for SI_CS_DONE_INT */
2691 	do {
2692 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2693 		if (MS(reg, SI_CS_DONE_INT))
2694 			break;
2695 
2696 		wait_limit--;
2697 		udelay(10);
2698 	} while (wait_limit > 0);
2699 
2700 	if (!MS(reg, SI_CS_DONE_INT)) {
2701 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2702 			   addr);
2703 		return -ETIMEDOUT;
2704 	}
2705 
2706 	/* clear SI_CS_DONE_INT */
2707 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2708 
2709 	if (MS(reg, SI_CS_DONE_ERR)) {
2710 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2711 		return -EIO;
2712 	}
2713 
2714 	/* extract receive data */
2715 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2716 	*out = reg;
2717 
2718 	return 0;
2719 }
2720 
2721 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2722 					   size_t *data_len)
2723 {
2724 	u8 *caldata = NULL;
2725 	size_t calsize, i;
2726 	int ret;
2727 
2728 	if (!QCA_REV_9887(ar))
2729 		return -EOPNOTSUPP;
2730 
2731 	calsize = ar->hw_params.cal_data_len;
2732 	caldata = kmalloc(calsize, GFP_KERNEL);
2733 	if (!caldata)
2734 		return -ENOMEM;
2735 
2736 	ath10k_pci_enable_eeprom(ar);
2737 
2738 	for (i = 0; i < calsize; i++) {
2739 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2740 		if (ret)
2741 			goto err_free;
2742 	}
2743 
2744 	if (!ath10k_pci_validate_cal(caldata, calsize))
2745 		goto err_free;
2746 
2747 	*data = caldata;
2748 	*data_len = calsize;
2749 
2750 	return 0;
2751 
2752 err_free:
2753 	kfree(caldata);
2754 
2755 	return -EINVAL;
2756 }
2757 
2758 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2759 	.tx_sg			= ath10k_pci_hif_tx_sg,
2760 	.diag_read		= ath10k_pci_hif_diag_read,
2761 	.diag_write		= ath10k_pci_diag_write_mem,
2762 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2763 	.start			= ath10k_pci_hif_start,
2764 	.stop			= ath10k_pci_hif_stop,
2765 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2766 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2767 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2768 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2769 	.power_up		= ath10k_pci_hif_power_up,
2770 	.power_down		= ath10k_pci_hif_power_down,
2771 	.read32			= ath10k_pci_read32,
2772 	.write32		= ath10k_pci_write32,
2773 #ifdef CONFIG_PM
2774 	.suspend		= ath10k_pci_hif_suspend,
2775 	.resume			= ath10k_pci_hif_resume,
2776 #endif
2777 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
2778 };
2779 
2780 /*
2781  * Top-level interrupt handler for all PCI interrupts from a Target.
2782  * When a block of MSI interrupts is allocated, this top-level handler
2783  * is not used; instead, we directly call the correct sub-handler.
2784  */
2785 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2786 {
2787 	struct ath10k *ar = arg;
2788 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2789 	int ret;
2790 
2791 	if (ath10k_pci_has_device_gone(ar))
2792 		return IRQ_NONE;
2793 
2794 	ret = ath10k_pci_force_wake(ar);
2795 	if (ret) {
2796 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2797 		return IRQ_NONE;
2798 	}
2799 
2800 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2801 	    !ath10k_pci_irq_pending(ar))
2802 		return IRQ_NONE;
2803 
2804 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2805 	ath10k_pci_irq_msi_fw_mask(ar);
2806 	napi_schedule(&ar->napi);
2807 
2808 	return IRQ_HANDLED;
2809 }
2810 
2811 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2812 {
2813 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2814 	int done = 0;
2815 
2816 	if (ath10k_pci_has_fw_crashed(ar)) {
2817 		ath10k_pci_fw_crashed_clear(ar);
2818 		ath10k_pci_fw_crashed_dump(ar);
2819 		napi_complete(ctx);
2820 		return done;
2821 	}
2822 
2823 	ath10k_ce_per_engine_service_any(ar);
2824 
2825 	done = ath10k_htt_txrx_compl_task(ar, budget);
2826 
2827 	if (done < budget) {
2828 		napi_complete_done(ctx, done);
2829 		/* In case of MSI, it is possible that interrupts are received
2830 		 * while NAPI poll is inprogress. So pending interrupts that are
2831 		 * received after processing all copy engine pipes by NAPI poll
2832 		 * will not be handled again. This is causing failure to
2833 		 * complete boot sequence in x86 platform. So before enabling
2834 		 * interrupts safer to check for pending interrupts for
2835 		 * immediate servicing.
2836 		 */
2837 		if (ath10k_ce_interrupt_summary(ar)) {
2838 			napi_reschedule(ctx);
2839 			goto out;
2840 		}
2841 		ath10k_pci_enable_legacy_irq(ar);
2842 		ath10k_pci_irq_msi_fw_unmask(ar);
2843 	}
2844 
2845 out:
2846 	return done;
2847 }
2848 
2849 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2850 {
2851 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2852 	int ret;
2853 
2854 	ret = request_irq(ar_pci->pdev->irq,
2855 			  ath10k_pci_interrupt_handler,
2856 			  IRQF_SHARED, "ath10k_pci", ar);
2857 	if (ret) {
2858 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2859 			    ar_pci->pdev->irq, ret);
2860 		return ret;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2867 {
2868 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2869 	int ret;
2870 
2871 	ret = request_irq(ar_pci->pdev->irq,
2872 			  ath10k_pci_interrupt_handler,
2873 			  IRQF_SHARED, "ath10k_pci", ar);
2874 	if (ret) {
2875 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2876 			    ar_pci->pdev->irq, ret);
2877 		return ret;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static int ath10k_pci_request_irq(struct ath10k *ar)
2884 {
2885 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2886 
2887 	switch (ar_pci->oper_irq_mode) {
2888 	case ATH10K_PCI_IRQ_LEGACY:
2889 		return ath10k_pci_request_irq_legacy(ar);
2890 	case ATH10K_PCI_IRQ_MSI:
2891 		return ath10k_pci_request_irq_msi(ar);
2892 	default:
2893 		return -EINVAL;
2894 	}
2895 }
2896 
2897 static void ath10k_pci_free_irq(struct ath10k *ar)
2898 {
2899 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2900 
2901 	free_irq(ar_pci->pdev->irq, ar);
2902 }
2903 
2904 void ath10k_pci_init_napi(struct ath10k *ar)
2905 {
2906 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2907 		       ATH10K_NAPI_BUDGET);
2908 }
2909 
2910 static int ath10k_pci_init_irq(struct ath10k *ar)
2911 {
2912 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2913 	int ret;
2914 
2915 	ath10k_pci_init_napi(ar);
2916 
2917 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2918 		ath10k_info(ar, "limiting irq mode to: %d\n",
2919 			    ath10k_pci_irq_mode);
2920 
2921 	/* Try MSI */
2922 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2923 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2924 		ret = pci_enable_msi(ar_pci->pdev);
2925 		if (ret == 0)
2926 			return 0;
2927 
2928 		/* fall-through */
2929 	}
2930 
2931 	/* Try legacy irq
2932 	 *
2933 	 * A potential race occurs here: The CORE_BASE write
2934 	 * depends on target correctly decoding AXI address but
2935 	 * host won't know when target writes BAR to CORE_CTRL.
2936 	 * This write might get lost if target has NOT written BAR.
2937 	 * For now, fix the race by repeating the write in below
2938 	 * synchronization checking.
2939 	 */
2940 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2941 
2942 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2943 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2944 
2945 	return 0;
2946 }
2947 
2948 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2949 {
2950 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2951 			   0);
2952 }
2953 
2954 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2955 {
2956 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2957 
2958 	switch (ar_pci->oper_irq_mode) {
2959 	case ATH10K_PCI_IRQ_LEGACY:
2960 		ath10k_pci_deinit_irq_legacy(ar);
2961 		break;
2962 	default:
2963 		pci_disable_msi(ar_pci->pdev);
2964 		break;
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2971 {
2972 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2973 	unsigned long timeout;
2974 	u32 val;
2975 
2976 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2977 
2978 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2979 
2980 	do {
2981 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2982 
2983 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2984 			   val);
2985 
2986 		/* target should never return this */
2987 		if (val == 0xffffffff)
2988 			continue;
2989 
2990 		/* the device has crashed so don't bother trying anymore */
2991 		if (val & FW_IND_EVENT_PENDING)
2992 			break;
2993 
2994 		if (val & FW_IND_INITIALIZED)
2995 			break;
2996 
2997 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2998 			/* Fix potential race by repeating CORE_BASE writes */
2999 			ath10k_pci_enable_legacy_irq(ar);
3000 
3001 		mdelay(10);
3002 	} while (time_before(jiffies, timeout));
3003 
3004 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3005 	ath10k_pci_irq_msi_fw_mask(ar);
3006 
3007 	if (val == 0xffffffff) {
3008 		ath10k_err(ar, "failed to read device register, device is gone\n");
3009 		return -EIO;
3010 	}
3011 
3012 	if (val & FW_IND_EVENT_PENDING) {
3013 		ath10k_warn(ar, "device has crashed during init\n");
3014 		return -ECOMM;
3015 	}
3016 
3017 	if (!(val & FW_IND_INITIALIZED)) {
3018 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3019 			   val);
3020 		return -ETIMEDOUT;
3021 	}
3022 
3023 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3024 	return 0;
3025 }
3026 
3027 static int ath10k_pci_cold_reset(struct ath10k *ar)
3028 {
3029 	u32 val;
3030 
3031 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3032 
3033 	spin_lock_bh(&ar->data_lock);
3034 
3035 	ar->stats.fw_cold_reset_counter++;
3036 
3037 	spin_unlock_bh(&ar->data_lock);
3038 
3039 	/* Put Target, including PCIe, into RESET. */
3040 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3041 	val |= 1;
3042 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3043 
3044 	/* After writing into SOC_GLOBAL_RESET to put device into
3045 	 * reset and pulling out of reset pcie may not be stable
3046 	 * for any immediate pcie register access and cause bus error,
3047 	 * add delay before any pcie access request to fix this issue.
3048 	 */
3049 	msleep(20);
3050 
3051 	/* Pull Target, including PCIe, out of RESET. */
3052 	val &= ~1;
3053 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3054 
3055 	msleep(20);
3056 
3057 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3058 
3059 	return 0;
3060 }
3061 
3062 static int ath10k_pci_claim(struct ath10k *ar)
3063 {
3064 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3065 	struct pci_dev *pdev = ar_pci->pdev;
3066 	int ret;
3067 
3068 	pci_set_drvdata(pdev, ar);
3069 
3070 	ret = pci_enable_device(pdev);
3071 	if (ret) {
3072 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3073 		return ret;
3074 	}
3075 
3076 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3077 	if (ret) {
3078 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3079 			   ret);
3080 		goto err_device;
3081 	}
3082 
3083 	/* Target expects 32 bit DMA. Enforce it. */
3084 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3085 	if (ret) {
3086 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3087 		goto err_region;
3088 	}
3089 
3090 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3091 	if (ret) {
3092 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3093 			   ret);
3094 		goto err_region;
3095 	}
3096 
3097 	pci_set_master(pdev);
3098 
3099 	/* Arrange for access to Target SoC registers. */
3100 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3101 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3102 	if (!ar_pci->mem) {
3103 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3104 		ret = -EIO;
3105 		goto err_master;
3106 	}
3107 
3108 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3109 	return 0;
3110 
3111 err_master:
3112 	pci_clear_master(pdev);
3113 
3114 err_region:
3115 	pci_release_region(pdev, BAR_NUM);
3116 
3117 err_device:
3118 	pci_disable_device(pdev);
3119 
3120 	return ret;
3121 }
3122 
3123 static void ath10k_pci_release(struct ath10k *ar)
3124 {
3125 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3126 	struct pci_dev *pdev = ar_pci->pdev;
3127 
3128 	pci_iounmap(pdev, ar_pci->mem);
3129 	pci_release_region(pdev, BAR_NUM);
3130 	pci_clear_master(pdev);
3131 	pci_disable_device(pdev);
3132 }
3133 
3134 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3135 {
3136 	const struct ath10k_pci_supp_chip *supp_chip;
3137 	int i;
3138 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3139 
3140 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3141 		supp_chip = &ath10k_pci_supp_chips[i];
3142 
3143 		if (supp_chip->dev_id == dev_id &&
3144 		    supp_chip->rev_id == rev_id)
3145 			return true;
3146 	}
3147 
3148 	return false;
3149 }
3150 
3151 int ath10k_pci_setup_resource(struct ath10k *ar)
3152 {
3153 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3154 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3155 	int ret;
3156 
3157 	spin_lock_init(&ce->ce_lock);
3158 	spin_lock_init(&ar_pci->ps_lock);
3159 
3160 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3161 		    (unsigned long)ar);
3162 
3163 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3164 		ath10k_pci_override_ce_config(ar);
3165 
3166 	ret = ath10k_pci_alloc_pipes(ar);
3167 	if (ret) {
3168 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3169 			   ret);
3170 		return ret;
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 void ath10k_pci_release_resource(struct ath10k *ar)
3177 {
3178 	ath10k_pci_rx_retry_sync(ar);
3179 	netif_napi_del(&ar->napi);
3180 	ath10k_pci_ce_deinit(ar);
3181 	ath10k_pci_free_pipes(ar);
3182 }
3183 
3184 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3185 	.read32		= ath10k_bus_pci_read32,
3186 	.write32	= ath10k_bus_pci_write32,
3187 	.get_num_banks	= ath10k_pci_get_num_banks,
3188 };
3189 
3190 static int ath10k_pci_probe(struct pci_dev *pdev,
3191 			    const struct pci_device_id *pci_dev)
3192 {
3193 	int ret = 0;
3194 	struct ath10k *ar;
3195 	struct ath10k_pci *ar_pci;
3196 	enum ath10k_hw_rev hw_rev;
3197 	u32 chip_id;
3198 	bool pci_ps;
3199 	int (*pci_soft_reset)(struct ath10k *ar);
3200 	int (*pci_hard_reset)(struct ath10k *ar);
3201 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3202 
3203 	switch (pci_dev->device) {
3204 	case QCA988X_2_0_DEVICE_ID:
3205 		hw_rev = ATH10K_HW_QCA988X;
3206 		pci_ps = false;
3207 		pci_soft_reset = ath10k_pci_warm_reset;
3208 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3209 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3210 		break;
3211 	case QCA9887_1_0_DEVICE_ID:
3212 		hw_rev = ATH10K_HW_QCA9887;
3213 		pci_ps = false;
3214 		pci_soft_reset = ath10k_pci_warm_reset;
3215 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3216 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3217 		break;
3218 	case QCA6164_2_1_DEVICE_ID:
3219 	case QCA6174_2_1_DEVICE_ID:
3220 		hw_rev = ATH10K_HW_QCA6174;
3221 		pci_ps = true;
3222 		pci_soft_reset = ath10k_pci_warm_reset;
3223 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3224 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3225 		break;
3226 	case QCA99X0_2_0_DEVICE_ID:
3227 		hw_rev = ATH10K_HW_QCA99X0;
3228 		pci_ps = false;
3229 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3230 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3231 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3232 		break;
3233 	case QCA9984_1_0_DEVICE_ID:
3234 		hw_rev = ATH10K_HW_QCA9984;
3235 		pci_ps = false;
3236 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3237 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3238 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3239 		break;
3240 	case QCA9888_2_0_DEVICE_ID:
3241 		hw_rev = ATH10K_HW_QCA9888;
3242 		pci_ps = false;
3243 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3244 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3245 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3246 		break;
3247 	case QCA9377_1_0_DEVICE_ID:
3248 		hw_rev = ATH10K_HW_QCA9377;
3249 		pci_ps = true;
3250 		pci_soft_reset = NULL;
3251 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3252 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3253 		break;
3254 	default:
3255 		WARN_ON(1);
3256 		return -ENOTSUPP;
3257 	}
3258 
3259 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3260 				hw_rev, &ath10k_pci_hif_ops);
3261 	if (!ar) {
3262 		dev_err(&pdev->dev, "failed to allocate core\n");
3263 		return -ENOMEM;
3264 	}
3265 
3266 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3267 		   pdev->vendor, pdev->device,
3268 		   pdev->subsystem_vendor, pdev->subsystem_device);
3269 
3270 	ar_pci = ath10k_pci_priv(ar);
3271 	ar_pci->pdev = pdev;
3272 	ar_pci->dev = &pdev->dev;
3273 	ar_pci->ar = ar;
3274 	ar->dev_id = pci_dev->device;
3275 	ar_pci->pci_ps = pci_ps;
3276 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3277 	ar_pci->pci_soft_reset = pci_soft_reset;
3278 	ar_pci->pci_hard_reset = pci_hard_reset;
3279 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3280 	ar->ce_priv = &ar_pci->ce;
3281 
3282 	ar->id.vendor = pdev->vendor;
3283 	ar->id.device = pdev->device;
3284 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3285 	ar->id.subsystem_device = pdev->subsystem_device;
3286 
3287 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3288 		    (unsigned long)ar);
3289 
3290 	ret = ath10k_pci_setup_resource(ar);
3291 	if (ret) {
3292 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3293 		goto err_core_destroy;
3294 	}
3295 
3296 	ret = ath10k_pci_claim(ar);
3297 	if (ret) {
3298 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3299 		goto err_free_pipes;
3300 	}
3301 
3302 	ret = ath10k_pci_force_wake(ar);
3303 	if (ret) {
3304 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3305 		goto err_sleep;
3306 	}
3307 
3308 	ath10k_pci_ce_deinit(ar);
3309 	ath10k_pci_irq_disable(ar);
3310 
3311 	ret = ath10k_pci_init_irq(ar);
3312 	if (ret) {
3313 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3314 		goto err_sleep;
3315 	}
3316 
3317 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3318 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3319 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3320 
3321 	ret = ath10k_pci_request_irq(ar);
3322 	if (ret) {
3323 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3324 		goto err_deinit_irq;
3325 	}
3326 
3327 	ret = ath10k_pci_chip_reset(ar);
3328 	if (ret) {
3329 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3330 		goto err_free_irq;
3331 	}
3332 
3333 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3334 	if (chip_id == 0xffffffff) {
3335 		ath10k_err(ar, "failed to get chip id\n");
3336 		goto err_free_irq;
3337 	}
3338 
3339 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3340 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3341 			   pdev->device, chip_id);
3342 		goto err_free_irq;
3343 	}
3344 
3345 	ret = ath10k_core_register(ar, chip_id);
3346 	if (ret) {
3347 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3348 		goto err_free_irq;
3349 	}
3350 
3351 	return 0;
3352 
3353 err_free_irq:
3354 	ath10k_pci_free_irq(ar);
3355 	ath10k_pci_rx_retry_sync(ar);
3356 
3357 err_deinit_irq:
3358 	ath10k_pci_deinit_irq(ar);
3359 
3360 err_sleep:
3361 	ath10k_pci_sleep_sync(ar);
3362 	ath10k_pci_release(ar);
3363 
3364 err_free_pipes:
3365 	ath10k_pci_free_pipes(ar);
3366 
3367 err_core_destroy:
3368 	ath10k_core_destroy(ar);
3369 
3370 	return ret;
3371 }
3372 
3373 static void ath10k_pci_remove(struct pci_dev *pdev)
3374 {
3375 	struct ath10k *ar = pci_get_drvdata(pdev);
3376 	struct ath10k_pci *ar_pci;
3377 
3378 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3379 
3380 	if (!ar)
3381 		return;
3382 
3383 	ar_pci = ath10k_pci_priv(ar);
3384 
3385 	if (!ar_pci)
3386 		return;
3387 
3388 	ath10k_core_unregister(ar);
3389 	ath10k_pci_free_irq(ar);
3390 	ath10k_pci_deinit_irq(ar);
3391 	ath10k_pci_release_resource(ar);
3392 	ath10k_pci_sleep_sync(ar);
3393 	ath10k_pci_release(ar);
3394 	ath10k_core_destroy(ar);
3395 }
3396 
3397 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3398 
3399 #ifdef CONFIG_PM
3400 
3401 static int ath10k_pci_pm_suspend(struct device *dev)
3402 {
3403 	struct ath10k *ar = dev_get_drvdata(dev);
3404 	int ret;
3405 
3406 	if (test_bit(ATH10K_FW_FEATURE_WOWLAN_SUPPORT,
3407 		     ar->running_fw->fw_file.fw_features))
3408 		return 0;
3409 
3410 	ret = ath10k_hif_suspend(ar);
3411 	if (ret)
3412 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3413 
3414 	return ret;
3415 }
3416 
3417 static int ath10k_pci_pm_resume(struct device *dev)
3418 {
3419 	struct ath10k *ar = dev_get_drvdata(dev);
3420 	int ret;
3421 
3422 	if (test_bit(ATH10K_FW_FEATURE_WOWLAN_SUPPORT,
3423 		     ar->running_fw->fw_file.fw_features))
3424 		return 0;
3425 
3426 	ret = ath10k_hif_resume(ar);
3427 	if (ret)
3428 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3429 
3430 	return ret;
3431 }
3432 
3433 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3434 			 ath10k_pci_pm_suspend,
3435 			 ath10k_pci_pm_resume);
3436 #endif
3437 
3438 static struct pci_driver ath10k_pci_driver = {
3439 	.name = "ath10k_pci",
3440 	.id_table = ath10k_pci_id_table,
3441 	.probe = ath10k_pci_probe,
3442 	.remove = ath10k_pci_remove,
3443 #ifdef CONFIG_PM
3444 	.driver.pm = &ath10k_pci_pm_ops,
3445 #endif
3446 };
3447 
3448 static int __init ath10k_pci_init(void)
3449 {
3450 	int ret;
3451 
3452 	ret = pci_register_driver(&ath10k_pci_driver);
3453 	if (ret)
3454 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3455 		       ret);
3456 
3457 	ret = ath10k_ahb_init();
3458 	if (ret)
3459 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3460 
3461 	return ret;
3462 }
3463 module_init(ath10k_pci_init);
3464 
3465 static void __exit ath10k_pci_exit(void)
3466 {
3467 	pci_unregister_driver(&ath10k_pci_driver);
3468 	ath10k_ahb_exit();
3469 }
3470 
3471 module_exit(ath10k_pci_exit);
3472 
3473 MODULE_AUTHOR("Qualcomm Atheros");
3474 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3475 MODULE_LICENSE("Dual BSD/GPL");
3476 
3477 /* QCA988x 2.0 firmware files */
3478 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3479 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3480 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3481 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3482 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3483 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3484 
3485 /* QCA9887 1.0 firmware files */
3486 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3487 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3488 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3489 
3490 /* QCA6174 2.1 firmware files */
3491 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3492 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3493 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3494 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3495 
3496 /* QCA6174 3.1 firmware files */
3497 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3498 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3499 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3500 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3501 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3502 
3503 /* QCA9377 1.0 firmware files */
3504 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3505 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3506